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Notations

The following is a list of some notations used throughout this thesis:

R : A �xed commutative ring

K : A �xed �eld

Set : The category of sets

Ab : The category of abelian groups

R-Mod : The category of R-modules

C-modules : The category of functors from a category C to the category R-Mod

K -Vect : The category of K-vector spaces
Fct(A,B) : The category of functors from A to B if B is a category and A a small category

F ∗ : The pre-composition by the functor F

F∗ : The post-composition by the functor F

Sn : The symmetric group on n elements

x ∈ A : An object x of the category A



Introduction (Français)

Des FI-modules aux FId-modules

Les FI-modules sont les foncteurs de la catégorie FI des ensembles �nis et des injections
(également notée I dans [Sch08] et Θ dans [DV19]) vers la catégorie R-Mod des R-modules
(pour R un anneau commutatif). Plus généralement, un C-module est un foncteur d'une caté-
gorie C vers la catégorie R-Mod. Les FI-modules ont été largement étudiés au cours de la
dernière décennie par Church, Ellenberg, Farb, Nagpal, Reinhold et d'autres (voir par exemple
[CEF15, CEFN14, CEF14, CE17, CF13, Chu12, CMNR18, Dja16, DV19]). La théorie des FI-
modules a été introduite dans [CEF15] a�n de transformer la notion complexe de stabilité de
représentation en un résultat de �nitude sur la suite de représentations des groupes symétriques
considérée comme un objet unique. Une introduction détaillée à la théorie des FI-modules et à
la stabilité de représentation peut être trouvée dans [Sam20] mais nous rappelons ici les principes
de base. La notation FI a été introduite dans [CEF15] en tant qu'acronyme pour la catégorie des
ensembles Finis (souvent représentés par leur cardinal dans le squelette) et des Injections. Un
FI-module correspond à une famille de représentations linéaires des groupes symétriques avec
des conditions de compatibilité données par des applications linéaires, ce qui peut être représenté
par le diagramme suivant :

FI 0 1 2 . . . n . . .

R-Mod F (0) F (1) F (2) . . . F (n) . . .

F

S0 S1 S2 Sn

F (S0) F (S1) F (S2) F (Sn)

Chaque �èche de ce diagramme représente en fait plusieurs �èches que nous pouvons construire
par composition et via l'action des groupes symétriques. Un grand nombre d'exemples concrets
de FI-modules sont présentés dans [CF13]. D'autres exemples intéressants de FI-modules de
type �ni sont donnés par la cohomologie des groupes de tresses pures dans [Wil18a] et des
groupes appelés pure string motion group dans [Wil12].

Dans la littérature il existe plusieurs variantes (voir [Sam20] pour une liste détaillée) de
la catégorie FI : les catégories FId que nous développons dans cette thèse, FIG la catégorie
des ensembles �nis et des couples d'une injection et d'un choix d'un élément du groupe G
pour chaque élément à la source (voir [Ram17b]), FSG la catégorie des ensembles �nis et des
G-surjections pour G un groupe (voir [SS17]), FIW pour W certains groupes de Weyl dans
[Wil12], FIM la catégorie des ensembles �nis et des paires d'injection et de couplage parfait
sur le complémentaire de l'image (voir [MW19]), ou une version symplectique (voir [Sam20]).
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Il existe également des variantes pour les représentations des groupes linéaires, comme VI(R)
la catégorie des modules libres de rang �ni et des applications linéaires injectives avec inverse
à gauche, qui est présentée en détail dans [Wil18a]. Cette catégorie, et sa généralisation
VIC(R) des modules libres de rang �ni et des applications linéaires injectives avec un choix de
supplémentaire de l'image, ont été introduites sous les noms S(ab) pour R = Z dans [DV19] et
S(R) dans [Dja16].

Dans cette thèse, nous nous concentrerons sur la catégorie FId pour d un entier non nul,
introduite par Sam et Snowden dans [SS17], dans laquelle les objets sont toujours les ensembles
�nis et les morphismes sont les injections colorées. Nous étudions ici les FId-modules et
nous soulignons en particulier les di�érences avec les FI-modules. Même si nous étudions les
foncteurs dont la catégorie but est une catégorie de modules pour plus de clarté, l'essentiel de ce
travail reste vrai si nous remplaçons R-Mod par une catégorie de Grothendieck générale (voir
[Gar01]). Nous récupérons en particulier les FI-modules puisque la catégorie FI1 est isomorphe
à la catégorie FI (voir Section 2.1). La première di�érence majeure est que l'unité 0 est un
objet initial dans FI ≅ FI1, mais pas dans FId pour d > 1. Nous montrons également dans la
Section 2.7 que le foncteur oubli FId → FI, qui relie les FId-modules et les FI-modules, possède
une famille d'adjoints ∆c ∶ FI→ FId qui ajoutent la couleur c à tous les morphismes de FI. Par
précomposition, ils permettent de considérer un FId-module comme un FI-module.

Pour toute catégorie C, une famille d'exemples importants de foncteurs de C versR-Mod sont
les foncteurs projectifs standard. Ces foncteurs fondamentaux apparaissent pour les foncteurs
entre les espaces vectoriels Fp dans [Kuh94], pour FId dans [SS17], et pour d = 1 dans [DV19,
Dja16, Ves19], ou sous le nom de modules libres dans [CEF15, CEFN14, MW19] ou encore de
foncteurs représentables dans [Wil18a]. Ils jouent le rôle des modules libres dans la théorie
classique des modules. Nous pouvons déduire beaucoup d'informations sur les FId-modules
de la structure des foncteurs projectifs standards puisqu'ils forment une famille de générateurs
projectifs de FId -Mod (Proposition 2.2.5).

Les FId-modules simples

La catégorie FId est une catégorie EI : i.e. une catégorie dont les endomorphismes sont des
isomorphismes. Ces catégories et leurs représentations ont été introduites par Dieck dans [Die87]
dans le contexte de la K-théorie algébrique, et plus récemment étudiées par Li dans [Li14],
en particulier leur propriété de Koszul. Cette propriété nous donne déjà un résultat sur les
FId-modules simples, c'est-à-dire les FId-modules qui n'ont pas de sous-foncteurs propres non
nuls. Pour exprimer ce résultat, nous rappelons que les représentations irréductibles du groupe
symétrique Sn sur un corps de caractéristique nulle sont indexées par les partitions λ de n. Nous
désignons par Mλ la représentation irréductible associée à la partition λ de n, qui est dé�nie
comme l'idéal de l'anneau K[Sn] engendré par un élément idempotent associé à la partition λ,
appelé le symétriseur de Young. Par exemple, la représentation associée à la partition λ = (n) est
la représentation triviale, celle associée à λ = (1n) est la signature, et celle associée à λ = (n−1,1)
est la représentation standard. Nous donnons ensuite dans la Proposition 2.4.3 la description
suivante des FId-modules simples :

Proposition. Pour R un corps de caractéristique nulle, les objets simples de la catégorie
FId -Mod sont les foncteurs (Mλ)k qui envoient un objet n ∈ FId sur Mλ si n = k et sur
zéro sinon, pour λ une partition de k.
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Stabilité de représentation

Bien que la catégorie FI ait été étudiée dans di�érents contextes combinatoires, elle a été
utilisée pour la première fois dans la cadre de la stabilité de représentation. Cette théorie
a été introduite par Church et Farb dans [CF13] pour étudier certaines familles compatibles
de représentations de groupes qui admettent une décomposition en irréductibles qui �nit par
devenir stable. Il s'agit d'une généralisation de la stabilité homologique classique dans le cas
où les applications induites en homologie ne deviennent pas des isomorphismes. Une suite
de représentations de groupes, tels que les groupes symétriques, est stable en ce sens lorsque
les noms des représentations irréductibles (avec une manière appropriée de les indexer) qui
apparaissent dans la décomposition �nissent par se stabiliser, même si les espaces changent.
Des exemples concrets de cette stabilisation sont donnés dans [Sam20] et dans [CF13]. En
caractéristique nulle, les représentations irréductibles des groupes symétriques sont indexées par
les partitions. Alors la stabilité de représentation pour ces groupes peut être résumée comme
suit (voir [CEF15, CEFN14, Far14]) : une famille compatible (Vn)n de représentations est stable
si nous obtenons la décomposition de la représentation Vn+1 de Sn+1 en ajoutant une case sur
la ligne supérieure des diagrammes associés à la décomposition de la représentation Vn de Sn.
Ce processus, ainsi que l'équivalence entre ces deux dé�nitions, est décrit sur des exemples dans
[CF13] et [Wil18a, Ex. XXXI].

La théorie des FI-modules a été introduite dans [CEF15] pour encoder ce phénomène en
un unique objet : en e�et, il est prouvé dans [Far14] que, si un FI-module est de type �ni,
alors la famille associée de représentations des groupes symétriques est stable. Notons que la
réciproque est vraie pour les foncteurs à valeurs de type �ni, et que la preuve est basée sur la
propriété noethérienne des FI-modules et sur le fait que les familles associées aux générateurs
projectifs PFI

n sont stables comme expliqué dans [Wil18b]. Les exemples concrets de FI-modules
introduits dans [CF13] et [Wil18b] ont d'abord été considérés comme des représentations stables
des groupes symétriques et ont été compris comme étant des FI-modules de type �ni après, par
exemple dans [CEF15]. Un autre exemple intéressant de stabilité de représentation est donné
par la cohomologie des pure string motion group. Il est traité en détail dans [Wil12] et illustré
par un exemple. En pratique, il est généralement plus facile de prouver un résultat de �nitude
sur un objet que de prouver la stabilité d'une famille entière.

Les résultats centraux sur la stabilité de représentation sont résumés et présentés sur
un exemple concret dans [Wil18a, Section 5]. Les principaux outils de ces résultats sont
l'étude des représentations apparaissant dans les foncteurs projectifs standard, et les polynômes
des caractères (voir [Far14, 4.2] pour une dé�nition simple) : il est montré dans [CEF15]
et [CMNR18] que les caractères d'un FI-module de type �ni �nissent par être égaux à
un polynôme. En particulier, si F est un FI-module de type �ni sur un corps, alors la
dimension des espaces vectoriels F (n) devient polynomiale. Ce résultat, comme beaucoup
d'autres concernant les FI-modules, a été prouvé pour la première fois dans [CEF15] et dans
[Sno13, Theorem 3.1] sur un corps de caractéristique nulle, et a été étendu dans [CEFN14]
pour des anneaux plus généraux. De plus, Sam et Snowden ont montré dans [Sno13] et
[SS16] que si un FI-module est de type �ni alors sa série de Hilbert, codant la dimension
de ses valeurs, est de la forme p(t) + etq(t) où p et q sont des polynômes. Par exemple, les
polynômes des caractères de [CEF15] peuvent être récupérés à partir de la fonction polynomiale
p de cette série et la fonction polynomiale q peut être récupérée à partir de la cohomologie locale.
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Cette théorie a été étendue dans [Ram17a] aux FId-modules avec une notion généralisée de
stabilité de représentation. Ramos obtient alors le résultat suivant : un FId-module F est de
type �ni si et seulement si l'espace F (n) est de dimension �nie pour tout n ∈ N et, pour toute
partition λ de poids ∣λ∣ et toute suite d'entiers n1 ≥ ⋅ ⋅ ⋅ ≥ nd ≥ ∣λ∣+λ1, si cλ,n1,...,nd

désigne la mul-
tiplicité de la représentation irréductible associée à la partition (n1 − ∣λ∣, . . . , nd − ∣λ∣, λ1, . . . , λh),
alors cλ,n1+l,...,nd+l est indépendant de l pour l et n su�samment grands. Ce théorème est une
généralisation directe du théorème analogue de [CEF15, CEFN14] pour les FI-modules. Morale-
ment, le dernier point peut être interprété en disant que les représentations irréductibles associées
à une partition d'au moins d lignes apparaissent avec une multiplicité qui devient stable dans
un FId-module de type �ni. Ce théorème ne prédit pas le comportement des représentations
irréductibles associées à des partitions plus petites, mais le Théorème B de [Ram17a] traite cer-
tains de ces cas. Depuis, Sam et Snowden ont dé�ni une série de Hilbert "améliorée" qui encode
plus d'informations sur la structure d'un FId-module en tant que représentations des groupes
symétriques et ils ont prouvé un résultat similaire à celui de la série de Hilbert "classique" ci-
dessus pour cette série améliorée, pour d = 1 dans [SS16] et pour un d général dans [SS17] et
[SS18].

Les foncteurs fortement polynomiaux

Dans une catégorie de foncteurs il existe de très grands foncteurs, souvent incontrôlables, et la
propriété polynomiale est un moyen de mesurer la complexité d'un foncteur. Ainsi, les foncteurs
polynomiaux doivent être considérés comme un analogue des fonctions polynomiales pour les
foncteurs, qui sont plus faciles à comprendre. La notion de foncteur polynomial remonte aux
années 1950, lorsque Eilenberg et Mac Lane l'ont introduite dans [EM54] pour les foncteurs entre
catégories de modules. Depuis, les foncteurs polynomiaux ont été étudiés pour un large éventail
d'applications telles que leur connexion à la théorie des représentations ou à la cohomologie des
groupes.

La dé�nition originale d'Eilenberg et Mac Lane a été étendue pour di�érentes familles de
catégories à la source, comme dans [HPV15] au cas où la source est une catégorie monoïdale dont
l'unité est un objet nul. Une approche complémentaire dans la généralisation de ces foncteurs
polynomiaux consiste à étudier les foncteurs d'une catégorie monoïdale vers une catégorie non
abélienne telle que la catégorie des groupes (voir [BP99]). La dé�nition d'Eilenberg et Mac
Lane basée sur la notion d'e�ets croisés est équivalente à la dé�nition basée sur l'endofoncteur
di�érentiel utilisée par Kuhn dans [Kuh94] et Powell dans [Pow98]. Dans [DV19], les auteurs
introduisent deux notions de foncteurs polynomiaux à partir d'une catégorie monoïdale
symétrique M dont l'unité est un objet initial vers une catégorie abélienne : la généralisation
naïve des foncteurs polynomiaux donne la notion de foncteurs fortement polynomiaux qui ont
de mauvaises propriétés comme le fait de ne pas être stables par sous-objet. Cela conduit
aux foncteurs faiblement polynomiaux dé�nis en introduisant une catégorie quotient suivant
la construction de Gabriel dans [Gab62, pages 366-372]. L'idée de cette catégorie quotient est
d'inverser les morphismes dont le noyau et le conoyau sont dans la sous-catégorie en question.
Les foncteurs fortement polynomiaux dans ce contexte sont dé�nis en utilisant les endofoncteurs
di�érentiels δk, pour k ∈M, généralisant celui de [Kuh94] et [Pow98]. Dans [DV19], Djament et
Vespa ont également adapté la dé�nition des e�ets croisés à leur cadre et ont montré que les
foncteurs fortement polynomiaux sont égaux à ceux obtenus en utilisant ces e�ets croisés. La
dé�nition utilisant les endofoncteurs di�érentiels est mieux adaptée à l'étude des comportements
stables et a l'avantage d'être récursive, c'est pourquoi nous choisissons de présenter et de
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généraliser ce point de vue pour les FId-modules.

En particulier, la catégorie FI s'inscrit dans le cadre de Djament et Vespa et nous
obtenons la dé�nition suivante des FI-modules fortement polynomiaux en utilisant uniquement
l'endofoncteur di�érentiel δ1 puisque 1 ∈ FI est un générateur : le foncteur F ∶ FI → R-Mod
est fortement polynomial de degré n si nous obtenons le foncteur nul en lui appliquant n + 1
fois l'endofoncteur δ1. Ceci est analogue aux polynômes habituels : une fonction f ∶ R → R
est polynomiale de degré n si sa (n + 1)-ième dérivée est nulle. L'endofoncteur δ1 qui joue le
rôle de la dérivée est utilisé dans divers contextes : ceux de Kuhn et Powell sur les foncteurs
des Fp-espaces vectoriels vers les Fp-espaces vectoriels ([Kuh94, Pow98]), dans la théorie de la
stabilité de représentation ([CEF15, CEFN14, CE17, CMNR18]), dans la dé�nition des foncteurs
polynomiaux par Randal-Williams et Wahl dans [RWW17], dans la théorie des algèbres com-
mutatives tordues ([SS12, SS16]) ou dans les travaux de Ramos ([Ram17b, LR18]). Les notions
de foncteurs polynomiaux introduites dans [DV19] donnent une autre façon d'exprimer et de
comprendre les résultats sur les FI-modules. Par exemple, les foncteurs fortement polynomiaux
avec des valeurs de type �ni sont les FI-modules de type �ni. En utilisant [CEF15], nous
déduisons que, sur un corps de caractéristique nulle, la dimension des espaces vectoriels associés
à un FI-module polynomial avec des valeurs de dimension �nie devient polynomiale. Il existe
de nombreux exemples de FI-modules polynomiaux qui apparaissent dans di�érents contextes.
En particulier, un grand nombre des FI-modules présentés dans [CF13] sont fortement poly-
nomiaux. La cohomologie des espaces de con�guration sur une variété régulière donne un
FI-module fortement polynomial d'un intérêt particulier. Plusieurs FI-modules étudiés par
Church, Ellenberg et Farb ont plus de structure : ce sont des S(ab)-modules, où S(ab) est la
catégorie des groupes abéliens et des monomorphismes scindés, correspondant à VIC(Z) de
[Wil18a]. Les S(ab)-modules polynomiaux sont étudiés dans [DV19].

Dans la Section 2.6, nous dé�nissons les foncteurs fortement polynomiaux sur FId de la même
manière que sur FI, en utilisant une famille d'endofoncteurs δc1 indexés par les d couleurs de FId
au lieu d'un seul endofoncteur δ1 pour les FI-modules. Pour d = 1, nous retrouvons la dé�nition
des foncteurs fortement polynomiaux sur FI de [DV19] puisque la seule couleur de FI1 donne
l'unique endofoncteur δ1 de [DV19]. Nous dé�nissons également une notion d'e�ets croisés pour
les FId-modules dans la Section 5.4 en introduisant la catégorie cotranche (0 ↓ FId) (parfois
appelée la catégorie au-dessous de 0 comme dans [ML98, P.45]) des paires (k, x) où k est un
objet de FId et x un morphisme dans FId(0, k). En e�et, nous prouvons dans la Proposition
5.4.4 que la catégorie cotranche (0 ↓ FId) est une catégorie monoïdale dont l'unité est un objet
initial, ce qui nous permet de dé�nir les e�ets croisés d'un FId-module via le foncteur oubli
(0 ↓ FId) → FId et les travaux de Djament et Vespa dans [DV19]. Nous montrons ensuite dans
la Proposition 5.4.12 que les foncteurs polynomiaux dé�nis avec les e�ets croisés sur FId sont les
mêmes que les foncteurs fortement polynomiaux dé�nis avec les endofoncteurs δc1 :

Proposition. Pour n ∈ N et F un FId-module, F est dans Polstrongn (FId,R-Mod) si et seule-
ment si crn+1(F ) ( − ) est le foncteur nul sur (0 ↓ FId)×n+1.

Nous utilisons ensuite cette dé�nition alternative des FId-modules fortement polynomiaux
pour montrer dans la Proposition 5.4.18 le résultat suivant.

Proposition. Pour m,n ∈ N, si F ∶ FId → R-Mod est fortement polynomial de degré inférieur
ou égal à m et si X ∶R-Mod→R-Mod préserve les épimorphismes et est un foncteur polynomial
de degré inférieur ou égal à n, alors la composée X ○F ∶ FId →R-Mod→R-Mod est fortement
polynomiale de degré inférieur ou égal à nm.
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Nous utilisons ce résultat pour obtenir dans le Théorème 5.5.4 que le produit tensoriel terme
à terme de deux FId-modules fortement polynomiaux est fortement polynomial :

Théorème. Pour n,m ∈ N et F,G ∶ FId → R-Mod, si F est dans Polstrongn (FId,R-Mod)
et si G est dans Polstrongm (FId,R-Mod), alors leur produit tensoriel F ⊗ G est dans
Polstrong

2max(n,m)(FId,R-Mod).

Cependant, dans ce théorème la borne n'est peut-être pas la meilleure possible. En e�et,
nous pourrions nous attendre à ce que F ⊗ G soit fortement polynomial de degré inférieur ou
égal à n+m. Par exemple, pour d = 1 il est montré dans [Dja16] qu'un FI-module est fortement
polynomial de degré inférieur ou égal à n si et seulement s'il est un quotient d'une somme des
foncteurs projectifs standards PFI

i pour i ≤ n. Cela permet de prouver que, sur FI, le produit
tensoriel F ⊗G est polynomial de degré n+m si F est de degré n et G de degrém. Nous prouvons
également dans l'annexe A le même résultat dans le cadre étudié par Djament et Vespa dans
[DV19], c'est-à-dire les foncteurs sur une catégorie monoïdale symétrique générale dont l'unité
est un objet initial :

Théorème. Soit M une petite catégorie monoïdale symétrique dont l'unité est un objet ini-
tial. Pour n,m ∈ N et F,G ∶ M → R-Mod, si F est dans Polstrongn (M,R-Mod) et si G
est dans polstrongm (M,R-Mod), alors leur produit tensoriel F ⊗ G ∶ M → R-Mod est dans
Polstrong

2max(n,m)(M,R-Mod).

Pour d = 1, les foncteurs projectifs standard PFI
n constituent un exemple vraiment important

de FI-modules fortement polynomiaux, comme montré dans la [Dja16, Proposition 4.4]. Cela
rend l'étude des foncteurs polynomiaux sur FI beaucoup plus facile. En particulier, cela implique
qu'être fortement polynomial (avec des valeurs de type �ni) est équivalent à être de type �ni
pour les FI-modules. Ceci est spéci�que à la catégorie FI, dû au fait que les foncteurs projectifs
standards sont polynomiaux, et n'est pas vrai en général pour d'autres catégories. Pour les FId-
modules, ces résultats n'ont aucune raison d'être vrais puisque nous montrons dans le Corollaire
5.2.2 ce qui suit :

Proposition. Pour d > 1, le foncteur projectif standard PFId
n n'est pas fortement polynomial.

L'exemple des espaces de con�guration

Comme expliqué ci-dessus, il existe de nombreux exemples de FI-modules dans la littérature
dans une grande variété de domaines. Nous présentons principalement un exemple donné
par l'homologie des espaces de con�guration d'une variété, qui est entièrement décrit dans
[Sam20, Wil19] et [CF13]. Pour M une variété régulière, la cohomologie rationnelle des
espaces de con�guration de M est un FI-module de type �ni ([CEF15, Théorème 6.2.1]), ce
qui est presque équivalent à fortement polynomial. De plus, pour M une variété connexe de
dimension au moins 2 et véri�ant d'autres hypothèses, il a été montré dans [CMNR18, Theorem
A] que 2k est une borne supérieure pour le degré polynomial du FI-moduleH i (Conf(−) (M) ,K).

Les résultats concernant le FI-module H i (Conf(−) (M) ,K) sont prouvés pour une variété
de dimension au moins deux. Cette hypothèse est nécessaire pour garantir que les espaces de
con�guration soient connexes et que les points peuvent se déplacer les uns autour des autres.
Mais pour une variété de dimension 1, comme un graphe, il n'y a pas assez d'espace et les
points se bloquent les uns les autres dans les espaces de con�guration, de sorte que la même
approche n'est plus valable. Par exemple, l'espace de con�guration d'un graphe linéaire avec
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une seule arête est homotopiquement équivalent à n! points disjoints. Par conséquent, Ramos
a introduit dans [Ram19] l'homologie d'un genre d'espaces de con�guration modi�és pour les
graphes qui forment un FId-module. Dans ces espaces modi�és, appelés espaces de con�guration
sink, nous prenons n points (ordonnés) sur le graphe, comme pour les espaces classiques, mais
ils peuvent être distincts deux à deux ou se chevaucher en un sommet du graphe mais pas à
l'intérieur d'une arête. Les d sommets du graphe correspondent alors aux d couleurs de FId,
ce qui donne la structure d'un FId-module lorsque nous prenons l'homologie rationnelle de ces
espaces topologiques. Cela donne un exemple intéressant de FId-module puisque, avant cela,
tous les FId-modules de la littérature étaient soit libres, soit obtenus à partir de FI-modules via
le foncteur oubli. Ramos a prouvé dans [Ram19] que ces FId-modules sont de type �ni pour
tout degré homologique et tout graphe connexe. Dans la Proposition 3.2.8 nous donnons une
description explicite de ces foncteurs pour les graphes linéaires :

Proposition. Pour Gd le graphe linéaire sur d sommets, le FId-module

H0 ( Conf sink(−) (Gd, [d]) ,Q ) est le foncteur constant Q, tandis que pour i ≥ 1 le FId-module

Hi ( Conf sink(−) (Gd, [d]) ,Q )

est le foncteur envoyant n sur QN(d,i+1) si n = i + 1 et sur zéro sinon, où

N(d, i + 1) = { (d − 1)
i+1 − (d−1i+1)(i + 1)! si d ≥ i + 2

N(d − 1)i+1 si d ≤ i + 1 .

Dans la Proposition 5.1.8 nous déduisons de cette description que ces foncteurs sont fortement
polynomiaux et nous donnons leur degré :

Proposition. Pour i ∈ N et Gd le graphe linéaire sur d sommets, le FId-module

Hi ( Conf sink(−) (Gd, [d]) ,Q ) est polynomial de degré 0 pour i = 0, et de degré i + 1 pour i > 1.

Les algèbres commutatives tordues

La théorie des algèbres commutatives tordues (ACTs) remonte aux années 1950 et est apparue
en topologie algébrique. Elle a été introduite pour étudier di�érentes structures, telles que des
suites d'objets munies d'une action de groupes linéaires ou symétriques. C'est également un
analogue de la théorie de l'algèbre commutative adaptée à l'étude des représentations de ces
groupes. Par exemple, dans [Bar78] Barratt a dé�ni une algèbre tordue générale et a ajouté
une condition pour être une algèbre de Lie tordue ou une algèbre commutative tordue. Comme
nous le verrons, les FId-modules apparaissent dans ce contexte puisqu'il existe une équivalence
de catégories entre les FId-modules et les modules sur l'ACT libre sur d générateurs.

Une ACT est un monoïde dans la catégorie monoïdale Fct(Σ,K -Vect), où Σ est la
catégorie des ensembles �nis et des bijections. En considérant plusieurs catégories équivalentes
à Fct(Σ,K -Vect) nous obtenons di�érentes dé�nitions équivalentes des ACTs comme expliqué
dans [SS12] et [GS10] : il peut s'agir d'un foncteur des espaces vectoriels vers des anneaux
commutatifs, ou d'un anneau commutatif muni d'une action du groupe linéaire in�ni par un
morphisme d'algèbre, ou d'un anneau gradué unitaire associatif doté d'une action des groupes
symétriques. Dans chaque cas une condition supplémentaire, appelée polynomialité (dans un
sens di�érent de celui des foncteurs polynomiaux que nous étudions ici), est ajoutée pour
former une ACT. Parfois, les ACTs sont également traitées comme des objets d'une catégorie
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abstraite équivalente à n'importe laquelle des catégories précédentes, ce qui conduit à une autre
dé�nition équivalente donnée dans [GS10] par l'intermédiaire des opérades. Nous choisissons
de considérer les ACTs principalement comme des foncteurs F ∶ Σ → K -Vect, munis d'une
loi de multiplication ν ∶ F ⊗ F → F et d'une unité (Dé�nition 4.1.5). La dé�nition en termes
de représentations du groupe linéaire in�ni GL(∞), souvent utilisée par Sam et Snowden,
est bien décrite dans [SS12] et [DES17]. Ces deux notions utilisant les groupes symétriques
ou le groupe linéaire in�ni sont équivalentes pour K de caractéristique nulle via la dualité
de Schur-Weyl, mais donnent deux notions di�érentes d'ACTs pour K de caractéristique positive.

Le premier exemple d'ACT, provenant de [Bar78], est le foncteur envoyant n sur l'espace
K[Sn] sur lequel le groupe Sn agit par conjugaison et dont la multiplication est donnée par
l'inclusion standard de Sn ×Sm dans Sn+m. Une façon simple de créer d'autres ACTs est de
prendre l'algèbre symétrique d'une représentation de GL(K∞). Ces exemples, appelés "ACTs
polynomiales" (ce qui n'a rien à voir avec nos foncteurs polynomiaux) sont entièrement décrits
dans les di�érentes dé�nitions équivalentes dans [SS12, Section 8.2.3]. Nous nous concentrons
sur les ACTs libres sur d générateurs de degré un Sym((Kd)(1)), qui ont été largement étudiées,
par exemple dans [SS12, SS16, SS19, GS10]. En particulier, Sam et Snowden ont montré dans
[SS12] que la catégorie des modules sur cette ACT est équivalente, via le choix d'une base de
Kd, à la catégorie des FId-modules. Comme mentionné ci-dessus, cela explique comment les
FId-modules apparaissent dans la théorie des ACTs. Nous donnons la description concrète
de l'ACT Sym((Kd)(1)) dans la Dé�nition 4.1.15 et le détail de l'équivalence dans la Section
4.2. Un autre exemple d'ACT est Sym(Λ2(K∞) ) qui est étudié dans [SS15]. Par exemple, ils
montrent qu'il existe une équivalence similaire à celle de FId : les modules de type �ni sur cette
ACT sont équivalents aux modules de type �ni sur la catégorie FIM de [MW19] dont les objets
sont des ensembles �nis et dont les morphismes sont des paires d'injection et de couplage parfait
sur le complémentaire de l'image.

Il existe une action naturelle de GL(Kd) sur les modules sur l'ACT Sym((Kd)(1)) qui agit
diagonalement sur les composantes (Kd)⊗n de Sym((Kd)(1)) avant d'appliquer la loi de multipli-
cation. Dans la Section 4.3, nous utilisons l'équivalence de catégories de [SS12] pour transformer
ceci en une action de GL(Kd) sur les FId-modules. Nous obtenons dans la Proposition 4.3.5 la
description concrète suivante :

Proposition. Soit B une base de Kd, pour φ ∈ GL(Kd) et G ∈ FId -Mod, le foncteur φB ⋅G ∶
FId → K -Vect envoie un objet n ∈ FId sur G(n) et un morphisme (f, g) ∈ FId(n,m) sur la
somme

∑
g′∈FId(0,m∖f(n))

⎛
⎝ ∏
l ∈m∖f(n)

mg′(l),g(l)
⎞
⎠
G(f, g′).

où (mi,j)1≤i,j≤d est la matrice de φ dans la base B de Kd.

Les foncteurs faiblement polynomiaux

La notion de foncteurs faiblement polynomiaux donne un ra�nement de la notion de foncteurs
fortement polynomiaux qui est plus intuitive mais manque de propriétés essentielles. En e�et,
pour une catégorie source qui est une catégorie monoïdale symétrique dont l'unité est un objet
nul, les sous-catégories de foncteurs polynomiaux sont épaisses (voir [Dja16] pour le cas général)
ce qui permet de regarder les quotients par ces sous-catégories. Cependant, lorsque l'unité est
juste un objet initial comme dans FI, un sous-foncteur d'un foncteur fortement polynomial
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peut être de degré plus élevé, ou même ne pas être polynomial. Pour éviter ces phénomènes
d'instabilité, Djament et Vespa ont dé�ni une notion de foncteurs faiblement polynomiaux
dans [DV19] en supprimant les foncteurs problématiques dans une catégorie quotient. Ils ont
montré que la catégorie SN (FI,R-Mod) de ces foncteurs, appelés les foncteurs stablement
nuls, est composée des FI-modules dont la colimite est nulle. Ces foncteurs stablement
nuls correspondent aux modules de torsion sur l'ACT libre sur un générateur de degré 1
étudiés dans [SS16] ou [NSS18], et l'endofoncteur κ qui donne le sous-foncteur maximal d'un
FI-module dans SN (FI,R-Mod) correspond au foncteur de cohomologie locale noté H0

m(−)
dans [SS16, NSS18, CEFN14]. En particulier, les propriétés de leurs foncteurs dérivés à droite
Him(−) sont étudiées dans [SS16, NSS18] a�n de comprendre comment Fct(FI,R-Mod) est
construite à partir des deux morceaux SN (FI,R-Mod) et St(FI,R-Mod). De même, le degré
polynomial faible pour les FI-modules correspond à la notion de degré stable de [CEF15] et
[CEFN14] tandis que le degré local précise comment les degrés faibles et forts sont reliés. Il
donne moralement le degré polynomial fort modulo le degré polynomial faible et contrôle le rang
à partir duquel la famille de représentations associée devient stable.

L'un des principaux objectifs de cette thèse est d'introduire et d'étudier les FId-modules
faiblement polynomiaux. L'une des di�érences avec la situation précédente est qu'il existe
plusieurs sous-catégories qui peuvent remplacer les foncteurs stablement nuls dans ce cas : les
foncteurs globalement stablement nuls SN (FId,R-Mod) et les foncteurs stablement nuls le
long de di�érentes combinaisons de couleurs SN ci1 ,...,cim

(FId,R-Mod). Ces sous-catégories for-
ment un ra�nement de la notion des foncteurs stablement nuls introduite dans [DV19] pour FI.
En e�et, pour d = 1 il y a une inclusion de l'unique sous-catégorie de foncteurs stablement nuls
SN (FI,R-Mod) dans Fct(FI,R-Mod) mais, pour un d général, ces sous-catégories forment un
ensemble partiellement ordonné plus riche pour l'inclusion. Par exemple, pour d = 2, l'ensemble
partiellement ordonné est le suivant :

SN c1(FI2,R-Mod)

SN c1,c2(FI2,R-Mod) SN (FI2,R-Mod) Fct(FI2,R-Mod)

SN c2(FI2,R-Mod)

Dans la Proposition 6.1.7 et le Corollaire 6.2.5 nous montrons que les sous-catégories
SN (FId,R-Mod) et SN ci1 ,...,cim

(FId,R-Mod) de Fct(FId,R-Mod) sont épaisses, c'est-à-
dire stables par sous-objet, quotient et extension. Nous pouvons alors considérer la catégorie
quotient de Fct(FId,R-Mod) par n'importe laquelle de ces sous-catégories en suivant la
construction de Gabriel dans [Gab62], et y dé�nir des objets polynomiaux en utilisant les
endofoncteurs δc1 de Fct(FId,R-Mod) qui passent aux quotients. Ceci est possible parce que
ces sous-catégories sont stables par colimites et que le foncteur quotient πd a un adjoint à droite
Sd appelé le foncteur section.

La sous-catégorie SN (FId,R-Mod) des foncteurs globalement stablement nuls est dé�nie
dans la Section 6.1 à l'aide d'une famille d'endofoncteurs κc1 de Fct(FId,R-Mod). Ces foncteurs
sont dé�nis dans la Section 2.6 d'une manière duale à δc1, et ils s'insèrent tous dans la suite exacte
d'endofoncteurs

0 κc1 Id τ1 δc1 0
ic1 ,

où τ1 est l'endofoncteur décalage F (− ) ↦ F (− + 1) et ic1 une transformation naturelle associée
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à la couleur c. Nous dé�nissons également une structure d'ensemble partiellement ordonné sur
Nd pour l'ordre du produit et un foncteur ξd ∶ Nd → FId qui envoie un objet (n1, . . . , nd) ∈ Nd
sur l'objet n1 + ⋅ ⋅ ⋅ +nd de FId. Nous montrons ensuite dans la Proposition 6.1.5 qu'il existe une
dé�nition équivalente de la catégorie SN (FId,R-Mod) utilisant une colimite �ltrée sur Nd :

Proposition. Soit F un FId-module, alors F est dans SN (FId,R-Mod) si et seulement si

colim
Nd

F ○ ξd = 0.

Pour d = 1, nous retrouvons la description de SN (FI,R-Mod) de [DV19, Proposition 5.7],
à savoir que les foncteurs stablement nuls sont ceux dont la colimite est nulle. Rappelons
que, par [SS12], la catégorie des FId-modules est équivalente à la catégorie des Sym((Kd)(1))-
modules. Dans la Section 6.4, nous donnons une description de SN (FId,R-Mod) en termes
de Sym((Kd)(1))-modules par le biais de cette équivalence. Nous montrons également dans la
Proposition 6.4.2 que, pour d > 1, la sous-catégorie SN (FId,K -Vect) de Fct(FId,K -Vect)
n'est pas stable par l'action de GL(Kd) dé�nie ci-dessus.

La sous-catégorie SN ci1 ,...,cim
(FId,R-Mod) de Fct(FId,R-Mod) des foncteurs stable-

ment nuls le long des couleurs ci1 , . . . , cim est dé�nie dans la Section 6.2 de manière simi-
laire aux foncteurs globalement stablement nuls, mais en utilisant les endofoncteurs κc1 pour
chaque couleur c dans {ci1 , . . . , cim}. Dans le Corollaire 6.2.4 nous montrons que ces caté-
gories admettent également une dé�nition équivalente, cette fois par l'intermédiaire des foncteurs
∆∗c ∶ Fct(FId,R-Mod)→ Fct(FI,R-Mod) :

Proposition. Un FId-module F est dans la sous-catégorie SN ci1 ,...,cim
(FId,R-Mod) de

Fct(FId,R-Mod) si et seulement si les foncteurs ∆∗c (F ) sont dans la sous-catégorie
SN (FI,R-Mod) de Fct(FI,R-Mod) pour toutes les couleurs c dans {ci1 , . . . , cim}.

Cette dé�nition équivalente nous permet d'utiliser les résultats déjà prouvés pour les
foncteurs sur FI, en particulier ceux de Djament et Vespa dans [DV19]. Cependant, nous
montrons dans la Section 5.1 que dans le quotient par une sous-catégorie de foncteurs stablement
nuls le long des couleurs, les objets polynomiaux sont un peu plus di�ciles à dé�nir. Dans ce
processus, nous perdons certaines propriétés importantes comme le fait que les endofoncteurs
κc1 deviennent nuls et que les endofoncteurs δc1 deviennent exacts dans le quotient. C'est une
première raison pour laquelle nous ne développons que les foncteurs faiblement polynomi-
aux correspondant à la sous-catégorie globale SN (FId,R-Mod) : celle-ci se comporte mieux
avec les endofoncteurs δc1 qui constituent un outil crucial pour l'étude des foncteurs polynomiaux.

Dans le Chapitre 7, nous nous concentrons sur la catégorie St(FId,R-Mod) des foncteurs
stables, i.e. le quotient par les foncteurs globalement stablement nuls SN (FId,R-Mod), la plus
grande de ces sous-catégories, a�n d'obtenir une catégorie quotient plus petite qui peut être plus
facile à décrire. Bien que les objets de la catégorie quotient St(FId,R-Mod) soient par dé�nition
les foncteurs de FId vers R-Mod, il faut les considérer comme des objets abstraits puisque
les morphismes dans le quotient sont modi�és par certaines classes d'isomorphismes. Dans la
Dé�nition 7.2.1, nous dé�nissons les FId-modules faiblement polynomiaux comme les foncteurs
sur FId dont l'image dans la catégorie quotient St(FId,R-Mod) par le foncteur quotient πd
est un objet polynomial (nous identi�ons parfois F et πd(F ) par abus de langage). Avec cette
dé�nition, un foncteur fortement polynomial est faiblement polynomial mais la réciproque n'est
pas vraie, ce qui justi�e la terminologie introduite par Djament et Vespa dans [DV19] pour les FI-
modules. Nous désignons par Poln(FId,R-Mod) la sous-catégorie pleine de St(FId,R-Mod)
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des objets polynomiaux de degré inférieur ou égal à n. Par abus de langage, cela désigne aussi la
sous-catégorie pleine de Fct(FId,R-Mod) des foncteurs dont l'image par le foncteur quotient πd
est un objet polynomial de degré inférieur ou égal à n. Nous prenons alors R = K un corps pour
nous assurer que le produit tensoriel est exact et nous montrons dans le Théorème 7.3.6 que le
produit tensoriel terme à terme de deux objets polynomiaux de St(FId,R-Mod) est polynomial
:

Théorème. Soit R = K un corps, pour X ∈ Poln(FId,K -Vect) et Y ∈ Polm(FId,K -Vect), nous
avons

X ⊗ Y ∈ Poln+m(FId,K -Vect).

Alors que la compréhension des catégories de foncteurs polynomiaux est un problème
di�cile en général, sauf pour les petites valeurs, le quotient des foncteurs polynomiaux de
degré n modulo les foncteurs de degré n − 1 est bien compris dans plusieurs contextes. En
particulier, Djament et Vespa ont décrit ce quotient dans [DV19, Théorème 2.26] pour les objets
polynomiaux de St(FI,R-Mod) comme nous le rappelons dans le Chapitre 9. Pour n = 0, ils
obtiennent que les seuls objets de Pol0(FI,R-Mod) sont les foncteurs constants.

