MA1S11 (Dotsenko) Tutorial/Exercise Sheet 7

Week 9, Michaelmas 2013

Please hand in your work in the end of the tutorial. Make sure you put your name and student ID number on what you hand in.

A complete solution to question 1 is worth 2 marks, complete solutions to questions 2 and 3 are worth 4 marks each.

Reminder:

1. Implicit differentiation, example: find $d y / d x$ for $y^{2}+x^{2}=1$, this gives a relationship between x and y without expressing y explicitly as a function of x. Differentiate across

$$
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x} 1=0
$$

so

$$
2 x \frac{d x}{d x}+\frac{d y^{2}}{d x}=0
$$

and hence

$$
2 x+2 y \frac{d y}{d x}=0
$$

or, solving for $d y / d x$

$$
\frac{d y}{d x}=-\frac{x}{y} .
$$

2. Relative Extrema: A point $x=x_{0}$ is a relative maximum if there is an open interval (a, b) containing x_{0} such that $f(x) \leq f\left(x_{0}\right)$ for all $x \in(a, b)$; it is a relative minimum if $f(x) \geq f\left(x_{0}\right)$ for all $x \in(a, b)$.
3. Critical points: If $f^{\prime}\left(x_{0}\right)=0$ or if f is not differentiable at $x=x_{0}$ then x_{0} is a critical point of f. To find out whether f has a relative extremum at x_{0} one may determine whether $f^{\prime}(x)$ changes sign across x_{0}. If so f has a relative extremum at x_{0} which is a relative maximum for a plus-minus change and a relative minimum for minus-plus change of $f^{\prime}(x)$.
4. Second derivative test: If f is twice differentiable, one may determine whether a critical/stationary point x_{0} corresponds to a relative maximum or minimum of f by computing $f^{\prime \prime}$. If $f^{\prime \prime}\left(x_{0}\right)>0$ then f has a relative minimum at x_{0}, if $f^{\prime \prime}\left(x_{0}\right)<0$ then f has a relative maximum at x_{0}. If $f^{\prime \prime}\left(x_{0}\right)=0$ it is undecided, it could be a relative extremum or it could be a inflection point, i.e. a point joining a concave up $f^{\prime \prime}(x)>0$ and a concave down $f^{\prime \prime}(x)<0$ interval.

Questions

1. Using implicit differentiation, find the equation of the tangent line to the curve $y^{2}-y=x^{3}-x$ at the point $(2,3)$.
2. Determine the roots, the relative extrema, the regions of concavity up/down and the limit behaviour for $x \rightarrow \pm \infty$ for

$$
f(x)=(x+1)^{2}(x-1)=x^{3}+x^{2}-x-1
$$

Then sketch the graph of f using all the gathered information.
3. Determine the relative extrema, the inflection points and the regions of concavity up or down of the function

$$
f(x)=\frac{x^{4}}{4}+\frac{2}{9} x^{3}-\frac{5}{6} x^{2}+\frac{10}{9} .
$$

