MA1S11 (Dotsenko) Tutorial/Exercise Sheet 9

Week 11, Michaelmas 2013

Please hand in your work in the end of the tutorial. Make sure you put your name and student ID number on what you hand in.

A complete solution to each of the questions 1,2 is worth 2 marks, a complete solution to each of the questions 3,4 is worth 3 marks.

Reminder:

- The antiderivative and the indefinite integral: for a function $f(x)$, the function $F(x)$ is its anti-derivative if

$$
\frac{d F(x)}{d x}=f(x)
$$

The indefinite integral is the family of all anti-derivatives

$$
\int f(x) d x=F(x)+C
$$

where C is the arbitrary constant of integration.

- Integration table

$f(x)$	$\int f(x) d x$
$x^{r}(r \neq-1)$	$\frac{x^{r+1}}{r+1}+C$
e^{x}	$e^{x}+C$
$1 / x$	$\ln x+C$
$\sin x$	$-\cos x+C$
$\cos x$	$\sin x+C$
$\cos ^{2} x$	$\tan x+C$

- Linearity: if

$$
\int f(x) d x=F(x)+C, \quad \int g(x) d x=G(x)+C
$$

then

$$
\int \lambda f(x) d x=\lambda F(x)+C \quad \int[f(x)+g(x)] d x=F(x)+G(x)+C
$$

where λ is a constant.

- u-substitution: If $F^{\prime}(x)=f(x)$, then the chain rule from the point of view of antiderivatives can be written in the form:

$$
\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C
$$

To compute an integral like the LHS one substitutes $u=g(x)$ and $d u=\frac{d u}{d x} d x=g^{\prime}(x) d x$ and writes

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u=F(u)+C=F(g(x))+C
$$

where in the last step one substitutes back $u=g(x)$ so that x is the independent variable.

- Integration by parts: If $F^{\prime}(x)=f(x)$, and $G^{\prime}(x)=g(x)$, then the product rule from the point of view of antiderivatives can be written in the form:

$$
\int G(x) f(x) d x=F(x) G(x)-\int F(x) g(x) d x
$$

or equivalently using the notation $d u=u^{\prime}(x) d x$ from above

$$
\int G d F=F G-\int F d G .
$$

Questions

1. Find the indefinite integrals of $x^{5}-4 x, \sqrt[3]{x}+1 / \sqrt[3]{x}, x^{2}-\cos x$ and $\left(x^{3}-1\right)(x+2)$.
2. Evaluate the following integrals using u-substitution:

$$
\int\left(3 x^{2}-5\right)^{1 / 3} x d x, \quad \int \cos ^{2}(x) \sin (x) d x
$$

(Hint: use substitutions $u=3 x^{2}-5$ and $u=\cos (x)$, respectively.)
3. Evaluate

$$
\int \frac{1}{1-\sin x} d x
$$

(Hint: first multiply by $1+\sin x$ above and below the line, then use the identity $\cos ^{2} x+$ $\sin ^{2} x=1$ and u-substitution.)
4. Use (repeated) integration by parts to evaluate the integral $\int\left(x^{3}-1\right) e^{x} d x$.