Dans la Section 7.4, nous décrivons les objets polynomiaux de degré 0 de St(FId,R-Mod),
qui forment une catégorie plus riche que pour d = 1. Pour cela, nous introduisons dans la Dé�ni-
tion 7.4.8 la catégorie R-Modd des R-modules avec d− 1 automorphismes qui commutent deux
à deux. De même, nous introduisons la catégorie des modules sur l'anneau des polynômes com-
mutatifs R[x±12 , . . . , x±1d ] en les d−1 variables x2, . . . , xd toutes inversibles. Un de nos principaux
résultats est alors la description suivante obtenue dans le Théorème 7.4.12 :

Théorème. Il existe des équivalences de catégories entre la catégorie Pol0(FId,R-Mod) des
objets polynomiaux de degré 0 de St(FId,R-Mod), la catégorie R-Modd et la catégorie
R[x±12 , . . . , x±1d ]−Mod.

Pour d = 1 nous retrouvons que les FI-modules polynomiaux de degré 0 sont les foncteurs
constants, mais pour un d général ces foncteurs forment une catégorie plus complexe. Nous
prouvons ce théorème en deux étapes : tout d'abord, nous montrons dans la Proposition 7.4.2 que
les objets polynomiaux de degré 0 de St(FId,R-Mod) satisfont une condition abstraite appelée
(POL0). Nous utilisons ensuite la catégorie intermédiaire FId dé�nie dans la Section 2.5 pour
montrer, dans les Propositions 7.4.6 et 7.4.7 que, pour chaque objet F du quotient satisfaisant
(POL0), l'image de F par le foncteur section Sd est complètement déterminée par son image
sur les morphismes c ∈ FId(0,1). Ces images des morphismes c ∈ FId(0,1) correspondent aux
d − 1 isomorphismes de modules de la catégorie R-Modd, lorsque nous trivialisons l'action de
c1. Du point de vue des R[x±12 , . . . , x±1d ]-modules, les images des morphismes ci ∈ FId(0,1)
correspondent à l'action des xi, où x1 agit par l'identité lorsque nous trivialisons l'action de c1.

Exemples de quotients polynomiaux des foncteurs PFId
n

Le fait que les générateurs projectifs standards PFId
n soient fortement polynomiaux pour d = 1

simpli�e l'étude des foncteurs polynomiaux sur la catégorie FI. Comme expliqué ci-dessus, ce
n'est pas le cas pour d > 1. Nous décrivons donc plusieurs quotients des foncteurs PFId

n qui sont
polynomiaux. En plus de fournir des exemples concrets, ces quotients peuvent aussi nous donner
une meilleure idée de ce à quoi ressemblent les foncteurs polynomiaux sur FId. Par exemple,
dans la Section 8.1 nous obtenons une famille de quotients du foncteur PFId

0 qui sont faiblement
polynomiaux de degré 0 en �ltrant ses générateurs par le nombre d'occurrences des couleurs.
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En e�et, pour k1, . . . , kd ∈ N, I ⊂ {c1, . . . , cd} et α ∈ FId(0, k) nous notons γi(α) le nombre
d'occurrences de la couleur ci dans α. Nous disons alors que α ∈ FId(0, k) satisfait la condition
(PI,k1,...,kd) si γi(α) ≥ ki pour tout i ∈ I ou s'il existe j ∈ {c1, . . . , cd} ∖ I tel que γj(α) ≥ kj .
Avec ces notations, nous introduisons dans la Dé�nition 8.1.8 le sous-foncteur GI,k1,...,kd de P

FId
0

donné par

GI,k1,...,kd(n) =R [α −X ∣α ∈ FId(0, n) qui satisfait la condition (PI,k1,...,kd)] ,

où X ∈ FId(0, n) est un morphisme �xé dans FId(0, n) satisfaisant la condition (PI,k1,...,kd).
Nous montrons alors dans la Proposition 8.1.15 ce qui suit :

Proposition. Pour k1, . . . , kd ∈ N et I ⊂ {c1, . . . , cd}, le quotient de PFId
0 par son sous-foncteur

GI,k1,...,kd est faiblement polynomial de degré 0.

De plus, la preuve est basée sur le Lemme 8.1.14 qui montre que ce quotient est égal
à un foncteur constant modulo un foncteur stablement nul de SN (FId,R-Mod). Cela
implique que son image dans le quotient correspond, par l'équivalence donnant la description
de Pol0(FId,R-Mod), à l'objet (R, Id, . . . , Id) deR-Modd ou auR[x±12 , . . . , x±1d ]-module trivial.

Parallèlement, dans la Section 8.2 nous étudions le quotient du foncteur PFId
n par son

sous-foncteur correspondant à l'action des groupes symétriques par post-composition. Ce sous-
foncteur, noté Fn dans la Dé�nition 8.2.1, est donné sur les objets par

Fn(m) =R [σ ○ (f, g) − (f, g) ∣ (f, g) ∈ FId(n,m), σ ∈ Sm] .

Nous montrons que le quotient du foncteur PFId
n par Fn est faiblement polynomial dans le

Théorème 8.2.11 :

Théorème. Pour tout n ∈ N, le foncteur quotient de PFId
n par Fn est faiblement polynomial de

degré 0, où Fn est le sous-foncteur de PFId
n de la Dé�nition 8.2.1.

Un bon représentant de l'image de ce quotient dans la catégorie St(FId,R-Mod) pourrait
nous aider à le décrire dans la catégorie R[x±12 , . . . , x±1d ]−Mod via l'équivalence donnant la
description de Pol0(FId,R-Mod). Cependant, nous expliquons dans la Section 8.2 qu'il n'est
pas facile d'en trouver un puisque le passage à la catégorie quotient n'est pas une construction
explicite.

Dans la Section 8.3 nous donnons un quotient de PFId
n qui est faiblement polynomial de degré

n : pour un morphisme (f, g) dans FId(n,m) la seconde application g correspond à un choix
de m−n couleurs. Il existe alors une action du groupe symétrique Sm−n permutant ces choix de
couleurs, qui donne une action de Sm−n sur PFId

n (m). Le sous-foncteur de PFId
n correspondant à

cette action des groupes symétriques, noté Hn dans la Dé�nition 8.3.2, est donné sur les objets
par

Hn(m) =R [ (f, σ ⋅ g) − (f, g) ∣ (f, g) ∈ FId(n,m), σ ∈ Sm−n] .

Nous montrons que le quotient du foncteur PFId
n par Hn est faiblement polynomial dans le

Théorème 8.3.14 :

Théorème. Pour tout n ∈ N, le quotient de PFId
n par Hn est faiblement polynomial de degré n,

où Hn est le sous-foncteur de PFId
n de la Dé�nition 8.3.2.
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Nous le prouvons de deux manières : premièrement, nous calculons directement δc1 de ce
quotient, ce qui est très similaire au calcul de δc1 de P

FId
n dans la Proposition 5.2.1 mais, puisque

nous quotientons par l'action des groupes symétriques sur les couleurs, la composante qui em-
pêche PFId

n d'être polynomial disparait ici. Deuxièmement, nous introduisons dans la Dé�nition
8.2.5 la catégorie Cd dont les objets sont les entiers et dont les morphismes de n vers m sont les
(m − n)-uplets de couleurs (ci1 , . . . , cim−n) quotientés par l'action de Sm−n (ce qui est la même
chose que les choix non ordonnés de m−n couleurs). Nous montrons ensuite dans la Proposition
8.2.9 que le quotient de PFId

n par Fn est équivalent au foncteur P Cdn , et décrivons le quotient de
PFId
n par Hn comme un produit tensoriel dans la Proposition 8.3.8 via la formule :

Proposition. Pour tout n ∈ N, il existe un isomorphisme naturel

PFId
n /Hn ≅ (O

∗PFI
n ) ⊗ P Cd0 ( (−) − n ) ○Ω ,

où O est le foncteur oubli FId → FI et où Ω ∶ FId → Cd envoie n ∈ FId sur n ∈ Cd et un morphisme
(f, g) ∈ FId(n,m) sur les couleurs de g quotientées par l'action de Sm−n.

Ceci explique comment les injections et les couleurs sont mélangées pour former le foncteur
PFId
n , à l'action des groupes symétriques sur les choix de couleurs près. De plus, comme le

foncteur PFI
n est fortement polynomial de degré n pour d = 1, l'image des �èches de PFI

n vers la
somme directe de tous les PFI

k pour k ≤ i est faiblement polynomial de degré i pour tout i ∈ N.
Nous construisons ensuite dans la Proposition 8.4.5 un quotient de PFId

n qui est faiblement
polynomial de degré i pour tout i ∈ N en utilisant la formule ci-dessus du quotient de PFId

n par
Hn.

La construction Cospan

A�n d'étudier les foncteurs polynomiaux sur les catégories monoïdales symétriques dont l'unité
est un objet initial, Djament et Vespa ont introduit dans [DV19] un foncteur M → M̃ qui
transforme la catégorieM dont l'unité est un objet initial en la catégorie M̃ dont l'unité est un
objet nul. Cette construction, qui est universelle au sens où elle donne un adjoint au foncteur
oubli, ajoute moralement des morphismes "décroissants" des objets de la catégorie vers l'unité
tout en préservant les morphismes "croissants" de l'unité vers les objets. Cette construction est
équivalente à la construction Cospan(−) de [Ves07] où les foncteurs sur Cospan peuvent être vus
comme une généralisation des foncteurs de Mackey. Comme cette construction préserve les fonc-
teurs polynomiaux, elle permet à Djament et Vespa dans [DV19, Théorème 4.8] de transformer
l'étude des foncteurs polynomiaux sur une catégorie dont l'unité est un objet initial en l'étude
des foncteurs polynomiaux sur une catégorie dont l'unité est un objet nul, qui sont mieux connus.

Ils appliquent ensuite ce résultat à FI dont l'unité est un objet initial. Cela leur permet
de décrire le quotient des objets polynomiaux (dans la catégorie quotient St(FI,R-Mod)) de
degré inférieur ou égal à n sur FI par sa sous-catégorie épaisse des foncteurs polynomiaux de
degré inférieur ou égal à n − 1. En e�et, les catégories Cospan(FI) et F̃I sont équivalentes
à la catégorie FI# des injections partielles d'ensembles �nis de [CEF15]. Ils utilisent ensuite
une variante d'un théorème de type Dold-Kan de Pirashvili pour décrire le même quotient pour
les foncteurs sur Cospan(FI). Ce théorème de Pirashvili de [Pir00] donne une équivalence de
catégories entre les foncteurs sur la catégorie Γ des ensembles �nis pointés et les foncteurs sur
Ω la catégorie des ensembles �nis et des surjections, en utilisant les e�ets croisés. La variante
utilisée dans [DV19], qui est décrite explicitement dans [CEF15, Théorème 4.1.5], donne une
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équivalence de catégories entre les foncteurs sur la catégorie FI# et les foncteurs sur la catégorie
Σ des ensembles �nis et des bijections, étant donné que FI# est une sous-catégorie de Γ et
que Σ est une sous-catégorie de Ω. La combinaison de ces deux résultats donne la description
suivante dans [DV19, Proposition 5.9] : pour n ∈ N, il existe une équivalence de catégories

Poln (FI)/
Poln−1 (FI)

≅ Poln (Cospan(FI))/
Poln−1 (Cospan(FI))

≅ Fct (Σn,R-Mod),

où Σn est la catégorie associée au groupe symétrique Sn. Nous montrons que cette approche ne
peut pas être directement généralisée pour décrire les foncteurs polynomiaux sur FId.

Dans le Chapitre 9 nous introduisons une généralisation de la construction Cospan pour
FId comme suit : les objets de Cospan(FId) sont les mêmes que les objets de FId et les
morphismes sont des classes de diagrammes sous une relation d'équivalence. Ces diagrammes
sont moralement composés d'une injection et de deux choix de couleurs di�érents sur des
ensembles di�érents qui interagissent l'un avec l'autre. Ainsi, nous montrons dans la Proposition
9.2.8 que la catégorie Cospan(FId) est isomorphe à une catégorie combinatoire FId# dont
les morphismes consistent en une injection partiellement dé�nie et deux choix de couleur
distincts, l'un sur le complémentaire à la source et l'autre sur le complémentaire au but.
De plus, nous montrons dans la Proposition 9.1.6 que chaque morphisme dans Cospan(FId)
admet un diagramme représentatif minimal de la classe, ce qui implique que les morphismes
de 0 à n et les morphismes de n à 0 dans Cospan(FId) sont en bijection avec FId(0, n).
Ceci souligne que la catégorie Cospan(FId) est essentiellement obtenue en conservant les mor-
phismes de 0 à n de FId et en ajoutant de nouveaux morphismes de n à 0 qui leur correspondent.

Nous étudions ensuite les Cospan(FId)-modules comme nous l'avons fait pour les FId-
modules : dans la Section 9.3 nous dé�nissons les foncteurs polynomiaux sur Cospan(FId)
en utilisant une famille d'endofoncteurs δc1 de Cospan(FId) pour les di�érentes couleurs. Une
di�érence majeure est que les foncteurs stablement nuls sur Cospan(FId) sont nuls puisque
cette catégorie a un objet nul, ainsi les notions faibles et fortes de foncteurs polynomiaux sur
Cospan(FId) coïncident. Nous obtenons alors dans le Théorème 9.4.9 la description suivante des
Cospan(FId)-modules polynomiaux de degré 0 :

Théorème. Un foncteur F ∈ Fct(Cospan(FId),R-Mod) est dans Pol0(Cospan(FId),R-Mod)
si et seulement si c'est un foncteur constant. Il existe une équivalence des catégories

Pol0( Cospan(FId),R-Mod ) ≅ R-Mod .

Avec la description des objets polynomiaux de degré 0 de St(FId,R-Mod) (Théorème
7.4.12), ceci montre que pour un d général la première équivalence de [DV19, Proposition 5.9]
présentée ci-dessus échoue déjà pour n = 0, c'est-à-dire que le quotient de Poln(FId,R-Mod)
par Poln−1(FId,R-Mod) n'est pas équivalent au même quotient sur Cospan(FId).

Structure du document

L'organisation du manuscrit est la suivante : dans le premier chapitre nous rappelons la con-
struction et les faits importants concernant le quotient d'une catégorie par une sous-catégorie
épaisse. Nous présentons les FId-modules dans le Chapitre 2 et nous donnons un aperçu des
résultats basiques déjà connus à leur sujet. Nous introduisons également les principaux outils
pour leur étude et décrivons les objets simples de cette catégorie. Dans le Chapitre 3, nous
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présentons l'exemple des espaces de con�guration et le décrivons explicitement dans des cas
simples. Le Chapitre 4 concerne les algèbres commutatives tordues et leur lien avec les FId-
modules. Dans le Chapitre 5, nous dé�nissons les foncteurs fortement polynomiaux sur FId et
donnons des exemples et des contre-exemples. Nous étendons également les e�ets croisés à ces
foncteurs et montrons que la notion résultante de foncteurs polynomiaux coïncide avec celle util-
isant l'endofoncteur di�érentiel. Le Chapitre 6 est consacré aux di�érentes notions de foncteurs
stablement nuls et à l'ensemble partiellement ordonné qu'elles forment. Dans le Chapitre 7, nous
étudions la catégorie quotient St(FId,R-Mod) et les foncteurs polynomiaux dans ce quotient.
En particulier, nous décrivons les objets polynomiaux de degré zéro de St(FId,R-Mod), qui ne
sont pas simplement les foncteurs constants. Dans le Chapitre 8, nous donnons des exemples de
quotients polynomiaux des foncteurs projectifs standards. En�n, dans le dernier chapitre nous
introduisons la catégorie Cospan(FId) et nous montrons que la méthode de [DV19] pour décrire
les FI-modules faiblement polynomiaux ne fonctionne pas de la même manière aux FId-modules
faiblement polynomiaux.
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From FI-modules to FId-modules

The FI-modules are the functors from the category FI of �nite sets and injections (also denoted
by I in [Sch08] and Θ in [DV19]) to the category R-Mod of R-modules (for R a commutative
ring). More generally, a C-module is a functor from a category C to the category R-Mod. The
FI-modules have been studied extensively in the last decade by Church, Ellenberg, Farb, Nagpal,
Reinhold and others (see for example [CEF15, CEFN14, CEF14, CE17, CF13, Chu12, CMNR18,
Dja16, DV19]). The theory of FI-modules was introduced in [CEF15] in order to transform
the complex notion of representation stability into a �niteness result about the sequence of
representations of the symmetric groups viewed as a unique object. A detailed introduction to
the theory of FI-modules and representation stability can be found in [Sam20] but we recall the
basic principles here. The notation FI was introduced in [CEF15] as an acronym for the category
of Finite sets (often represented by their cardinality in the skeleton) and Injections. A FI-
module is a family of linear representations of the symmetric groups together with compatibility
conditions given by linear maps, which can be represented by the following diagram:

FI 0 1 2 . . . n . . .

R-Mod F (0) F (1) F (2) . . . F (n) . . .

F

S0 S1 S2 Sn

F (S0) F (S1) F (S2) F (Sn)

Each arrow in this diagram actually represents many arrows that we can construct by composition
with the action of the symmetric groups. A large number of concrete examples of FI-modules are
presented in [CF13]. Other interesting examples of �nitely generated FI-modules are given by
the cohomology of the pure string motion groups in [Wil12] and the pure braid groups in [Wil18a].

In the literature there are several variants (see [Sam20] for a detailed list) of the category
FI: the categories FId that we develop in this thesis, FIG the category of �nite sets and couples
of an injection and a choice of an element of the group G for each element at the source (see
[Ram17b]), FSG the category of �nite sets and G-surjections for G a group (see [SS17]), FIW
for W some Weyl groups in [Wil12], FIM the category of �nite sets and pairs of injection
and perfect matching on the complement of the image (see [MW19]), or a symplectic version
(see [Sam20]). There are also variants for representations of linear groups such as VI(R) the
category of free modules of �nite rank and injective linear maps with left inverse which is
presented in detail in [Wil18a]. This category, and its generalization VIC(R) of free modules
of �nite rank and injective linear maps with a choice of direct complement of the image, were
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introduced under the names S(ab) for R = Z in [DV19] and S(R) in [Dja16].

In this thesis we will focus on the category FId for d a nonzero integer, introduced by
Sam and Snowden in [SS17], in which the objects are still the �nite sets and the morphisms
are the coloured injections. We study here the FId-modules and we emphasize in particular
the di�erences with FI-modules. Even if we study the functors whose target category is a
module category for more clarity, most of this work stays true if we replace R-Mod by a
general Grothendieck category (see [Gar01]). We recover in particular the FI-modules since the
category FI1 is isomorphic to the category FI (see Section 2.1). The �rst major di�erence is
that the unit 0 is an initial object in FI ≅ FI1 but not in FId for d > 1. We also show in Section
2.7 that the forgetful functor FId → FI, that connects the FId-modules and the FI-modules,
has a family of adjoints ∆c ∶ FI → FId called the colouring functors which add the colour c to
all morphisms of FI. By precomposition, they allow us to consider a FId-module as a FI-module.

For any category C, a family of important examples of functors from C to R-Mod are the
standard projective functors. These fundamental functors appear for functors between Fp-vector
spaces in [Kuh94], for FId in [SS17], and for d = 1 in [DV19, Dja16, Ves19], or under the name
of free modules in [CEF15, CEFN14, MW19] or of representable functors in [Wil18a]. They play
the role of the free modules in the classical theory of modules. We can deduce a lot of information
about the FId-modules from the structure of the standard projective functors since they form a
family of projective generators of FId -Mod (Proposition 2.2.5).

Simple FId-modules

The category FId is an EI-category: i.e. a category whose endomorphisms are isomorphisms.
These categories and their representations have been introduced by Dieck in [Die87] in the
context of algebraic K-theory, and more recently studied by Li in [Li14], in particular their Koszul
property. This property already gives us a result about the simple FId-modules, that is the FId-
modules which do not have non-zero proper subfunctors. In order to express this result, we recall
that the irreducible representations of the symmetric group Sn over a �eld of characteristic zero
are indexed by the partitions λ of n. We denote by Mλ the irreducible representation associated
with the partition λ of n, which is de�ned as the ideal of the ring K[Sn] generated by an
idempotent element associated to the partition λ called the Young symmetrizer. For example,
the representation associated with the partition λ = (n) is the trivial representation, the one
associated with λ = (1n) is the sign representation, and the one associated with λ = (n − 1,1) is
the standard representation. We then give in Proposition 2.4.3 the following description of the
simple FId-modules:

Proposition. For R a �eld of characteristic zero, the simple objects of the category FId -Mod

are the functors (Mλ)k that sends an object n ∈ FId to Mλ if n = k and to zero else, for λ a
partition of k.

Representation stability

Although the category FI has been studied in di�erent combinatorial contexts, it was �rst
used in the frame of representation stability. This theory was introduced by Church and
Farb in [CF13] to study some compatible families of representations of groups which admit a
decomposition in irreducible that eventually becomes stable. It was thought as a generalization
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of the classical homological stability in the case where the induced maps in homology do
not eventually become isomorphisms. A sequence of representations of groups, such as the
symmetric groups, is representation stable when the names of the irreducible representations
(with an appropriate way of indexing them) that occur in the decomposition eventually stabilize,
even if the spaces change. Concrete examples of this stabilization are given in [Sam20] and
in [CF13]. In characteristic zero, the irreducible representations of the symmetric groups are
indexed by the partitions. Then the representation stability for these groups can be summarized
as follows (see [CEF15, CEFN14, Far14]): a compatible family (Vn)n of representations is stable
if we obtain the decomposition of the representation Vn+1 of Sn+1 by adding a box on the top
row of the diagrams associated with the decomposition of the representation Vn of Sn. This
process, along with the equivalence between these two de�nitions, is described on examples in
[CF13] and [Wil18a, Ex. XXXI].

The theory of FI-modules was introduced in [CEF15] to encode this phenomenon in a
single object: indeed, it is proven in [Far14] that, if a FI-module is �nitely generated, then the
associated family of representations of the symmetric groups is stable. Note that the converse
is true for functors with �nitely generated values, and that the proof is based on the noetherian
property of FI-modules and on the fact that the families associated with the projective genera-
tors PFI

n are stable as explained in [Wil18b]. The concrete examples of FI-modules introduced
in [CF13] and [Wil18b] were �rst thought to be stable representations of the symmetric groups
and were understood to be �nitely generated FI-modules after, for example in [CEF15]. Another
interesting example of representation stability is given by the cohomology of pure string motion
groups. It is treated in detail in [Wil12] and illustrated by an example. In practice, it is gener-
ally easier to prove a �niteness result on one object than to prove the stability of an entire family.

The central results on representation stability are summarized and presented on a concrete
example in [Wil18a, section 5]. The main tools of these results are the study of the repre-
sentations appearing in the standard projective functors, and the character polynomials (see
[Far14, 4.2] for a simple de�nition): it is shown in [CEF15] and [CMNR18] that the characters
of a �nitely generated FI-module eventually becomes equal to a polynomial. In particular,
if F is a �nitely generated FI-module over a �eld, then the dimension of the vector spaces
F (n) eventually become polynomial. This result, as many others about the FI-modules, was
�rst proved in [CEF15] and in [Sno13, Theorem 3.1] over a �eld of characteristic zero, and
was extended in [CEFN14] for more general rings. Moreover, Sam and Snowden showed in
[Sno13] and [SS16] that if a FI-module is �nitely generated then it's Hilbert series, encoding the
dimension of its values, is of the form p(t)+ etq(t) where p and q are polynomials. For example,
the character polynomials of [CEF15] can be recovered from the polynomial function p of this
series and the polynomial function q can be recovered from the local cohomology.

This theory was extended in [Ram17a] to FId-modules with a generalized notion of repre-
sentation stability. Ramos then got the following result: a FId-module F is �nitely generated if
and only if the space F (n) is �nite dimensional for all n ∈ N and, for any partition λ of weight
∣λ∣ and any sequence of integers n1 ≥ ⋅ ⋅ ⋅ ≥ nd ≥ ∣λ∣+λ1, if cλ,n1,...,nd

denotes the multiplicity of the
irreducible representation associated with the padded partition (n1 − ∣λ∣, . . . nd − ∣λ∣, λ1, . . . λh),
then cλ,n1+l,...,nd+l is independent of l for l and n large enough. This theorem is a direct general-
ization of the analogous theorem of [CEF15, CEFN14] for FI-modules. Morally, the last point
can be interpreted by saying that the irreducible representations associated with a partition of
at least d rows eventually appear with a stable multiplicity in a �nitely generated FId-module.
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This theorem does not predict the behavior of the irreducible representations associated with
smaller partitions, but the Theorem B from [Ram17a] treats some of these cases. Since then,
Sam and Snowden de�ned an "enhanced" Hilbert series that encodes more information about
the structure of a FId-module as representations of the symmetric groups and they proved a
result similar to the one for the "classical" Hilbert series above for this enhanced series, for d = 1
in [SS16] and for a general d in [SS17] and [SS18].

The strong polynomial functors

In a functor category there are very huge functors, often out of control, and the polynomial
property is a way of measuring the complexity of a functor. Thus, polynomial functors
should be thought of as an analog to polynomial functions for functors, which are easier to
understand. The notion of polynomial functors dates back to the 1950s when Eilenberg and
Mac Lane introduced it in [EM54] for functors between categories of modules. Since then,
polynomial functors have been studied for a wide range of applications such as their connection
to representation theory or group cohomology.

The original de�nition of Eilenberg and Mac Lane has been extended for di�erent families
of categories at the source, as in [HPV15] to the case where the source is a monoidal category
whose unit is a null object. A complementary approach in the generalization of these polynomial
functors is to study functors from a monoidal category to a non-abelian category such as
the category of groups (see [BP99]). The de�nition of Eilenberg and Mac Lane based on the
notion of cross e�ects is equivalent to the de�nition based on the di�erential functor as used by
Kuhn in [Kuh94] and by Powell in [Pow98]. In [DV19] the authors introduce two notions of
polynomial functors from a symmetric monoidal category M whose unit is an initial object to
an abelian category: the naive generalization of polynomial functors gives the notion of strong
polynomial functors which have some bad properties like not being closed under subobject.
This leads to the weak polynomial functors de�ned by introducing a quotient category following
the construction of Gabriel in [Gab62, pages 366-372]. The idea of this quotient category is
to invert the morphisms whose kernel and cokernel are in the subcategory in question. The
strong polynomial functors in this context are de�ned using the di�erential endofunctors δk, for
k ∈ M, generalizing the one from [Kuh94] and [Pow98]. In [DV19], Djament and Vespa also
adapted the de�nition of cross e�ects to their framework and showed that the strong polynomial
functors are equal to the ones obtained by using these cross e�ects. The de�nition using the
di�erential endofunctors is better suited for the study of stable behaviour and has the advantage
to be recursive, so we choose to mainly present and generalize this point of view for FId-modules.

In particular, the category FI falls into the framework of Djament and Vespa and we get
the following de�nition of strong polynomial FI-modules using only the di�erential endofunctor
δ1 since 1 ∈ FI is a generator: the functor F ∶ FI → R-Mod is strong polynomial of degree
n if we get the zero functor by applying n + 1 times the endofunctor δ1 to it. This is analog
to the usual polynomials: a function f ∶ R → R is polynomial of degree n if its (n + 1)-th
derivative is zero. The endofunctor δ1 which plays the role of the derivative is used in various
contexts: in Kuhn's and Powell's work over functors from Fp-vector spaces to Fp-vector spaces
([Kuh94, Pow98]), in representation stability theory ([CEF15, CEFN14, CE17, CMNR18]), in
the de�nition of polynomial functors by Randal-Williams and Wahl in [RWW17], in the theory
of twisted commutative algebras ([SS12, SS16]) or in the work of Ramos ([Ram17b, LR18]).
The notions of polynomial functors introduced in [DV19] give an alternative way to express
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and understand results on FI-modules. For example, the strong polynomial functors with
�nitely generated values are the �nitely generated FI-modules. Using [CEF15] we then deduce
that, over a �eld of characteristic zero, the dimension of the vector spaces associated with
a polynomial FI-module with �nite dimensional values is eventually polynomial. There are
many examples of polynomial FI-modules that occur in di�erent contexts. In particular, a
large number of the FI-modules presented in [CF13] are strong polynomial. The cohomology of
con�guration spaces over a regular manifold gives a strong polynomial FI-module of particular
interest. Several FI-modules studied by Church, Ellenberg and Farb have more structure: they
are S(ab)-modules, were S(ab) is the category of abelian groups and split monomorphisms,
which correspond to VIC(Z) from [Wil18a]. The polynomial S(ab)-modules are studied in
[DV19].

In Section 2.6 we de�ne the strong polynomial functors over FId in a similar way as over FI,
using a family of endofunctors δc1 indexed by the d colours of FId instead of just one endofunctor
δ1 for FI-modules. For d = 1 we recover the de�nition of strong polynomial functors over FI
from [DV19] since the only colour in FI1 gives the unique endofunctor δ1 of [DV19]. We also
de�ne a notion of cross e�ects for FId-modules in Section 5.4 by introducing the coslice category
(0 ↓ FId) (sometimes called the undercategory under 0 as in [ML98, P.45]) of pairs (k, x) where
k is an object of FId and x a morphism in FId(0, k). Indeed, we prove in Proposition 5.4.4 that
the coslice category (0 ↓ FId) is a monoidal category whose unit is an initial object, which allows
us to de�ne the cross e�ects of a FId-module via the forgetful functor (0 ↓ FId) → FId and the
work of Djament and Vespa in [DV19]. We then show in Proposition 5.4.12 that the polynomial
functors de�ned with the cross e�ects over FId are the same as the strong polynomial functors
de�ned with the endofunctors δc1:

Proposition. For n ∈ N and F a FId-module, F is in Polstrongn (FId,R-Mod) if and only if
crn+1(F ) ( − ) is the zero functor over (0 ↓ FId)×n+1.

We then use this alternative de�nition of strong polynomial FId-modules to show in Propo-
sition 5.4.18 the following result.

Proposition. For m,n ∈ N, if F ∶ FId → R-Mod is a strong polynomial functor of degree less
than or equal to m and if X ∶ R-Mod → R-Mod preserves epimorphisms and is a polynomial
functor of degree less than or equal to n, then the composite X ○ F ∶ FId → R-Mod → R-Mod
is a strong polynomial functor of degree less than or equal to nm.

We use this result to get in Theorem 5.5.4 that the pointwise tensor product of two strong
polynomial FId-modules is strong polynomial:

Theorem. For n,m ∈ N and F,G ∶ FId → R-Mod, if F is in Polstrongn (FId,R-Mod) and if G
is in Polstrongm (FId,R-Mod), then their tensor product F ⊗G is in Polstrong

2max(n,m)(FId,R-Mod).

However, in this theorem the bound may be not the best possible. Indeed, we could expect
for F ⊗G to be strong polynomial of degree less than or equal to n+m. For example, for d = 1 it
is shown in [Dja16] that a FI-module is strong polynomial of degree less than or equal to n if and
only if it is a quotient of a sum of the standard projective functors PFI

i for i ≤ n. This allows us
to prove that, over FI the tensor product F ⊗G is polynomial of degree n+m if F has degree n
and G has degree m. We also prove in Appendix A the same result in the framework studied by
Djament and Vespa in [DV19], that is the functors over a general symmetric monoidal category
whose unit is an initial object:
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Theorem. Let M be a small symmetric monoidal category whose unit is an initial ob-
ject. For n,m ∈ N and F,G ∶ M → R-Mod, if F is in Polstrongn (M,R-Mod) and if
G is in Polstrongm (M,R-Mod), then their tensor product F ⊗ G ∶ M → R-Mod is in
Polstrong

2max(n,m)(M,R-Mod).

For d = 1, the standard projective functors PFI
n form a really important example of strong

polynomial FI-modules, as shown in [Dja16, Proposition 4.4]. This makes the study of polyno-
mial functors over FI much easier. In particular, it implies that being strong polynomial (with
�nitely generated values) is equivalent to being �nitely generated for FI-modules. This is speci�c
to the category FI, due to the fact that the standard projective functors are polynomial, and
is not true in general on other categories. For the FId-modules these results have no reason to
hold since we show in Corollary 5.2.2 the following:

Proposition. For d > 1, the standard projective functor PFId
n is not strong polynomial.

The example of con�guration spaces

As explained above, there are many examples of FI-modules in the literature in a wide variety
of areas. We mainly present one given by the homology of the con�guration spaces of a
manifold, which is fully described in [Sam20, Wil19] and [CF13]. For M a regular manifold,
the rational cohomology of the con�guration spaces of M is a �nitely generated FI-module
([CEF15, Theorem 6.2.1]), which is almost equivalent to being strong polynomial. Furthermore,
for M a connected manifold of dimension at least 2 and under some more assumptions, it was
showed in [CMNR18, Theorem A] that 2k is an upper bound for the polynomial degree of the
FI-module H i (Conf(−) (M) ,K).

The results about the FI-moduleH i (Conf(−) (M) , K) are proved for a manifold of dimension
at least two. This hypothesis is necessary to ensure that the con�guration spaces are connected
and that the points can move around each other. But for a manifold of dimension 1, like a
graph, there is not enough space and the points block each other in the con�guration spaces, so
the same approach is no longer valid. For example, the con�guration space of the linear graph
with only one edge is homotopy equivalent to n! disjoint points. Therefore, Ramos introduced
in [Ram19] the homology of a kind of modi�ed con�guration spaces for graphs that form a
FId-module. In these modi�ed spaces, called the sink con�guration spaces, we take n (ordered)
points on the graph, as for the classical ones, but now they can either be distinct two by two
or they can overlap at a vertex of the graph but not within an edge. Then, the d vertices of
the graph correspond to the d colours of FId which gives the structure of a FId-module when
we take the rational homology of these topological spaces. This gives an interesting example of
FId-module since, before this, all the FId-modules in the literature were either free or obtained
from FI-modules via the forgetful functor. Ramos proved in [Ram19] that these FId-modules
are �nitely generated for every homological degree and every connected graph. In Proposition
3.2.8 we give an explicit description of these functors for the linear graphs:

Proposition. For Gd the linear graph on d vertices, the FId-module H0 ( Conf sink(−) (Gd, [d]) ,Q )
is the constant functor Q, while for i ≥ 1 the FId-module

Hi ( Conf sink(−) (Gd, [d]) ,Q )
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is the functor sending n to QN(d,i+1) if n = i + 1 and zero else, where

N(d, i + 1) = { (d − 1)
i+1 − (d−1i+1)(i + 1)! if d ≥ i + 2

(d − 1)i+1 if d ≤ i + 1 .

In Proposition 5.1.8 we deduce from this description that these functors are strong polynomial
and we give their degree:

Proposition. For i ∈ N and Gd the linear graph on d vertices, the FId-module

Hi ( Conf sink(−) (Gd, [d]) ,Q ) is polynomial of degree 0 for i = 0, and of degree i + 1 for i > 1.

The twisted commutative algebras

The theory of twisted commutative algebras (TCAs) dates back to the 1950s and appeared in
algebraic topology. It was introduced to study di�erent structures, such as sequences of objects
endowed with an action of linear or symmetric groups. It is also an analog of the theory of
commutative algebra adapted to the study of representations of these groups. For example,
in [Bar78] Barratt de�ned a general twisted algebra and added a condition to be a twisted
Lie algebra or a twisted commutative algebra. As we will see, the FId-modules appear in this
context since there is an equivalence of categories between the FId-modules and the modules
over the free TCA on d generators.

A TCA is a monoid in the monoidal category Fct(Σ,K -Vect), where Σ is the category
of �nite sets and bijections. By considering several categories equivalent to Fct(Σ,K -Vect)
we get di�erent equivalent de�nitions of the TCAs, as explained in [SS12] and [GS10]: it can
be a functor from vector spaces to commutative rings or a commutative ring endowed with
an action of the in�nite linear group by an algebra morphism, or an associative unital graded
ring endowed with an action of the symmetric groups. In each case there is an additional
condition, called polynomiality (in a di�erent sense than the polynomial functors we study
here) which is added to form a TCA. Sometimes the TCAs are also treated as objects of an
abstract category equivalent to any of the previous ones, which leads to another equivalent
de�nition given in [GS10] via operads. We choose to think of the TCAs mainly as functors
F ∶ Σ → K -Vect, endowed with a multiplication law ν ∶ F ⊗ F → F and a unit law (De�nition
4.1.5). The de�nition in terms of representations of the in�nite linear group GL(∞), often
used by Sam and Snowden, is well described in [SS12] and [DES17]. These two notions using
the symmetric groups or the in�nite linear group are equivalent for K of characteristic zero
via the Schur-Weyl duality, but give two di�erent notions of TCAs for K of positive characteristic.

The �rst example of TCA, coming from [Bar78], is the functor sending n to the space K[Sn]
on which the group Sn acts by conjugation and whose multiplication is given by the standard
inclusion of Sn ×Sm in Sn+m. An easy way to create other TCAs is to take the symmetric
algebra of a representation of GL(K∞). These examples, called "polynomial TCAs" (which
has nothing to do with our polynomial functors) are fully described in the di�erent equivalent
de�nitions in [SS12, Section 8.2.3]. We focus on the free TCAs on d generators of degree one
Sym((Kd)(1)), which has been studied extensively, for example in [SS12, SS16, SS19, GS10].
In particular, Sam and Snowden showed in [SS12] that the category of modules over this TCA
is equivalent, via a choice of a basis of Kd, to the category of FId-modules. As mentioned
above, this explains how the FId-modules appear in the theory of TCAs. We give the concrete
description of the TCA Sym((Kd)(1)) in De�nition 4.1.15 and the detail of the equivalence in
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Section 4.2. Another such example of TCA is Sym(Λ2(K∞) ) which is studied in [SS15]. For
example, they show that there is a equivalence similar to the one of FId: the �nitely generated
modules over this TCA are equivalent to the �nitely generated modules over the category FIM
of [MW19] whose objects are �nite sets and whose morphisms are pairs of injection and perfect
matching on the complement of the image.

There is a natural action of GL(Kd) on the modules over the TCA Sym((Kd)(1)) that acts
diagonally on the components (Kd)⊗n of Sym((Kd)(1)) before applying the multiplication law.
In Section 4.3, we use the equivalence of categories from [SS12] to transform this into an action of
GL(Kd) on the FId-modules. We obtain in Proposition 4.3.5 the following concrete description:

Proposition. Let B be a basis of Kd, for φ ∈ GL(Kd) and G ∈ FId -Mod, the functor φB ⋅G ∶
FId → K -Vect sends an object n ∈ FId to G(n) and a morphism (f, g) ∈ FId(n,m) to the sum

∑
g′∈FId(0,m∖f(n))

⎛
⎝ ∏
l ∈m∖f(n)

mg′(l),g(l)
⎞
⎠
G(f, g′).

were (mi,j)1≤i,j≤d is the matrix of φ in the basis B of Kd.

The weak polynomial functors

The notion of weak polynomial functors gives a re�nement of the notion of strong polynomial
functors which is more intuitive but lacks essential properties. Indeed, for a source category
which is a symmetric monoidal category whose unit is a null object, the subcategories of
polynomial functors are thick (see [Dja16] for the general case) which allows us to look at the
quotients by these subcategories. However, when the unit is just an initial object as in FI, a
subfunctor of a strong polynomial functor can be of higher degree or even non-polynomial. To
avoid these instability phenomena, Djament and Vespa de�ned a notion of weak polynomial
functors in [DV19] by erasing the problematic functors in a quotient category. They showed that
the category SN (FI,R-Mod) of these functors, called the stably zero functors, is composed
of the FI-modules whose colimit is zero. These stably zero functors correspond to the torsion
modules over the free TCA over a generator of degree 1 studied in [SS16] or [NSS18], and
the endofunctor κ which gives the maximal subfunctor of a FI-module in SN (FI,R-Mod)
corresponds to the local cohomology functor denoted by H0

m(−) in [SS16, NSS18, CEFN14]. In
particular, the properties of their right derived functors Him(−) are studied in [SS16, NSS18] in
order to understand how Fct(FI,R-Mod) is constructed from the two pieces SN (FI,R-Mod)
and St(FI,R-Mod). Similarly, the weak polynomial degree for FI-modules corresponds to the
notion of stable degree of [CEF15] and [CEFN14] while the local degree precise how the weak
and strong degrees are linked. It morally gives the strong polynomial degree modulo the weak
polynomial degree and controls the rank from which the associated family of representations
becomes stable.

