MA1S11 (Dotsenko) Tutorial/Exercise Sheet 8

Week 10, Michaelmas 2013
Please hand in your work in the end of the tutorial. Make sure you put your name and student ID number on what you hand in.
A complete solution to question 1 is worth 7 marks, and a complete solution to question 2 is worth 3 marks.

Reminder:

1. Graphing $f(x)=p(x) / q(x)$ (for p and q without common factors).

- Determine if the graph has any symmetries (about the y-axis or about the origin).
- Find the points where the graph meets the x-axis $((r, 0)$ for each root r of $p(x))$ and the point where the graph meets the y-axis $((0, f(0)))$.
- Find vertical asymptotes of the graph ($x=s$ for each root s of $q(x)$).
- Points where f can potentially change sign are at the x-intercepts or vertical asymptotes. For each interval between those points, determine the sign of f on that interval.
- Determine the limit of $f(x)$ at $-\infty$ and at $+\infty$. This would determine the horizontal asymptote of the graph, if any.
- Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Analyse the signs of these.
- Using the sign analysis of the derivatives, determine where f is increasing, decreasing, concave up, and concave down. Determine all stationary points, relative extrema, and inflection points. Use the sign analysis of $f(x)$ to determine how the graph behaves near the vertical asymptotes. Based on these conclusions, sketch the graph.

2. Absolute extrema: A point $x=c$ is an absolute or global maximum if $f(c) \geq f(x)$ for all x in the domain of f, and is an absolute or global minimum if $f(c) \leq f(x)$ for all x in the domain of f. If the domain is a closed interval then one needs to compare the values of f at the relative extrema with the values of f at the endpoints of the interval to find out which are absolute or global extrema.

Questions

1. Investigate fully the rational function $f(x)=\frac{x^{2}}{1-x^{3}}$, and sketch its graph. (Hint: to check your computations, the numerator of $f^{\prime \prime}(x)$ is $2\left(x^{6}+7 x^{3}+1\right)$. To find its roots, denote $x^{3}=t$, solve the quadratic equation $t^{2}+7 t+1=0$, and extract cubic roots to recover x. Perform all computations to $3-4$ decimal places: the actual algebraic formulas for roots are in this case too complicated!)
2. Determine the relative and the absolute extrema of the function f on the closed interval $[-2,3]$, if

$$
f(x)=-\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+x^{2}+1 .
$$

