MA1S11 (Dotsenko) Tutorial/Exercise Sheet 5

Week 6, Michaelmas 2013

Please hand in your work in the end of the tutorial. Make sure you put your name and student ID number on what you hand in.

A complete solution to every question is worth 2 marks.

Reminder:

1. Given a function f, the function f^{\prime} defined by the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

is called the derivative of f with respect to x. The domain of f^{\prime} consists of all x for which the limit exists.
2. To determine the equation of the tangent line to the graph of f at $x=x_{0}$ when we can compute the derivative function:

- Evaluate $f\left(x_{0}\right)$; the point of tangency is $\left(x_{0}, f\left(x_{0}\right)\right)$.
- Evaluate $f^{\prime}\left(x_{0}\right)$; that is the slope of the tangent line.
- Use the point of tangency and the slope in the point-slope equation of the line to get

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right),
$$

or equivalently

$$
y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right) .
$$

3. Every polynomial

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

is differentiable everywhere, and

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1} .
$$

Questions

1. Let $f(x)=x^{5 / 3}$ and $g(x)=\sin x$. Compute $f^{\prime}(0)$ and $g^{\prime}(0)$.
2. Find the equation for the tangent line to the graph $y=\sqrt{x}$ at $x=4$.
3. Is the function $f(x)=\left\{\begin{array}{c}x^{2} \sin \frac{1}{x}, x \neq 0, \\ 0, \quad x=0 .\end{array} \quad\right.$ differentiable at the point $x=0$?
4. Find the values of x_{0} for which the tangent line to the graph $y=x^{3}-x$ at $x=x_{0}$ is parallel to the line $y=x$, and write down equations for the corresponding tangent lines.
5. A person drops a coin from the roof of a skyscraper which is 218 metres above the street level. The position of the coin (in metres above water) as a function of time (in seconds) is given by

$$
s(t)=218-\frac{1}{2} g t^{2}
$$

where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (metres per seconds squared) is the acceleration due to the gravitational force.

- How long will it take for the coin to reach the street level?
- What is the instantaneous velocity of the coin as a function of t ?
- What is the instantaneous velocity of the coin at the end of the fall?