One of the main goal of this thesis is to introduce and study weak polynomial FId-
modules. One of the di�erences with the previous situation is that there are several subcat-
egories that can replace the stably zero functors in this case: the globally stably zero func-
tors SN (FId,R-Mod) and the functors that are stably zero along di�erent colour combination
SN ci1 ,...,cim

(FId,R-Mod). These subcategories form a re�nement of the notion of stably zero
functors introduced in [DV19] for FI. Indeed, for d = 1 there is an inclusion of the unique subcat-
egory of stably zero functors SN (FI,R-Mod) in Fct(FI,R-Mod) but, for a general d, these



28 Introduction (English)

subcategories form a richer poset for the inclusion. For example, for d = 2, the poset looks like
this:

SN c1(FI2,R-Mod)

SN c1,c2(FI2,R-Mod) SN (FI2,R-Mod) Fct(FI2,R-Mod)

SN c2(FI2,R-Mod)

In Proposition 6.1.7 and Corollary 6.2.5 we show that the subcategories SN (FId,R-Mod)
and SN ci1 ,...,cim

(FId,R-Mod) of Fct(FId,R-Mod) are thick, that is closed under subobject,
quotient and extension. Then we can consider the quotient category of Fct(FId,R-Mod) by
any of these subcategories following Gabriel's construction in [Gab62], and de�ne polynomial
objects in them using the endofunctors δc1 of Fct(FId,R-Mod) which pass to the quotients.
This is possible because these subcategories are closed under colimits and so the quotient functor
πd has a right adjoint Sd called the section functor.

The subcategory SN (FId,R-Mod) of globally stably zero functors is de�ned in Section 6.1
using a family of endofunctors κc1 of Fct(FId,R-Mod). These functors are de�ned in Section
2.6 in a dual way to the δc1, and they all �t in the exact sequence of endofunctors

0 κc1 Id τ1 δc1 0
ic1 ,

were τ1 is the shifting endofunctor F (− )↦ F (− +1) and ic1 a natural transformation associated
to the colour c. We also de�ne a poset structure on Nd for the product order and a functor
ξd ∶ Nd → FId that sends an object (n1, . . . , nd) ∈ Nd to the object n1 + ⋅ ⋅ ⋅ + nd of FId. We then
show in Proposition 6.1.5 that there is an equivalent de�nition of the category SN (FId,R-Mod)
using a �ltered colimit over Nd:

Proposition. Let F be a FId-module, then F is in SN (FId,R-Mod) if and only if

colim
Nd

F ○ ξd = 0.

For d = 1 we recover the description of SN (FI,R-Mod) from [DV19, Proposition 5.7],
namely that the stably zero functors are those whose colimit is zero. Recall that, by [SS12],
the category of FId-modules is equivalent to the category of Sym((Kd)(1))-modules. In
Section 6.4 we give a description of SN (FId,R-Mod) in terms of Sym((Kd)(1))-modules
through this equivalence. We also show in Proposition 6.4.2 that, for d > 1, the subcategory
SN (FId,K -Vect) of Fct(FId,K -Vect) is not closed under the action of GL(Kd) de�ne above.

The subcategory SN ci1 ,...,cim
(FId,R-Mod) of Fct(FId,R-Mod) of functors that are stably

zero along the colours ci1 , . . . , cim is de�ned in Section 6.2 similarly to the globally stably zero
functors, but using the endofunctors κc1 for each colour c in {ci1 , . . . , cim}. In Corollary 6.2.4
we show that these categories also admit an equivalent de�nition, this time via the colouring
functors ∆∗c ∶ Fct(FId,R-Mod)→ Fct(FI,R-Mod):

Proposition. A FId-module F is in the subcategory SN ci1 ,...,cim
(FId,R-Mod) of

Fct(FId,R-Mod) if and only if the functors ∆∗c (F ) are in the subcategory SN (FI,R-Mod) of
Fct(FI,R-Mod) for all colours c in {ci1 , . . . , cim}.
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This equivalent de�nition allows us to use the results already proved for functors over FI,
especially those of Djament and Vespa in [DV19]. However, we show in Section 7.2 that in the
quotient by a subcategory of functors that are stably zero along colours the polynomial objects
are a bit harder to de�ne. In this process we lose some important properties like the fact that
the endofunctors κc1 become zero, and the endofunctors δc1 become exact in the quotient. This
is a �rst reason why we develop only the weak polynomial functors corresponding to the global
subcategory SN (FId,R-Mod): this one behaves better with the endofunctors δc1 which are a
crucial tool for the study of polynomial functors.

In Chapter 7 we focus on the category St(FId,R-Mod) of stable functors, i.e. the quotient
by the globally stably zero functors SN (FId,R-Mod), the largest of these subcategories, in
order to get a smaller quotient category that may be easier to describe. Although the objects
of the quotient category St(FId,R-Mod) are by de�nition the functors from FId to R-Mod,
one should think of them as abstract objects since the morphisms in the quotient are modi�ed
by some isomorphisms classes. In De�nition 7.2.1, we de�ne the weak polynomial FId-modules
as the functors over FId whose image in the quotient category St(FId,R-Mod) by the quotient
functor πd is a polynomial object (we sometimes identify F and πd(F ) by an abuse of notation).
With this de�nition, a strong polynomial functor is weak polynomial but the converse is not true,
which justi�es the terminology introduced by Djament and Vespa in [DV19] for FI-modules. We
denote by Poln(FId,R-Mod) the full subcategory of St(FId,R-Mod) of polynomial objects of
degree less than or equal to n. In an abuse of notation, it also denotes the full subcategory of
Fct(FId,R-Mod) of functors whose image by the quotient functor πd is a polynomial object
of degree less than or equal to n. We then take R = K a �eld to ensure that the tensor prod-
uct functor is exact and we show in Theorem 7.3.6 that the pointwise tensor product of two
polynomial objects of St(FId,R-Mod) is polynomial:

Theorem. Let R = K be a �eld, for X ∈ Poln(FId,K -Vect) and Y ∈ Polm(FId,K -Vect), we
have X ⊗ Y ∈ Poln+m(FId,K -Vect).

While the comprehension of the categories of polynomial functors is a hard problem in
general, except for small values, the quotient of polynomial functors of degree n modulo the
functors of degree n−1 is well understood in several contexts. In particular, Djament and Vespa
described this quotient in [DV19, Theorem 2.26] for the polynomial objects of St(FI,R-Mod),
as we recall in Chapter 9. For n = 0, they get that the only objects in Pol0(FI,R-Mod) are the
constant functors.

In Section 7.4 we describe the polynomial objects of degree 0 of St(FId,R-Mod), which form
a richer category than for d = 1. For this, we introduce in De�nition 7.4.8 the category R-Modd
of R-modules together with d − 1 automorphisms which commute two by two. Similarly, we
introduce the category of modules over the ring of commutative polynomials R[x±12 , . . . , x±1d ] in
the d−1 variables x2, . . . , xd all invertible. One of our main result is then the following description
obtained in Theorem 7.4.12:

Theorem. There are equivalences of categories between the category Pol0(FId,R-Mod) of
polynomial objects of degree 0 of St(FId,R-Mod), the category R-Modd and the category
R[x±12 , . . . , x±1d ]−Mod.

For d = 1 we recover that the polynomial FI-modules of degree 0 are the constant functors, but
for a general d these functors form a more complex category. We prove this theorem in two steps:
�rst, we show in Proposition 7.4.2 that the polynomial objects of degree 0 of St(FId,R-Mod)
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satisfy an abstract condition called (POL0). We then use the intermediate category FId de�ned
in Section 2.5 to show, in Propositions 7.4.6 and 7.4.7 that, for each object F in the quotient
satisfying (POL0), the image of F by the section functor Sd is completely determined by its
image on the morphisms c ∈ FId(0,1). These images of the morphisms c ∈ FId(0,1) correspond
to the d − 1 module isomorphisms of the category R-Modd when we trivialize the action of c1.
From the point of view of R[x±12 , . . . , x±1d ]-modules the images of the morphism ci ∈ FId(0,1)
correspond to the action of xi, where x1 acts by the identity when we trivialize the action of c1.

Examples of polynomial quotients of the functors PFId
n

The fact that the standard projective generators PFId
n are strong polynomial for d = 1 simpli�es

the study of polynomial functors over the category FI. As explained above, this is not the case
for d > 1. Therefore we describe several quotients of the functors PFId

n which are polynomial. In
addition to providing some concrete examples, these quotients may also give us a better idea of
what the polynomial functors on FId look like. For example, in Section 8.1 we obtain a family of
quotients of the functor PFId

0 which are weak polynomial of degree 0 by �ltering its generators
by the number of occurrences of the colours. Indeed, for k1, . . . , kd ∈ N, I ⊂ {c1, . . . , cd} and
α ∈ FId(0, k) we denote by γi(α) the number of occurrences of the colour ci in α. We then say
that α ∈ FId(0, k) satis�es the condition (PI,k1,...,kd) if γi(α) ≥ ki for all i ∈ I, or there exists
j ∈ {c1, . . . , cd} ∖ I such that γj(α) ≥ kj . With these notations, we introduce in De�nition 8.1.8

the subfunctor GI,k1,...,kd of PFId
0 given by

GI,k1,...,kd(n) =R [α −X ∣α ∈ FId(0, n) that satis�es the condition (PI,k1,...,kd)] ,

where X ∈ FId(0, n) is a given morphism in FId(0, n) satisfying the condition (PI,k1,...,kd). We
then show in Proposition 8.1.15 the following:

Proposition. For k1, . . . , kd ∈ N and I ⊂ {c1, . . . , cd}, the quotient of PFId
0 by its subfunctor

GI,k1,...,kd is weak polynomial of degree 0.

Moreover, the proof is based on the Lemma 8.1.14 which shows that this quotient is
equal to a constant functor modulo a stably zero functor of SN (FId,R-Mod). This implies
that its image in the quotient corresponds, through the equivalence giving the description of
Pol0(FId,R-Mod), to the object (R, Id, . . . , Id) of R-Modd or to the trivial R[x±12 , . . . , x±1d ]-
module.

In parallel, in Section 8.2 we study the quotient of the functor PFId
n by its subfunctor corre-

sponding to the action of the symmetric groups by post-composition. This subfunctor, denoted
by Fn in De�nition 8.2.1, is given on objects by

Fn(m) =R [σ ○ (f, g) − (f, g) ∣ (f, g) ∈ FId(n,m), σ ∈ Sm] .

We show that the quotient of the functor PFId
n by Fn is weak polynomial in Theorem 8.2.11:

Theorem. For all n ∈ N, the quotient functor of PFId
n by Fn is weak polynomial of degree 0,

where Fn is the subfunctor of PFId
n from De�nition 8.2.1.

A nice representative of the image of this quotient in the category St(FId,R-Mod)
could help us to describe it in the category R[x±12 , . . . , x±1d ]−Mod through the equiva-
lence giving the description of Pol0(FId,R-Mod). However, we explain in Section 8.2 that
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it is not easy to �nd one since the passage to the quotient category is not an explicit construction.

In Section 8.3 we give a quotient of PFId
n which is weak polynomial of degree n: for a morphism

(f, g) in FId(n,m) the second map g corresponds to a choice of m − n colours. So there exists
an action of the symmetric group Sm−n permuting these colour choices, which gives an action
of Sm−n on PFId

n (m). The subfunctor of PFId
n corresponding to this action of the symmetric

groups, denoted by Hn in De�nition 8.3.2, is given on objects by

Hn(m) =R [ (f, σ ⋅ g) − (f, g) ∣ (f, g) ∈ FId(n,m), σ ∈ Sm−n] .

We show that the quotient of the functor PFId
n by Hn is weak polynomial in Theorem 8.3.14:

Theorem. For all n ∈ N, the quotient of PFId
n by Hn is weak polynomial of degree n, where Hn

is the subfunctor of PFId
n from De�nition 8.3.2.

We prove this in two ways: �rst, we directly compute δc1 of this quotient, which is very
similar to the computation of δc1 of PFId

n in Proposition 5.2.1 but, since we take the quotient
by the action of the symmetric groups on the colours, the component that prevents PFId

n from
being polynomial vanishes here. Second, we introduce in De�nition 8.2.5 the category Cd whose
objects are the integers and whose morphisms from n to m are the (m − n)-tuple of colours
(ci1 , . . . , cim−n) quotiented by the action of Sm−n (which is the same as the unordered choices of
m−n colours). We then show in Proposition 8.2.9 that the quotient of PFId

n by Fn is equivalent
to the functor P Cdn , and describe the quotient of PFId

n by Hn as a tensor product in Proposition
8.3.8 via the formula:

Proposition. For all n ∈ N, there is a natural isomorphism

PFId
n /Hn ≅ (O

∗PFI
n ) ⊗ P Cd0 ( (−) − n ) ○Ω ,

where O is the forgetful functor FId → FI and Ω ∶ FId → Cd sends n ∈ FId to n ∈ Cd and a
morphism (f, g) ∈ FId(n,m) to the colours of g quotiented by the action of Sm−n.

This explains how the injections and the colours are mixed to form the functor PFId
n up to

the action of the symmetric groups on the colour choices. Moreover, since the functor PFI
n is

strong polynomial of degree n for d = 1, the image of the arrows from PFI
n to the direct sum of

all PFI
k for k ≤ i is weak polynomial of degree i for any i ∈ N. We then construct in Proposition

8.4.5 a quotient of PFId
n that is weak polynomial of degree i for any i ∈ N using the above formula

for the quotient of PFId
n by Hn.

The construction Cospan

In order to study the polynomial functors over symmetric monoidal categories whose unit
is an initial object, Djament and Vespa introduced in [DV19] a functor M → M̃ which
transforms the category M whose unit is an initial object into the category M̃ whose unit
is a null object. This construction, which is universal in the sense that it gives an adjoint to
the forgetful functor, morally adds "decreasing" morphisms from the objects of the category
to the unit while preserving the "increasing" morphisms from the unit to the objects. This
construction is equivalent to the construction Cospan(−) of [Ves07] where the functors over
Cospan can be seen as a generalization of the Mackey functors. Since this construction
preserves the polynomial functors, it allows Djament and Vespa in [DV19, Theorem 4.8] to
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turn the study of polynomial functors over a category whose unit is an initial object into the
study of polynomial functors over a category whose unit is a null object, which are better known.

They then apply this result to FI whose unit is an initial object. It allows them to describe
the quotient of polynomial objects (in the quotient category St(FI,R-Mod)) of degree less
than or equal to n over FI by its thick subcategory of polynomial functors of degree less than
or equal to n − 1. Indeed, the categories Cospan(FI) and F̃I are equivalent to the category
FI# of partial injections of �nite sets of [CEF15]. They then use a variation of a Dold-Kan
type theorem of Pirashvili to describe the same quotient for functors over Cospan(FI). This
Pirashvili's theorem from [Pir00] gives an equivalence of categories between the functors over the
category Γ of pointed �nite sets and the functors over Ω the category of �nite sets and surjections,
using the cross e�ects. The variation used in [DV19], which is described explicitly in [CEF15,
Theorem 4.1.5], gives an equivalence of categories between the functors over the category FI#
and the functors over the category Σ of �nite sets and bijections, since FI# is a subcategory
of Γ and Σ of Ω. The combination of these two results give the following description in [DV19,
Proposition 5.9]: for n ∈ N, there is an equivalence of categories

Poln (FI)/
Poln−1 (FI)

≅ Poln (Cospan(FI))/
Poln−1 (Cospan(FI))

≅ Fct (Σn,R-Mod),

where Σn is the category associated with the symmetric group Sn. We show that this approach
cannot be directly generalized to describe the polynomial functors over FId.

In Chapter 9 we introduce a generalization of the construction Cospan for FId as follows:
the objects of Cospan(FId) are the same as the objects of FId and the morphisms are classes of
diagrams under an equivalence relation. These diagrams are morally composed of an injection
and two di�erent colour choices on di�erent sets which interact with each other. Thus, we show
in Proposition 9.2.8 that the category Cospan(FId) is isomorphic to a combinatorial category
FId# whose morphisms consist of a partial injection and two distinct colour choices, one on
the complement at the source and one on the complement at the target. Moreover, we show in
Proposition 9.1.6 that each morphism in Cospan(FId) admits a minimal representative diagram
of the class, which implies that both the morphisms from 0 to n and the morphisms from n to 0
in Cospan(FId) are in bijection with FId(0, n). This emphasizes that the category Cospan(FId)
is essentially obtained by keeping the morphisms from 0 to n of FId and adding new morphisms
from n to 0 corresponding to them.

We then study the Cospan(FId)-modules as we did for FId-modules: in Section 9.3 we de�ne
the polynomial functors on Cospan(FId) using a family of endofunctors δc1 of Cospan(FId) for
the di�erent colours. A major di�erence is that the stably zero functors over Cospan(FId) are
zero since this category has a null object, so the weak and strong notions of polynomial functors
over Cospan(FId) coincide. We then obtain in Theorem 9.4.9 the following description of the
polynomial Cospan(FId)-modules of degree 0:

Theorem. A functor F ∈ Fct(Cospan(FId),R-Mod) is in Pol0(Cospan(FId),R-Mod) if and
only if it is a constant functor. There is an equivalence of categories

Pol0( Cospan(FId),R-Mod ) ≅ R-Mod .

Together with the description of the polynomial objects of degree 0 of St(FId,R-Mod)
(Theorem 7.4.12), this shows that for a general d the �rst equivalence of [DV19, Proposition
5.9] presented above already fails for n = 0, that is the quotient of Poln(FId,R-Mod) by
Poln−1(FId,R-Mod) is not equivalent to the same quotient over Cospan(FId).
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Document layout

The organization of the manuscript is the following: in the �rst chapter we recall the construction
and the important facts about the quotient of a category by a thick subcategory. In Chapter
2, we present the FId-modules and give an overview of the basic results already known about
them. We also introduce the main tools for their study and describe the simple objects of
this category. In Chapter 3 we present the example of con�guration spaces and describe it
explicitly in simple cases. The Chapter 4 concerns the twisted commutative algebras and their
connection with the FId-modules. In Chapter 5 we de�ne the strong polynomial functors over
FId and give examples and counterexamples. We also extend the cross e�ects to these functors
and show that the resulting notion of polynomial functors coincides with the one using the
di�erential endofunctor. Chapter 6 is dedicated to the di�erent notions of stably zero functors
and the poset they form. In Chapter 7 we study the quotient category St(FId,R-Mod) and the
polynomial functors in this quotient. In particular, we describe the weak polynomial objects of
degree zero of St(FId,R-Mod), which are not just the constant functors. In Chapter 8 we give
examples of polynomial quotients of the standard projective functors. Finally, in the last chapter
we introduce the category Cospan(FId), and we show that the method of [DV19] for describing
the weak polynomial FI-modules does not work the same for weak polynomial FId-modules.



Chapter 1

Recollection on quotient categories

The aim of this section is to recall the construction and some important properties of the quotient
of a category by a thick subcategory. Most of these properties are taken from the pages 366-372
of Gabriel's thesis [Gab62] and we refer to it for the proofs of these propositions. In this section
A is an abelian category and C is a subcategory of A.

1.1 De�nition of a quotient category

We start with the construction of the quotient of the category A by C, when C is a thick subcate-
gory which is de�ned below. We will see that this construction depends on the thick hypothesis,
so it will be important in the following sections to always check whether the subcategories we
are considering are thick or not. The idea of this quotient category is to inverse the morphisms
whose kernel and cokernel are in the subcategory C.

De�nition 1.1.1. A subcategory C of A is thick if it is closed under subobjects, quo-
tients and extensions. In other words, C is thick if, for every short exact sequence

0 M N P 0 in A the object N is in C if and only if both M and P are in
C.

Since A is an abelian category it admits a biproduct denoted by ∐. We then give basic
results on the thick subcategories that we use in the following constructions:

Lemma 1.1.2. For C a thick subcategory of an abelian category A and any two objects A and B
of C, then A∐B is in C and, if A and B are subobjects of C ∈ A, then A+B ∶= Im(A∐B → C)
is in C.

Proof. The �rst point is a classical result about abelian categories (see for example [ML98])
obtained using the short exact sequence

0 A A∐B B 0 ,

and the second point comes from the de�nition of a thick subcategory since A +B is a quotient
of A∐B.

In order to de�ne the quotient category we introduce some notations.

De�nition 1.1.3. For a thick subcategory C of A and any two objects A and B of A we de�ne
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� A poset

IA,B = { (A′,B′) ∈ A2 ∣ A′ ⊂ A, A/A′ ∈ C, B′ ⊂ B, B′ ∈ C} ,

where the order relation is given by: (A′,B′) ≤ (A′′,B′′) if A′ ⊃ A′′ and B′ ⊂ B′′.

� The category IA,B associated with the poset IA,B.

� The functor FA,B ∶ IA,B → Ab sending an object (A′,B′) of IA,B to the group
HomA(A′,B/B′) and a map (A′,B′) ≤ (A′′,B′′) in IA,B to the map

HomA(A′,B/B′) Ð→ HomA(A′′,B/B′′)
f ↦ pB

′
B′′ ○ f ○ iA

′
A′′ ,

where iA
′

A′′ is the inclusion of A′′ in A′ and pB
′

B′′ the projection of B/B′ onto B/B′′.

We then want to de�ne the quotient category A/C as the category with the same objects as
A and whose morphisms from A to B are the elements of the colimit of FA,B as in [Gab62, p.
365]. However, using this as a de�nition of the morphisms, it would be really abstract and not
easy to use and the composition would be hard to de�ne. We then use the fact that the category
IA,B is �ltered when C is thick to give a more concrete description of this colimit.

De�nition 1.1.4. A category M is �ltered if it is not empty, if for every two objects X and
Y in M there exist an object Z and two arrows f ∶ X → Z and g ∶ Y → Z in M and if for
every two parallel arrows f, g ∶ X → Y there exist an object Z and an arrow h ∶ Y → Z such
that h ○ f = h ○ g. The colimit of a functor is a �ltered colimit if the source category is a �ltered
category.

Lemma 1.1.5. For a thick subcategory C of A and for any two objects A,B ∈ A, the category
IA,B is �ltered.

Proof. For (A′,B′) and (A′′,B′′) two objects of IA,B, we pose X = A′ ∩A′′ and Y = B′ +B′′ ∶=
Im(B′∐B′′ → B). Since C is thick (X,Y ) is an object of IA,B, i.e. an element of the poset IA,B.
Then we have that (A′,B′) ≤ (X,Y ) and (A′′,B′′) ≤ (X,Y ) by construction. Furthermore, the
element (A,0) is minimal in IA,B so IA,B is non-empty and, by construction there is one or zero
arrow in IA,B between two objects, so two parallel arrows in IA,B are equal.

We now recall a description of �ltered colimits over R-modules, which will be useful to
describe the colimit of FA,B in a concrete way, even though it is not directly related to quotient
categories.

Proposition 1.1.6. [Bor94, Proposition 2.13.3] For F ∶ C → R-Mod a functor, if C is a small
�ltered category then the colimit (M, µC ∶ F (C)→M) of F is given by:

� The R-module M is the quotient of the direct sum of all F (C) for C ∈ C by the equivalence
relation given by: a ∈ F (C) and a′ ∈ F (C ′) are equivalent if there exist C ′′ ∈ C and two
maps f ∈ C(C,C ′′) and f ′ ∈ C(C ′,C ′′) in C such that F (f)(a) = F (f ′)(a′),

� The map of R-modules µC ∶ F (C) → M is the composition of the inclusion of F (C) in
the direct sum and of the quotient map by the equivalence relation that sends an element
a ∈ F (C) to its equivalence class.

In particular, an element a ∈ F (C) is in the same equivalence class as zero if and only if there
exists an object C ′′ ∈ C and a map f ∶ C → C ′′ such that F (f)(a) = 0.
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We deduce the following description of the colimit of the functor FA,B over the category IA,B.

Corollary 1.1.7. For A,B ∈ A, there is an isomorphism

colim
IA,B

FA,B ≅ ⊕
(A′,B′)∈IA,B

HomA (A′,B/B′) /∼

where f ∈ HomA(A′,B/B′) and f̃ ∈ HomA(Ã′,B/B̃′) are equivalent if there exist X ⊂ A′ ∩ Ã′
and Y ⊃ B′ + B̃′ such that (X,Y ) ∈ IA,B and f ∣X = f̃ ∣X ∶X → B/Y .

Proof. The Proposition 1.1.6 implies that the colimit of FA,B is equivalent to the direct sum of all
HomA (A′,B/B′) for (A′,B′) ∈ IA,B quotient by an equivalence relation. This relation is given

by: f ∈ HomA(A′,B/B′) and f̃ ∈ HomA(Ã′,B/B̃′) are equivalent if there exist (X,Y ) ∈ IA,B, φ ∈
HomIA,B

( (A′,B/B′) , (X,Y ) ) and φ̃ ∈ HomIA,B
( (Ã′,B/B̃′) , (X,Y ) ) such that FA,B(φ)(f) =

FA,B(φ̃)(f̃). The result then follows from the de�nitions of IA,B and of FA,B on the arrows.

We can now de�ne the quotient of an abelian category A by a subcategory C if it is a thick
subcategory.

De�nition 1.1.8. The quotient category A/C of the abelian category A by its thick subcategory
C is given by:

� The objects of A/C are the objects of A,

� The morphisms in A/C from A to B are the elements of the direct limit

lim
(A′,B′)∈IA,B

HomA(A′,B/B′) = colim
IA,B

FA,B ≅ ⊕
(A′,B′)∈IA,B

HomA (A′,B/B′ ) /∼

where the equivalence relation is given in Corollary 1.1.7. We denote by [f] the class of a
morphism f ∈ HomA(A′,B/B′) in this quotient.

� The composition of two morphisms is de�ned by choosing a representative of the class of
each morphism and by composing the (co)-restrictions of them in a natural way:

HomA/C (A,B) ×HomA/C (B,C) → HomA/C (A,C)
( [f] , [g] ) ↦ [ g̃ ○ α ○ f̃ ],

where [ g̃ ○ α ○ f̃ ] is the class of the composition g̃ ○ α ○ f̃ . These last morphisms are
de�ned by: α is the isomorphism A′ +A′′/A′ ≅ A

′′/A′ ∩A′′, f̃ is the (co)-restriction f ∶
f−1(A′ +A′′/A′) → A′ +A′′/A′ where f ∈ HomA(A′,B/B′) is a representative of [f] and
g̃ ∶ A′′/A′ ∩A′′ → C/C ′ + g(A′ ∩A′′) is the morphism obtained as g ∶ A′′ → C/C ′ passing
to the quotient, where g ∈ HomA(B′′,C/C ′) is a representative of [g].

Remark 1.1.9. The idea of the composition is to restrict f at the target to the subobject
A′ +A′′/A′ of A/A′ and g at the source to A

′′/A′ ∩A′′, so that we can compose them via the

isomorphism α ∶ A′ +A′′/A′ ≅ A
′′/A′ ∩A′′. The hypothesis that C is thick is crucial to de�ne

the composition in such a way because we use that these objects (or quotients of them) are in
C. However, this de�nition of the composition of two morphisms depends on the choice of two
representatives f of [f] and g of [g]. We check (see [Gab62, p.365]) that the result does not
depend on these choices by making a commutative diagram showing, for [f ′] = [f] and [g′] = [g],
that [ g̃′ ○ α ○ f̃ ′ ] = [ g̃ ○ α ○ f̃ ] when restricted to some (E,F ) ∈ IA,B so that E is small enough
to get the information from f and f ′, and F is large enough to get the information from g and
g′.
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Proposition 1.1.10. [Gab62, Proposition 1 p.367] The quotient category A/C is abelian.

We give an example of morphisms in the quotient category which illustrates that this quotient
is di�cult to understand explicitly, even in simple cases.

Example 1.1.11. For C a thick subcategory of A and A,B ∈ A, if A or B is in C we have

HomA/C(A,B) = 0.

Indeed, if A ∈ C, for (A′,B′) in IA,B we have (0,B′) ∈ IA,B since A/0 = A ∈ C, and by de�nition of
the order on the poset IA,B we have (A′,B′) ≤ (0,B′). Then the map FA,B(A′,B′)→ colim FA,B
factors through FA,B(0,B′) = HomA(0,B/B′) = 0. This shows that the maps FA,B(A′,B′) →
colim FA,B are zero for all (A′,B′) ∈ IA,B if A ∈ C, and so the colimit is zero by minimality. In
the case where B ∈ C, we apply the same reasoning but with (A′,B) ∈ IA,B satisfying (A′,B′) ≤
(A′,B) and FA,B(A′,B) = HomA (A′,B/B) = 0.

1.2 The quotient functor

In this section we describe the properties of the canonical quotient functor π from A to the
quotient A/C.

De�nition 1.2.1. The canonical quotient functor π ∶ A→ A/C sends an object A in A to itself

in A/C and a morphism f on its class [f] in the colimit for (A,0) ∈ IA,B, according to De�nition
1.1.8.

We now describe some properties of this quotient functor.

Proposition 1.2.2. [Gab62, Proposition 1 p.367] The quotient functor π is essentially surjective
and exact.

Moreover, the quotient functor is almost a full functor: it is full up to isomorphisms, as
explained in the following proposition.

Proposition 1.2.3. [Gab62, Corollary 1 p.368] For any short exact sequence

0 M N P 0
f g

in A/C, there is a short exact sequence

0 M1 N1 P1 0
f1 g1

in A such that the induced sequence in the quotient obtained by applying the quotient functor is
exact, and there exist isomorphisms u ∶M ≅ π(M1), v ∶ N ≅ π(N1), w ∶ P ≅ π(P1) in A/C such
that the following diagram commutes

0 M N P 0

0 π(M1) π(N1) π(P1) 0 .

f

u

g

v w

π(f1) π(g1)

We now describe the conditions under which a morphism in A is sent by the quotient functor
π to a monomorphism, an epimorphism or to zero in the quotient. We give a sketch of the proof
since it gives another example of how to compute morphism in the quotient category.
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Proposition 1.2.4. [Gab62, Lemma 3 p.366] Let f ∶ A → B be a morphism in the category A,
the morphism π(f) in the quotient A/C is zero (resp. a monomorphism, an epimorphism) if and
only if Im(f) (resp. ker(f), Coker(f)) is in the subcategory C of A. In particular, if π(A) = 0
then A is in the subcategory C of A.

Proof. We give a sketch of the proof in the �rst case, the other being similar. If Im(f) ∈ C, then
the image π(f) = [f] of f in the colimit is zero since (A, Im(f)) ∈ IA,B so we have a representative
of this class in HomA (A,B/Im(f) ) which is zero. For the converse, if π(f) = [f] is zero, we
can choose a representative of this class f ′ ∶ A′ → B/B′ which is zero, with (A′,B′) ∈ IA,B. This
implies that f(A′) ⊂ B′, and so f(A′) ∈ C since B′ ∈ C. We have a short exact sequence

0 f(A′) Im(f) A/A′ +Ker(f) 0

because Im(f) ≅ A/Ker(f) and f(A′) ≅ A
′/A′ ∩Ker(f) ≅ A

′ +Ker(f)/Ker(f). We then con-

clude that Im(f) ∈ C using this short exact sequence since A/A′ +Ker(f) is a quotient of A/A′
which is in C. The last point of the statement is obtained by applying the functor π to the
morphism identity of A. This gives a zero morphism in the quotient, and so the image A of this
morphism is in C.

Finally, we can state a famous result about quotient categories which will not be used in the
following.

Theorem 1.2.5 (Gabriel-Popescu Theorem). If A is a Grothendieck category with a generator
G, then there is an equivalence of categories

A ≅ Mod-R /C ,

where R = End(G) and C is the thick subcategory corresponding to the kernel of the functor
Hom(G,−).

1.3 The section functor

The quotient functor π makes a link from the category A to the quotient one A/C, but it is only
in one direction. However, under some hypothesis, this functor has an adjoint, called the section
functor, which makes the link in the opposite direction. In this case we say that C is localizing.
When A is a Grothendieck category, this hypothesis has a concrete description and, since we
will only consider Grothendieck categories, we only present this case (see [Gab62, p.377] for a
general version). We now describe this adjoint and we give some properties of the adjunction.

De�nition 1.3.1. [Gar01, p.7] The categoryA is a Grothendieck category if it is an AB5 category
with a generator. This means that A is an abelian category with a generator (i.e. an object A in
A such that every object is a quotient of a direct sum of copies of A), such that every (possibly
in�nite) family of objects in A has a coproduct (direct sum) in A, and every direct limit of short
exact sequences is exact (i.e. for every family of short exact sequences in A the induced sequence
of direct limits is a short exact sequence).

Example 1.3.2. For any ring R, the categories R -Mod and Mod-R are Grothendieck cate-
gories. Indeed, they are abelian categories generated by R in which one can consider in�nite
direct sums. The last property can be checked by hand on elements (see [Gar01, p.7]).

We can now give the condition that C must satisfy so that the quotient functor has an adjoint.
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Proposition 1.3.3. [Gab62, Special case of Propositions 8 and 9 p.377-378] Let A be a
Grothendieck category (De�nition 1.3.1), the quotient functor π has a right adjoint

S ∶ A/C → A

if and only if the subcategory C is closed under colimits. In this case, the quotient functor
commutes with all �ltered colimits.

From now on we will assume that the quotient functor π has a right adjoint S. Since we have
de�ned a quotient, we want a statement similar to the usual universal property of the quotient.
The following proposition gives this, but only if the functor we want to pass to the quotient is
exact.

Proposition 1.3.4. [Gab62, Corollary 2 p.368] Let F be an exact functor from A to an abelian
category D. If F (C) is zero for all objects C of C, then there exists a unique functor G from
A/C to D such that F = G ○ π.

More than that, since we need the functor F ∶ A → D to be exact, the resulting functor
G ∶ A/C → D is also exact by using the following corollary which describes when a functor from
a quotient is exact:

Corollary 1.3.5. [Gab62, Corollary 3 p.369] Let G be a functor from A/C to an abelian category
D, then G is exact if and only if G ○ π is exact.

In particular, as stated above, if G is induced by an exact functor F from A to D as in
Proposition 1.3.4, then G is also exact. However, the exactness hypothesis on F in Proposition
1.3.4 is a bit restrictive, and at some point we will need a more general version of this proposition.
Indeed, if the functor F is not exact but admits derived functors it is su�cient to obtain an
induced functor from the quotient as explained in the following proposition. For example, this
is typically the case for the Ext and Tor functors, or for the (co)homology functors.

Proposition 1.3.6. Let F be a functor from A to an abelian category D left (resp. right) exact
such that it admits derived functors. If F (C) is zero for all objects C of C, then there exists a
unique functor G from A/C to D such that F = G ○ π.

Proof. The only time we use the exactness of F in the proof of Proposition 1.3.4 ([Gab62,
Corollary 2 p.368]) is when we want to de�ne, for all A,B ∈ A and all (A′,B′) ∈ IA,B, a bijection

ψ ∶ HomD (F (A), F (B) ) ≅ HomD (F (A′), F (B/B′) ).

To do this we consider the short exact sequences associated with iAA′ ∶ A′ → A and pNN/N ′ ∶ N →
N/N ′. We get that F (iAA′) ∶ F (A′) → F (A) is an isomorphism using the fact that A/A′ ∈ C, the
hypothesis F (C) = 0 for all C ∈ C, and the exactness of F . The same works for pNN/N ′ , showing

that F (p) is an isomorphism and the two together imply that the morphism ψ is a bijection.
This proof still works under the assumption that F admits derived functors since it replace the
exactness of F : in the long exact sequence of derived functors the morphism F (iAA′) ∶ F (A′) →
F (A) is between two terms of the type F (A/A′) which are zero since A/A′ ∈ C, proving that
F (iAA′) ∶ F (A′) → F (A) is an isomorphism. The same argument works for pNN/N ′ ∶ N → N/N ′
and the end of the proof is exactly the same.

Remark 1.3.7. In the last proposition we need F (C) to be zero for all C ∈ C. For example if
F =H∗(−,K) we need for all C ∈ C that Hn(C,K) = 0 for all n ∈ N, and not just H0(C,K) = 0.
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We now give some properties of the adjunction of the quotient functor π and the section
functor S, in particular we describe the unit and the co-unit of this adjunction.

De�nition 1.3.8. The natural transformations η ∶ Id → S ○ π and ε ∶ π ○ S → Id such that
(επ ○ π(η) ∶ π → π ○ S ○ π → π) = Idπ and (S(ε) ○ ηS ∶ S → S ○ π ○ S → S) = IdS are respectively
the unit, and the co-unit of the adjunction of π ∶ A→ A/C and S ∶ A/C → A.

Applying a general result concerning the unit and the co-unit of an adjunction given in
[Bor94, P.115] to the adjunction of the quotient we obtain:

Proposition 1.3.9. If the unit η ∶ Id → S ○ π and the co-unit ε ∶ π ○ S → Id of the adjunction of
π and S are isomorphisms, then there is an equivalence of the categories A/C ≅ A.

Since we consider the adjunction corresponding to a quotient category, there a some other
results about the unit and the co-unit that arise in this case. For the co-unit we have the
following.

Proposition 1.3.10. [Gab62, Proposition 3.a p.371] The co-unit ε ∶ π ○S → Id of the adjunction
of π and S is always an isomorphism.

For the unit the description is a bit more complicated and we need the following de�nition,
which is a reformulation of the de�nition of [Gab62, p.371].

De�nition 1.3.11. An object A ∈ A is C-closed if Hom(H,A) and Ext1(H,A) are both zero for
all H ∈ C.

Then, the following proposition describes when the unit is an isomorphism.

Proposition 1.3.12. [Gab62, Corollary p.371] Let A be an object of A, the unit ηA ∶ A→ S○π(A)
of the adjunction of π and S is an isomorphism if and only if A is C-closed.

If the unit is not an isomorphism, we can still say something about its kernel and cokernel,
as in the following:

Proposition 1.3.13. [Gab62, Proposition 3.b p.371] For all objects A in A, the kernel and the
cokernel of the unit ηA ∶ A → S ○ π(A) of the adjunction of π and S are in the subcategory C of
A.

Finally, we gave above some properties of the image of the quotient functor, but there is
an important property in the opposite direction about the image of an object of the quotient
category by the section functor S:

Lemma 1.3.14. [Gab62, Lemma 2 p.371] For any object N in the quotient category A/C, the
object S(N) of A is C-closed.



Chapter 2

Functors on the categories FId

The functors from the category FI of �nite sets and injections (also denoted by I in [Sch08]
and by Θ in [DV19]) to R-Mod are called FI-modules. They have been studied extensively
in the last decade by Church, Ellenberg, Farb, Nagpal and some others (see for example
[CEF15, CEFN14, CEF14, CE17, CF13, Chu12, CMNR18, Dja16, DV19]), mostly for their
link to the theory of representation stability. A complete introduction to these subjects can
be found in [Sam20], but we give an outline now: the theory of FI-modules was introduced
in [CF13] to study the compatible families of representations of the symmetric groups which
admit a decomposition in irreducible that eventually becomes stable (in the sense of [Far14]).
It is a generalization of the classical homological stability taking into account the action of the
symmetric groups. A large family of concrete examples in a wide range of areas are presented
in [CF13] and [Wil18b]. Church and Farb then proved that a FI-module is �nitely generated if
and only if it has �nitely generated values and the associated family is representation stable. In
practice, it is generally easier to prove a �niteness result on one objects than the stability of an
entire family, which shows the interest of studying these functors. Replacing the target category
R-Mod by a more combinatorial category we can also consider the non-abelian categories of
FI-posets, FI-graphs and more generally FI-sets with relations (see [RSW20]).

Since then, the category FI has been generalized in di�erent directions. The one we are
concerned was introduced by Sam and Snowden in [SS17], leading to the categories FId for d
a non-zero integer in which the morphisms are coloured injections (see De�nition 2.1.2). More
precisely, the category FI1 is isomorphic to the category FI. We study here the functors from
FId to R-Mod, called FId-modules, and we emphasize in particular the di�erences with FI-
modules. These functors intervene, in particular, in the theory of TCAs and in representation
stability. Indeed, the FId-modules are equivalent to the modules over the free TCA with d
generators of degree 1 (see Chapter 4), and there is a result similar to the one for FI from
[Ram19]: a FId-module is �nitely generated if and only if it has �nitely generated values and the
associated family of representations is stable in a general sense (for large enough partitions). In
this Chapter, after recalling the de�nition of FId, we give some examples of FId-modules and we
describe the simple FId-modules. We then de�ne some endofunctors of the category FId -Mod,
which we will use in the following chapters to de�ne the notions of polynomial functors and we
study some functors between FI-modules and FId-modules.
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2.1 The categories FI and FId

We start with the de�nition of the category FI and its generalization, the category FId. We give
their �rst properties and some notations that we will use throughout the manuscript.

De�nition 2.1.1. The category FI has for objects the �nite sets and for morphisms the injections
between these sets. The composition of morphisms is the usual composition of injections.

The category FId is constructed as the category FI to which we add some colours on the
morphisms. Explicitly, for d ∈ N∗ let C(d) be a set of cardinality d whose elements are called
colours and are denoted by ci for 1 ≤ i ≤ d.

De�nition 2.1.2. The category FId has for objects the �nite sets and for morphisms the in-
jections together with a colour choice in C(d) for each element in the codomain which is not
mapped to by any element. In other words, an arrow from X to Y is a pair noted by (f, g) with
f ∶ X ↪ Y an injection and g ∶ Y ∖ f(X) → C(d) a set map. The composition is given for two
composable morphisms (f1, g1) and (f2, g2), by

(f1 ∶ Y ↪ Z, g1) ○ (f2 ∶X ↪ Y, g2) = (f1 ○ f2 ∶X ↪ Z , g′)

where g′ ∶ Z ∖ (f1 ○ f2)(X)→ C(d) is de�ned by

g′(z) = { g2(z) if z ∈ Z ∖ f2(Y )
g1(f−12 (z)) if z ∈ f2(Y ) ∖ f2 ○ f1(X).

Example 2.1.3. We give an example of the composition of two morphisms with two di�erent
colours in FId :

●
●

●

● c1 ●
●

●

● c2
●

●
●

●

●

● c2
● c1

De�nition 2.1.4. The functor ⊙ ∶ FId ×FId → FId is given on objects X1,X2 ∈ FId by the
disjoint union X1 ⊙X2 =X1 ⊔X2 and on morphisms by

(f1 ∶X1 ↪ Y1, g1)⊙ (f2 ∶X2 ↪ Y2, g2) = (f1 ⊔ f2 ∶X1 ⊔X2 ↪ Y1 ⊔ Y2, g1 + g2).

Lemma 2.1.5. The functor ⊙ gives a symmetric monoidal structure on FId with the empty set
as the unit.

The categories FId generalize the category FI since for d = 1 we have an isomorphism of
categories FI1 ≅ FI. Indeed, the category FI1 is easy to describe because C(1) = {c} so we can
de�ne a functor ∆c ∶ FI→ FI1 by the identity on objects and which sends an injection f ∶X ↪ Y
to the morphism (f, g), where g is the unique map from Y ∖ f(X) to C(1). This functor gives
an isomorphism of categories and its quasi-inverse is a forgetful functor O ∶ FI1 → FI which is
given by the identity on objects and which sends a morphism (f, g) in FI1 to the injection f in
FI. The functors ∆c and O can be generalized to get functors between FI and FId, we de�ne
the general forgetful functor now and the general functor ∆c in Section 2.7.

De�nition 2.1.6. The forgetful functor O ∶ FId → FI is de�ned on objects by O(X) = X and
on morphisms by O(f, g) = f .
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Lemma 2.1.7. The forgetful functor O is monoidal.

In order to simplify the notation, the set C(d) is simply denoted by C if this dos not leads to
misunderstandings. We also consider the skeleton of the category FId, which is described in the
following.

Notation 2.1.8. The skeleton of the category FId has for morphisms the integers, where n
corresponds to the class of sets of cardinality n (see also [Wil18a] for d = 1). In this skeleton the
class of the empty set corresponds to 0 and a morphism from n to m is a couple (f, g) where
f ∶ n → m is an injection and g ∶ m − n → C is a choice of m − n ordered colours. The monoidal
structure ⊙ on FId corresponds to the addition "+" in the skeleton.

From now on FId will always denote the skeleton of the category of �nite sets and coloured
injections.

Remark 2.1.9. We use the notation "+" in the skeleton of FId since the cardinality of the
disjoint union of two sets is the sum of their cardinality. However, this monoidal structure is
not a coproduct, even for d = 1. For example the following diagram cannot be completed by any
dashed arrow in FI or FId:

1 2 1

1
Id1 Id1

In FId the morphisms from 0 to an integer m are really important and will be used a lot.
We give there a nice description of these morphisms.

Remark 2.1.10. For m ∈ FId, an element of FId(0,m) corresponds to a choice of m colours in
C, so we have a bijection FId(0,m) ≅ Cm given by:

FId(0,m) → Cm

(0↪m, g ∶m→ C) ↦ ( g(1) , . . . , g(m) ).

We often denote an element x in FId(0,m) by x = (c1, . . . , cm) for some colours c1, . . . , cm ∈ C
according to this bijection. In particular, for c ∈ C we denote by cm the morphism (0→m,m→
{c}→ C) in FId(0,m).

The �rst important di�erence between FI and FId is that 0 is an initial object in FI ≅ FI1,
but it is not the case in FId for d > 1. Indeed, the set of morphisms

FId(0,m) ≅ (C(d))m = {c1, . . . , cd}m

has dm elements in general. This gives the existence of a unique morphism from 0 to m in FI1,
but such a morphism is not unique in FId for d > 1.

Remark 2.1.11. In the literature they are several variants (see [Sam20] for a detailed list) of
the category FI: The categories FId, FIW forW some Weyl groups in [Wil12], FSG the category
of �nite sets and G-surjections for G a group (see [SS17]), or a symplectic version (see [Sam20]).
There are also variants for representations of linear groups presented in [Wil18a], such as VI(R)
the category of free modules of �nite rank and injective linear maps with left inverse, and its
generalization VIC(R) of free modules of �nite rank and injective linear maps with a choice
of direct complement of the image. These categories are particular cases of the category S(A)
introduced by Djament in [Dja12] for A an abelian category. For A = R-Mod this category is
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denoted by S(R) in [Dja16] and for A = Z−Mod it is denoted by S(ab) in [DV19]. They are
similar to FI and FId since the morphisms are given by an injective map coupled with a choice on
the complement of the image. Most of these categories are example of the construction U(G) from
[RWW17]: for G = Sn we get the category FI, and for G = GLn(R) we get S(R). The functors
over such categories have been studied, like the category G in [DV15] for G = Aut(Fn) and Uβ
in [Sou20] for G = Bn. Another variant of the category FI is the category FIG of �nite sets and
couples of an injection and a choice of an element of the group G for each element at the source.
The functors over this category have been studied for example in [Ram17b, LR18] and Sam and
Snowden showed that the category of �nitely generated FIG-module is noetherian. This result
was extended in [Ram17b] to the notion of degree wise coherent modules using endofunctors
similar to the ones we de�ne in Section 2.6. In [LR18] they show that the dimension of the
functors over FIG eventually becomes polynomial, as for FI.

2.2 Functors on the categories FId

The main objects that we study in this thesis are the FId-modules, which are the functors from
FId to the category of modules R-Mod. The theory of FI-modules was introduced by Church
and Farb in [CF13] to encode a large quantity of information about a family of representations of
the symmetric groups in one object. Concrete examples of this are given in [CF13] and [Wil18b].
Indeed, it was proven in [CEF15] that if a FI-module is �nitely generated, then the family of
representations of the symmetric groups associated is stable (in the sense of [CEF15, CEFN14,
Far14]). The FId-modules were then introduced as a generalization of the FI-modules, and it was
proven in [Ram17a] that, if a FId-module is �nitely generated, then the family of representations
of the symmetric groups associated is stable in a generalized sense (for large enough irreducible
representations). In this part we give general results on this category of functors. We start with
the de�nition of this abelian category and we give a family of generating functors which are the
standard projective. We will see that we can get a lot of information about the FId-modules
from the structure of these projective standard functors. We only consider here functors with
values in R-modules but most of the results admit generalizations for functors with values in a
Grothendieck category A (De�nition 1.3.1).

De�nition 2.2.1. The category FId -Mod = Fct(FId,R-Mod) is the category of functors from
FId to the category of modules R-Mod, with natural transformations as morphisms.

Proposition 2.2.2. The category FId -Mod = Fct(FId,R-Mod) is a Grothendieck category
(De�nition 1.3.1), in particular it is abelian.

Proof. The category R-Mod is a Grothendieck category and a functor category with values in
a Grothendieck category is also a Grothendieck category (see [Gar01]).

Remark 2.2.3. The structure of a FId-module can be represented by a diagram: it is a family
of linear representations of the symmetric groups together with compatibility conditions given
by linear maps. We give an example for d = 1, the diagram for a general d being analogue with
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more arrows:

FI 0 1 2 . . . n . . .

R-Mod F (0) F (1) F (2) . . . F (n) . . .

F

S0 S1 S2 Sn

F (S0) F (S1) F (S2) F (Sn)

Each arrow in this diagram represents in fact many arrows, however every arrow from i to j in
FI is obtained from one by composition with an element of the symmetric group Sj .

A family of important examples of FId-modules are the standard projective functors. These
functors naturally exist in every category of functors with values in an abelian category and
we will show that they form a family of generators of FId -Mod. These fundamental functors
introduced in a di�erent context in [Kuh94] appear for FId in [SS17] and for d = 1 in [DV19,
Dja16, Ves19], or under the name of free modules in [CEF15, CEFN14, MW19] or representable
functors in [Wil18a]. They play the role of the free modules in the classical theory of modules.

De�nition 2.2.4. For n ∈ FId, the standard projective functor on FId associated with n, denoted
by PFId

n ∶ FId →R-Mod, is given by

PFId
n =R [HomFId (n,− )] ,

where R[− ] ∶ Set→R-Mod is the R-linearization functor (i.e. the left adjoint to the forgetful
functor R-Mod → Set). It sends an object m ∈ FId to the R-module R [HomFId (n,m )] and
a morphism (f, g) ∈ FId(m,k) on R[(f, g)∗], the linearization of the post-composition by (f, g).
This functor is sometimes called the representable functor on FId associated with n.

We recall that a family F of objects in a category C is a generator of C if for every object C
in C there exists an epimorphism from a direct sum of elements in F to C. We now show that
the projective functors generate the category FId -Mod and that they are projective objects in
the category FId -Mod, following [Ves19].

Proposition 2.2.5. The family ( PFId
n )

n∈N of standard projective functors forms a set of pro-
jective generators of the category of FId-modules.

Proof. Let F be an object of FId -Mod, the linear Yoneda lemma gives, for all n ∈ FId, a
bijection

ξn ∶ HomFId -Mod (PFId
n , F ) ∼Ð→ F (n).

Then the natural transformation

⊕
n∈FId

⊕
x∈F (n)

( PFId
n F

ξ−1n (x) )

is an epimorphism since, for any n ∈ FId and x ∈ F (n), the natural transformation ξ−1n (x)
sends the identity of n to the elements x ∈ F (n). Moreover, every functor PFId

n is a projective
object in the category FId -Mod. Indeed, for an epimorphism f ∶ F → G in FId and a natural
transformation g ∶ PFId

n → G, the Yoneda lemma gives two natural bijections

HomFId -Mod (PFId
n F) ≅ F (n) and HomFId -Mod (PFId

n G) ≅ G(n).



46 Chapter 2. Functors on the categories FId

Since the map fn ∶ F (n) → G(n) is surjective, there exist h ∶ PFId
n → F such that f ○ h = g,

thus the functor PFId
n is projective. Equivalently, the functor Hom(PFId

n ,−) is equivalent to the
evaluation functor F ↦ F (n) which is exact, so it is also exact. Since the category FId -Mod is
abelian, it implies that the functor PFId

n is projective.

This property allows us to de�ne the notion of �nitely generated FId-module. Indeed, we
have shown that every FId-module is a quotient of a direct sum of projective standard functors,
and so we say that it is �nitely generated if it is a quotient of a �nite one.

De�nition 2.2.6. A FId-module F is �nitely generated if there exists an epimorphism

k

⊕
i=0
(PFId

i )
⊕ci ↠ F

from a �nite direct sum of standard projective functors to F .

There are equivalent ways to de�ne the �nitely generated FId-modules: in [CEF15, CEFN14,
Ram17a] a FI-module F is said �nitely generated if and only if there exists a �nite set of integers
such that every subfunctor of F that coincides with F on this set is equal to F . The equivalence
with De�nition 2.2.6 is explicitly described in [CEFN14, Proposition 2.3] or in [Ram17a], and
from the point of view of TCAs in [SS12, Section 8.3.2]. Sometimes F might be de�ned as
�nitely generated if every growing family of subfunctors of F whose union is F is stationary.
The equivalence is given, for a large family of categories such as FId, in [Dja16, Prop 2.7].

Remark 2.2.7. In recent years it has been proved that several algebraic structures are noetherian
(i.e. a submodule of a �nitely generated module is �nitely generated), such as the FI-modules
(see [CEFN14, SS16]), the FS-modules where FS is the category of �nite sets and surjections also
denoted by Ω in [Pir00] (see [SS17]), the VIC(R)-modules (see [PS17]) and many others. The
category FId and its ordered versionOId appears in [SS17, Section 7.1] where they show thatOId
is Gröbner and FId quasi-Gröbner (i.e. morally there is an essentially surjective functor from
the Gröbner category OId to FId) and thus that the categories of FId-modules are noetherian
over any left-noetherian ring R. The idea is to add an order to the category to get a Gröbner
category and then use the forgetful functor to transfer the noetherian property from one to the
other. This result was �rst proved in [Sno13, Theorem 2.3] over a �eld of characteristic zero,
then for d = 1 in [CEF15] (in characteristic zero) and [CEFN14]. The noetherian property is a
crucial tool to prove that a sequence of representation stabilizes since it is equivalent to prove
that the FI-module associated is �nitely generated.

Remark 2.2.8. For d = 1, if F is a �nitely generated FI-module over a �eld, then the dimension
of the vector spaces F (n) eventually becomes polynomial in n. This result was �rst proved in
[Sno13] and in [CEF15] over a �eld of characteristic zero, then in [CEFN14] and in [SS17] in
general. This is false for d > 1 since PFId

0 is �nitely generated but PFId
0 (n) = R[FId(0, n)] =

R[Cn] is of dimension dn. However, this result admits a generalization for �nitely generated FId-
modules with the notion of Hilbert series introduced by Sam and Snowden. More precisely, they
showed in [SS17, Corollary 7.1.7] that if F is a �nitely generated FId-module, then its Hilbert
series HF (t) = ∑dimK F (n) tn is of the form P (t)/Q(t), where P (t),Q(t) are polynomials in
K[t] with Q(t) = ∏dj=1(1 − jt)ej for some ej ≥ 0. In particular, this implies that the dimension
of F (n) eventually becomes a sum on 1 ≤ j ≤ d of a polynomial multiplied by jn. For d = 1 we
recover that the dimension of F (n) is eventually polynomial, but for d > 1 it has a more complex
expression.
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As explained above, the theory of FI-modules was introduced to encode the notion of rep-
resentation stability. It then was proven in [CEF15] that, if a FI-module is �nitely generated,
then the family of representations of the symmetric groups associated is stable (in the sense of
[CEF15, CEFN14, Far14]). In order to present the theorem [Ram17a, Theorem A], which is the
analogue result for FId-modules, we �rst introduce the padded partitions:

De�nition 2.2.9. For λ = (λ1, . . . , λh) a partition of weight ∣λ∣ = ∑λi, and n1 ≥ ⋅ ⋅ ⋅ ≥ nd ≥
∣λ∣+λ1 d positive integers, the associated d-padded partition is given by λ[n] = (n1 − ∣λ∣, . . . , nd −
∣λ∣, λ1, . . . , λh).

As explained in [CF13, Far14, Wil12] this is a way to name the irreducible representations of
the symmetric groups such that the name is independent of the index of the symmetric group.
Then the representation stability of [CF13] for the symmetric groups can be summarized as
follows (see [CEF15, CEFN14, Far14]): a coherent family (Vn)n of representations is stable if,
for each partition λ, the multiplicity of the irreducible representation associated with the 1-
padded partition λ[n] = (n − ∣λ∣, λ1, . . . , λh) in Vn is eventually independent of n. For example,
the family of spaces Kn, together with the injections of the canonical basis, is stable since each
space decomposes into Kn =M(n) ⊕M(n−1,1) =M(0)[n]⊕M(1)[n]. We now state the analogous
theorem for FId-modules:

Theorem 2.2.10. [Ram17a, Theorem A] For K a �eld of characteristic 0, a FId-module F is
�nitely generated if and only if the space F (n) is �nite dimensional for all n ∈ N and, for n large
enough:

� The intersection of the kernels Ker(F (f, g)), for (f, g) the maps starting at n, is zero,

� The sum of the spaces F ( (f, g) ∶ n → n + 1 )(F (n)), for the maps (f, g) in FId(n,n + 1),
generates F (n + 1) as a representation of Sn+1,

� For any partition λ of weight ∣λ∣ and any integers n1 ≥ ⋅ ⋅ ⋅ ≥ nd ≥ ∣λ∣ + λ1, if cλ,n1,...,nd

is the multiplicity of the irreducible representation associated with the 1-padded partition
λ[n] = (n1 − ∣λ∣, . . . , nd − ∣λ∣, λ1, . . . λh), then cλ,n1+l,...,nd+l is independent of l for l large
enough.

This theorem is quite technical, but it is a direct generalization of the analogue theorem of
[CEF15, CEFN14] for FI-modules. Morally, one can interpret the last point by saying that the
irreducible representation associated with a partition with at least d rows appears eventually
with a stable multiplicity in a �nitely generated FId-module. This theorem does not predict the
behavior of the irreducible representations associated with smaller partitions, but the Theorem
B in [Ram17a] treats some of these cases.

2.3 First examples of FId-modules

In this section we give examples of FId-modules. We start with some elementary functors
and with a family of functors induced by the tensor product of modules. The �rst example
we can construct is the constant functor. Let M ∈ R-Mod be an object, we still denote by
M ∶ FId → R-Mod the constant functor which sends any object to M and any morphism to
the identity. Since there are only maps in FId(n,m) when n ≤ m, we can de�ne variations of
some of the examples of functor given in [DV19] over a symmetric monoidal category with an
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initial object. Indeed, we can construct the twisted atomic functor Mk ∶ FId → R-Mod, which
is de�ned on objects by

Mk(n) = {
M if n = k
0 else ,

and on a morphism (f, g) ∈ FId(n,m) by Mk(f, g) = Mk(σ) if n = m = k and zero else with
σ ∈ Sn. When the action of the symmetric group Sn on M given by Mk(σ) is trivial, we simply
say that Mk is atomic. Note that such a functor cannot be de�ned over a source category with
compatible maps a → b → a such that the composition is the identity. We can also consider
M≥k ∶ FId →R-Mod the subfunctor of the constant functor M de�ned on objects by

M≥k (n) = {
M if n ≥ k
0 if n < k,

and on a morphism (f, g) ∈ FId(n,m) by M≥k (f, g) = IdM if n,m ≥ k and zero else. For d = 1,
this functor is called the truncated module associated to the constant functor in [Wil18a]. We
can combine these functors and, for a set I ⊂ N, we can de�ne the functors

⊕
i∈I
Mi and ⊕

i∈I
M≥i ⊂ ⊕

i∈I
M.

Moreover, we can de�ne a functor M<k by the short exact sequence

0 M≥k M M<k 0 . We can check that we have

M<k (n) = {
M if n < k
0 if n ≥ k,

and M<k (f, g) = IdM if n,m < k and zero else.

Remark 2.3.1. Neither Mk or M<k+1 are subfunctors of the constant functor since, in both
cases, the image of the spaces Mk(k) =M and M<k+1(k) =M by the maps M(k → k + 1) = IdM
are equal toM , which is not a subspace ofMk(k+1) = 0 orM<k+1(k+1) = 0. Thus the category of
FId-modules is not semisimple since the short exact sequence 0 M≥k M M<k 0

do not split.

Remark 2.3.2. For d = 1, the functor R≥k corresponds to the image of the functor PFI
k (see

De�nition 2.2.4) by the arrow PFI
k → PFI

0 given by the unique morphism 0→ k in FI.

We also give a �rst example of a functor that acts in di�erently depending on the colours
associated with a morphism:

Example 2.3.3. Let FFId
c1 ∶ FId →R-Mod be de�ned on objects by FFId

c1 (n) =R for all n ∈ FId,
and on an arrow (f, g) in FId(n,m) by

FFId
c1 (f, g) = {

0 if g−1(c1) ≠ ∅,
IdR else.

In other words, FFId
c1 sends a morphism to zero if it uses the colour c1 and to the identity else.

It de�nes a functor since the colour c1 appears in the composition (f, g) ○ (f ′, g′) if and only if
it appears in (f, g) or in (f ′, g′). One can note that for d = 1 this functor is equal to the sum
on i ∈ N of the atomic functors Mi de�ned above since it sends every non-bijective morphism to
zero and all bijective morphism on the identity.
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Another interesting example is given by the tensor product on modules. We will see in
Example 5.1.12 that it belongs to a family of strong polynomial functors since the tensor power
is a usual polynomial functor over modules.

Example 2.3.4. For k ∈ N an integer, let T
(d)
k be the FId-module de�ned on objects by

T
(d)
k (n) = (Kn)⊗k,

and on a morphism (f, g) ∈ FId(n,m) by the arrow (Kn)⊗k → (Km)⊗k induced by the map that

injects Kn into Km along f . For d = 1 we get that T
(1)
k is the composition of F ∶ FI → K -Vect

which sends n to Kn, with Tk ∶ K -Vect → K -Vect which sends V to V ⊗k. Since the functor is

de�ned on injections independently of the colour, we also have the composition T
(d)
k = T (1)k ○O =

O∗(T (1)k ), where O is the forgetful functor of De�nition 2.1.6.

2.4 Simple FId-modules

We give a description of the simple objects of the category FId -Mod using the fact that FId is
an EI-category. The EI-categories and their representations have been introduced among others
by Dieck (in [Die87]) in the context of algebraic K-theory and have been studied more recently
by Li (in [Li14]), in particular their Koszul property.

Remark 2.4.1. The representation theory of the symmetric groups is well known. A brief
summary of the results used in the context of twisted commutative algebras and FI-modules can
be found in [SS12]. In particular, over a �eld of characteristic zero, the irreducible representations
of the symmetric group Sn are indexed by the partitions λ of n. The irreducible representation
associated to λ, denoted by Mλ, is often de�ned as the ideal of the ring K[Sn] generated by an
idempotent element associated to the partition λ called the Young symmetrizer. For example,
the representation associated with the partition λ = (n) is the trivial representation, the one
associated with λ = (1n) is the sign representation, and the one associated with λ = (n − 1,1) is
the standard representation.

De�nition 2.4.2. An EI-category is a category in which every endomorphism is an isomorphism.

The category FId is an EI-category. Indeed, by de�nition for n ∈ N we have

FId(n,n) = { (f ∶ n↪ n, g ∶ n − n→ C) } = { (σ ∈ Sn, 0→ C) } ≅ Sn .

Recall that the simple elements of a category of functors Fct(C,R-Mod) are the functors F
which do not have non-zero proper subfunctors. When the source category C is an EI-category
as it is the case here, the simple objects of Fct(C,R-Mod) can be described as follows:

Proposition 2.4.3. For K a �eld of characteristic zero, the simple objects of the category
Fct(FId,K -Vect) are the twisted atomic functors (Mλ)k that sends an object n ∈ FId to Mλ if
n = k and to zero else, for Mλ ∈ K -Vect the irreducible representation of Sk associated with a
partition λ of k.

Proof. First, if a functor F ∶ FId → K -Vect is non-zero, there exists k ∈ FId such that F (k) ≠ 0.
Then the twisted atomic functor F (k)k de�ned in Section 2.3 is a subfunctor of F which is
not zero. If F is not equal to this twisted atomic functor F (k)k, it then admits a proper
subfunctor and so it is not simple. Since the category FId is an EI-category, we conclude that
a simple element of Fct(FId,K -Vect) is a twisted atomic functor Mk for some k ∈ N and
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some M ∈ R-Mod. Such a functor is given by the vector space M and by the action of the
endomorphisms corresponding to the symmetric group Sk. Then the twisted atomic functor Mk

is a linear representation of Sk and it is simple as an object of FId -Mod if and only if it is
irreducible as a representation.

Remark 2.4.4. The proof of Proposition 2.4.3 remains valid for a general commutative ring R,
even if there is no classi�cation of the irreducible representations of Sn on R-modules. Then
the simple objects of the category Fct(FId,R-Mod) are the twisted atomic functors (M)k, for
M ∈R-Mod a simple representation of Sk.

2.5 The category FId

In this section we explain that a functor on FId is completely determined by the image of the
morphisms starting from 0 if they are sent to isomorphisms. This property will be used in
the following chapters, in particular to describe the polynomial functors of degree 0 on FId
in Section 7.4. To prove it we introduce a subcategory FId of FId which contains only the
morphisms starting from 0 and the symmetric groups. Then we show that, under the condition
of sending these morphisms to isomorphisms, the functors on FId correspond to the functors on
FId. First we explain that, under this hypothesis, the order of the colours is not important to
de�ne a FId-module.

Proposition 2.5.1. For F ∶ FId → R-Mod, if there exist an object k ∈ FId and a colour c ∈ C
such that F (ck) is an isomorphism, then

� For all permutations σ ∈ Sk, the morphism F (σ) is the identity,

� For all k-tuples of colours cj1 , . . . , cjk ∈ C we have the following identity:

F ( (cj1 , . . . , cjk) ) = F ( (cjσ(1) , . . . , cjσ(k)) ).

Proof. By de�nition, the two morphisms ck and σ ○ ck are equal in FId, which give the identity
F (σ) ○F (ck) = F (ck). Since F (ck) is an isomorphism by hypothesis, we get the �rst point. The
second point is a consequence using the identity

F (σ) ○ F ( (cj1 , . . . , cjk) ) = F ( (cjσ(1) , . . . , cjσ(k)) ).

We now de�ne the subcategory FId of FId and we emphasize that a functor F on FId induces
canonically a functor F on FId by restriction.

De�nition 2.5.2. The category FId is the subcategory of FId with the same objects (�nite sets)
and whose morphisms are given by

FId(n,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

FId(0,m) if n = 0
{Sm} if n =m
∅ else .

The following lemma and proposition explain that, if a functor F sends the morphisms
starting from zero to isomorphisms, then it can be re-constructed from its induced functor F ∶
FId → R-Mod. Morally this states that such a FId-module is completely determined by its
image on the morphisms starting from 0.
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Lemma 2.5.3. Let F be a FId-module, if F (x) is an isomorphism for all k ∈ FId and all
x ∈ FId(0, k) then, for each u ∈ FId(n,m), the morphism F (u) is obtained from F by the
formula:

F (u) = F (v) ○ (F (cn1) )
−1
,

where v = u ○ cn1 ∈ FId(0,m). Moreover, the only relations between the images of morphisms in
FId by F are the one from Proposition 2.5.1.

Proof. For u ∈ FId(n,n+m) a morphism in FId and c
n
1 ∈ FId(0, n) we have u○cn1 ∈ FId(0, n+m).

By hypothesis, F (cn1) and F (u○cn1) are isomorphisms, so the relation F (u)○F (cn1) = F (u○cn1) =
F (v) implies the identity

F (u) = F (v) ○ (F (cn1) )
−1 = F (v) ○ (F (cn1) )

−1
.

By Proposition 2.5.1 we get F (σ) = Id and so F (σ) = Id. Then, for x, y ∈ FId(0, k) we have
F (x) = F (y) when there exist σ ∈ Sk such that y = σ ○x. This gives the conclusion since the only
possible compositions in FId are of the form y = σ ○ x with x ∈ FId(0, k) and y ∈ FId(0, k) and
σ ∈ Sk.

Proposition 2.5.4. Let F ∶ FId → R-Mod be a functor such that the image of all morphisms
in FId is an isomorphism. This functor can be extended in a unique way in a functor F from
FId to R-Mod.

Proof. By hypothesis, F (x) is an isomorphism for all k ∈ FId and all x ∈ FId(0, k). Then we
can de�ne a functor F ∈ Fct(FId,R-Mod) by the formula of Lemma 2.5.3 and by the relations
necessary to have a functor. This same lemma proves that F is an extension of F .

2.6 Some endofunctors of FId-modules

In this section we de�ne some endofunctors of Fct(FId , R-Mod ) which will be used throughout
this manuscript, for example to de�ne strong polynomial functors in Section 5.1 or to construct
subcategories of Fct(FId , R-Mod ) in Chapter 6. These de�nitions are inspired by [DV19,
Section 2] concerning functors over a symmetric monoidal category where the unit is an initial
object. As said in Section 2.1 this is not the case for FId so these de�nitions are adapted for FId-
modules. We present here the de�nitions of these endofunctors and the �rst general properties
about them.

De�nition 2.6.1. For k ∈ FId, the endofunctor

τk ∶ Fct(FId , R-Mod )→ Fct(FId , R-Mod )

is de�ned by τk(F ) = F ( (−) + k). This means that τk(F ) sends an object n to F (n + k) and a
morphism (f, g) to F ( (f, g) + Idk ). For x ∈ FId(0, k), the natural transformation

ixk ∶ Id→ τk

is de�ned on a functor F ∈ Fct(FId,R-Mod) by ixk(F ) = F( Id(−) +x) ∶ F (−)→ F ( (−) + k).

The main di�erence with FI-modules is that for FId there is one natural transformation ixk
for each morphism x ∈ FId(0, k), while for FI there is only one natural transformation ik for k
�xed. For example, when k = 1 we have FId(0,1) ≅ C and so there are d natural transformations
ic1, one for each c ∈ C.
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De�nition 2.6.2. For k ∈ FId and x ∈ FId(0, k), the endofunctor κxk is the kernel of ixk, and δ
x
k

is its cokernel. Finally, the endofunctor κ is the sum

κ = ∑
k∈FId

∑
x∈FId(0,k)

κxk .

For k = 1, the endofunctor δc1 is called the c-coloured di�erential endofunctor.

Remark 2.6.3. The endofunctors τ1 and δ1 appears under di�erent names in di�erent contexts:
in Joyal's work for functors over the category of �nite sets and bijections (see [Joy86]), in [Kuh94]
for functors from Fp-vector spaces to Fp-vector spaces, in the representation stability theory (see
[CEF15, CEFN14, CE17, CMNR18]), in the de�nition of polynomial functors in [RWW17], in
the theory of twisted commutative algebras (see [SS12, SS16]) or in the work of Ramos (see
[Ram17b, LR18]). Palmer introduced variations of these endofunctors in [Pal17] for functor
over a category with stabilisers which encodes the existence of natural transformations like the
transformations ixk.

Similarly than above, for d = 1 there are unique endofunctors δc1 and κc1 for the only colour
c ∈ C, which are denoted by δ1 and κ1, and respectively called the di�erential and evanescent
endofunctors in [DV19]. These endofunctors are used to construct both strong and weak polyno-
mial functors over FI. We will use all the endofunctors δxk and κxk for k ∈ FId and x ∈ FId(0, k)
to de�ne the polynomial functors over FId. These endofunctors are arranged in a very important
exact sequence:

Lemma 2.6.4. By de�nition for k ∈ FId and x ∈ FId(0, k) there is an exact sequence of endo-
functors

0 κxk Id τk δxk 0
ixk (I)

It is important to note that, on FId there are formulas that associate τk with iterations of
τ1 and ixk with iterations of ic1 which are presented in the following proposition, but there is no
such formula for δxk or κxk. In particular, δxk is not the composition of k endofunctors δc1.

Proposition 2.6.5. For k ∈ FId and x = (c1, . . . , ck) ∈ FId(0, k), there are identities τk =
τ1 ○ ⋅ ⋅ ⋅ ○ τ1 and ixk = τk−1 (i

ck
1 ) ○ . . . ○ τ1 (i

c2
1 ) ○ i

c1
1 . However, for d > 1 and k ≥ 2, there is no

similar isomorphism for δxk or κxk i.e. we do not always have δ
x
k ≅ δ

ck
1 ○⋅ ⋅ ⋅○δ

c1
1 or κxk ≅ κ

ck
1 ○⋅ ⋅ ⋅○κ

c1
1 .

Proof. Since FId is the skeleton of the category of �nite sets and coloured injections, τk is strictly
equal to the composition τ1 ○ ⋅ ⋅ ⋅ ○ τ1 of τ1 with itself k times. The relation for ixk also follows
from the de�nitions of τk and ixk. We give a counterexample to prove that there is no similar
relation for δxk and κxk if d > 1: Let F = FFId

c1 ∶ FId → R-Mod be the functor of Example 2.3.3,

we then compute that δc11 (F ) = τ1(F ), δ
c2
1 (F ) = 0 and δ

(c1,c2)
2 (F ) = τ2(F ). This proves that

δc21 ○ δ
c1
1 (F ) = δ

c2
1 (τ1(F )) ≅ δ

c2
1 (F ) = 0 and δc11 ○ δ

c2
1 (F ) = δ

c1
1 (0) = 0, while δ

(c1,c2)
2 (F ) = τ2(F ) is

not zero. Similarly we have κc11 (F ) = F and κc21 (F ) = 0 which gives κ
c2
1 ○κ

c1
1 (F ) = κ

c1
1 ○κ

c2
1 (F ) = 0,

while κ
(c1,c2)
2 (F ) = F .

Before using these endofunctors to de�ne the polynomial functors in the following chapters,
we give some of their basic properties which will be used several times. For d = 1 we recover
most of [DV19, Proposition 2.4].

Proposition 2.6.6. For k, l ∈ FId, x ∈ FId(0, k) and y ∈ FId(0, l) we have:
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0) For every short exact sequence 0→ F → G→H → 0 in Fct(FId , R-Mod ) there is an ex-

act sequence 0 κxk(F ) κxk(G) κxk(H) δxk(F ) δxk(G) δxk(H) 0.

1) The endofunctors τk and τl commute up to a natural isomorphism. They also commute
with limits and colimits.

2) The endofunctors δxk and δyl commute up to a natural isomorphism. They also commute
with colimits.

3) The endofunctors κxk and κyl commute up to a natural isomorphism. They also commute
with limits.

4) The inclusion (κxk) ○ (κxk)↪ (κxk) gives a natural isomorphism (κxk)2 ≅ (κxk).

5) The endofunctors τl and δ
x
k commute up to a natural isomorphism.

6) The endofunctors τl and κ
x
k commute up to a natural isomorphism.

7) There is a natural exact sequence

0 κyl κx+yk+l τl ○ κxk δyl δx+yk+l τl ○ δxk 0 .

8) The family of subobjects

( κxk(F ) )k∈FId, x∈FId(0,k)

of F forms a �ltered set for the inclusion.

9) The endofunctor κ is left exact.

Proof. 0) The endofunctor τk is exact by de�nition so the following diagram has exact rows

0 F G H 0

0 τk(F ) τk(G) τk(H) 0

ixk(F ) ixk(G) ixk(H)

It commutes by naturality of ixk, and the snake lemma gives the result.

1) Since FId is the skeleton of the category of �nite sets and coloured injections, we the
relation β ∶ k + l = l + k in FId. Then we get τk ○ τl = τk+l = τl+k = τl ○ τl, where the
middle equality is given by the natural transformation sending F ∶ FId → R-Mod to
F (Id(−) +β) ∶ F (−) → F ( (−) + k + l). Moreover the endofunctors τk and τl behave well with
respect to the universal property of limits and colimits of functors, so they commute with both.

5,6) Applying the exact functor τl to the exact sequence (I) from Lemma 2.6.4 on one
side, and pre-composing it with τl on the other side, we get the following diagram with exact
rows

0 κxk ○ τl τl τk ○ τl δxk ○ τl 0

0 τl ○ κxk τl τl ○ τk τl ○ δxk 0

ixk○τl

id β γ

τl○ixk
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By de�nition of β it commutes in the middle. Using the universal property of kernels for κxk, and
of cokernels for δxk , we get the existence of the two dashed morphisms. They are isomorphisms
by the �ve lemma since β is an isomorphism.

2) We again use the exact sequence (I) with l and y but this time we extract the short
exact sequence

0 Ker(s) τl δyl 0
iy
l
∣Ker(s) s

from it, where Ker(s) is a subfunctor of the identity. Applying the right exact (by point 0)
functor δxk to it on one side, and pre-compose it with δxk on the other side, we get another
diagram with exact rows

δxk ○Ker(s) δxk ○ τl δxk ○ δ
y
l 0

0 Ker(s) ○ δxk τl ○ δxk δyl ○ δ
x
k 0

δxk○i
y
l
∣Ker(s)

id γ

iy
l
∣Ker(s)○δxk

since Ker(s) is a subfunctor of the identity. It commutes in the middle by construction of γ as
β passing to the quotient and because Ker(s) is a subfunctor of the identity. Then the universal
property of the cokernel induces the existence of the dashed arrow and it is an isomorphism by
the �ve lemma.

3) It is analogous to the point 2)

4) We again use the exact sequence (I) by pre-composing it with the endofunctor κxk and
by applying the exact endofunctor τk to it. We get the following diagram with exact rows and
columns:

0 0

0 κxk ○ κxk κxk τk ○ κxk δxk ○ κxk 0

0 κxk id τk δxk 0

τk τk ○ τk

j

ixk○κxk

τk(j)

j ixk

It commutes in the middle since the transformation ixk is natural between id and τk. Since the
second row is exact we have τk(j) ○ (ixk ○κxk) = ixk ○ j = 0 but τk(j) is a monomorphism since τk is
exact, which implies that ixk ○κxk = 0. By exactness it means that the inclusion (κxk)○(κxk)↪ (κxk)
is an isomorphism.

7) Recall (see [ML98] p.208) that for two composable morphisms u ∶ a → b and v ∶ b → c
there always exists an exact sequence

0→ Ker(u)→ Ker(v ○ u)→ Ker(v)→ Coker(u)→ Coker(v ○ u)→ Coker(v)→ 0.

We use this property for u = iyl ∶ Id → τl and v = τl (ixk) ∶ τl → τl ○ τk. The endofunctor τl
commutes with kernels and cokernels as they are limits and colimits, so the result follows from
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the identity

v ○ u = ( τl (ixk) ) ○ i
y
l = (i

x
k + idl ) ○ i

y
l = i

x+y
k+l .

8) From point 7) we have an inclusion κyl ↪ κx+yk+l and by symmetry we also have κxk ↪ κx+yk+l .

9) By the point 8), the colimit κ is a growing �ltered colimit so it is exact since R-Mod is a
Grothendieck category (De�nition 1.3.1). Knowing that each κxk is left exact by the point 0),
this implies that their colimit κ is also left exact.

Unlike what the last proposition suggest, we warn the reader that these endofunctors do not
all commute together. In particular, the endofunctors δxk and κyl do not commute, as explained
in the following.

Remark 2.6.7. For k, l ∈ FId and x ∈ FId(0, k), y ∈ FId(0, l), the endofunctors κyl and δxk of
Fct(FId,R-Mod) do not commute in general, even for d = 1. We give there a counterexample
for k = l = 1 and x = c ∈ C: for M ∈ R-Mod, let M≥k ∶ FId → R-Mod be the functor de�ned in
Section 2.3 as a subfunctor of the constant functor. As explained later in Example 5.1.7, we can
compute that τ1(M≥k) = M≥k−1 and that, for any colour c, κc1(M≥k) = 0 and δc1(M≥k) = Mk−1,
where Mk−1 is the atomic functor of rank k − 1. This implies that κc1 ○ δc1(M≥k) is the atomic
functor of rank k − 1, while δc1 ○ κc1(M≥k) is zero.

2.7 The forgetful and colouring functors

In this section we study the link between the FId-modules and the FI-modules. In particular, we
present some properties of the forgetful functor O ∶ FId → FI from De�nition 2.1.6 and a family
of right-adjoints ∆c ∶ FI → FId for c ∈ C called the colouring functors. We start this section
by showing that the endofunctors of the previous section (De�nition 2.6.2) behave well with the
precomposition by the forgetful functor.

Proposition 2.7.1. For all objects k ∈ FId and all morphism x ∈ FId(0, k) there are natural
isomorphisms :

i) O∗ ○ τk = τk ○O∗
ii) O∗ ○ δk ≅ δxk ○O∗
iii) O∗ ○ κk ≅ κxk ○O∗

.

Proof. For F ∈ Fct(FI,R-Mod), using the fact that the forgetful functor O is monoidal together
with the relations O(k) = k and O(Id) = Id, we have

O∗ ○ τk(F ) = F (− + k) ○O = F (O(−) + k) = F (O(− + k)) = τk(F ○O) = τk ○O∗(F ).

Moreover, for a natural transformation σ ∈ Fct(FId,R-Mod)(F,G), we also have:

O∗ ○ τk(σ) = O∗(σ−+k) = σO(−)+k = σO(−+k) = τk(σO(−)) = τk ○O∗(σ).

This shows that there is an equality O∗ ○ τk = τk ○O∗. By pre-composing the exact sequence of
endofunctors of FId (I) from Lemma 2.6.4 by the functor O∗ we get the exact sequence

0 κxk ○O∗ O∗ τk ○O∗ δxk ○O∗ 0
ixk○O∗ .
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By the de�nition of precomposition on natural transformations, we have for any functor F ∈
Fct(FI,R-Mod):

ixk ○O∗(F ) = ixk(F ○O) = F ○O(id+x) = F( id+(0→ k) ) = ik(F ).

Next we use the same exact sequence (I), but for FI = FI1, and we apply the exact functor O∗
to it, which gives the exact sequence

0 O∗ ○ κk O∗ O∗ ○ τk(F ) O∗ ○ δk(F ) 0
O∗(ik)=ik

.

Applying the precomposition functorO∗ to the natural transformation ik, we have for any functor
F ∈ Fct(FI,R-Mod):

O∗(ik)(F ) = F( idO(−) +(0→ k) ) = F( id(−) +(0→ k) ) = ik(F ).

We then have the following diagram with exact rows:

0 O∗ ○ κk O∗ O∗ ○ τk O∗ ○ δk 0

0 κxk ○O∗ O∗ τk ○O∗ δxk ○O∗ 0.

O∗(ik)=ik

ixk○O∗=ik

It commutes in the middle since ixk ○O∗ = ik = O∗(ik), so the two dashed arrows exist by universal
properties and they are isomorphisms by the �ve lemma.

We now de�ne a collection of functors from Fct(FId,R-Mod) to Fct(FI,R-Mod) called
the colouring functors. These functors add a colour on the morphisms in FI to get morphisms
in FId and, by precomposition they allow us to consider a FId-module as a FI-module. We will
use this to describe the functors that are stably zero along colours in a concrete way in Section
6.2.

De�nition 2.7.2. For c ∈ C ≅ FId(0,1), the c-colouring functor ∆c ∶ FI → FId is the functor
given by the identity on objects and on a morphism f ∈ FI(n,m) by

∆c(f) = (f ∶ n↪m ,m ∖ Im(f)→ {c}→ C) .

Let ∆∗c ∶ Fct(FId,R-Mod) → Fct(FI,R-Mod) denote the precomposition functor de�ned
by ∆∗c (F ) = F ○ ∆c for all functors F ∈ Fct(FId,R-Mod) and by ∆c(σ) = σ for all natural
transformations σ ∶ F → G, where σ on the right is seen as a natural transformation between
F ○∆c and G ○∆c.

The functor ∆c is monoidal since adding the colour c on the arrows does not a�ect the
monoidal structure. By de�nition we also get ∆c(0 → 1) = (0 → 1, c) = c ∈ FId(0,1) and
∆c(ik) = ic

k

k , where ik ∶ Id → τk and ic
k

k ∶ Id → τk are the natural transformations of De�nition
2.6.1 for FI and FId respectively. Finally, the c-colouring functors are right-inverses of the
forgetful functor O ∶ FId → FI as explained in the following.

Proposition 2.7.3. For all colours c ∈ C we have the identities:

O ○∆c = IdFI and ∆∗c ○O∗ = IdFct(FI),

where O is the forgetful functor of De�nition 2.1.6.
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Proof. Following the de�nitions of O and ∆c, it is a direct calculus.

We now give some properties of the precomposition by colouring functors ∆∗c , in particular
we describe how they behave with endofunctors τk, δk and κk.

Proposition 2.7.4. For k ∈ FId and c ∈ C there are natural isomorphisms:

i) τk ○∆∗c ≅ ∆∗c ○ τk
ii) δk ○∆∗c ≅ ∆∗c ○ δc

k

k

iii) κk ○∆∗c ≅ ∆∗c ○ κc
k

k

.

Proof. For F ∈ Fct(FId,R-Mod), the �rst isomorphism can be checked by hand: since ∆c is
monoidal, we have the following identity

τk ○∆∗c (F ) = F ○∆c(− + k) ≅ F(∆c(−) + k) = F (− + k) ○∆c(−) = τk(F ) ○∆c(−) =∆∗c ○ τk(F ).

This isomorphism is natural by de�nition of the precomposition functors on natural transforma-
tions. For the other isomorphisms we take the exact sequence (I) from Lemma 2.6.4 for k ∈ FId
and x = ck ∈ FId(0, k) and we apply the exact functor ∆∗c to it. It gives the exact sequence

0 ∆∗c ○ κc
k

k (F ) ∆∗c (F ) ∆∗c ○ τk(F ) ∆∗c ○ δc
k

k (F ) 0
∆∗c(F (ic

k

k ) )

and by de�nition of precomposition functor on natural transformations we have ∆∗c (F (ic
k

k ) ) =
F (ickk ). Next we use the exact sequence (I) again, but for FI = FI1, and we precompose it with
the functor ∆∗c (F ). This gives the exact sequence

0 κk ○∆∗c (F ) ∆∗c (F ) τk ○∆∗c (F ) δc
k

k ○∆∗c (F ) 0
∆∗c(F ) (ik)

and by de�nition we have ∆∗c (F ) (ik) = F ○∆c(ik) = F (ic
k

k ). We then have the following diagram
with exact rows:

0 ∆∗c ○ κc
k

k (F ) ∆∗c (F ) ∆∗c ○ τk(F ) ∆∗c ○ δc
k

k (F ) 0

0 κk ○∆∗c (F ) ∆∗c (F ) τk ○∆∗c (F ) δk ○∆∗c (F ) 0.

F (ickk )

F (ickk )

It commutes in the middle by the previous point, so the two dashed arrows exist by universal
properties and they are isomorphisms by the �ve lemma.
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Homology of Sink con�guration spaces
of graphs

There are many concrete FI-modules that occur in di�erent contexts. Numerous examples are
presented in [CF13]. One interesting example, for a regular manifold M , is the cohomology of
the con�guration spaces of M , which is fully detailed in [Sam20, Wil18a, Wil19] and [CF13].
When M is open, there are a structure of FI-module and FIop-module which are compatible
(the �rst one is given by adding points at in�nity on the boundary). This gives a structure
of FI#-modules, where FI# is the category of �nite sets and partial injections presented
in [Wil18a, MW19, MW20], which is equivalent to the category Cospan(FI) from [DV19]
presented in Chapter 9. Even if there is an extensive literature on the cohomology of the
con�guration spaces of a manifold, these groups essentially have been studied globally and are
known explicitly only in a few cases. The stability theorem from [CEF15] states that, for a
non-compact manifold, these FI-modules are �nitely generated, which can be interpreted in
terms of polynomial functor since being �nitely generated is almost equivalent to being strong
polynomial for FI-modules as we will see in Section 5.1.

These results about the FI-module H i (Conf(−) (M) , R) are proved for a manifold M of
dimension at least two in order to ensure that the con�guration spaces are connected and that
the points can move around each other. But for a manifold of dimension 1, like a graph, there
is not enough space and the points block each other in the con�guration spaces, so the same
approach is no longer valid. Therefore, Ramos introduced in [Ram19] the homology of a kind of
modi�ed con�guration spaces of graphs, called the sink con�guration spaces, in which we take n
(ordered) points on the graph as for the classical ones but in which they can either be distinct two
by two or they can overlap at a vertex of the graph but not within an edge. Then, the d vertices
of the graph correspond to the d colours of FId which gives the structure of a FId-module when
we take the homology of these topological spaces. This gives an interesting family of examples
of FId-modules. Ramos proved in [Ram19] that these FId-modules are �nitely generated for
every homological degree and every connected graph. In Proposition 3.2.8 we give an explicit
description of these functors for the linear graphs and we show that they are either twisted atomic
or constant functors.

3.1 Cohomology of classical con�guration spaces as FI-modules

We start by presenting the FI-module H i (ConfM(−),R) of the i-th cohomology of the con�g-
uration spaces of a manifold M . We give a concrete example of how it acts on maps and we
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summarize the results about this FI-module.

De�nition 3.1.1. For M a manifold the n-strand con�guration space of M is the topological
space

Confn (M) = {(x1, . . . , xn) ∈Mn ∣ ∀1 ≤ i ≠ j ≤ n, xi ≠ xj},

where the topology is induced from Mn.

In explicit words, we take n (ordered) points on the manifold distinct two by two. These
con�guration spaces, presented among many others in [CF13, CEF15, MW20, CF13] naturally
give a functor from FIop to Top as explained in the following.

De�nition 3.1.2. The contravariant functor Conf−(M) ∶ FIop → Top sends an object n ∈ FI
to the topological space Confn (M) and a map f ∈ FI(n,m) to the map that sends (x1, . . . , xm)
to (y1, . . . , yn) = (xf(1), . . . , xf(n)).

For example, if M is the torus and f the injection (0 → 1) + Id2 ∈ FI(2,3) which sends 1 to
2 and 2 to 3, it gives an map like the following one:

x1
●

x2
●x3

●

y1 = xf(1)
●y2 = xf(2)

●

We can then take the cohomology of these topological spaces, which is contravariant, and
with the induced maps in cohomology, this gives a FI-module H i (Conf(−) (M) ,R).

Theorem 3.1.3. For i ∈ N, if M is a connected oriented manifold of dimension at least 2 with
dimQ(H∗(M,Q)) >∞, then the FI-module H i (Conf(−) (M) ,Q) is �nitely generated.

Proof. It was proved by Church, Ellenberg and Farb in [CEF15, Theorem 6.2.1] .

For example, the hypothesis dimQH
∗(M,Q)) < ∞ is satis�ed is M is compact. This result

is illustrated on a concrete example in [Wil19, Section 3.1]. More than that, there is a stronger
result of polynomiality, which can be interpreted with De�nitions 5.1.1 and 7.2.1 of strong and
weak polynomial FI-modules (already present in [DV19] for FI-modules). More precise bound-
aries are given in [MW20] since the generation degree corresponds to the strong degree and the
presentation degree precise how to the weak and strong degrees are linked.

Theorem 3.1.4. For i ∈ N, if M is a connected manifold of dimension at least 2, then the
FI-module H i (Conf(−) (M) ,R) is strong and weak polynomial of degree less than or equal to 2i.

Proof. It is proved in [CEF15, Theorem 1.8] for �eld of characteristic 0, and in [CMNR18,
Application A] in general.

Remark 3.1.5. An additional similar construction can be done if M is a non-compact manifold
of dimension at least 2, as explained in [Wil18a] and [Wil19], by sending the injection Idn +(0→
1) ∶ n ↪ n + 1 to a map that adds a new point "at in�nity" on the boundary of the rescaled
manifold. When dim(M) ≥ 2, these maps de�ne a functor over FI up to homotopy, where
the symmetric group Sn permutes the n points of the n-th con�guration space. It has been
proven in [CEF15, Theorem 6.4.3] and [MW19, Theorem 3.12] that these FI-modules are �nitely
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generated with better bounds than for the compact case which can be interpreted in terms of
polynomial functor since being �nitely generated is almost equivalent to being strong polynomial
for FI-modules (see Section 5.1). The proof uses a vanishing result about the spectral sequence
associated with the semi-simplicial space called the arc resolution. These arcs connect the points
of the con�guration space to the boundary of the manifold and are de�ned when the dimension
of M is at least 2. For an open manifold, the structure of FI-module and FIop-module are
compatible, giving a structure of FI#-modules, where FI# is the category of �nite sets and
partial injections (see in [Wil18a, MW19, MW20]) and is equivalent to the category Cospan(FI)
from [DV19]. The theorem of [CEF15] which states that these FI-modules are �nitely generated
can be interpreted as follows: if the homological degree is small enough relative to the number
of points, the homology of the con�guration spaces is spanned by the classes corresponding to
the con�guration spaces were at least one point is isolated near in�nity (i.e. near the boundary
of the manifold). This was generalized for open manifolds in [MW19] where they showed that,
after some point, the homology of the con�guration spaces is spanned by the classes were at least
one point is stationary at in�nity or two points are orbiting around each other near in�nity.

Remark 3.1.6. Other interesting examples of �nitely generated FI-module are given by the
cohomology of the pure string motion groups in [Wil12] and the pure braid groups in [Wil18a].
The pure braid groups are equivalent to the fundamental group of the con�guration spaces of C,
which gives another proof using the �niteness result about the con�guration space.

3.2 Homology of a generalized con�guration space of graphs as

FId-modules

The results of the previous section are obtained for a manifold of dimension at least two but for
a manifold of dimension 1, like a graph, the same method does not work since the points block
each other in the con�guration space. For example, as explained in [Wil19] and [Ram19], if G is
the linear graph with only one edge then the con�guration space is homotopy equivalent to n!
disjoints points, while it is always connected when M has higher dimension. In this section we
present a variation of this, which makes a FId-module for graphs by using the homology of some
kind of modi�ed con�guration spaces introduced by Ramos in [Ram19]. This gives an interesting
non-trivial example of FId-module since, before that, all the FId-modules in the literature were
either free or obtained from FI-modules via the forgetful functor. In this section we calculate
and give an explicit description of these functors for the linear graphs. We show that they are
either twisted atomic or constant functors and we then recover for these examples that these
FId-modules are �nitely generated as proved in [Ram19].

De�nition 3.2.1. Let G be a graph with d vertices labeled by [d] = {1, . . . , d}, the n-strand sink
con�guration space of G is given by

Conf sinkn (G, [d]) = {(x1, . . . , xn) ∈ Gn ∣ ∀1 ≤ i ≠ j ≤ n, xi ≠ xj or xi = xj ∈ [d]}.

In explicit words, as for the classical con�guration spaces we take n (ordered) points on the
graph, but in these sink con�guration spaces they can either be distinct two by two, or they can
overlap at a vertex of the graph but not within an edge. These con�guration spaces naturally
give a functor from FId to Top, as explained in the following, since the d vertices of the graph
will correspond to the d colours of FId.
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De�nition 3.2.2. The covariant functor Conf sink− (G, [d]) ∶ FId → Top sends an object n ∈ FId
to the topological space Conf sinkn (G, [d]) and a map (f, g) ∈ FId(n,m) to the map that sends
(x1, . . . , xn) to (y1, . . . , ym) with

yj = {
xf−1(j) if j ∈ Im(f)

g(j) ∈ [d] else .

For the rest of this section, let Gd be the linear graph on d vertices:

1
●

2
●

3
●

d
●

For d = 3, we give an example of an map (x1, . . . , xn)↦ (y1, . . . , ym) from De�nition 3.2.2 for
G3 and the injection c1 + Id2 ∈ FI3(2,3) (which sends 1 to 2, 2 to 3 and colours the element 1
with c1):

1
●

2
●

3
●

1
●

2
●

3
●⨉

x1

⨉
y2

⨉
y1

⨉
x2

⨉
y3

We can then consider the homology Hi (Conf sink(−) (G, [d]) ,Q) of these topological spaces

and, together with the induced maps in homology, this gives an FId-module. We consider the
rational homology since it is the main framework studied by Ramos due to its connection with the
representation stability. It also allows us to do concrete computations and to use the classi�cation
of the irreducible representations of the symmetric groups recalled in Remark 2.4.1. However,
most of the following remains true for the homology over a general commutative ring R.

Theorem 3.2.3. For i ∈ N and G a connected graph, the FId-module Hi (Conf sink(−) (G, [d]) ,Q)
is �nitely generated.

Proof. It was proved by Ramos in [Ram19, Theorem 4.1].

Remark 3.2.4. The case i = 0 is simple to describe. Indeed, if G is connected then the space

Conf sink(−) (G, [d]) is connected and so H0 (Conf sink(−) (G, [d]) ,Q) is the constant functor Q. For a
general graph G, the same argument applies to the connected components of G which implies
that H0 (Conf sinkn (G, [d]) ,Q) ≅ Qnc

, where c is the number of connected components.

In the end of this section, we give an explicit description of this FId-module for the linear
graphs Gd. To do this we �rst describe the space Conf sinkn (G2, [2]) for d = 2, then we deduce the
general case before computing the homology in Proposition 3.2.8.

Proposition 3.2.5. For n ∈ N∗, the space Conf sinkn (G2, [2]) is homotopy equivalent to the sphere
Sn−1 if n ≥ 2, and to a point if n = 1.

Proof. There is an embedding of G2 in the subspace [−1,1] of R. This embedding sends
Conf sinkn (G2, [2]) to a subset of the hypercube Cn ∶= [−1,1]n = {X ∈ Rn ∣ ∥ X ∥∞ ≤ 1}. We

denote by I the image of Conf sinkn (G2, [2]) by this embedding. We then have the following
description

I = Cn ∖ { (x1, . . . , xn) ∈ [−1,1]n ∣ ∃1 ≤ i ≠ j ≤ n such that − 1 < xi = xj < 1}.
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The last inequalities are strict since the points in Conf sinkn (G2, [2]) can overlap at a vertex, so
the boundary ∂ Cn of the cube Cn is in I. We show now that ∂ Cn is a deformation retract of I.
Indeed, the center of the hypercube 0 ∈ Rn is not in I so we can de�ne the central retraction (see
�gure 3.1 for n = 2)

F ∶ I × [0,1] → ∂ Cn
(X, t) ↦ tX 1

∥X∥∞ + (1 − t)X.

Then we can check that F (X, t) is a deformation retraction. Finally, the boundary of the
hypercube ∂ Cn is homotopy equivalent to the sphere Sn−1, which gives the result if n ≥ 2. The
case n = 1 is clear.

(−1,1) (1,1)

(−1,−1) (1,−1)

● ≃

(−1,1) (1,1)

(−1,−1) (1,−1)

≃

Figure 3.1: The space Conf sink2 (G, [2]) is homotopy equivalent to the sphere S1.

We now give a similar argument to prove that the space Conf sinkn (Gd, [d]) for a general d is
a bouquet of spheres Sn−1.

Proposition 3.2.6. For n ∈ N∗ and Gd the linear graph on d vertices, the space Conf sinkn (Gd, [d])
is homotopy equivalent to the bouquet of N(d,n) spheres Sn−1, where

N(d,n) = { (d − 1)
n − (d−1n )n! if d ≥ n + 1

(d − 1)n if d ≤ n.

Proof. We use the same argument than in the proof of Proposition 3.2.5, but with an embedding
of Conf sinkn (Gd, [d]) in a big hypercube Cn ⊂ Rn given by the embedding of G in the subspace
[0, d − 1] of R. This big hypercube is composed of (d − 1)n small hypercubes [i1 − 1, i1] × ⋅ ⋅ ⋅ ×
[in − 1, in] for 1 ≤ i1, . . . , in ≤ d − 1. Each small hypercube corresponds to a possible choice of n
edges among the d− 1 in G since (x1, . . . , xn) ∈ Conf sinkn (Gd, [d]) is in [i1 − 1, i1]× ⋅ ⋅ ⋅ × [in − 1, in]
if and only if x1 is in the i1-th edge, x2 is in the i2-th edge, . . . , xn is in the in-th edge. If we
represent a small hypercube by its center, there are two possibilities:

� Either the center has two equal coordinates, and then the center do not belong to
Conf sinkn (Gd, [d]). Since two points are on the same edge, we can use the central retraction

as in the proof of Proposition 3.2.5 to show that the subspace of Conf sinkn (Gd, [d]) included
in this hypercube admits the boundary of the small hypercube as a deformation retract.

� Either the center does not have two equal coordinates, and then the whole hypercube is
in Conf sinkn (Gd, [d]) since all the points are on di�erent edges. In this case the subspace

of Conf sinkn (Gd, [d]) corresponding to this hypercube is contractible (it corresponds to the
grey squares on the �gure 3.2).
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The �gure 3.2 gives an example of this process for n = 2, and d = 3. The space Conf sinkn (Gd, [d]) is
then homotopy equivalent to a wedge of boundaries of hypercubes which are homotopy equivalent
to the sphere Sn−1. The number of spheres in this wedge is given by the number of small
hypercubes such that their center has two equal coordinates. This is equal to the number of
total hypercubes (d − 1)n minus the number of choices of n di�erent edges among the d − 1
possible, which is (d − 1)(d − 2) . . . (d − n) = (d−1n )n! if n ≤ d − 1, and zero if n ≥ d.

●

●

●

≃ ≃ ●

Figure 3.2: The space Conf sink2 (G, [3]) is homotopy equivalent to the wedge of two spheres S1.

Remark 3.2.7. The process in the proof of Proposition 3.2.6 is similar to the discrete Morse
theory arguments used in [Ram19, Section 3.3]. Ramos proved in particular in the corollary 3.25
that, if (G,V,E) is a tree, then Hi (Conf sinkn (G,V ) ) is torsion free and depends only on i, n and
the number of edges ∣E∣ in G, and not on the structure of the graph. The proof of this result
is based on counting the number of "critical cells" that generates the homology group when
we view Conf sinkn (G,V ) as a CW complex. Then the small hypercubes whose center have two
equal coordinates in the proof of Proposition 3.2.6 seems to correspond to the critical cells of the
discrete Morse theory, and the other small hypercubes corresponds to collapsible (or redundant)
cells. Moreover, the Theorem A in [Ram19] states that, if G is a tree, then Conf sinkn (G,V ) is
homotopy equivalent to a cubical complex and in the proof of [Ram19, Corollary 3.25], it is
shown that the group Hi (Conf sinkn (G,V ) ) is free on the number of critical cells, and so �nitely
generated. This may indicate that the corresponding FId-module has a quite simple description,
similar to Proposition 3.2.6, if G is a tree.

Finally, using the description of the space Conf sinkn (Gd, [d]) from Proposition 3.2.6 we can
compute its homology and describe the associated FId-module.

Proposition 3.2.8. For i ∈ N∗ and Gd the linear graph on d vertices, the FId-module

Hi ( Conf sink(−) (Gd, [d]) ,Q )

is a twisted atomic functor (QN(d,i+1) )i+1 of rank i + 1 de�ned in Section 2.3, where

N(d, i + 1) = { (d − 1)
i+1 − (d−1i+1)(i + 1)! if d ≥ i + 2

(d − 1)i+1 if d ≤ i + 1.

For i = 0, the FId-module H0 ( Conf sink(−) (Gd, [d]) ,Q ) is the constant functor Q.

Proof. By Proposition 3.2.6 the space Conf sinkn (Gd, [d]) is homotopy equivalent to the bouquet of
N(d,n) spheres Sn−1. Since i > 0, we can use the reduced homology and we get the isomorphisms

Hi
⎛
⎝

N(d,n)
⋁
k=1

Sn−1
⎞
⎠
= H̃i

⎛
⎝

N(d,n)
⋁
k=1

Sn−1
⎞
⎠
≅
N(d,n)
⊕
k=1

H̃i (Sn−1) .
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Since H̃i (Sn−1) is equal to Q if i = n − 1 and zero else, this gives that

Hi ( Conf sinkn (Gd, [d]) Q ) ≅ {
QN(d,i+1) if n = i + 1

0 else .

The case i = 0 is explained in Remark 3.2.4.

Remark 3.2.9. In Proposition 3.2.8 we describe the FId-module Hi(Conf sink(−) (Gd, [d]) ,Q) on
objects but we do not give its values on morphisms for i > 0. It is clear that all the non-bijective
morphisms in FId are sent to the zero map by this functor since it is twisted atomic, however
there is a non-trivial action of the symmetric group Si+1 on QN(d,i+1).

Remark 3.2.10. The proof of Proposition 3.2.8 extends to homology over a general commutative
ring R, so the result remains true for the FId-module Hi(Conf sink(−) (Gd, [d]) ,Q).

Remark 3.2.11. Ramos also studied the classical unordered con�guration spaces of graphs in
[Ram20]. He introduced a FI-module that sends n to the wedge of a �xed graph and n copies
of another �xed graph, and showed this has strong �niteness properties. In particular, this
generalizes the fact that homology of the unordered con�guration space of a graph is �nitely
generated.



Chapter 4

Twisted commutative algebras

In algebraic topology, the theory of twisted commutative algebras (TCAs) dates back to the
1950s. For example, Barratt de�nes in [Bar78] a general twisted algebra and adds a condition
to be a twisted Lie algebra or a twisted commutative algebra. In this section we explain and
exploit the link between the FId-modules and the theory of TCAs. Indeed, Sam and Snowden
showed in [SS12, SS17] that there is an equivalence of categories between the modules over
Sym((Kd)(1)), the free TCA on d generators, and the FId-modules. The modules over these
free TCAs have recently been studied in di�erent contexts, such as in [SS12, SS16, SS19] or in
[GS10]. They focused on a family of quotient categories given by what they call the determinantal
ideals. The TCAs have been used in other contexts, for example, the modules over the TCA
Sym( Sym2(C∞) ) are equivalent to the representations of the in�nite orthogonal group. In a
�rst section we give some reminders about the di�erent de�nitions and basic properties of the
TCAs. Then we construct explicitly two functors giving the equivalence stated by Sam and
Snowden. In a third part, we describe a natural action of the linear group GL(Kd) on the
modules over the TCA Sym((Kd)(1)) and in Proposition 4.3.5 we make explicit the action of
GL(Kd) on the FId-modules induced by this action through the equivalence of categories. In
this chapter we assume that R = K is a �eld and, in order to use di�erent equivalent de�nitions
of the TCAs, we assume that it is of characteristic zero in the �rst section.

4.1 A reminder about twisted commutative algebras

A twisted commutative algebra (TCA) is a monoid in an abstract category which is equivalent
to several concrete categories, thus there are di�erent equivalent ways to de�ne the TCAs. For
example, it can be de�ned as a functor from vector spaces to commutative rings, or a commutative
ring endowed with an action of the in�nite linear group, or a graded algebra endowed with an
action of the symmetric groups. In each case there is an additional condition, called polynomiality
(in a di�erent sense than the polynomial functors we study), which is added to form a TCA and
there is a corresponding notion of modules over a TCA. We choose to focus mainly on this last
de�nition, using the others from time to time when it is more relevant. The connection between
these de�nitions is given by the Schur-Weyl duality for a �eld of characteristic zero, so this is
the framework for this chapter. We start with a reminder on the de�nitions and the basic results
on the TCAs. We also introduce examples of TCAs, such as Sym((Kd)(1)), the free TCA on d
generators of degree one.

De�nition 4.1.1. The category Σ has for objects the �nite sets and for morphisms the bijections.
The composition of morphisms is the usual composition of bijections.
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We now construct a symmetric monoidal category with the functors over Σ. First we intro-
duce the following tensor product on these functors, sometimes called the Day convolution as in
[MW19]:

De�nition 4.1.2. The functor ⊗ ∶ Fct (Σ , K -Vect )×Fct (Σ , K -Vect )→ Fct (Σ , K -Vect )
is given on objects by

(F ⊗G)(S) ∶= ⊕
X⊔Y =S

F (X)⊗K G(Y ),

where the sum is taken on all the decompositions of S into a disjoint union of two sets X and Y .
The functor (F ⊗G) is given on a morphism σ ∶ S → S by the induced map sending the factor
F (X)⊗G(Y ) of (F ⊗G)(S) to the factor F (σ(X))⊗G(σ(Y )).
Lemma 4.1.3. The category Fct (Σ , K -Vect ) endowed with the functor ⊗, the functor K0

which sends ∅ ∈Σ to K and everything else on 0, and with the natural symmetric structure τ on
⊗, gives a symmetric monoidal category.

Proof. We refer to [SS12, Section 5.1] for a full proof.

Remark 4.1.4. The category Fct (Σ , K -Vect ) admits another symmetric structure by intro-
ducing signs corresponding to the degree, but it has been shown in [SS12, Section 7.4] that both
symmetric categories are equivalent.

As for FId, we consider the skeleton of the category Σ given by N, where n corresponds to
the class of the sets of cardinality n which is represented by the set n = {1, . . . , n}. We now give
the de�nition of a TCA in the symmetric monoidal category Fct (Σ , K -Vect ).
De�nition 4.1.5. A twisted commutative algebra is a commutative monoid in the symmetric
monoidal category

( Fct (Σ , K -Vect ),⊗,K0, τ ).
In other words, a TCA is a functor A ∶ Σ → K -Vect together with two laws ν ∶ A⊗A → A and
ε ∶ K0 → A such that ν is associative, commutative and admits ε as a unit.

Remark 4.1.6. For A ∶ Σ → K -Vect a TCA, by taking the sum of the vector spaces A(n)
for n ∈ N we get an associative graded algebra with an action of Sn on the piece of degree n
compatible with the multiplication. Then the algebra

⊕
n∈N

A(n)

is commutative, up to the "twist" which exchanges blocks, as explained in [SS12] or in [GS10].

Example 4.1.7. The �rst example, already presented in [Bar78] and in [GS10], is the functor
sending n ∈ Σ to K[Sn] on which Sn acts by conjugation, while the product is given by the
standard inclusion of Sn ×Sm in Sn+m. This twisted algebra is commutative since the "twist"
which exchange the blocks Sn ×Sm and Sm ×Sn is given by the conjugation by the element of
Sn+m that exchange the n �rst integers with the last m.

Remark 4.1.8. The endofunctor τ1 from De�nition 2.6.1 has an equivalent in the context of
TCAs. It is the Schur derivative, denoted by D, which is the adjoint of a shift on grading
functors. It was used by Joyal in [Joy86] and by Sam and Snowden in [SS12, Section 6.4] and
in [SS16, 5.4]. It should not be confused with the endofunctor δ that we call di�erential. They
call it derivative because it veri�es the Leibniz rule and a di�erential equation for the Hilbert
series they introduced. To generalize this endofunctor we de�ne a family of endofunctors τk for
k ∈ N∗ while, in [SS12], they de�ne a family Dλ for λ a partition to give adjoints of the shift
corresponding to the partition λ.



Chapter 4. Twisted commutative algebras 67

Remark 4.1.9. If K is a �eld of characteristic zero, we recall that the irreducible representations
of the symmetric groups are indexed by the partitions and that the Littlewood-Richardson rule
explains how the tensor product of two such representations is decomposed into irreducible
representations.

The Schur-Weyl duality (see [SS12, Section 1]) describes how the space (Kn)⊗k is decom-
posed into irreducible representations of Sn ×GLn(K), which are the product of the irreducible
representations of Sn and GLn(K) associated with the same partition. This result is important
since it connects the representations of the symmetric and linear groups and gives a concrete
way to construct the irreducible representations of GLn(K) from the representations of Sn. This
result is frequently used in the theory of TCAs, as in the following:

Lemma 4.1.10. For K a �eld of characteristic 0, the symmetric monoidal category
Fct(Σ,K -Vect) is equivalent to the following three other categories:

� The category Rep(S∗) of in�nite sequences of representations of symmetric groups endowed
with the Cauchy product (see De�nition 4.1.2).

� The category Reppol(GL) of polynomial representations of the group GL(K∞), where K∞ is
the vector space with the basis e1, e2, . . . , en, . . . , and where polynomial means a subquotient
of a direct sum of representations of the form (K∞)⊗k.

� The full subcategory S of Fct(K -vect,K -Vect) of the functors which are isomorphic to
direct sums of the Schur functors ( (−)⊗n ⊗M )Sn, with M a �nite dimensional module on
the symmetric group Sn.

Then, TCAs can then be de�ned as the monoids in any of those categories or even in an ab-
stract equivalent category. These di�erent points of view, the equivalences between the categories
and the concrete description of the TCAs in these categories are presented in [SS12, DES17], and
with more details in [Fel20]. From the point of view in Reppol(GL), frequently used by Sam and
Snowden, a TCA is a commutative, associative, unitary, K-algebra endowed with a compatible
polynomial action of GL(K∞).

Remark 4.1.11. Note that the two notions of TCAs using the action of the symmetric groups
or the action of GL(K∞) are equivalent in characteristic zero via the Schur-Weyl duality, but
give two di�erent notions of TCAs in positive characteristic.

Remark 4.1.12. The di�erent de�nitions of a TCA as a monoid in one of the equivalent cate-
gories of Lemma 4.1.10 leads to another de�nition over the operad Com. In general, as explained
in [GS10], for any operad O one can de�ne a twisted algebra over O as an O-algebra in the sym-
metric monoidal category Rep(S∗). Explicitly, it is a graded algebra A =⊕A(n) with an action
of Sn on A(n) as in Remark 4.1.6, together with a map ⊕ On⊗SnA(n)→ A(n) coming from the
maps On ⊗A(i1)⊗ ⋅ ⋅ ⋅ ⊗A(in)→ A(i1 + ⋅ ⋅ ⋅ + in). To be a twisted algebra, we request in addition
that it satis�es the "twist" condition from Remark 4.1.6.

We give right away the de�nition of a module over a TCA, which is simply a module over
the TCA viewed as a monoid in Fct (Σ , K -Vect ):

De�nition 4.1.13. A module over the twisted commutative algebra (A,ν, ε) is a module over
the monoid A in the symmetric monoidal category

( Fct (Σ , K -Vect ),⊗,K0, τ ).
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In other words, a module over the twisted commutative algebra (A,ν, ε) is a functor F ∶Σ→
K -Vect together with an map µ ∶ A⊗ F → F such that

µ ○ (id⊗µ) = µ ○ (ν ⊗ id) ∶ A⊗A⊗ F → F.

Example 4.1.14. A simple family of examples of TCAs are the "polynomial TCAs" from [SS12]
(in a di�erent sense than the polynomial functors) which are obtained by taking the symmetric
algebra of a space. The simplest of them is the symmetric algebra over the space K1, denoted by
Sym((K1)(1)) which corresponds, in the category Fct(Σ,K -Vect), to the functor sending n to
K⊗n and, in the category of representations of GL(∞), to the ring Sym(K∞). Then we have the
symmetric algebras over the space Kd for d ≥ 1 which are the free TCAs generated in degree 1
denoted by Sym((Kd)(1)). They are the most studied ones (see for example [SS12, SS16, SS19])
and are also called the multivariate TCAs.

While the full description of the "polynomial TCAs" in the di�erent equivalent de�nitions
is given in [SS12, 8.2.3], we summarize now the important facts about them. For simplicity we
denote Kd by V in the following.

De�nition 4.1.15. The free twisted commutative algebra with d generators in degree 1 is the
functor Sym(V (1)), which sends an object n of Σ to V ⊗n and a morphism σ ∈ Σ(n,n) to the
map which permutes the tensor factors according to σ−1. The multiplication map

Sym(V (1))⊗ Sym(V (1))→ Sym(V (1))

is the concatenation of the tensor products and the unit is given by K0 ≅ Sym(V (1))(0).

Remark 4.1.16. The notation "Sym" comes from the equivalent de�nition of the TCAs in
the category Reppol(GL) from Lemma 4.1.10: in this category, the TCA Sym(V (1)) is given
by the symmetric algebra Sym(V ⊗ K∞ ) over the representation V ⊗ K∞ of GL(K∞). As a
representation of GL(∞) it can be identi�ed with the ring K[xi,j ∣1 ≤ i ≤ d,1 ≤ j], where xi,j
corresponds to the tensor product ei⊗εj ∈ V ⊗K∞ for e1, . . . , en a basis of V and ε1, . . . , εk, . . . a
basis of K∞. For d = 1, the TCA Sym((K1)(1)) is then identi�ed by Sam and Snowden in [SS16]
with the ring K[x1, . . . , xn, . . . ]. It may also be surprising that a σ−1 appears on the arrows
instead of a σ in De�nition 4.1.15. It follows from this equivalent de�nition, in which σ permutes
the factors V ⊗n according to σ but, as we take the quotient by the action of the symmetric group
Sn, we can permute the factors back to get the image expressed in terms of the original factors.
This makes the σ−1 appear when we pass from this de�nition to the de�nition of TCAs in the
category Fct (Σ , K -Vect ).

In [SS19], Sam and Snowden generalize their work for �nitely generated Sym((K1)(1))-
modules of [SS16] to all Sym((Kd)(1))-modules. In particular, they introduce and describe
the spectrum and ideals of the TCA Sym((Kd)(1)) and focus on a family of ideals called deter-
minantal ideals. The r-th determinantal ideal ar, introduced in [SS19] and in [SS12, 8.2.6],
is generated by all the (r + 1) × (r + 1) minors of the matrix (xi,j) with the identi�cation
Sym(Kd⊗K∞) ≅ K[xi,j ∣1 ≤ i ≤ d,1 ≤ j]. It also corresponds to the ideal ⋀r+1 (Kd)⊗⋀r+1 (K∞)
of the ring Sym(Kd⊗K∞) in its decomposition given by the Cauchy formula. They show in
[SS19, Theorem 3.3] that the spectrum of the TCA Sym((Kd)(1)) (i.e. the set of all prime ideals
of Sym((Kd)(1))) is isomorphic to the total Grassmannian Gr(Kd), which is the union of the
sets Grk(Kd) of vector subspaces of Kd of rank k for 0 ≤ k ≤ d.
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Remark 4.1.17. In [SS12] Sam and Snowden de�ne the quotient of the category of modules
over a TCA by its full subcategory of modules locally annihilated by a power of a prime ideal
of the TCA. In [SS19] they apply this construction to the TCA Sym((Kd)(1)) =∶ A and to the
determinantal ideals to de�ne a �ltration of subcategories of Sym(Kd⊗K∞)-modules: the rank
strati�cation

ModA,≤0 ⊂ModA,≤1 ⊂ ⋅ ⋅ ⋅ ⊂ModA,≤d =ModA,

where the modules in ModA,≤r are locally annihilated by a power of ar. They then de�ne ModA,r
as the quotient of ModA,≤r by ModA,≤r−1, which intuitively corresponds to the part of ModA
whose support is in Grr(Kd) within Gr(Kd). In particular, they compute the Grothendieck
group of ModA,r which is free of rank (dr) over the ring of symmetric functions. This construction
gives, through the equivalence of categories from [SS12] developed in Section 4.2, a family of
quotients of FId -Mod which would be interesting to compare with ours.

We focused on the free TCAs on d generators of degree one, which is the most fundamen-
tal example of TCA but there are other interesting examples given by a symmetric algebra
Sym(V ) over a representation V of GL(K∞). For example, for V = Λ2(K∞) it gives the TCA
Sym(Λ2(K∞) ), or for V the space of symmetric bilinear forms over K (spanned by the elements
xi,j = eiej for e1, e2, . . . a basis of K∞) this gives the TCA Sym( Sym2(K∞) ) which is equivalent
to the algebra K[xi,j]. These two examples have been studied in [NSS16]. Another example is
the TCA Sym((K1)(n)) generated in degree n, corresponding to the ring Sym( (K∞)⊗n ), which
is detailed in [SS12, 8.2.4]. The important result about all these TCAs are presented in details
in [DES17].

Example 4.1.18. In Section 4.2 we explain that the category of modules over the TCA
Sym((Kd)(1)) is equivalent to the category of modules over FId, following [SS12]. There is a
similar equivalence for the two TCAs Sym( Sym2(C∞) ) and Sym(Λ2(C∞) ). Indeed, Sam and
Snowden showed in [SS15] that the �nitely generated modules over these TCAs are equivalent to
the �nitely generated modules over the upwards Brauer category B(δ). This last is equivalent
to the category FIM from [MW19] whose objects are �nite sets, and whose morphisms are pairs
of an injection and a perfect matching on the complement of the image (see [NSS16] or [SS17]).
Moreover, there is an analog of the Schur-Weyl duality for the in�nite orthogonal group which
is given by an equivalence of categories between the algebraic representations of O(∞) and the
functors over the upward Brauer category.

Remark 4.1.19. In the recent years, it has been proven that di�erent algebraic structures
similar to the TCAs are noetherian, such as the FI-modules and FId-modules (see [CEFN14],
[SS16, SS19] and [Sno13, Theorem 2.3]), the FS-modules (see [SS17]), the VIC(R)-modules (see
[PS17]) and many others. Note that in [PS17] and [SS17] it is also shown that the category
of Fct(Fq−mod,Fd−mod) is noetherian, which was known as the Lannes-Schwartz conjecture.
They are such results about TCAs, but it is still an open question to �nd if every �nitely generated
TCA is noetherian. For now, it was proven that the TCAs generated in degree 1 are noetherian
(see [CEF15] and [SS16]), and that the two TCAs generated in degree 2 Sym( Sym2(C∞) )
and Sym(Λ2(C∞) ) are noetherian (see [NSS16]). In particular, the last theorem implies that
the �nitely generated FIM-modules are noetherian, recalling the result about the FI-modules
which can be proved using the TCA Sym(K(1)). Lately, it was shown in [DES17] that the TCA
Sym( Sym3(C∞) ) generated in degree 3 is topologically noetherian, which is a weaker notion.
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4.2 The equivalence between FId-modules and Sym( (Kd)(1) )-
modules

In this section we give an explicit construction of the equivalence of categories

FId -Mod ≅ Sym(V (1) ) -Mod

�rst stated by Sam and Snowden in [SS12, Section 10.2] for d = 1, then proved in [SS17, Proposi-
tion 7.2.5]. In particular, we give an explicit construction of two functors χB ∶ Sym(V (1)) -Mod→
FId -Mod and ΓB ∶ FId -Mod→ Sym(V (1)) -Mod giving the equivalence. Note that these func-
tors depend on the choice of the basis B of V = Kd, so we �x one B = (e1, . . . , ed) for this
section.

Remark 4.2.1. Since B = (e1, . . . , ed) is a basis of V = Kd, then the elements ei1⊗⋅ ⋅ ⋅⊗ein of V ⊗n

for 1 ≤ i1, . . . , in ≤ d form a basis of V ⊗n. We denote by C the set consisting of these elements,
and we have a canonical bijection

FId(0, n) ≅ HomSet(n, d) ≅ C.

For g ∈ FId(0, n) we denote by eg the basis element eg(1) ⊗ ⋅ ⋅ ⋅ ⊗ eg(n) corresponding to g by this
bijection. This gives a decomposition

V ⊗n ≅ ⊕
g∈FId(0,n)

K ⋅eg .

We are now able to de�ne the two functors χB and ΓB which give the equivalence of categories.
To give the de�nition of χB we recall that, for a TCA A, a A-module is a pair (F,µ), where
F ∶Σ→ K -Vect is a functor and µ ∶ A⊗F → F a natural transformation giving the action of A
on F .

De�nition 4.2.2. The functor χB ∶ Sym(V (1)) -Mod → FId -Mod sends a Sym(V (1))-module
(F,µ) to a FId-module χB(F,µ) ∶ FId → K -Vect sending the object n to F (n), and the mor-
phism (f, g) of FId to the composition

F (n) F (f(n)) K ⋅eg ⊗ F (f(n)) F (m) .F (f ∶n→f(n)) ∼ µ∣K ⋅eg⊗F (f(n))

For ε ∶ F → F ′ a natural transformation in FId -Mod, the natural transformation χB(ε) is given
for all objects n ∈ FId by

χB(ε)n = εn ∶ χB(F )(n) = F (n)→ F ′(n) = χB(F ′)(n).

To de�ne the opposite functor ΓB we need to see Σ as a subcategory of FId. We then de�ne
the functor θ ∶Σ→ FId, which sends an object n in Σ to n in FId, and a morphism σ ∶ n→ n in
Σ to the morphism (σ,0 = ∅→ d) in FId.

De�nition 4.2.3. The functor ΓB ∶ FId -Mod → Sym(V (1)) -Mod sends a FId-module G to
the functor G ○ θ ∶ Σ → K -Vect together with the map µ ∶ Sym(V (1)) ⊗ (G ○ θ) → G ○ θ, where
for all objects n ∈Σ, µn ∶ (Sym(V (1))⊗ (G ○ θ) )(n)→ G ○ θ(n) is the composition

⊕
i+j=n

V ⊗i ⊗G(j) ⊕
i+j=n

⊕
g∈FId(0,i)

K ⋅eg ⊗G(j) ⊕
i+j=n

⊕
g∈FId(0,i)

G(j) G(n).∼ ∼ ⊕G(j↪n,g)

For ε ∶ (G,µ) → (G′, µ′) a natural transformation in Sym(V (1)) -Mod, the natural transforma-
tion ΓB(ε) is given for all objects n ∈Σ by

ΓB(ε)n = εn ∶ ΓB(G,µ)(n) = G(n)→ G′(n) = ΓB(G′, µ′)(n).
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Finally we can state the equivalence of categories shown by Sam and Snowden in [SS17]:

Theorem 4.2.4. For any basis B of V , the functors χB and ΓB give an equivalence of categories

FId -Mod ≅ Sym( (Kd)(1) ) -Mod .

Proof. This theorem was �rst stated in [SS12, Section 10.2] for d = 1, and proved in [SS17,
Proposition 7.2.5]. The proof consist in checking that the functors χB and ΓB are quasi-inverse,
but we refer to [Fel20] for more details.

Remark 4.2.5. For the TCA Sym(V (1)), the representable objects denoted by K < n > in [SS12]
correspond exactly to the projective standard functors PFId

n via the equivalence of Theorem 4.2.4.

4.3 An action of GL(Kd) on FId-modules

In this section we will use the natural action of GL(V ) on the Sym(V (1))-modules in the theory
of TCAs to get an action of GL(V ) on the FId-modules. To do this we will use the equivalence
of categories given in Theorem 4.2.4 for a �xed basis B of V = Kd. We start with the de�nition
of this action of GL(V ) on the Sym(V (1))-modules, then we will explain how we transpose it
into an action on FId-modules.

De�nition 4.3.1. For φ ∈ GL(V ) and (F,µ) ∈ Sym(V (1)) -Mod, the Sym(V (1))-module φ ⋅
(F,µ) is de�ned by

φ ⋅ (F,µ) = (F,φ ⋅ µ),

where φ ⋅ µ ∶ Sym(V (1))⊗ F → F is the natural transformation given on an object n ∈Σ, by the
composition

(φ ⋅ µ)n ∶=
⎛
⎜
⎝
⊕

i+j=n
V ⊗i ⊗ F (j) ⊕

i+j=n
V ⊗i ⊗ F (j) F (n)

⊕
i+j=n

φ⊗i⊗id
µn

⎞
⎟
⎠
.

This gives an invertible endofunctor φ ⋅ (−) of the category Sym(V (1)) -Mod sending an object
(F,µ) to φ⋅(F,µ) and a natural transformation σ between (F,µ) and (F ′, µ′) to φ⋅σ = σ between
(F,φ ⋅ µ) and (F ′, φ ⋅ µ′).

Proposition 4.3.2. The group GL(V ) acts on the category Sym(V (1)) -Mod by the invertible
endofunctor φ ⋅ (−).

Proof. The map φ ⋅ (−) being an extension of the diagonal action of GL(V ) on V ⊗n, we just
need to check that its image on a natural transformation in Sym(V (1)) -Mod is still a natural
transformation in Sym(V (1)) -Mod. This is true since the following diagram, corresponding to
σ ∶ (F,µ)→ (F ′, µ′), is commutative for all n ∈Σ:

⊕
i+j=n

V ⊗i ⊗ F (j) ⊕
i+j=n

V ⊗i ⊗ F ′(j)

F (n) F ′(n) .

µn

⊕
i+j=n

id⊗σj

µ′n

σn
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This means that for all x ∈ V ⊗i and all y ∈ F (j) for i+j = n, we have the equality σn ○µn(x⊗y) =
µ′n(x⊗ (σj(y) ). In particular, for x = φ⊗i(x̃) we have

σn(µn( (φ⊗i(x̃)) ⊗ y) ) = σn(µn(x⊗ y) ) = µ′n(x⊗ (σj(y) ) = µ′n( (φ⊗i(x̃)) ⊗ (σj(y) ),

which shows that the following diagram, corresponding to σ ∶ (F,φ ⋅ µ)→ (F ′, φ ⋅ µ′), is commu-
tative:

⊕
i+j=n

V ⊗i ⊗ F (j) ⊕
i+j=n

V ⊗i ⊗ F ′(j)

F (n) F ′(n)

(φ⋅µ)n

⊕
i+j=n

id⊗σj

(φ⋅µ′)n

σn

.

We now use the equivalence of categories to transfer this action of GL(V ) from the
Sym(V (1))-modules to the FId-modules. First, we de�ne this action on FId-modules using
the equivalence as follows, and then we describe it explicitly in a second step.

De�nition 4.3.3. Let B be a basis of V , for φ ∈ GL(V ) the endofunctor φB ⋅ (−) of FId -Mod

is given by the composition

FId -Mod Sym(V (1)) -Mod Sym(V (1)) -Mod FId -Mod
ΓB φ⋅(−) χB

.

To give a more explicit description of this action we need to use the matrix M = (mi,j)1≤i,j≤d
of φ in the basis B = (e1, . . . , ed) of V . With this notation we can write a formula for φ⊗n which
will be useful in the following.

Remark 4.3.4. By de�nition, for 1 ≤ k ≤ d we have φ(ek) = ∑ml,k el. Then, for g ∈ FId(0, n),
using the notation eg ∶= eg(1) ⊗ ⋅ ⋅ ⋅ ⊗ eg(n) from Remark 4.2.1 and the linearity of the tensor
product, we can give the following formula for φ⊗n(eg):

φ⊗n(eg) =
d

∑
l1,...,ln=1

ml1,g(1) . . .mln,g(n) (ei1 ⊗ ⋅ ⋅ ⋅ ⊗ ein) = ∑
g′∈FId(0,n)

mg′(1),g(1) . . .mg′(n),g(n) eg′ ,

where the last equality is just a relabeling of the sum using the bijection FId(0, n) ≅ HomSet(n, d).

Proposition 4.3.5. Let B be a basis of V , for φ ∈ GL(V ) and G ∈ FId -Mod, the functor
φB ⋅G ∶ FId → K -Vect sends an object n ∈ FId to G(n) and a morphism (f, g) ∈ FId(n,m) to
the sum

∑
g′∈FId(0,m∖f(n))

⎛
⎝ ∏
l ∈m∖f(n)

mg′(l),g(l)
⎞
⎠
G(f, g′).

Moreover, for a natural transformation σ ∶ G→ G′ in FId -Mod, the action of φB is given by

φ ⋅ σ = (σn ∶ φ ⋅G(n) = G(n)→ G′(n) = φ ⋅G′(n) ) .

Proof. First for a natural transformation σ ∶ G→ G′, by the de�nitions above, we have

φB ⋅ (σ) = χB(φ ⋅ (ΓB(σ) ) ) = χB(φ ⋅ (σ) ) = χB(σ) = σ.
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Similarly, for a functor G we have φ ⋅(ΓB(G) ) = φ ⋅(G○θ, µ) = (G○θ,φ ⋅µ). Then, by de�nition of
χB we get that φB ⋅G = χB (φ ⋅ΓB(g)) is the functor sending an object n ∈ FId to G○θ(n) = G(n)
and a morphism (f, g) ∈ FId(n,m) to the composition

G(n) G(f(n)) K eg ⊗G(f(n)) G(m)

y G(f̃ ,∅)(y) eg ⊗G(f̃ ,∅)(y) (φ ⋅ µ)m (eg ⊗G(f̃ ,∅)(y)),

G(f̃ ,∅) ∼ (φ⋅µ)m

where f̃ is the bijective map f ∶ n→ f(n). However, with Remarks 4.3.4 and 4.2.1 we get that the
transformation (φ ⋅µ)n is given on a basis object eg ⊗x of ⊕K ⋅eg ⊗F (j) = (Sym(V (1))⊗F )(n)
by

(φ ⋅ µ)n(eg ⊗ x) = µn
⎛
⎝ ∑g′∶i→d

(
j

∏
l=1
mg′(l),g(l)) (eg′ ⊗ x)

⎞
⎠
= ∑
g′∶i→d

(
j

∏
l=1
mg′(l),g(l)) G(j ↪ n, g′)(x).

This �nally give

(φ ⋅ µ)m (eg ⊗G(f̃ ,∅)(y)) = ∑
g′∶m∖f(n)→d

⎛
⎝

m∖f(n)
∏
l=1

mg′(l),g(l)
⎞
⎠
G(f(n)↪m,g′) ○G(f̃ ,∅)(y),

and we conclude since (f(n)↪m,g′)○(f̃ ,∅) is (f, g′) by the de�nition of composition in FId.

Example 4.3.6. For d = 1, the action of GL(V ) = GL(K) = K∗ is simply described. Indeed, for
φ ∈ GL(V ) the matrix MB(φ) = (a) is one dimensional, with a ∈ K∗ and so in the formula of
Proposition 4.3.5 the product is a power am−n of the only possible term a. Also, the sum has only
one term since there is only one morphism from 0 to m∖f(n) in FI. Then, for G ∈ FI -Mod, the
functor φB ⋅G sends n ∈ FId to G(n) and (f, g) ∈ FId(n,m) to am−n ⋅ (f, g) with a ∈ K∗. Then,
the automorphisms of G(n) given by the multiplication by an ∈ K∗ form a natural equivalence
between G and φB ⋅G.
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Strong polynomial functors on FId

The polynomial functors were introduced by Eilenberg and Mac Lane in [EM54] in the context
of functors from R-modules to R-modules using the notion of cross e�ects. In such functor cat-
egories there are huge functors which are di�cult to understand and the polynomial property is
as a way to measure their complexity. Indeed, the polynomial functors are easier to understand
than the others, thus they should be thought as an analogue of polynomial functions approximat-
ing more complex functions. In [DV19] this notion was extended to functors from a symmetric
monoidal category with an initial object to the category R-Mod. Djament and Vespa used an
equivalent de�nition of the polynomial functors based on a di�erential endofunctor δ instead of
cross e�ects. They show in [DV19, 3.3] that these two de�nitions coincide, however the de�nition
using the di�erential endofunctor is better suited for the study of stable behavior, so we choose
to mainly present and generalize this point of view for FId-modules. In Section 5.1 we then intro-
duce and study the strong polynomial FId-modules, de�ned using all the c-coloured di�erential
endofunctors δc1 of De�nition 2.6.2 to replace the unique endofunctor δ of FI-modules. In par-
ticular, for d = 1 we recover the de�nition of strong polynomial FI-modules from [DV19]. After
giving examples of polynomial FId-modules, we show in Proposition 5.2.2 that the FId-modules
PFId
n are not strong polynomial for d > 1. In a third part, we study the support of FId-modules

and we explain how it is linked to strong polynomial FId-modules. In Section 5.4 we generalize
the de�nition using cross e�ects and we show that the notion of polynomial functors obtained
coincides with the strong polynomial functors, which helps us to prove di�erent kind of results.
For example, we prove in Proposition 5.4.18 that the composition FId → R-Mod → R-Mod of
two polynomial functors is polynomial and we use this in Section 5.5 to show that the pointwise
tensor product respects strong polynomiality.

5.1 De�nition and examples of strong polynomial FId-modules

In this section we de�ne the strong polynomial functors from FId to R-Mod and we give some of
their basic properties. For d = 1, we recover the de�nition on FI-modules from [DV19]. We also
describe some explicit examples, such as the functors de�ned in Chapters 2 and 3. First, we de�ne
the strong polynomial FId-modules using the c -coloured di�erential endofunctors introduced in
De�nition 2.6.2.

De�nition 5.1.1. The full subcategories of Fct(FId,R-Mod) of strong polynomial functors
of degree less than or equal to n, denoted by Polstrongn (FId,R-Mod), are de�ned by induc-
tion. By convention Polstrong−1 (FId,R-Mod) is zero and, for n ∈ N, a FId-module F is in
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Polstrongn (FId,R-Mod) if

δc1(F ) ∈ Pol
strong
n−1 (FId,R-Mod) for all c ∈ C,

where δc1 is the c-coloured di�erential endofunctor from De�nition 2.6.2.

Remark 5.1.2. For d = 1, since the cardinality of C = {c} is 1, we recover the de�nition of strong
polynomial functors over FI from [DV19] using only one endofunctor δ1 = δc1. In particular,
the polynomial functors give an alternative way to express and understand results about FI-
modules. For example, the strong polynomial functors with �nitely generated values are the
�nitely generated FI-modules. Also, the strong polynomial degree of a FI-module corresponds
exactly to its generation degree from [MW19] and [CEFN14] since it is given by the functor
denoted by HFI

0 , which gives the minimal generators of a FI-module and which corresponds to
the cross e�ect functor on the element 1 of FI. Also, there is a stronger notion of polynomial
functors for FI-modules, called degree-r coe�cient systems in [RWW17], also de�ned using the
endofunctor δ1, denoted by D(−). The comparison between the degree-r coe�cient systems and
the strong polynomial functors of [DV19] is given in [Wil18a, 6.2]: morally, the di�erence is that
the degree-r coe�cient systems include the stably zero functors of [DV19] in the degree 0, while
they are strong polynomial of higher degree (or even not polynomial) according to Djament and
Vespa.

We now present the �rst properties of the strong polynomial functor over FId. In particular,
we show that in De�nition 5.1.1 if we use all the endofunctors δxk for k ∈ FId and x ∈ FId(0, k),
and not just for k = 1, we get an equivalent de�nition.

Proposition 5.1.3. For n ∈ N, k ∈ FId and x ∈ FId(0, k), the subcategory Polstrongn (FId,R-Mod)
of Fct(FId,R-Mod) is closed under quotient, by extensions, by colimits and by the endofunctors
τk and δxk .

Proof. For c ∈ C, by Proposition 2.6.6 the endofunctor δc1 commutes (up to isomorphism) with
the endofunctors τk and δxk and with colimits. We then prove by induction on n ∈ N that
Polstrongn (FId,R-Mod) is closed under colimits and by τk and δxk . We write the details for the
endofunctor τk, the other cases being similar. If F ∈ Polstrongn (FId,R-Mod) then δc1(F ) is in
Polstrongn−1 (FId,R-Mod). By induction, this subcategory is stable by τk, which gives

δc1 ( τk(F ) ) ≅ τk ( δc1(F ) ) ∈ Pol
strong
n−1 (FId,R-Mod).

Since this is true for all colours c ∈ C, we conclude that τk(F ) ∈ Polstrongn (FId,R-Mod). As a
special case of the stability by colimits we get that the subcategories Polstrongn (FId,R-Mod) are
closed under quotient. Finally, we show by induction on n ∈ N that Polstrongn (FId,R-Mod) is
closed under extension. Let 0 F G H 0 be a short exact sequence
in Fct(FId,R-Mod) such that F and H are in Polstrongn (FId,R-Mod), we want to prove that
G is also in Polstrongn (FId,R-Mod). For c ∈ C, by Proposition 2.6.6.0) we have an exact sequence

0 κc1(F ) κc1(G) κc1(H) δc1(F ) δc1(G) δc1(H) 0 ,
f

that we can split to get a short exact sequence

0 Im(f) δc1(G) δc1(H) 0 .

By hypothesis, δc1(F ) and δc1(H) are in Polstrongn−1 (FId,R-Mod) and Im(f) is also in
Polstrongn−1 (FId,R-Mod) since it is a quotient of δc1(F ). Finally, we use induction on the short
exact sequence to get that δc1(G) is in Polstrongn−1 (FId,R-Mod), for all c ∈ C, which means that G
is in Polstrongn (FId,R-Mod).
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In this proposition we showed that the subcategories Polstrongn (FId,R-Mod) of
Fct(FId,R-Mod) are closed under quotient and by extensions. However, we explain in Re-
mark 5.1.9 that this notion of strong polynomial functors is not completely satisfying since it
is not closed under subobjects. We now show that in De�nition 5.1.1 we can also use all the
endofunctors δxk for k ∈ FId and x ∈ FId(0, k) as explained above.

Proposition 5.1.4. A FId-module F is in Polstrongn (FId,R-Mod) if and only if the functor
δxk(F ) is in Polstrongn−1 (FId,R-Mod) for all k ∈ FId and all x ∈ FId(0, k).

Proof. One implication is obvious by taking k = 1 and c ∈ C = FId(0,1), we prove the reverse.

Let F be in Polstrongn (FId,R-Mod) and c, c̃ ∈ C be two colours, we prove that δ
(c,c̃)
2 (F ) is in

Polstrongn−1 (FId,R-Mod). First, we apply the exact sequence of endofunctors of Fct(FId,R-Mod)
from Proposition 2.6.6.7) to F . We get an exact sequence that we can split to get the short exact
sequence

0 Im(fF ) δ
(c,c̃)
2 (F ) τ1 ○ δc1(F ) 0 ,

where fF is a map from δc̃1(F ) to δ
(c,c̃)
2 (F ) By Proposition 5.1.3 the subcategory

Polstrongn−1 (FId,R-Mod) is closed under quotient and by τ1 so the �rst and last terms of this short

exact sequence are in Polstrongn−1 (FId,R-Mod). Since the subcategory Polstrongn−1 (FId,R-Mod) is
also closed under extensions by Proposition 5.1.3 we then proved that, for any colours c, c̃ ∈ C, the
functor δ

(c,c̃)
2 (F ) is in Polstrongn−1 (FId,R-Mod). By induction, using the exact sequence 2.6.6.7)

in a general version, we prove in a similar way that δxk(F ) is in Polstrongn−1 (FId,R-Mod) for all
k ∈ FId and all x ∈ FId(0, k).

In the following we give some examples of strong polynomial functors, the �rst being the
functors that are zero after or until some rank.

Lemma 5.1.5. For F ∈ FId -Mod and k ∈ N, if F (n) = 0 for all n > k, then

F ∈ Polstrongk (FId,R-Mod).

Proof. We prove this by induction. For k = 0 it is clear that, if F (0) is the only non-zero part of
F , then τ1(F ) and δc1(F ) are zero and F is in Polstrong0 (FId,R-Mod). Now if F (n) = 0 for n > k,
then τ1(F )(n) = F (n+ 1) = 0 for n > k − 1, and so for any colour c ∈ C, we have δc1(F )(n) = 0 for
n > k − 1. By induction we get that δc1(F ) ∈ Pol

strong
k−1 (FId,R-Mod) for any colour c ∈ C, and so

F ∈ Polstrongk (FId,R-Mod).

The converse of this result is false (see 5.1.7), but we still have:

Lemma 5.1.6. For F ∈ FId -Mod and k ∈ N, if F (n) = 0 for all n < k and F is non-zero, then

F ∉ Polstrongk−1 (FId,R-Mod).

Proof. We prove this by induction, the case k = 0 being empty. For k ≥ 1, if F is a non-zero
FId-module such that F (n) = 0 for n < k + 1, then for all c ∈ C, δc1(F )(n) = 0 for n < k since it
is a quotient of τ1(F )(n) = F (n + 1). Since F is non-zero, there exist m ∈ N minimal such that
F (m) ≠ 0. Since we consider k ≥ 1, we have F (0) = 0 and so m ≥ 1. Then δc1(F )(m − 1) is the
cokernel of the map F (m − 1) = 0 → F (m), so δc1(F )(m − 1) = F (m) ≠ 0. We get that δc1(F ) is
non-zero and by induction δc1(F ) is not in Polstrongk−1 (FId,R-Mod) for c ∈ C, which gives that F

is not in Polstrongk (FId,R-Mod).
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Some interesting examples are the functors de�ned in Section 2.3:

Example 5.1.7.

1) ForM ∈R-Mod, the constant functor equal toM is strong polynomial of degree 0. Indeed,
it sends every morphism to the identity and so we can compute for all c ∈ C:

δc1(M) = Coker (ic1(M)) = Coker (M(ic1)) = Coker (Id) = 0.

2) For k ∈ N, the twisted atomic functorMk ∶ FId →R-Mod is strong polynomial of degree k.
Indeed, τ1(Mk) =Mk−1 and so the natural transformation ic1(Mk) ∶Mk → τ1(Mk) =Mk−1
is zero since either the source or the target is zero. This gives us that

δc1(Mk) = τ1(Mk) =Mk−1

for all c ∈ C and by induction we get Mk ∈ Polstrongk (FId,R-Mod).

3) Similarly, we have τ1(M≥k) =M≥k−1 and we can show that, for any colour c ∈ C

δc1(M≥k) =Mk−1

proving that M≥k ∈ Polstrongk (FId,R-Mod).

4) Finally, we can check that the direct sum on k ∈ N of the constant functor M is strong
polynomial of degree zero, while the functors

⊕
k∈N

Mk and ⊕
k∈N

M≥k

are not strong polynomial since each M≥k and each Mk has a degree k where k goes to
in�nity.

As a special case, we retrieve the example of FId-module developed in Chapter 3 of the
homology of the sink con�guration spaces of graphs. In particular, we deduce from Proposition
3.2.8 the following:

Proposition 5.1.8. For i ∈ N and Gd the linear graph on d vertices, the FId-module

Hi ( Conf sink(−) (Gd, [d]) ,R )

from De�nition 3.2.2 is strong polynomial of degree i + 1 if i > 0 and of degree 0 if i = 0.

Proof. By Proposition 3.2.8, for i > 0 the FId-module Hi ( Conf sink(−) (Gd, [d]) ,Q ) is twisted

atomic of rank i + 1, so it is strong polynomial of degree i + 1 by Example 5.1.7.2). For i = 0,
this FId-module is a constant functor by Proposition 3.2.8 so it is strong polynomial of degree
0. This result remains true for the homology over R since the proof of Proposition 3.2.8 extend
to this case.

In Proposition 5.1.3 we proved that the subcategories Polstrongn (FId,R-Mod) are closed under
quotients, extensions and by the endofunctors τk and δ

c
k, but they are not closed under subobjects

or by the endofunctors κxk as explained in the following remarks.
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Remark 5.1.9. A subfunctor of a strong polynomial functor is not necessarily strong polynomial
of lower degree or even strong polynomial at all. For d = 1, we can �nd counterexamples in [DV19,
p.362]. For FId, we use the variations of these functors de�ned in Example 2.3: forM ∈R-Mod,
the subfunctor M≥k of the constant functor M is strong polynomial of degree k, while M is
strong polynomial of degree 0. Moreover, the direct sum on k ∈ N of the constant functor M
is strong polynomial of degree zero, while its subfunctor ⊕M≥k is not strong polynomial at all.
These examples emphasize the interest of introducing the notion of weak polynomial functors in
Chapter 7.

Remark 5.1.10. As a complement of Proposition 5.1.3, we give a counterexample showing that
the subcategory Polstrongn (FId,R-Mod) of Fct(FId,R-Mod) is not stable by the endofunctors
κxk for all k ∈ FId and all x ∈ FId(0, k). Indeed, for M ∈R-Mod we can consider the quotient of
the constant functor M by its subfunctor M≥k de�ned in Section 2.3. This quotient is given on
objects by

M/M≥k (n) = {
M if n < k
0 else

,

and on a morphism (f, g) ∈ FId(n,m) by the identity if n,m < k and by zero else. We then
compute that τ1 (M/M≥k) (n) = M/M≥k (n + 1) for n ∈ FId. For c ∈ C, as this functor is a

quotient of the constant functor M , we deduce that ic1(M/M≥k) =M/M≥k ( n n + 1Idn +c ) is
the identity of M if n > k − 1 and zero else. This proves that δc1(M/M≥k), which is the cokernel
of this map, is zero for all c ∈ C, and so

M/M≥k ∈ Pol
strong
0 (FId,R-Mod).

On the other hand, these identities also implies that κc1(M/M≥k) = Mk−1, and we explained in

Example 5.1.7 thatMk−1 is strong polynomial of degree k−1, so it is not in Polstrong0 (FId,R-Mod)
for k > 1.

We end this section by showing that the precomposition by the forgetful functor O ∶ FId → FI
from De�nition 2.1.6 respects the strong polynomiality.

Proposition 5.1.11. For n ∈ N, we have the inclusion

O∗ ( Polstrongn (FI,R-Mod) ) ⊂ Polstrongn (FId,R-Mod).

Proof. We prove the result by induction on n ∈ N, the case n = 0 being a special case of the
following reasoning. For F ∈ Polstrongn (FI,R-Mod), by Proposition 2.7.1 we have for all colours
c ∈ C the isomorphism

δc1(O∗(F ) ) = δc1 ○O∗(F ) ≅ O∗ ○ δ1(F ) = O∗ (δ1(F ) ).

By de�nition of strong polynomial functors over FI we have δ1(F ) ∈ Polstrongn−1 (FI,R-Mod) and
by induction we conclude that O∗ (δc1(F ) ) ∈ Pol

strong
n−1 (FId,R-Mod).

The Proposition 5.1.11 explains that each strong polynomial functor over FI provides a strong
polynomial functor over FId. We give here an example of this process which comes from the
Example 2.3.4.

Example 5.1.12. For k ∈ N, let T (d)k be the FId-module de�ned in Example 2.3.4 sending n

to (Kn)⊗k. We recall that there is a relation T
(d)
k = O∗(T (1)k ) and that, for d = 1, T (1)k is the
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composition of F ∶ FI → K -Vect, which sends n to Kn, with Tk ∶ K -Vect → K -Vect which
sends V to V ⊗k. It is a classical example that Tk is polynomial of degree k in the usual sense
(see De�nition 5.4.1), and we can compute that F is strong polynomial of degree 1. Indeed, we
have

δ1(F )(n) = Coker (F ( Idn +(0→ 1) ) ) = Coker( Kn Kn+1IdKn ⊕ (0→K) ) = K .

Similarly, for any morphism f in FI, by de�nition we have τ1(F )(f) = F (f + id), which means
that δ1(F )(f) = IdK, showing that δ1(F ) is a constant functor. Since FI has an initial object
and Tk preserve epimorphisms, we can use the proposition 3.12 from [DV19] to conclude that

T
(1)
k ∈ Polstrongk×1 (FI,K -Vect). Finally, using Proposition 5.1.11 we get

T
(d)
k = O∗(T (1)k ) ∈ Polstrongk (FId,K -Vect).

Remark 5.1.13. This example comes from a factorization FId → FI → R-Mod → R-Mod,
where the last functor is a polynomial functor in the classical sense (see De�nition 5.4.1). The
Proposition 5.1.11 together with the proposition 3.12 from [DV19] prove that this kind of com-
position preserves polynomiality if the last functor preserves epimorphisms. We will show in
Proposition 5.4.18 that a direct composition FId →R-Mod→R-Mod which does not factor by
FI also preserves polynomiality under a similar hypothesis, but with a non optimal bound.

5.2 The standard projective functors

A very important family of examples of strong polynomial FI-modules are the standard projective
functors PFI

n from De�nition 2.2.4. The fact that the functors PFI
n are polynomial simpli�es the

study of polynomial functors over FI and leads to important results. In this section we show
that the FId-modules PFId

n are not strong polynomial when d > 1 using an explicit description
of δc1(PFId

n ), which emphasizes an important di�erence between FI-modules and FId-modules.

Proposition 5.2.1. For n ∈ FId and c ∈ C, we have the following relation:

δc1( PFId
n ) ≅ ( PFId

n−1 )
⊕n ⊕ ( PFId

n )⊕(d−1).

Proof. By de�nition δc1(PFId
n ) is the cokernel of the morphism ic1(PFId

n ) = PFId
n ( Id(−) +c ) which

is given by

R [(Id(−) +c)∗] ∶ PFId
n (−) =R[FId(n,−)]Ð→R[FId(n, (−) + 1 )] = PFId

n ( (−) + 1 ).

For k ∈ FId with k ≤ n− 1 we have PFId
n (k) =R[FId(n, k) ] =R[∅] = 0. For k ≥ n the morphism

ic1(PFId
n ) sends a basis element (f, g) ∈ FId(n, k) to the composition (Idk +c) ○ (f, g) ∶ n → k →

k + 1. Then, the only basis morphisms that do not vanish in its cokernel are the morphisms
(f, g) ∈ FId(n, k + 1) such that either the element k + 1 is in the image of f , or the element k + 1
is not in the image of f and is coloured with a colour other than c (i.e. g(k + 1) ≠ c). Then, we
have the isomorphism of R-modules

δc1(PFId
n ) (k) ≅R[(f, g) ∣k + 1 ∈ Im(f)] ⊕ R[(f, g) ∣k + 1 ∉ Im(f), g(k + 1) ≠ c].

The generators (f, g) of the �rst component correspond to all the morphisms in FId(n∖{j}, k+
1 ∖ {k + 1}) for all possible inverse images 1 ≤ j ≤ k of the element k + 1. The generators (f, g)
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of the second component correspond to all the morphisms in FId(n, k) coupled with a colour
choice in C ∖ {c} for k + 1. This gives the isomorphism of R-modules

δc1(PFId
n ) (k) ≅R[FId(n − 1, k )]⊕n ⊕ R[FId(n, k )]⊕(d−1)

for all c ∈ C. Finally for (f, g) ∈ FId(k, l), the map δc1(PFId
n ) (f, g) is obtained as the map

τ1(PFId
n ) (f, g) =R [( (f, g) + Id1 )∗] passing to the cokernel. Then, the decomposition is natural

since the post-composition by ( (f, g) + Id1 ) preserves the conditions mentioned above.

Corollary 5.2.2. For d > 1, the standard projective functor PFId
n is not strong polynomial of

any degree.

Proof. It follows directly from the relation of Proposition 5.2.1 and from the de�nition of strong
polynomial functors.

Remark 5.2.3. For d = 1, the Proposition 5.2.1 gives the relation

δ1( PFI
n ) = ( PFI

n−1 )
⊕n

already present in the proof of [Dja16, prop 4.4]. By induction this shows that the functor
PFI
n is strong polynomial of degree n. In particular, this implies that the �nitely generated FI-

modules are the strong polynomial functors with �nitely generated values over FI, as explained
in [DV19]. This result is very speci�c to the FI-modules, due to the fact that the projective
standard functors are polynomial. A similar formula is also present in [CEFN14] where the
authors show that τa( PFI

n ) ≅ ( PFI
n−1 ) ⊕ Qa with Qa a direct sum of PFI

i with i ≤ d − 1.
This formula is one of the key points to prove the noetherian property in a general context for
FI-modules.

5.3 Support of a FId-module

For functors over a symmetric monoidal category with an initial object, such as FI, the notion
of support studied by Djament in [Dja16] is closely related to the notion of strong polynomial
functors. Indeed, for FI-modules being strong polynomial of degree less than or equal to i is
equivalent to being supported by the integers 0, . . . , i. This result is speci�c to the FI-modules
and is not easily generalized to other categories. In this section, we show that for FId-modules
this is only an implication and the converse is false. Thus the notion of support has less important
applications for FId-modules than it has for FI-modules, although it is still related to the strong
polynomial functors.

De�nition 5.3.1. For F a FId-module, a support of F is a set S of objects of FId such that
for any subfunctor G ⊂ F , if G(n) = F (n) for all n ∈ S, then G = F . A FId-module is said to be
�nitely supported if it admits a support of �nite cardinality.

Remark 5.3.2. A support of a FId-module F is not unique. Indeed, if S is a support of F ,
then S ⊔ {n} is another support of F for any object n of FId that is not in S.

Example 5.3.3. If a FId-module is zero after some rank then it is �nitely supported. Conversely,
it is not enough to have zero maps after some rank to be �nitely supported. For example, the
functor ⊕k∈N Mk has no �nite support since every support of Mk must contain k.

The following proposition explains how the notion of support of a FId-module is related to
being generated by the �rst standard projective functors.
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Proposition 5.3.4. Let F be a FId-module and S be a set of objects of FId, then S is a support
of F if and only if F is a quotient of the direct sum

⊕
n∈S
(PFId

n )⊕kn ,

where kn ∈ N⊔{∞}. In particular, if a FId-module is �nitely generated, then it is �nitely sup-
ported.

Proof. This result was proved by Djament in the general context of functors over a small category
in the proposition 2.10 and corollary 2.11 from [Dja16].

Remark 5.3.5. The direct sum in Proposition 5.3.4 can have an in�nite number of terms PFId
n .

This is why �nitely generated implies �nitely supported, but the converse is not true. For example
PFId
0 admits {0} as a support, so the direct sum ⊕PFId

0 with an in�nite number of terms also
admits {0} as a support, and so it is �nitely supported even if it is not �nitely generated. The
Proposition 5.3.4 also shows that a functor is generated in degree ≤ k, as de�ned in [Wil18a] for
example, if and only if the �rst k integers form a support of this functor.

Remark 5.3.6. As a consequence of Proposition 5.3.4, the notion of �nitely supported is closed

under quotient and extension. Indeed, for 0 F G H 0 a short exact

sequence of FId-modules, if G is a quotient of a direct sum of PFId
n for a �nite number of n ∈ N,

then H is also such a quotient since it is a quotient of G. Moreover, if F and H are such
quotients the horseshoe lemma implies that G is also such a quotient. However, the notion of
�nitely supported is not closed under subobjects. Indeed, the direct sum on k ∈ N of the constant
functor M is supported by {0}, while its subfunctor ⊕k∈NM≥k is not �nitely supported, since
any support of M≥k must contain k.

We now explain the connection between the support of a FId-module and the fact that it is
strong polynomial. Explicitly, we show that if F ∶ FId → R-Mod is in Polstrongi (FId,R-Mod),
then the �rst i integers form a support of F . This is inspired by [Dja16, Proposition 4.1] which
gives the same result for functors over a symmetric monoidal category with an initial object,
such as FI. We start with the case i = 0 and we get the general case by induction.

Lemma 5.3.7. Let F be a FId-module, if F is strong polynomial of degree 0, then {0} is a
support of F .

Proof. Let G be a subfunctor of F such that G(0) = F (0), then by hypothesis we have δc1(F ) =
Coker(Id(−) +c) = 0 for all c ∈ C. This shows that F (Idn +c) is an epimorphism for all c ∈ C and
all n ∈ N. We then show by induction that G(n) = F (n) for all n ∈ N: the case n = 0 is true by
hypothesis and if G(n) = F (n) we have F (Idn +c) (G(n)) = F (Idn +c) (F (n)) = F (n + 1). Since
G is a subfunctor of F , we also have that F (Idn +c) (G(n)) is a submodule of G(n + 1), which
shows that G(n + 1) = F (n + 1).

Proposition 5.3.8. Let F be a FId-module, if F is strong polynomial of degree less than or
equal to i, then {0, . . . , i} is a support of F .

Proof. We proceed by induction on i ∈ N, the case i = 0 being given by Lemma 5.3.7. For
F ∈ Polstrongi+1 (FId,R-Mod), let G be a subfunctor of F such that G(n) = F (n) for all n ∈
{0, . . . , i, i + 1}. By Proposition 2.6.6.0) we have an exact sequence

0 κc1(G) κc1(F ) κc1(F/G) δc1(G) δc1(F ) δc1(F/G) 0
φc
1
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for all c ∈ C. Let Hc
1 be the subfunctor of δc1(F ) de�ned by Hc

1 = Im(φc1 ∶ δc1(G) → δc1(F ) ).
We then have Hc

1(m) = δc1(m) for all m ∈ {0, . . . , i} since (φc1)m is constructed by the following
diagram

G(m) τ1(G)(m) = G(m + 1) δc1(G) 0

F (m) τ1(F )(m) = F (m + 1) δc1(F ) 0 ,

(φc
1)m

and the �rst two vertical maps are epimorphisms for m ∈ {0, . . . , i} by hypothesis, which implies
that the last one is an epimorphism. Since δc1(F ) ∈ Pol

strong
i (FId,R-Mod), we have by induction

that {0, . . . , i} is a support of δc1(F ), and so Hc
1 = Im( φc1 ∶ δc1(G)→ δc1(F ) ) = δc1(F ). This means

that φc1 is an epimorphism and, together with the exact sequence above, it gives that δc1(F/G) = 0
for all c ∈ C. We conclude that F/G is in Polstrong0 (FId,R-Mod) and, by Lemma 5.3.7, that

{0} is a support of F/G. Finally, (F/G) (0) = 0 since G(0) = F (0) by hypothesis, so F/G = 0
since {0} is a support of F/G, and then G = F .

Remark 5.3.9. The converse of Proposition 5.3.8 is true for FI-modules (Proposition 4.4 in
[Dja16]) but it is false for FId-modules with d > 1. Indeed, PFId

n admits {0, . . . , n} for support
by Proposition 5.3.4, but it is not strong polynomial if d > 1 by Corollary 5.2.2. The fact that
the converse of Proposition 5.3.8 is true for FI-modules is very speci�c to the category FI. It
allows us to describe the strong polynomial functors over FI with the notion of support and it
comes from the fact that the standard projective functors are polynomial in this case (Remark
5.2.3) which is not often the case over other categories. However, the converse of Lemma 5.3.7,
which is the case where i = 0, is true for functors over a symmetric monoidal category with an
initial object (Remark 2.12 in [Dja16]), but it is particular to 0 since it is the initial object.

5.4 The coslice category (0 ↓ FId) and cross e�ects

The original de�nition of polynomial functors given by Eilenberg and Mac Lane in [EM54]
for functors between categories of modules over a ring is based on the notion of cross ef-
fects, which as been extended several times. We recall in De�nition 5.4.1 the de�nition of
cross e�ects for functors over monoidal categories whose unit is initial given in [DV19]. In
this section we introduce and study the cross e�ects for FId-modules (in De�nition 5.4.6)
following this generalization which is better adapted for such categories with only increasing
morphisms. We then prove in Proposition 5.4.12 that the corresponding polynomial FId-
modules are exactly the strong polynomial FId-modules from De�nition 5.1.1. To do this,
we introduce a new category which corresponds to the coslice category (0 ↓ FId) (sometimes
also called the undercategory under 0 like in [ML98]page 45) of couples (a, x), where a is an
object of FId and x a morphism from 0 to a in FId. Then we use this alternative de�nition
to prove that the composition of two polynomial functors is still polynomial in Proposition 5.4.18.

Since its introduction, the de�nition of polynomial functors based on cross e�ects has
been extended several times, like in [HPV15] to the case where A is a monoidal category whose
unit is a null object. The cross e�ects are generally de�ned by the kernel of a morphism where
we omit a term of a sum at the target but when the unit is a null object, it is equivalent to
use the cokernel of a morphism where we omit a term of a sum at the source (see [DV19] for a
proof). In [DV19], Djament and Vespa de�ne the following notion of cross e�ects for functors
over a monoidal categoryM whose unit is initial following the de�nition as a cokernel:
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De�nition 5.4.1. For A and B two monoidal categories whose unit 0 is initial, the n-th cross
e�ect of F ∶ A→ B is the functor crn(F ) ∶ An → B given on n objects a1, . . . , an of A by

crn(F ) (a1, . . . , an) = Coker
⎛
⎜⎜
⎝

n

⊕
i=1
F(⊕

j≠i
aj) F(

n

⊕
j=1

aj)
n
⊕
i=1

F (σai) ⎞
⎟⎟
⎠
,

where σai is given by the unique map 0 → ai and the identity on the other components. The
functor F ∶ A → B is polynomial of degree less than or equal to n if its (n + 1)-th cross e�ects
crn+1(F ) (−, . . . ,−) is the zero functor.

When the source is a monoidal category whose unit is a null object, the cross e�ects
functors are exact which implies directly that the categories of (strong) polynomial functors
are thick. Djament and Vespa also de�ne a notion of strong polynomial functors over a
monoidal category M whose unit is initial using the endofunctors δ as in De�nition 5.1.1.
They then show in [DV19, Proposition 3.3] that the two de�nitions are equivalent: a functor
F ∶M → R-Mod is polynomial of degree less than or equal to n if and only if the cross e�ect
crn+1(F ) is the zero functor. However, since these categories only have an initial object, they lost
the exactness of the cross e�ect functors and so the stability of polynomial functor by subobjects.

We will show in this section that the same thing happens for FId-modules. First we in-
troduce the coslice category (0 ↓ FId) whose unit is initial and then we de�ne the n-th cross
e�ects functor of a FId-module through a forgetful functor Θ ∶ (0 ↓ FId) → FId in De�nition
5.4.6. This way the n-th cross e�ect crn(F ) of a FId-module F is a functor over (0 ↓ FId)n
and we show in Proposition 5.4.12 that F is in Polstrongn (FId,R-Mod) if and only if F ○Θ is in
Polstrongn ( (0 ↓ FId),R-Mod).

De�nition 5.4.2. The category (0 ↓ FId) has for objects the pairs (a, x) where a is an object
of FId and x a morphism in FId(0, a). The morphisms in (0 ↓ FId) from (a, x) to (b, y) are the
morphisms f ∈ FId(a, b) such that f ○ x = y, and the composition comes from FId.

Remark 5.4.3. For d = 1, the unit 0 of FI is an initial object so for every a ∈ FI, there exists a
unique morphism from 0 to a. There is then an isomorphism of categories between (0 ↓ FI) and
FI.

Proposition 5.4.4. The category (0 ↓ FId) is a symmetric monoidal category and its unit
(0, id0) is an initial object.

Proof. The monoidal structure on (0 ↓ FId) is induced by the monoidal structure on FId (see
Lemma 2.1.5) and the unit 0 of FId gives the unit (0, Id0) of (0 ↓ FId). Now for any object
(a, x) in (0 ↓ FId), the only map from (0, id0) to (a, x) in (0 ↓ FId) is x since such a map f must
satisfy f ○ id0 = x. This shows that (0, id0) is initial.

Since (0 ↓ FId) is a symmetric monoidal category whose unit (0, Id0) is an initial object,
it falls in the framework of [DV19] and so there is a notion of cross e�ects for functors over
(0 ↓ FId) recalled in De�nition 5.4.1. It gives the following:

De�nition 5.4.5. For G ∶ (0 ↓ FId) → R-Mod a functor, the n-th cross e�ect of G is the
functor crn(G) ∶ (0 ↓ FId)n →R-Mod given on n objects (a1, x1) . . . (an, xn) of (0 ↓ FId) by

crn(G) ( (a1, x1), . . . , (an, xn) ) = Coker
⎛
⎜⎜
⎝

n

⊕
i=1
G( ∑

j≠i
(aj , xj)) G(

n

∑
j=1
(aj , xj))

n
⊕
i=1

G(σ(ai,xi) ) ⎞
⎟⎟
⎠
,
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where σ(ai,xi) is given by the unique morphism xi ∶ (0, Id0)→ (ai, xi) in (0 ↓ FId) and the identity
on the other components.

We then can de�ne the cross e�ects of functors over FId using the forgetful functor Θ ∶ (0 ↓
FId)→ FId, which sends an object (a, x) of (0 ↓ FId) to a ∈ FId, and an arrow f in (0 ↓ FId) to
itself in FId, and the de�nition over (0 ↓ FId):

De�nition 5.4.6. For F a FId-module, n ∈ N∗ and (a1, x1) . . . (an, xn) objects of (0 ↓ FId), the
module crn(F ) ( (a1, x1), . . . , (an, xn) ) is the n-th cross e�ect crn(F ○Θ) ( (a1, x1), . . . , (an, xn) )
of the functor F ○Θ over (0 ↓ FId).

Lemma 5.4.7. For F a FId-module and n ∈ N∗, the modules crn(F ) ( (a1, x1), . . . , (an, xn) )
for all objects (a1, x1) . . . (an, xn) of (0 ↓ FId) de�ne a functor

crn(F )(−, . . . ,−) ∶ (0 ↓ FId)n →R-Mod,

called the n-th cross e�ect of F .

Proof. It is a consequence of the fact that crn(F ○Θ) ( −, . . . ,− ) is a functor over (0 ↓ FId)n in
the de�nition of cross e�ects over (0 ↓ FId) whose unit is initial, and that the maps in (0 ↓ FId)
are the maps in FId that �ts the colours.

Remark 5.4.8. For d = 1, we recover the de�nition of cross e�ects for FI-modules from [DV19]
since (0 ↓ FI) is isomorphic to FI.

We give an explicit description of the cross e�ects of functors over FId, using the category
(0 ↓ FId) and the morphisms σxiai = Θ(σ(ai,xi)) in FId which are similar to the morphisms σai in
De�nition 5.4.1.

Proposition 5.4.9. For F a FId-module and n ∈ N∗ the n-th cross e�ect of F on the objects
(a1, x1) . . . (an, xn) of (0 ↓ FId) is the R-module

crn(F ) ( (a1, x1), . . . , (an, xn) ) = Coker
⎛
⎜⎜
⎝

n

⊕
i=1
F( ∑

j≠i
aj) F(

n

∑
j=1

aj)
n
⊕
i=1

F (σxi
ai
) ⎞

⎟⎟
⎠
,

where σxiai = Θ(σ(ai,xi)) is given by the morphism xi ∶ 0 → ai and the identity on the other
components.

Proof. For F a FId-module F ○ Θ is a functor from (0 ↓ FId) to R-modules. Then crn(F ○
Θ) ( (a1, x1), . . . , (an, xn) ) is the cokernel of the map ⊕F ○Θ(σ(ai,xi) ) and by de�nition the
morphism Θ(σ(ai,xi)) = σxiai is given by the morphism xi ∶ 0 → ai and the identity on the other
components.

We now give a lemma about the cokernel of cokernel maps that will be used to prove basic
properties of the cross e�ects.

Lemma 5.4.10. Consider the diagram

A B C

D E F

f

α

Pf

h h

g Pg
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in R-Mod where (C,Pf) = Coker(f) and (F,Pg) = Coker(g). If the left square of the diagram
is commutative, there exists a unique h ∶ C → D such that h ○ Pf = Pg ○ h, and there is an
isomorphism

Coker (h) ≅ Coker( B ⊕D E
g⊕h ) .

Proof. The existence and unicity of h is given by the universal property of the cokernel applied
to Pg ○h since Pg ○h ○ f = Pg ○ g ○α = 0. Since Pf is an epimorphism, the equality h ○Pf = Pg ○h
implies that Im (h) = Im(Pg ○h), which is by de�nition the image of the map Pg restricted to the
image of h. The kernel of the map Pg restricted to the image of h being exactly Im(h) ∩ Im(g),
this gives

Im (h) ≅ Im (Pg ∣Im(h)) ≅ Im(h)/Ker (Pg ∣Im(h)) ≅ Im(h)/Im(h) ∩ Im(g).

With classical isomorphisms we then get

Im (h) ≅ Im(h) + Im(g)/Im(g) = Im(h⊕ g)/Im(g).
Finally, since F is the cokernel of g, we have

Coker (h) = F/Im (h) ≅
(E/Im(g))/

(Im(h⊕ g)/Im(g))
≅ E/Im(h⊕ g) = Coker(h⊕ g).

We now show basic properties of the cross e�ects of functors over FId. In particular, the
cross e�ects satisfy the usual induction relation crn+m = crn(crm+1(−)), where in the second term
we use the cross e�ects of a functor over (0 ↓ FId).
Proposition 5.4.11. For F a FId-module, n,m ∈ N∗ and (a1, x1) . . . (an, xn), (b1, y1) . . .
(bm, ym), (k, x) objects in (0 ↓ FId),

1) There is a natural isomorphism

crn+m(F ) ( (a1, x1), . . . , (an, xn), (b1, y1), . . . , (bm, ym) ) ≅

crn ( crm+1(F ) ( −, (b1, y1), . . . , (bm, ym) ) ) ( (a1, x1) . . . (an, xn) ).

2) There is a natural isomorphism

crn+1(F ) ( (k, x), (a1, x1), . . . , (an, xn) ) ≅ crn ( δxk(F ) ) ( (a1, x1), . . . , (an, xn) ).

Proof. 1) It is a formal consequence of the fact that the same properties are true for functors
over monoidal categories whose unit is initial such as (0 ↓ FId) (see [DV19, Proposition 3.2])
since crn(F ) is crn(F ○Θ) by de�nition.

2) We consider the following diagram in R-Mod:

n

⊕
i=1
F( ∑

j≠i
aj)

n

⊕
i=1
F( ∑

j≠i
aj + k)

n

⊕
i=1
δxk(F )( ∑

j≠i
aj)

F(
n

∑
j=1

aj) F(
n

∑
j=1

aj + k) δxk(F )(
n

∑
j=1

aj)

n
⊕
i=1

F (σxi
ai
)

n
⊕
i=1

F( Id ∑
j≠i

aj
+x)

n
⊕
i=1

F (σxi
ai
+Idk)

n
⊕
i=1

δxk(F )(σ
xi
ai
)

F( Id∑aj
+x)
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where the two right horizontal maps are the projection on the cokernels. The left square com-
mutes by naturality of the transformation ixk from De�nition 2.6.1, which corresponds to the
horizontal maps when applied to F and ⊕F . Also, crn ( δxk(F ) ) ( (a1, x1), . . . , (an, xn) ) is ex-
actly the cokernel of the right vertical map crn(F ) (Id+x) by Proposition 5.4.9. Then the Lemma
5.4.10 gives an isomorphism between Coker ( crn(F ) (Id+x) ) and

Coker

⎛
⎜⎜⎜
⎝

n

⊕
i=1
F( ∑

j≠i
aj + k)⊕ F(

n

∑
j=1

aj) F(
n

∑
j=1

aj + k)

n
⊕
i=1

F (σxi
ai
+Idk)⊕F( Id+x) ⎞

⎟⎟⎟
⎠
.

Finally, this last cokernel is exactly crn+1(F ) ( (k, x), (a1, x1), . . . , (an, xn) ) by Proposition 5.4.9.

We now prove that the de�nition of the polynomial functors over FId using the cross e�ects
as in De�nition 5.4.1 is equivalent to the de�nition of strong polynomial functors from De�nition
5.1.1 using the endofunctors δ.

Proposition 5.4.12. Let F be a FId-module and n ∈ N be an integer, then F is in
Polstrongn (FId,R-Mod) if and only if crn+1(F ) ( − ) is the zero functor over (0 ↓ FId)×(n+1),
if and only if F ○Θ is in Polstrongn ( (0 ↓ FId),R-Mod).

Proof. We prove the �rst equivalence by induction on n ∈ N, the second one is given by [DV19,
Proposition 3.3] since (0 ↓ FId) is monoidal with an initial object. For n = 0, the functor cr1(F )
is zero if and only if the map F (x) is an epimorphism for all k ∈ FId and all x ∈ FId(0, k), since
cr1(F )(k, x) = Coker(F (x) ∶ F (0) → F (k) ) for any (k, x) ∈ (0 ↓ FId). In this case, for any
m ∈ FId, the map F ( (idm +x) ○ cm1 ) = F (idm +x) ○F (cm1 ) is an epimorphism, which implies that
F (idm +x) is an epimorphism. Then cr1(F ) = 0 implies that δxk(F )(m) ∶= Coker(F (idm +x)) = 0
for allm ∈ FId, k ∈ FId and all x ∈ FId(0, k), which is equivalent to F ∈ Polstrong0 (FId,R-Mod) by
Proposition 5.1.4. The converse is direct by taking m = 0 since δxk(F ) = Coker(F (x)) = 0 implies
that F (x) is an epimorphism. For n ∈ N, by Proposition 5.1.4, F is in Polstrongn+1 (FId,R-Mod) if
and only if the functor δxk(F ) is in Polstrongn (FId,R-Mod) for all k ∈ FId and all x ∈ FId(0, k),
which is equivalent to crn+1 ( δxk(F ) ) = 0 by induction. However, by Proposition 5.4.11.2), we
have a natural isomorphism

crn+1 ( δxk(F ) ) ( −, . . . ,− ) ≅ crn+2(F ) ( (k, x),−, . . . ,− ).

This shows that F is in Polstrongn+1 (FId,R-Mod) if and only if crn+2(F ) is the zero functor.

A direct consequence is that a FId-module F is strong polynomial of degree n if and only
if F ○Θ is strong polynomial of degree n over (0 ↓ FId) because of De�nition 5.4.6. Moreover,
if a FId-module is strong polynomial, then its cross e�ects are zero after some rank as in the
following:

Corollary 5.4.13. For F a FId-module and n ∈ N, if F is in Polstrongn (FId,R-Mod) then the
functors crk(F ) ( − ) are the zero functor over (0 ↓ FId)×k for k ≥ n + 1.

Proof. It is a consequence of Proposition 5.4.12 together with the induction relation from Propo-
sition 5.4.11.

Remark 5.4.14. For d = 1, the generation degree in [MW19] is exactly the strong polynomial
degree. Indeed, it is given by the functor denoted by HFI

0 , which corresponds to the cross e�ect
functor on the element 1 of FI and gives the minimal generators of a FI-module.
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We end this section by using the cross e�ects to show that a composition FId → R-Mod →
R-Mod of two polynomial functors is polynomial. In this goal we �rst prove a lemma that will
be central in the next proof.

Lemma 5.4.15. For F a FId-module, m ∈ N, and E a set of k ≥m objects (a1, x1) . . . (ak, xk) of
(0 ↓ FId) we denote by Pm(E) the set of the subsets of E of cardinality m and by σxE∖IaE∖I ∶ ∑

i∈I
ai →

∑
i∈E

ai the morphism given by xi ∶ 0 → ai for (ai, xi) ∈ E ∖ I and the identity of ai for (ai, xi) ∈ I.
If the functor F is strong polynomial of degree less than or equal to m, then the morphism

φE =
⎛
⎜⎜
⎝

⊕
I∈Pm(E)

F(∑
i∈I
ai) F( ∑

i∈E
ai)

⊕
I∈Pm(E)

F(σxE∖I
aE∖I ) ⎞

⎟⎟
⎠

is an epimorphism.

Proof. We proceed by induction on ∣E∣ = k ≥m. For k =m, we have Pm(E) = {E} so there is only
one term in the sum (for I = E) and by de�nition σxE∖EaE∖E is the identity so it is an epimorphism.
Now if the cardinality of E is k + 1, we consider the following diagram

k+1
⊕
l=1

⊕
I∈Pm(E∖{(al,xl)}

F
⎛
⎝ ∑
(ai,xi)∈I

ai
⎞
⎠

k+1
⊕
l=1

F
⎛
⎝ ∑
(ai,xi)∈E∖{(al,xl)}

ai
⎞
⎠

⊕
J∈Pm(E)

F
⎛
⎝ ∑
(aj ,xj)∈J

aj
⎞
⎠

F
⎛
⎝ ∑
(ai,xi)∈E

ai
⎞
⎠
.

k+1
⊕
l=1

φE∖{(al,xl)}

=
k+1
⊕
l=1

⊕
I∈Pm(E∖{(al,xl)}

F (σ)

k+1
⊕
l=1

F(σxl
al
)

φE= ⊕
J∈Pm(E)

F(σxE∖J
aE∖J )

This diagram commutes because of the relation F (σxE∖JaE∖J ) = F(σxE∖IaE∖I ) ○ F (σ
xI∖J
aI∖J ) for I =

J ⊔ {(al, xl)}. Then by induction each of the maps φE∖{(al,xl)} is an epimorphism be-
cause ∣φE ∖ {(al, xl)}∣ = k, and so is their sum ⊕φE∖{(al,xl)}). Moreover, F is in

Polstrongm (FId,R-Mod) so the Corollary 5.4.13 implies that the functors crk+1(F ) ( − ) is the
zero functor over (0 ↓ FId)×(k+1) because k + 1 ≥ m + 1. By Proposition 5.4.9 the module
crk+1(F ) ( (a1, x1), . . . , (ak+1, xk+1) ) is the cokernel of the right vertical map, which implies that
this is an epimorphism. Then, by composition the diagonal of the diagram is an epimorphism,
so the bottom map φE is also an epimorphism.

Remark 5.4.16. For d = 1, we recover the corollary 3.5 from [DV19] which is used to prove that
a composition FI→R-Mod→R-Mod of two polynomial functors is polynomial.

Remark 5.4.17. In Lemma 5.4.15 we can replace the set Pm(E) of the subsets of E of cardinality
m by the set Pm(E) of the subsets of E of cardinality less than or equal to m and the result
stays true. Indeed, the cokernels of the maps

⊕
I∈Pm(E)

F(∑
i∈I
ai) F( ∑

i∈E
ai)

⊕
I∈Pm(E)

F(σxE∖I
aE∖I )

and ⊕
J∈Pm(E)

F( ∑
j∈J

aj) F( ∑
j∈E

aj)
⊕

J∈Pm(E)
F(σxE∖J

aE∖J )

are equal.It comes from the fact that the new maps on the right (∣J ∣ <m) all factor by maps that
are already present in both sides (∣j∣ =m) and so they do not change the cokernel. For example
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if ∣J ∣ = m − 1 and if (al, xl) ∈ E ∖ J then ∣I ∣ = m for I = J ⊔ {(al, xl)} and we have the relation
F(σxE∖JaE∖J ) = F (σ

xE∖I
aE∖I ) ○ F(σ

xI∖J
aI∖J ), which shows that the image of the map F(σxE∖JaE∖J ) is included

in the image of F(σxE∖IaE∖I ), with ∣I ∣ =m.

We can �nally prove that the composition FId → R-Mod → R-Mod of two polynomial
functors is polynomial.

Proposition 5.4.18. For m,n ∈ N, if F ∶ FId →R-Mod is strong polynomial of degree less than
or equal to m and if X ∶R-Mod→R-Mod preserves epimorphisms and is polynomial of degree
less than or equal to n (De�nition 5.4.1), then the composite X ○ F ∶ FId → R-Mod → R-Mod
is strong polynomial of degree less than or equal to nm.

Proof. � If n ≠ 0 and m ≠ 0: We pose k = nm + 1 and we take E a set of k objects
(a1, x1),. . . ,(ak, xk) of (0 ↓ FId). Since n ≠ 0 we have k = nm + 1 ≥ m so we can ap-
ply Lemma 5.4.15 to E and F ∈ Polstrongm (FId,R-Mod). Together with Remark 5.4.17 it
implies that the morphism

φE =
⎛
⎜⎜
⎝

⊕
J∈Pm(E)

F( ∑
j∈J

aj) F( ∑
j∈E

aj)
⊕

J∈Pm(E)
F(σxE∖J

aE∖J ) ⎞
⎟⎟
⎠

is an epimorphism, where Pm(E) is the set of the subsets of E with cardinality less than
or equal to m. Since X preserves the epimorphisms we get that X(φE) is an epimorphism.

Similarly, since m ≠ 0 we get that ∣Pm(E)∣ =
m

∑
i=0
(nm+1

i
) ≥ n, and so we can apply the

proposition 3.5 of [DV19], which is a version of Lemma 5.4.15 for functors over a symmetric
monoidal category with an initial object such as R-Mod, to X and E′ = Pm(E). With
the same argument than in Remark 5.4.17 it implies that the morphism

ψ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⊕
J∈Pn(Pm(E))

X( ⊕
I∈J

F (∑
i∈I
ai)) X

⎛
⎝ ⊕
I∈Pm(E)

F(∑
i∈I
ai)
⎞
⎠

⊕
J∈Pn(Pm(E))

X(σaPm(E)∖J
) ⎞

⎟⎟⎟⎟⎟⎟
⎠

is an epimorphism, where aI = F(∑
i∈I
ai). We then consider the following diagram

⊕
J∈Pn(Pm(E))

X( ⊕
I∈J

F(∑
i∈I
ai)) X ○ F( ∑

i∈E
ai)

⊕
J∈Pn(Pm(E))

X ○ F( ∑
i∈⊔I,I∈J

ai) ⊕
K∈Pnm(E)

X ○ F( ∑
i∈K

ai)

X(φE)○ψ

⊕
K∈Pnm(E)

X○F(σxE∖K
aE∖K )

It commutes since the maps are made with the morphisms σxa and the identities. Then,
X(φE) ○ ψ is an epimorphism, and by composition it implies that the right map is an
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epimorphism. Using the same argument as in Remark 5.4.17, we see that the cokernel of
this right map is equal to

Coker

⎛
⎜⎜⎜
⎝

k

⊕
i=1
X ○ F( ∑

j≠i
aj) X ○ F( ∑

j∈E
aj)

k
⊕
i=1

X○F(σxi
ai
) ⎞

⎟⎟⎟
⎠
,

which is crk(X ○F ) ( (a1, x1), . . . , (ak, xk) ) by Proposition 5.4.9. We conclude that crk(X ○
F ) ( (a1, x1), . . . , (ak, xk) ) is zero for all objects (a1, x1),. . . ,(ak, xk) of (0 ↓ FId), so crk(X○
F ) ( −, . . . ,− ) is the zero functor. Finally, by Proposition 5.4.12, the functor X ○ F is in

Polstrongnm (FId,R-Mod) since k = nm + 1.

� If n = 0: By the proposition 2.9 of [DV19], if X ∶ R-Mod → R-Mod is polynomial of
degree 0, then it is a quotient of a constant functor B ∶ R-Mod → R-Mod. Since the
precomposition F ∗ by F is an exact functor, we get that X ○ F = F ∗(X) is a quotient of
a constant functor B ○ F = F ∗(B). Then B ○ F is in Pol0(FId,R-Mod) and, since it is
closed under quotient (Proposition 5.1.3), we get that X ○ F is in Pol0(FId,R-Mod).

� If m = 0: By de�nition, F ∈ Pol0(FId,R-Mod) implies that δc1(F ) = CokerF (Id(−) +c) = 0
for all c ∈ C. Then F (Id(−) +c) is an epimorphism and, since X preserves epimorphisms,
we get that X ○F (Id(−) +c) = δc1(X ○F ) is an epimorphism. This implies that δc1(X ○F ) = 0
for all c ∈ C, and so X ○ F is in Pol0(FId,R-Mod).

Remark 5.4.19. The constructions of the cross e�ects and of the strong polynomial functors
were presented for functor F ∶ FId → R-Mod but it can be extended to the case of functors
F ∶ FId → A for A any abelian category. Then the previous result can be extended to F ∶ FId → A
and X ∶ A → B, for A and B two abelian categories. Moreover, for d = 1, we recover the
proposition 3.12 from [DV19] which gives this result for functors over FI.

Remark 5.4.20. The result of Proposition 5.4.18 is generally false if we consider a functor
X ∶ R-Mod → R-Mod which does not preserve epimorphisms. We gives a counterexample for
R = Z that is adapted from [DV19, Remark 3.13]. Let Fr ∶ FId → Ab be given on objects by
Fr(n) = Z if n < r and Fr(n) = Z /2Z if n ≥ r, and on morphisms by the identity of Z or the
canonical epimorphism between Z and Z /2Z. Then Fr is strong polynomial of degree 0 since
δc1(Fr) = 0 for all colours c ∈ C, and X ∶= Hom(Z /2Z,−) ∶ Ab → Ab is a polynomial functor
of degree 1 since it is additive. However, the composition X ○ Fr is the functor (Z /2Z)≥r from
Example 5.1.7 and so it is strong polynomial of degree r.

5.5 The pointwise tensor product

In this section we present and study the properties of the pointwise tensor product of FId-
modules. In particular, we show that it preserves strong polynomiality using Proposition 5.4.18.
We will see in Section 7.3 that this tensor product pass to the quotient category St(FId,R-Mod).
We will then extend this result to the weak polynomial degree, when R is a �eld, with a more
precise bound on the degree by using a simpler argument which require the stability by subobject.
We start by de�ning the pointwise tensor product of two FId-modules.

De�nition 5.5.1. For F and G two FId-modules, their pointwise tensor product F ⊗ G ∈
FId -Mod is given on an object n by (F ⊗ G)(n) = F (n) ⊗ G(n) and on a morphism
(f, g) ∈ FId(n,m) by (F ⊗G)(f, g) = F (f, g)⊗G(f, g).
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Remark 5.5.2. This notion of pointwise tensor product should not be confused with the fol-
lowing construction of Sam and Snowden in [SS17]. They de�ne a FId-module from d FI-
modules M1, . . . ,Md: the FId-module N = M1 ⊗ ⋅ ⋅ ⋅ ⊗Md is de�ned on a set S by N(S) =
⊕ M1(S1) ⊗ ⋅ ⋅ ⋅ ⊗Md(Sd), where the sum is on the decompositions S = S1 ⊔ ⋅ ⋅ ⋅ ⊔ Sd, and on a
morphism (f, g) ∈ FId(S,T ) by the direct sum of the maps

M1(S1)⊗ ⋅ ⋅ ⋅ ⊗Md(Sd) M1(S1 ⊔ g−1(c1) )⊗ ⋅ ⋅ ⋅ ⊗Md(Sd ⊔ g−1(cd) ).
d
⊗
i=1
(Si↪Si⊔g−1(ci) )

First we prove that the tensor product of vector spaces is a polynomial functor of degree 2
in the classical sense.

Lemma 5.5.3. The tensor product −⊗− ∶R-Mod×R-Mod→R-Mod is a polynomial functor
of degree 2 in the sense of De�nition 5.4.1.

Proof. Since R-Mod×R-Mod is an abelian category it is in particular monoidal symmetric
category with a null object so it falls in the framework of [DV19]. Then it is enough to prove
that δX1 ○ δX2 ○ δX3(− ⊗ −) is the zero functor, while δX1 ○ δX2(− ⊗ −) is not zero, for all objects
X1 = (M1,N1), X2 = (M2,N2), X3 = (M3,N3) of R-Mod×R-Mod. For U,V ∈ R-Mod, the
space δ(M1,N1)(− ⊗ −)(U,V ) is the cokernel of the map i(M1,N1) given by

(− ⊗ −)(U,V ) → τ(M1,N1)(− ⊗ −)(U,V )
U ⊗ V ↦ (U ⊕M1)⊗ (V ⊕N1)

.

By the de�nition of i(M1,N1) in [DV19] the module U ⊗ V is sent to U ⊗ V , and so δ(M1,N1)(− ⊗
−)(U,V ) is equal to (U ⊗N1)⊕ (M1 ⊗ V )⊕ (M1 ⊗N1). This decomposition is natural since the
map i(M1,N1) is natural. Now the space δ(M2,N2) ○ δ(M1,N1)(− ⊗ −)(U,V ) is the cokernel of the
map

δ(M1,N1)(− ⊗ −)(U,V ) → τ(M2,N2)( δ(M1,N1)(− ⊗ −) )(U,V )
(U ⊗N1)⊕ (M1 ⊗ V )⊕ (M1 ⊗N1) ↦ ( (U ⊕M2)⊗N1 )⊕ (M1 ⊗ (V ⊕N2) )⊕ (M1 ⊗N1).

As above, this implies that

δ(M2,N2) ○ δ(M1,N1)(− ⊗ −)(U,V ) = (M2 ⊗N1)⊕ (M1 ⊗N2).

Again, this is natural and it proves that δ(M2,N2)○δ(M1,N1)(−⊗−) is the constant functor equals to
(M2⊗N1)⊕(M1⊗N2), so it is not zero. Finally, we have that δ(M3,N3)○δ(M2,N2)○δ(M1,N1)(−⊗−)
is zero since it is given on the object (U,V ) by the cokernel of the map

δ(M2,N2) ○ δ(M1,N1)(− ⊗ −)(U,V ) → τ(M3,N3)( δ(M2,N2) ○ δ(M1,N1)(− ⊗ −) )(U,V )
(M2 ⊗N1)⊕ (M1 ⊗N2) ↦ (M2 ⊗N1)⊕ (M1 ⊗N2).

We can now prove that the pointwise tensor product respects strong polynomiality by using
Proposition 5.4.18.

Theorem 5.5.4. For n,m ∈ N and F,G ∶ FId → R-Mod, if F is in Polstrongn (FId,R-Mod)
and if G is in Polstrongm (FId,R-Mod), then their tensor product F ⊗ G is in
Polstrong

2max(n,m)(FId,R-Mod).
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Proof. We consider the functor (F,G) in Fct(FId,R-Mod×R-Mod) and we show by in-
duction that (F,G) is polynomial of degree less than or equal to max(n,m). By hypothesis
F ∈ Polstrongn (FId,R-Mod), and so we have δc1(F ) ∈ Pol

strong
n−1 (FId,R-Mod) for all c ∈ C, and

we have the same for G. This implies that δc1(F,G) = ( δc1(F ), δc1(G) ) is polynomial of de-
gree less than or equal to max(n,m) − 1 = max(n − 1,m − 1). By induction we get δc1(F,G) ∈
Polstrong

max(n,m)−1(FId,R-Mod×R-Mod) for all c ∈ C, so (F,G) ∈ Polstrongn (FId,R-Mod). More-

over, we showed Lemma 5.5.3 that −⊗− is polynomial of degree 2, and the functor −⊗− preserves
epimorphisms since an epimorphism in R-Mod×R-Mod is a couple (f, g) of epimorphism in
R-Mod and then f ⊗ g is also an epimorphism. Since R-Mod×R-Mod is an abelian category,
we then conclude by applying a generalization of Proposition 5.4.18 presented in Remark 5.4.19
to the composition

FId R-Mod×R-Mod R-Mod .
(F,G) −⊗−

Remark 5.5.5. In Appendix A we give a version of Theorem 5.5.4 for the context of symmetric
monoidal category whose unit is an initial object studied in [DV19].

Remark 5.5.6. In Theorem 5.5.4, the bound may be not the best possible. Indeed, we could
expect for F⊗G ∶ FId →R-Mod to be strong polynomial of degree less than or equal to n+m. For
example, for d = 1 the proposition 4.1 from [Dja16] shows that a FI-module is strong polynomial
of degree less than or equal to n if and only if it is a quotient of a sum of the standard projective
functors PFI

i for i ≤ n. This implies that, over FI, the tensor product F ⊗G is polynomial of
degree n +m if F has degree n and G has degree m. One could try to prove a more re�ned
version of Proposition 5.4.18 and use this re�nement to get a better bound.



Chapter 6

The poset of stably zero functors

The notion of strong polynomial FId-modules introduced in Chapter 5 is not fully satisfac-
tory since it lacks important properties, such as being closed under subobjects (Remark 5.1.9).
To solve these problems we want to de�ne a notion of weak polynomial functors inspired by
[DV19] for FI-modules. In order to de�ne them Djament and Vespa studied the subcategory of
Fct(FI,R-Mod) of functors whose colimit is zero called stably zero functors (De�nition 2.10
and Proposition 2.13 in [DV19]) to erase them in a quotient. We do the same for FId, but
we will see in this section that there are several subcategories that can replace the stably zero
functors in the case of FId-modules. We �rst introduce the notion of globally stably zero func-
tors, then we de�ne notions of functors that are stably zero along colours. We end the section
by explaining how these notions interact with each other in Section 6.3 and how they interact
with the theory of twisted commutative algebras from Chapter 4. In particular, we show that
each of these subcategories is thick so we can take the quotient of Fct(FId,R-Mod) by any of
them and de�ne a notion of weak polynomial functors for each of these quotients. However, we
only develop in Chapter 7 the weak polynomial functors corresponding to the global subcate-
gory SN (FId,R-Mod) since it behaves better with the endofunctors δxk that allow us to de�ne
polynomial functors.

6.1 The subcategory of globally stably zero functors

We start with the study of the biggest of these subcategories which we will use in Chapter 7 to
de�ne a notion of weak polynomial functors in the corresponding quotient of Fct(FId,R-Mod).
It is the subcategory of globally stably zero functors denoted by SN (FId,R-Mod). We will
present the other subcategories of stably zero functors, along colours, in the second section.

De�nition 6.1.1. The category SN (FId,R-Mod) is the full subcategory of Fct(FId,R-Mod)
whose objects are the globally stably zero functors, i.e. the functors F ∶ FId → R-Mod such
that κ(F ) = F .

Proposition 6.1.2. Let F ∶ FId → R-Mod be a functor, then F is in the subcategory
SN (FId,R-Mod) if and only if, for every object n ∈ FId and every element a in F (n) there
exist k ∈ FId and x ∈ FId(0, k) such that a ∈ κxk(F )(n).

Proof. Suppose �rst that κ(F ) = F , then for all n ∈ FId and all a ∈ F (n) we have

a ∈ κ(F )(n) = ∑
k∈FId

∑
x∈FId(0,k)

κxk(F )(n).
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By Proposition II.1.14.8) the family of subobjects (κxk(F ) ) of F is �ltered so there exist k ∈ FId
and x ∈ FId(0, k) such that a ∈ κxk(F )(n). Conversely, let n be an object of FId, if for all
a ∈ F (n) there exist k ∈ FId and x ∈ FId(0, k) such that a ∈ κxk(F )(n), then the inclusion
κxk(F )(n) ⊂ κ(F )(n) implies the inclusion F (n) ⊂ κ(F )(n). Since this is true for all objects
n ∈ FId, and since κ(F ) is a subfunctor of F , this implies the identity κ(F ) = F .

Remark 6.1.3. Morally, the Proposition 6.1.2 means that a FId-module F is globally stably
zero if for each n ∈ N every element a ∈ F (n) is sent to zero by some map, of the form Idn +x for
x ∈ FId(0, k).

We now give an alternative description of the subcategory SN (FId,R-Mod) using �ltered
colimits, which will allow us to prove later that SN (FId,R-Mod) is thick and stable by the
endofunctors δxk . To do this, we de�ne a poset structure on Nd using the product order, which
means that for (n1, . . . , nd), (m1, . . . ,md) ∈ Nd we have (n1, . . . , nd) ≤ (m1, . . . ,md) if ni ≤mi

for all 1 ≤ i ≤ d. We then consider the category Nd associated with this poset which is therefore
a �ltered category. We now de�ne a functor ξd ∶ Nd → FId where the i-th component of Nd
corresponds to the i-th colour of FId.

De�nition 6.1.4. The functor ξd ∶ Nd → FId sends an object (n1, . . . , nd) ∈ Nd to the object
n1 + ⋅ ⋅ ⋅ + nd of FId and a morphism (n1, . . . , nd) ≤ (m1, . . . ,md) in Nd to the morphism

( Idn1 , (m1 ∖ n1 → {c1}) ) + . . . + ( Idnd
, (md ∖ nd → {cd}) )

in FId(n1 + ⋅ ⋅ ⋅ + nd , m1 + ⋅ ⋅ ⋅ +md), which can also be written as

( Idn1+⋅⋅⋅+nd
, ( m1 ∖ n1 C

c
m1−n1
1 ) + ⋅ ⋅ ⋅ + ( md ∖ nd C

c
md−nd
d ) ).

Then the following proposition gives a characterization of the stably zero functors as a colimit
using the pre-composition by ξd.

Proposition 6.1.5. Let F be a FId-module, then F ∈ SN (FId,R-Mod) if and only if

colim
Nd

F ○ ξd = 0.

Remark 6.1.6. For d = 1 we recover the propositions 2.13 and 2.14 of [DV19] for the subcategory
SN (FI,R-Mod) of FI-modules since the functor ξ1 ∶ N→ FI is the functor ζ from [DV19].

Proof of Proposition 6.1.5. Since the category Nd is �ltered, the colimit of F ○ ξd ∶ Nd →R-Mod
is a �ltered colimit. Then by Proposition 1.1.6 its elements can be written as the equivalence class
of all objects a ∈ F ○ ξd(n1, . . . , nd) quotiented by the following equivalence relation: two objects
a ∈ F ○ ξd(n1, . . . , nd) and a′ ∈ F ○ ξd(n′1, . . . , n′d) are equivalent if there exists (n′′1 , . . . , n′′d) ∈ Nd,
and two maps f ∶ (n1, . . . , nd) ≤ (n′′1 , . . . , n′′d) and g ∶ (n′1, . . . , n′d) ≤ (n′′1 , . . . , n′′d) in Nd such that
F ○ ξd(f)(a) = F ○ ξd(g)(a′). In particular, the class of an element a ∈ F ○ ξd(n′1, . . . , n′d) is zero
if and only if there exists an object (m1, . . . ,md) ∈ Nd and a map f ∶ (n1, . . . , nd) ≤ (m1, . . . ,md)
such that F ○ξd(f)(a) = 0. Now we can prove the equivalence. If colimF ○ξd = 0, for n ∈ FId and
(n1, . . . , nd) in Nd such that ξd(n1, . . . , nd) = n1 + ⋅ ⋅ ⋅ + nd = n, then for every element a ∈ F (n)
we can consider the class of a ∈ F ○ ξd(n1, . . . , nd) in the colimit of F ○ ξd. Since this colimit is
zero, the class of a is zero which means that there exists an object (m1, . . . ,md) ∈ Nd and a map
f ∶ (n1, . . . , nd) ≤ (m1, . . . ,md) in Nd such that F ○ξd(f)(a) = 0. We now posem =m1+⋅ ⋅ ⋅+md, as
well as ki =mi−ni for 1 ≤ i ≤ d and k = k1+⋅ ⋅ ⋅+kd. For x = (k1 → {c1})+⋅ ⋅ ⋅+(kd → {cd}) ∈ FId(0, k)
we can rewrite

F ○ ξd(f) = F ( ( Idn1 , k1 → {c1}) + ⋅ ⋅ ⋅ + ( Idnd
, kd → {cd}) ) = F (Idn +x).
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Then for all a ∈ F (n) there exist k ∈ FId and x ∈ FId(0, k) such that F (Idn +x)(a) = 0, so
a ∈ κxk(F )(n) ⊂ κ(F )(n). This gives the inclusion F (n) ⊂ κ(F )(n) for all objects n ∈ FId, and
since κ(F ) is a subfunctor of F , this implies the identity κ(F ) = F .

If F ∈ SN (FId,R-Mod) then κ(F ) = F . Let a ∈ F ○ ξd(n1, . . . , nd) be a representative
of a class [a ∈ F ○ ξd(n1, . . . , nd)] in the colimit of F ○ ξd. For n = n1 + ⋅ ⋅ ⋅ + nd, by Lemma 6.1.2
there exist k ∈ FId and x ∈ FId(0, k) such that a ∈ κxk(F )(n). We then denote by ki the number
of occurrences of ci in x for 1 ≤ i ≤ d, and by f the map (n1, . . . , nd) ≤ (n1 + k1, . . . , nd + kd) in
Nd. We then have k1 + ⋅ ⋅ ⋅ + kd = k and

ξd(f) = ( Idn1+⋅⋅⋅+nd
, ( k1 {c1} ) + ⋅ ⋅ ⋅ + ( kd {cd} ) ) ∈ FId(n,n + k).

Then there exits a permutation σ ∈ Sk, rearranging the colours as in x, such that (Idn +σ) ○
ξd(f) = Idn +x. Since a ∈ κxk(F )(n), we have 0 = F (Idn +x)(a) = F (Idn +σ) ○ (F ○ ξd(f))(a),
and so F ○ ξd(f)(a) = 0 since the map Idn +σ is bijective. This means that the class [a ∈
F ○ ξd(n1, . . . , nd)] in the colimit of F ○ ξd is zero.

Using this description of SN (FId,R-Mod) in terms of a �ltered colimit we now state im-
portant properties of the stably zero functors.

Proposition 6.1.7. For F a FId-module, k ∈ FId and x ∈ FId(0, k), we have

1) The subcategory SN (FId,R-Mod) is thick and closed under colimits.

2) The subfunctor κxk(F ) of F is in SN (FId,R-Mod).

3) The functor κ(F ) is the biggest subfunctor of F in SN (FId,R-Mod).

4) The subcategory SN (FId,R-Mod) is stable by the endofunctor δxk .

Proof. 1) For 0 F G H 0 a short exact sequence of FId-modules, we get an-

other short exact sequence 0 F ○ ξd G ○ ξd H ○ ξd 0 in Fct(Nd,R-Mod) by pre-
composition with the functor ξd. Since R-Mod is a Grothendieck category (De�nition 1.3.1)
so is Fct(Nd,R-Mod), which implies that the �ltered colimits are exact. By de�nition Nd is a
�ltered category so we get a short exact sequence

0 colimF ○ ξd colimG ○ ξd colimH ○ ξd 0 .

Then, by Proposition 6.1.5, G is in SN (FId,R-Mod) if and only if colimG ○ ξd = 0. This is
then equivalent to having colimF ○ ξd = 0 and colimH ○ ξd = 0, which means that F and H are
in the subcategory SN (FId,R-Mod) by Proposition 6.1.5 again. Finally, SN (FId,R-Mod) is
closed under colimits by Proposition 6.1.5 since colimits commute together.

2) By Proposition 2.6.6 we have an isomorphism κxk ○ κxk ≅ κxk, so by de�nition we get

κ (κxk(F ) ) = ∑
l∈FId

∑
y∈FId(0,l)

κyl ○ κ
x
k (F ) = κxk ○ κxk (F ) + ∑

l∈FId

∑
y∈FId(0,l),y≠x

κyl ○ κ
x
k (F )

≅ κxk(F ) + ∑
l∈FId

∑
y∈FId(0,l),y≠x

κyl ○ κ
x
k (F ).



Chapter 6. The poset of stably zero functors 95

Since κ(κxk(F )) is a subfunctor of κxk(F ), this shows that κ(κxk(F )) = κxk(F ), and so κxk(F ) is
in SN (FId,R-Mod).

3) By de�nition, κxk(F ) is a subfunctor of F for all k ∈ FId and all x ∈ FId(0, k), so
their sum κ(F ) is also a subfunctor of F by minimality of the sum. By the point 2), each of
the κxk(F ) is in the subcategory SN (FId,R-Mod) which is closed under colimits by the point
1). This implies that κ(F ) is also in SN (FId,R-Mod). It remains to check that κ(F ) is
the biggest subfunctor of F within SN (FId,R-Mod). Let G ⊂ F be another subfunctor such
that G = κ(G) and let j denote the inclusion G ↪ F . Then we have a short exact sequence

0 G F Coker(j) 0 . By Proposition 2.6.6 the endofunctor κ is left exact, so we

get a monomorphism from G = κ(G) to F = κ(F ).

4) Let F be a functor in SN (FId,R-Mod), by Proposition 6.1.5 it implies that colimF ○ ξd = 0.
By Proposition 2.6.6 the endofunctor δxk commutes with colimits so we get that

colim δxk(F ) ○ ξd = δxk( colimF ○ ξd ) = δxk(0) = 0.

Then δxk(F ) is in the subcategory SN (FId,R-Mod) by Proposition 6.1.5 again.

Remark 6.1.8. The point 3) in Proposition 6.1.7 implies in particular that the endofunctor κ
is an adjoint of the inclusion functor of SN (FId,R-Mod) in Fct(FId,R-Mod).

Remark 6.1.9. For d = 1, the stably zero functors in SN (FI,R-Mod) correspond exactly to the
torsion modules over the free TCA Sym((Kd)(1)) from De�nition 4.1.15. Then the endofunctor
κ, which gives the maximal subfunctor of a FI-module in SN (FI,R-Mod), corresponds to the
local cohomology functor denoted by H0

m(−) in [SS16] and [NSS18]. In particular, they studied
the properties of its right derived functors Him(−) in order to understand how Fct(FI,R-Mod)
is constructed from the two pieces SN (FI,R-Mod) and St(FI,R-Mod).

We end this section with some technical results about the SN (FId,R-Mod)-closed objects
de�ned below, which will be used in Chapter 7.

De�nition 6.1.10 (Special case of De�nition 1.3.11). A FId-module F is SN (FId,R-Mod)-
closed if, for all H ∈ SN (FId,R-Mod), both Hom(H,F ) and Ext1(H,F ) are zero.

Remark 6.1.11. The SN (FId,R-Mod)-closed modules are called saturated from the point
of view of TCAs in [SS16] for d = 1, and in [SS19, Proposition 4.1] for a general d. In [SS19],
the saturation functors denoted by Σ>r correspond to the composition S ○ π for the quotient
category by ModA,≤r. It is shown in [NSS18, Proposition 2.7] that the right derived functors of
these functors preserve �nitely generated modules and vanish after some rank.

Proposition 6.1.12. For F a FId-module we have

1) The subfunctor κ(F ) is zero if and only if the set of natural transformations Hom(H,F )
is reduced to 0 for all H ∈ SN (FId,R-Mod).

2) If Hom(H,F ) = 0 for all H ∈ SN (FId,R-Mod), then Hom(H,τk(F ) ) = 0 for all k ∈ N
and all H ∈ SN (FId,R-Mod).

3) If F is SN (FId,R-Mod)-closed, then Hom(H,δxk(F ) ) = 0 for all k ∈ FId, all x ∈ FId(0, k)
and all H ∈ SN (FId,R-Mod)
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Proof. 1) If for some H in SN (FId,R-Mod) there exists a non-zero natural transformation σ
in Hom(H,F ), then its image σ ○H is a non-zero subfunctor of F . We then have the short exact

sequence 0 Ker(σ) H σ ○H 0σ of FId-modules. Applying the left exact functor

κ to it we get another exact sequence:

0 κ(Ker(σ)) κ(H) κ(σ ○H) .

Since H is in SN (FId,R-Mod) we have κ(H) = H and since it is closed under subobjects
(Proposition 6.1.7.1) we get that Ker(σ) is also in SN (FId,R-Mod). Then we have κ(Ker(σ)) =
Ker(σ) and we can make the following commutative diagram with exact rows:

0 κ(Ker(σ)) κ(H) κ(σ ○H)

0 Ker(σ) H σ ○H 0.σ

By a careful application of the �ve lemma we see that the monomorphism κ(σ○H)↪ σ○H is also
an epimorphism, so an isomorphism. This means that the image σ○H of σ is a non-zero subfunc-
tor of F inside SN (FId,R-Mod) and by Proposition 6.1.7.3) it implies that κ(F ) is non-zero.
Conversely, by Proposition 6.1.7, the functor κxk(F ) is in SN (FId,R-Mod) for all k ∈ FId and all
x ∈ FId(0, k). Since this subcategory is closed under colimits by Proposition 6.1.7 it implies that
κ(F ) is also in SN (FId,R-Mod). Then the inclusion j of κ(F ) in F is in Hom(κ(F ), F ) and we
showed that κ(F ) is in SN (FId,R-Mod). Then, by hypothesis we get j is zero and so κ(F ) = 0.

2) By Proposition 2.6.6 the endofunctor τk commutes with colimits and with κyl for all
l ∈ FId and all y ∈ FId(0, l), so it commutes with κ. However, according to the previous point,
the hypothesis is equivalent to κ(F ) = 0. We then deduce that κ( τk(F ) ) = τk(κ(F ) ) = 0 and
the result follows by the previous point.

3) In this case, the exact sequence (I) from Lemma 2.6.4 becomes short by hypothesis
since the �rst arrow is in Hom(κxk(F ), F ), with κxk(F ) in SN (FId,R-Mod). We then get

the short exact sequence 0 F τk(F ) δxk(F ) 0 , and for H ∈ SN (FId,R-Mod)
there is a long exact sequence associated with it and with the functor Hom(H,−):

0 Hom(H,F ) Hom(H,τk(F )) Hom(H,δxk(F )) Ext1(H,F ) . . . .

The �rst and the fourth terms are zero by hypothesis so, for all x ∈ FId(0, k), there is an
isomorphism Hom(H,τk(F )) ≃ Hom(H,δxk(F )). Then, the result is just a consequence of the
last point.

Finally, the precomposition by the colouring functors from De�nition 2.7.2 does not preserve
the stably zero functors as we will explain in Remark 6.3.3. However, the following proposition
explains that it preserves the SN -closed functors.

Proposition 6.1.13. For c ∈ C and F a FId-module, if F is SN (FId,R-Mod)-closed, then the
functor ∆∗c (F ) is SN (FI,R-Mod)-closed.

Proof. Let η ∶ Id → S1 ○ π1 be the unit of the adjunction of π1 and S1. By Proposition 1.3.12 it
is enough to prove that the morphism η∆∗c(F ) ∶ ∆

∗
c (F ) Ð→ S1 ○ π1 ○∆∗c (F ) is an isomorphism.
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By hypothesis, the set Hom(H,F ) is reduced to zero for all H ∈ SN (FId,R-Mod) and by

Proposition 6.1.12 we have κ(F ) = 0. In particular, it gives κc
k

k (F ) = 0 for all k ∈ FId and by

Proposition 2.7.4 we have κk ○∆∗c (F ) ≅ ∆∗c ○ κc
k

k (F ) = ∆∗c ○ 0 = 0. Then by taking the sum on
k ∈ FI we get κ(∆∗c (F ) ) = 0 and �nally using 6.1.12 for FI = FI1 we have

HomFct(FI,R-Mod) (H,∆∗c (F ) ) = 0 for all H ∈ SN (FI,R-Mod).

But by Proposition 1.3.13, the kernel of the unit η is in SN (FI,R-Mod) so the inclusion of
Ker(η∆∗c(F )) in ∆∗c (F ) is zero. This shows that the morphism η∆∗c(F ) is a monomorphism. Now,
if N denotes its cokernel we have a short exact sequence

0 ∆∗c (F ) S1 ○ π1 ○∆∗c (F ) N 0
η∆∗c (F ) .

By Lemma 1.3.14 the image of S1 is SN (FI,R-Mod)-closed, and Proposition 6.1.12 again we
have κk (S1 ○ π1 ○∆∗c (F )) = 0 for k ∈ FI. Then the snake lemma gives an exact sequence

0 κk(N) δk ○∆∗c (F ) δk ○ S1 ○ π1 ○∆∗c (F ) δk(N) 0 .

However, there is a monomorphism κk○δk○S1○π1○∆∗c (F )↪ δk○S1○π1○∆∗c (F ), with S1○π1○∆∗c (F )
which is SN (FI,R-Mod)-closed by Lemma 1.3.14. By Proposition 6.1.7 the image of κk is in
SN (FI,R-Mod), so this monomorphism is zero and we have κk ○δk (S1 ○π1 ○∆∗c (F )) = 0. Using
this and applying the left exact functor κk to the previous exact sequence we get an isomorphism
κk ○ κk(N) ≅ κk ○ δk ○∆∗c (F ). Using Propositions 2.6.6.4) and 2.7.4 we deduce for all k ∈ FI the
identity

κk(N) = κk ○ κk(N) ≅ κk ○ δk ○∆∗c (F ) ≅∆∗c ○ κc
k

k ○ δc
k

k (F ).

Since F is SN (FId,R-Mod)-closed and since the image of κc
k

k is in SN (FId,R-Mod) the
inclusion of κc

k

k ○ δc
k

k (F ) in δc
k

k (F ) is the zero map by Proposition 6.1.12.3), implying that the

functor κc
k

k ○ δc
k

k (F ) is zero. We get that κk(N) is zero for all k ∈ FI and, by taking the sum
over k ∈ FI, we get κ(N) = 0. The Proposition 6.1.12.1) implies then that the set Hom(H,N) is
reduced to zero for allH ∈ SN (FI,R-Mod). SinceN is the cokernel of the unit η, by Proposition
1.3.13 it is in SN (FI,R-Mod) so we can deduce that the map IdN is zero. This proves that
N = 0, so the monomorphism η∆∗c(F ) is also an epimorphism and so it is an isomorphism.

6.2 Functors that are stably zero along colours

We now de�ne the subcategories SN ci1 ,...,cim
(FId,R-Mod) of Fct(FId,R-Mod) of functors

that are stably zero along colours similarly to the globally stably zero functor of the previous sec-
tion. To do this we use the results already proved for functors over FI, especially those of Djament
and Vespa in [DV19], via the colouring functors ∆∗c ∶ Fct(FId,R-Mod) → Fct(FI,R-Mod)
from De�nition 2.7.2. We show that each of these subcategories is thick in Corollary 6.2.5, so
we can take the quotient of Fct(FId,R-Mod) by each of them and de�ne a notion of weak
polynomial functors along colours for any of these quotients.

De�nition 6.2.1. Let ci1 , . . . , cim ∈ C be distinct colours, the category
SN ci1 ,...,cim

(FId,R-Mod) is the full subcategory of Fct(FId,R-Mod) of the FId-modules F
such that, for all colours c ∈ {ci1 , . . . , cim}, we have the identity

∑
k∈FId

κc
k

k (F ) = F.
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Remark 6.2.2. Morally, it means that a FId-module F is stably zero in the colours ci1 , . . . , cim ∈
C if for each n ∈ N every element a ∈ F (n) is sent to zero by some map of the form Idn +ck for
every colour c in {ci1 , . . . , cim}.

We can use the precomposition by the colouring functors ∆c from De�nition 2.7.2 to give
another description of these subcategories based on the stably zero FI-modules. Indeed, we
show that a FId-module is in the subcategory SN ci1 ,...,cim

(FId,R-Mod) if and only if the
precomposition by the colouring functor is stably zero on FI for all the colours in {ci1 , . . . , cim}.
This will allow us to use the results about stably zero FI-modules to obtain similar properties
for stably zero FId-modules.

Proposition 6.2.3. For F a FId-module and c ∈ C, the functor F is in the subcategory
SN c(FId,R-Mod) if and only if the functor ∆∗c (F ) is in the subcategory SN (FI,R-Mod).
Proof. By de�nition, the functor F is in SN c(FId,R-Mod) if and only if the sum on k ∈ FId
of the functors κc

k

k (F ) is equal to F . Since every κc
k

k (F ) is a subfunctor of F , this is equivalent
the equality of R-modules

∑
k∈FId

κc
k

k (F )(n) = F (n)

for all n ∈ FId. By de�nition of ∆c we have F (n) = F ○∆c(n) = ∆∗c (F )(n) and κc
k

k (F )(n) =
κc

k

k (F ) ○∆c(n) =∆∗c ○ κc
k

k (F )(n) = κk ○∆∗c (F )(n). This allows us to rewrite the identity as

∑
k∈FI

κk (∆∗c (F )) (n) =∆∗c (F )(n).

Again, each κk(∆∗c (F )) is a subfunctor of ∆∗c (F ), so this identity (which holds for all objects
n ∈ FI) is equivalent to the equality

∑
k∈FI

κk (∆∗c (F )) =∆∗c (F ),

which is the de�nition of ∆∗c (F ) being in the subcategory SN (FI,R-Mod).

Corollary 6.2.4. For F a FId-module and ci1 , . . . , cim ∈ C distinct colours, the functor F is in
the subcategory SN ci1 ,...,cim

(FId,R-Mod) if and only if the functors ∆∗c (F ) are in the subcate-
gory SN (FI,R-Mod) for all colours c ∈ {ci1 , . . . , cim}.
Proof. According to the de�nition of the categories SN ci1 ,...,cim

(FId,R-Mod), it follows from
Proposition 6.2.3 applied for c ∈ {ci1 , . . . , cim}.

An important consequence of this description of the subcategories SN ci1 ,...,cim
(FId,R-Mod)

is that they are thick subcategories of Fct(FId,R-Mod), which allows us to take the quotient
by any of them.

Corollary 6.2.5. For ci1 , . . . , cim ∈ C distinct colours, the subcategory
SN ci1 ,...,cim

(FId,R-Mod) of Fct(FId,R-Mod) is thick.

Proof. For c ∈ {ci1 , . . . , cim} and 0 F G H 0 a short exact sequence in
Fct (FId,R-Mod), the precomposition functor ∆∗c being exact, we get the following short exact
sequence

0 ∆∗c (F ) ∆∗c (G) ∆∗c (H) 0

in Fct(FI,R-Mod). Since the subcategory SN (FI,R-Mod) is thick (see Proposition 6.1.7
for d = 1, or [DV19]), the functor ∆∗c (G) is in SN (FI,R-Mod) if and only if ∆∗c (F ) and
∆∗c (H) are in SN (FI,R-Mod). Using this for all the colours c in {ci1 , . . . , cim} we get that
SN ci1 ,...,cim

(FId,R-Mod) is thick by Corollary 6.2.4.
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6.3 Poset of stably zero functors

In this section we explain that the subcategories of Fct(FId,R-Mod) of stably zero functors
presented in the two previous sections give a re�nement of the notion of stably zero functors
introduced in [DV19] for FI-modules. Indeed, for d = 1 there is an inclusion of the unique
subcategory of stably zero functors SN (FI,R-Mod) in Fct(FI,R-Mod), but for a general d,
these subcategories naturally form a richer poset for the inclusion.

Lemma 6.3.1. There is a poset of subcategories of Fct(FId,R-Mod) for the inclusion. It can
be represented as follows, where the target of each of these functor categories is R-Mod.

⋯

SN c2,⋯,cd (FId) ⋯ SN c1 (FId)

SN c1,⋯,cd (FId) ⋮ ⋯ ⋮ SN (FId) Fct (FId).

SN c1,⋯,cd−1 (FId) ⋯ SN cd (FId)

⋯

Proof. We prove the inclusion SN c (FId,R-Mod)↪ SN (FId,R-Mod) for a colour c ∈ C, while
the other inclusions of the poset are clear by de�nition. For c ∈ C and F ∈ SN c (FId,R-Mod)
we have

κ(F ) = ∑
k∈FId

∑
x∈FId(0,k)

κxk(F ) = ∑
k∈FId

κc
k

k (F ) + ∑
k∈FId

∑
x∈FId(0,k),x≠ck

κxk(F ).

However, F ∈ SN c (FId,R-Mod) implies that ∑
k∈FId

κc
k

k (F ) = F and, since κ(F ) is a subfunctor

of F we have
κ(F ) = F + ∑

k∈FId

∑
x∈FId(0,k),x≠ck

κxk(F ) = F.

We give now some examples of functors in the poset of Lemma 6.3.1 and, in particular, we
illustrate that the inclusions of these subcategories are strict.

Example 6.3.2. We illustrate that the inclusions forming the poset are strict for d = 2, but the
given counterexamples are generalizable for any FId. For d = 2 the poset is simply the following:

SN c1(FI2,R-Mod)

SN c1,c2(FI2,R-Mod) SN (FI2,R-Mod) Fct(FI2,R-Mod).

SN c2(FI2,R-Mod)

� The inclusion SN (FI2,R-Mod)↪ Fct(FI2,R-Mod) is strict since any constant functor
is not stably zero.
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� The inclusion SN c1,c2(FI2,R-Mod) ↪ SN c1(FI2,R-Mod) is strict: if FFI2
c1 ∶ FI2 →

R-Mod is the functor of Example 2.3.3 (sending all objects to R, the maps containing the
colour c1 to zero and the other maps to the identity), then the functor ∆∗c1(F

FI2
c1 ) is the

sum of all atomic functors, i.e. it sends all objects to R and all non-bijective morphisms
on zero, so it is in the subcategory SN (FI,R-Mod). This implies by Proposition 6.2.3
that FFI2

c1 is in the subcategory SN c1(FI2,R-Mod). However ∆∗c2(F
FI2
c1 ) is a constant

functor so it is not in SN (FI,R-Mod). By Proposition 6.2.3 it implies that FFI2
c1 is not

in SN c2(FI2,R-Mod) and even less in SN c1,c2(FI2,R-Mod).

� The inclusions SN c1(FI2,R-Mod) ↪ SN (FI2,R-Mod) and SN c2(FI2,R-Mod) ↪
SN (FI2,R-Mod) are strict: We give an example of a functor in SN (FI2,R-Mod)
which is neither in SN c1(FI2,R-Mod) nor in SN c2(FI2,R-Mod) using the matrices
A1,A2 ∈M2(R) de�ned by

A1 = (
1 0
0 0
) and A2 = (

0 0
0 1
) ,

which verify A1A2 = A2A1 = 0, Ak1 = A1 and A
k
2 = A2 for any k ∈ N∗. We can then de�ne a

FI2-module G by G(n) = R2 on an object n ∈ FI2, and on morphisms (f, g) ∈ FI2(n,m)
by

G(f, g) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

IdR if f is bijective,
A1 if the only colour that appears in g is the colour c1,
A2 if the only colour that appears in g is the colour c2,
0 if both c1 and c2 appears in g.

The functor ∆∗c1(G) sends every object of FI to R2 and every non-bijective morphism to
A1. This implies that κ(∆∗c1(G) )(n) is the constant functor equals to Ker(A1), so G is not
in the subcategory SN c1(FI2,R-Mod). By symmetry, it is not in SN c2(FI2,R-Mod)
either, but we compute

κc1,c22 (G) = ker (G( id(−) +(c1, c2)) ∶ G(−)→ G(− + 2) ) = Ker ( G(−) G(− + 2)0 ) = G.

Finally, κc1,c22 (G) = G implies κ(G) = G, so G is in the subcategory SN (FI2,R-Mod).

Remark 6.3.3. The Example 6.3.2 shows that the inclusion of subcategories
SN c(FId,R-Mod) ↪ SN (FId,R-Mod) is strict for c ∈ C, so the functor π1 ○ ∆∗c (F ) is
not zero on all functors in SN (FId,R-Mod). This implies in particular, in contrast to the
endofunctors τk and δxk as we will show in Proposition 7.1.6, that the colouring functors do not
pass to the quotient by the subcategory SN (FId,R-Mod). Similarly, by Proposition 6.2.3 a
FId-module F is in the subcategory SN c(FId,R-Mod) if and only if the FI-module ∆∗c (F ) is
in the subcategory SN (FI,R-Mod). We conclude that the precomposition by the colouring
functors does not preserve the stably zero functors.

Remark 6.3.4. In [SS12] Sam and Snowden de�ne the quotient of the modules over a TCA
by its full subcategory of modules locally annihilated by a power of a prime ideal of the TCA.
In [SS19] they apply this construction to the modules over the TCA Sym((Kd)(1)) which are
equivalent to the FId-modules over a �eld R = K. They �rst decompose the category of modules
over the TCA Sym(Kd⊗K∞) into two pieces: they de�ne a module over this TCA to be torsion
if it is annihilated by a non-zero element of positive degree and they then de�ne the "generic"
category Modgen

A as the quotient of the A-modules by the full subcategory of torsion functors.
They then study the rank strati�cation from Remark 4.1.17 de�ned via the determinant ideals.
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This gives a �ltration of subcategories of the modules over this TCA, which would be interesting
to compare with the poset of Lemma 6.3.1, and they decompose the category into the successive
quotients of this �ltration. They then describe in [SS19] each quotient in the �ltration and
explain how these pieces come together.

We end this section by showing that the precomposition by the forgetful functor O ∶ FId → FI
from De�nition 2.1.6 preserves the stably zero functors. More precisely, if a FI-module F is stably
zero, we show that the FId-module O∗(F ) = F ○O is stably zero in every possible way.

Lemma 6.3.5. For ci1 , . . . , cim ∈ C, there are inclusions of categories of functors to R-Mod:

O∗ ( SN (FI) ) ⊂ SN c1,...,cd(FId) ⊂ SN ci1 ,...,cim
(FId) ⊂ SN (FId) .

Proof. For F in SN (FI,R-Mod) and c ∈ C, by de�nition F = κ(F ) = ∑k∈FI κk(F ). By Propo-
sition 2.7.1 we also have O∗ ○κk(F ) ≅ κxk ○O∗(F ) for all x ∈ FId(0, k) and all k ∈ N. This implies
that

∑
k∈FId

κc
k

k ○O∗(F ) ≅ ∑
k∈FId

O∗ ○ κk(F ) = O∗
⎛
⎝ ∑k∈FId

κk(F )
⎞
⎠
= O∗(F ).

We conclude that ∑k∈FId κ
ck

k ○ O∗(F ) = O∗(F ) for all c ∈ C, and so O∗(F ) is in
SN c1,...,cd(FId,R-Mod), the smallest subcategory in the poset.

6.4 Globally stably zero functors and twisted commutative alge-

bras

For R = K a �eld, there is an equivalence of categories between the category of FId-modules
and the category of modules over the free TCA Sym((Kd)(1)) of De�nition 4.1.15 given in
Theorem 4.2.4. The aim of this section is to study the notion of stably zero functors through
this equivalence of categories. We begin with the description of the category equivalent to the
notion of globally stably zero functors from the point of view of Sym((Kd)(1))-modules. We
recall that this equivalence depends on a choice of a basis B of V = Kd, and we use the same
notations as in Section 4.2.

Proposition 6.4.1. The subcategory SN (FId,K -Vect) of Fct(FId,K -Vect) is equivalent to
the full subcategory of Sym(V (1)) -Mod having as objects the Sym(V (1))-modules (G,µ) such
that for all objects n ∈Σ we have the equality

G(n) = ∑
k∈Σ

∑
x∈FId(0,k)

Ker( G(n) K ⋅ex ⊗G(n) G(n + k)Φx
µn+k ∣K ⋅ex⊗G(n) ) ,

where Φx is the canonical isomorphism G(n) ≅ K ⋅ex ⊗G(n).

Proof. We prove that the essential image of the subcategory SN (FId,K -Vect) by the functor
ΓB of Theorem 4.2.4's proof consists of the Sym(V (1))-modules (G,µ) which satisfy the condition
of the statement. This proves the equivalence since the functor ΓB is full and faithful by Theorem
4.2.4. For (G,µ) a Sym(V (1))-module, n, k ∈ FId and x ∈ FId(0, k) ≅ Set(k, d), we can describe
κxk(χB(G,µ))(n) by

κxk(χB(G,µ))(n) = Ker ((χB(G,µ)) (idn +x) ∶ χB(G,µ)(n)Ð→ χB(G,µ)(n + k))
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= Ker ( G(n) G(n) K ⋅ex ⊗G(n) G(n + k)G(idn) Φx
µn+k ∣K ⋅ex⊗G(n) ),

where the last equality is just the de�nition of χB. Since χB and ΓB are quasi-inverse of each
other, (G,µ) is in the essential image of SN (FId,K -Vect) by ΓB if and only if χB(G,µ) is in
SN (FId,K -Vect) and we conclude using the de�nition of SN (FId,K -Vect).

In De�nition 4.3.3 we described an action of GL(V ) on FId-modules for a �xed basis B of
V = Kd, where φ ∈ GL(V ) acts by φB ⋅ (−). For d = 1, the subcategory SN (FI,K -Vect) of
FI -Mod (see De�nition 6.1.1) is closed under the action of GL(V ) since we have shown the
following description of this action in Example 4.3.6: for φ ∈ GL(V ) and G ∈ FI -Mod the
functor φB ⋅ G sends n ∈ FId to G(n) and (f, g) ∈ FId(n,m) to a ⋅ (f, g) with a ∈ K∗. In the
following we show that this is not true for d > 1 by giving a counterexample. In particular, this
implies that the action of GL(V ) does not pass to the quotient in an action on the quotient
category of Fct(FId,K -Vect) by SN (FId,K -Vect).

Proposition 6.4.2. For d > 1, the subcategory SN (FId,K -Vect) of Fct(FId,K -Vect) is not
closed under the action of GL(V ) given in De�nition 4.3.3.

Proof. We use the functor FFI2
c1 from Example 6.3.2 as a counterexample for d = 2 which can

be generalized for any d > 1. We recall that FFI2
c1 is de�ned on objects by FFI2

c1 (n) = K for all
n ∈ FI2 and on morphisms by

FFI2
c1 (f, g) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

IdK if f is bijective,
IdK if the only colour that appears in g is the colour c1,

0 if the colour c2 appears in g.

We showed in Example 6.3.2 that FFI2
c1 is in the subcategory SN (FI2,K -Vect). For φ ∈ GL(K2)

de�ned in the basis B by the matrix

MB(φ) = (
1 1
0 1
) ,

by Proposition 4.3.5 we have (φB ⋅ FFI2
c1 )(n) = K for all objects n ∈ FI2 and

(φB ⋅ FFI2
c1 )(f, g) = ∑

g′∈FI2(0,m∖f(n))

⎛
⎝ ∏
l∈m∖f(n)

mg′(l),g(l)
⎞
⎠
FFI2
c1 (f, g

′)

for all morphisms (f, g) ∈ FI2(n,m). Since FFI2
c1 (f, g

′) is zero if c2 appears in g′ the only non-

zero term in this sum is the one for g′ = (c1)m∖f(n). By de�nition FFI2
c1 (f, g

′) is the identity in
this case, so we get

(φB ⋅ FFI2
c1 )(f, g) =

⎛
⎝ ∏
l∈m∖f(n)

m1,g(l)
⎞
⎠
FFI2
c1 (f, g

′) = (1#{c1∈g} ⋅ 1#{c2∈g}) ⋅ IdK = IdK .

Applying this to the morphism (f, g) = Id(−) +x for k ∈ FI2 and x ∈ FI2(0, k), we get that

κxk(φB ⋅ FFI2
c1 ) = Ker ( (φB ⋅ FFI2

c1 )(Id(−) +x) ) = Ker(Id) = 0.

Finally, we have κ(φB ⋅FFI2
c1 ) = ∑κ

x
k(φB ⋅FFI2

c1 ) = 0, showing that the functor φB ⋅FFI2
c1 is not in

the subcategory SN (FI2,K -Vect) although FFI2
c1 is in SN (FI2,K -Vect).
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Remark 6.4.3. While for d = 1 the category of torsion modules over the TCA Sym((K1)(1))
presented in Remark 6.3.4 corresponds to SN (FI,R-Mod) via the equivalence of Theorem
4.2.4, Proposition 6.4.2 implies that this is not true for d > 1. Indeed, SN (FId,R-Mod) is not
closed under the action of GL(V ), while the category of torsion modules introduced by Sam and
Snowden is.



Chapter 7

Weak polynomial functors on FId

For functors over a symmetric monoidal category whose unit is a null object, the polyno-
mial functors are closed under subobjects (see [Dja16]), which simpli�es their study. It is
because this is not true when the unit is just initial that the weak polynomial functors
were introduced in [DV19] to recover this kind of properties. As seen in Remark 5.1.9,
even for d = 1, the strong polynomial FId-modules are not closed under subobject either.
The given counterexamples are made of functors which are zero on maps after some rank,
which gives rise to unstable phenomena. To avoid this instability we delete the problematic
functors, such as the stably zero functors studied in Chapter 6, in a quotient category of
Fct(FId,R-Mod). Then we can de�ne polynomial objects in this quotient category and the
weak polynomial FId-modules as the functors whose image in the quotient is polynomial.
This way, the notion of weak polynomial FId-modules has all the important properties we
want. This idea is inspired by the situation studied in [DV19] for FI-modules but, as seen
in Chapter 6, for FId there are several subcategories of stably zero functors that we can consider.

In Section 7.1, we present the quotient by SN (FId,R-Mod), the largest subcategory of
Fct(FId,R-Mod) of stably zero functors, to get a smaller quotient category that may be the
easiest to describe. In particular, we get a characterization of the simple objects of this quotient
in Proposition 7.1.8. We then introduce and study the polynomial objects in this quotient in
Section 7.2. We also explain in Remark 7.2.10 that in the quotient by another subcategory of
stably zero functors the polynomial objects are a bit harder to de�ne and we lose some important
properties like the fact that the endofunctors δxk become exact when they pass to the quotient
category. In Section 7.3 we explain that the pointwise tensor product from De�nition 5.5.1 passes
to the quotient by SN (FId,R-Mod) and preserves polynomial objects. Finally, we de�ne the
categoryR-Modd whose objects are the tuples (M, φ2, . . . , φd), whereM is an object ofR-Mod
and φ2, . . . , φd ∶M →M are d−1 isomorphisms in R-Mod commuting two by two in Section 7.4.
We then show that the category of polynomial objects of degree 0 in this quotient is equivalent
to R-Modd.

7.1 The quotient category St(FId,R-Mod)

We showed in Proposition 6.1.7 that the subcategory SN (FId,R-Mod) of Fct(FId,R-Mod)
is thick so, using the construction from De�nition 1.1.8, we can de�ne the quotient by this
subcategory. In this section we give the de�nition, the basic results and some more abstract
properties of this quotient category of stable functors.
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De�nition 7.1.1. The category St(FId,R-Mod) is the quotient category

St(FId,R-Mod) = Fct(FId,R-Mod)/SN (FId,R-Mod)
where the quotient is described in De�nition 1.1.8 and πd is the canonical quotient functor
πd ∶ Fct(FId,R-Mod)→ St(FId,R-Mod).

Remark 7.1.2. Although the objects of the quotient category St(FId,R-Mod) are by de�-
nition the functors from FId to R-Mod, one should think of them as abstract objects since
the morphisms in the quotient are modi�ed by some isomorphism classes, so the objects of the
quotient category are only functors up to relations. To make this clear, we often denote by X
an object of the quotient and by F a functor in Fct(FId,R-Mod). We will say that a functor
F is weak polynomial if its image πd(F ) in the quotient is a polynomial object, but sometimes
we use an abuse of notation and we identify F and πd(F ).

Remark 7.1.3. For d = 1 and R = K a �eld of characteristic zero, there is an equivalence of
categories

St(FI,R-Mod) ≅ SN (FI,R-Mod),
if we consider only �nitely generated functors. The proof is done in [SS16, Section 2.5] by
de�ning a FI-module K = Sym(K∞ ) ⊗ Sym(K∞⊗K∞ ) from the point of view of TCAs as
representations of GL(∞), which also has a structure of a FIop-module. They then show that
the two functors HomFI(−,K) and HomFIop(−,K), (respectively post and pre) composed with
a duality, are quasi-inverse of each other. In [SS19, Section 5], they show that the extremal
quotients ModA,0 and ModA,d of the rank strati�cation of Remark 4.1.17 are equivalent, which
generalizes this equivalence for a general d. To prove this, they show that both categories
are equivalent to the category of polynomial representations of the group GL(∞) ⋉ (K∞⊗Kd).
However, it seems to be false that ModA,k and ModA,d−k are equivalent for k ≠ 0, d. The full
subcategory ModA,0 of ModA consists, from the point of view of TCAs as representations of
GL(∞), of the modules supported at zero, i.e. which are locally annihilated by a power of
Kd⊗K∞ ⊂ Sym(Kd⊗K∞). With the identi�cation Sym(Kd⊗K∞) ≅ K[xi,j ∣1 ≤ i ≤ d,1 ≤ j] it is
the ideal generated by the xi,j with the identi�cation Sym(Kd⊗K∞) ≅ K[xi,j ∣1 ≤ i ≤ d,1 ≤ j],
which seems to correspond to the subcategory SN c1,...,cd(FId,R-Mod) via the equivalence from
Theorem 4.2.4 although we have no rigorous proof of this.

Remark 7.1.4. In [SS16, Section 1.3] Sam and Snowden show that, for d = 1, the equivalent
categories St(FI,R-Mod) and SN (FI,R-Mod) can be described as the category of represen-
tations of an explicit quiver with relations called PartHS. The vertices of this quiver are the
partitions, there is an order relation on the partitions: µ ≤ λ if λ/µ is a "horizontal strip" (called
HS), which means that λi ≥ µi ≥ λi+1 for all i. There is an arrow in PartHS from the partition
µ to the partition λ if µ ≤ λ. For three partitions λ,µ and ν such that µ ≤ λ and λ ≤ ν, the
composition of the two maps µ ≤ λ and λ ≤ ν is equal to the map µ ≤ ν if µ ≤ ν and is zero if
µ ≰ ν. This quiver corresponds to the simple elements (see Proposition 2.4.3) of the category
and gives the relations between them. The proof of this result uses the functors that give the
equivalence St(FI,R-Mod) ≅ SN (FI,R-Mod) for d = 1.

Lemma 7.1.5. The quotient functor πd is essentially surjective, exact, it commutes with all
�ltered colimits and has a right adjoint

Sd ∶ St(FId,R-Mod)→ Fct(FId,R-Mod)

called the section functor.
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Proof. By Proposition 1.2.2 the quotient functor is always exact and essentially surjective.
Since the category R-Mod is a Grothendieck category (De�nition 1.3.1), the functor category
Fct(FId,R-Mod) is also one. Then Proposition 1.3.3 implies, with Proposition 6.1.7, that
SN (FId,R-Mod) is a localizing subcategory of Fct(FId,R-Mod), which means exactly that
the quotient functor πd has a right adjoint. In this case Proposition 1.3.3 implies that it commutes
with all �ltered colimits.

We now give some properties of this quotient category inspired by [DV19, section 2] which
is similar for FI-modules and St(FI,R-Mod). We begin with a proposition stating that the
endofunctors τk and δxk pass to the quotient category St(FId,R-Mod), while the endofunctors
κxk become all zero in the quotient.

Proposition 7.1.6. For k ∈ FId and x ∈ FId(0, k), the endofunctors τk and δxk of
Fct(FId,R-Mod) induce two endofunctors τStk and (δxk)St of St(FId,R-Mod) de�ned by the
relations πd ○ δxk = (δxk)St ○πd and πd ○ τk = τStk ○πd. These endofunctors are exact, they commute
to colimits, and there is a short exact sequence of endofunctors of St(FId,R-Mod):

0 IdSt τStk (δxk)St 0
(ixk)St

Proof. For F ∈ SN (FId,R-Mod), by Proposition 2.6.6 the endofunctor τk commutes with κxl
and colimits, so we have

κ(τk(F )) = ∑
l∈FId

∑
x∈FId(0,l)

κxl (τk(F )) = ∑
l∈FId

∑
x∈FId(0,l)

τk(κxl (F )) = τk(κ(F )) = τk(F ).

This means that τk(F ) is in SN (FId,R-Mod), so the functor πd ○ τk is zero on all objects of
the subcategory SN (FId,R-Mod). Moreover, both πd and τk are exact functors, so πd ○ τk
is also exact. Then, by Proposition 1.3.4, there exists a unique functor τStk which satis�es
the relation πd ○ τk = τStk ○ πd. By Corollary 1.3.5 we get that it is exact, and it commutes
with colimits by construction since πd and τk commute with colimits too (Proposition 2.6.6 and
Lemma 7.1.5). Now we do the same for δxk : for every short exact sequence 0 → F → G → H → 0
in Fct(FId,R-Mod), by applying the exact functor πd to the exact sequence of Proposition
2.6.6 we get the short exact sequence

0 πd ○ δxk(F ) πd ○ δxk(G) πd ○ δxk(H) 0

since we have πd ○ κxk = 0 by Proposition 6.1.7. This means that the functor πd ○ δxk is exact.
Moreover, by Proposition 6.1.7 the subcategory SN (FId,R-Mod) is stable by the endofunctor
δxk , which implies that πd ○ δxk is zero on the subcategory SN (FId,R-Mod). By Proposition
1.3.4 there exists a unique functor (δxk)St which satis�es the relation πd ○ δxk = (δxk)St ○ πd. It is
also exact and it commutes with colimits with the same arguments as for τk. Finally, applying
the exact functor πd to the exact sequence (I) from Lemma 2.6.4 we get the short exact sequence

0 πd(F ) τStk (πd(F )) (δxk)St(πd(F )) 0
(ixk)St

πd(F )

since πd ○ κxk = 0 by Proposition 6.1.7. Using Proposition 1.2.3 we get, for all X ∈
St(FId,R-Mod), the existence of the natural short exact sequence of the statement.
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Remark 7.1.7. In [SS16] Sam and Snowden consider the subcategory of �nitely generated
torsion modules over the TCA Sym((K1)(1)) and study the properties of the quotient category
of �nitely generated Sym((K1)(1))-modules by this full subcategory. This quotient is equivalent
to the subcategory of St(FI,R-Mod) of �nitely generated objects. In particular, they show that
the projective �nitely generated modules are also injective and that the section functor sends
the injective objects of the quotient to projective objects, and that all the �nitely generated
FI-modules have �nite injective dimension.

The following proposition gives a condition that describes the simple objects of the quotient
category St(FId,R-Mod). It is inspired by [SS16, Proposition 2.2.1] which gives a similar result
for �nitely generated FI-modules but expressed in terms of modules over the TCA Sym((K1)(1)).

Proposition 7.1.8. For F a FId-module, the object πd(F ) ∈ St(FId,R-Mod) is simple if
and only if, for all submodules G of F , either G is in SN (FId,R-Mod) or F /G is in
SN (FId,R-Mod).

Proof. If πd(F ) is simple, then for all submodules G of F , πd(G) is a subobject of πd(F ), since
πd is exact. Then either πd(G) = 0, which means that G ∈ SN (FId,R-Mod), or πd(G) = πd(F )
which implies that πd(F /G) = 0 since πd is exact, and thus F /G ∈ SN (FId,R-Mod). Conversely,
for X a subobject of πd(F ) we can apply Proposition 1.2.3 to the inclusion of X in πd(F ), which
gives the existence of F̃ ,G ∈ Fct(FId,R-Mod) and of a monomorphism f ∶ G → F̃ of FId-
modules and of isomorphisms πd(G) ≅ X and πd(F̃ ) ≅ πd(F ), which makes a commutative
diagram. In particular, πd(F̃ ) is simple if and only if πd(F ) is simple. Then we consider the
image of f which is a submodule of F̃ : By hypothesis, either this image is in SN (FId,R-Mod),
either the quotient by this image is in SN (FId,R-Mod). By Lemma 1.2.4, in the �rst case we
get πd(f) = 0 so πd(G) ≅ X = 0, and in the second case we get Coker(f) = 0 so πd(f) is an
epimorphism and πd(F̃ ) = πd(G) ≅X.

Remark 7.1.9. In fact, this proof works for any quotient category A/C, since it uses only the
results of Chapter 1. By Proposition 7.1.8 to classify the simple objects of St(FId,R-Mod) is
equivalent to classify the FId-modules F such that for each of its submodule G either G or F /G
is in SN (FId,R-Mod). For d = 1, Sam and Snowden used this equivalence to classify explicitly
the simple objects of the quotient category for �nitely generated FI-modules in [SS16, Section
2.2]. Indeed, they showed that the simple objects of the quotient are indexed by the partitions:
the object associated to the partition λ is the image by the section functor π1 of the direct sum
of the simple objects of FI -Mod (see Proposition 2.4.3 for d = 1) associated with the partitions
of the form (n,λ), with n ≥ λ1. They then used this result to classify the injective objects of this
quotient.

We now use the notion of SN (FId,R-Mod)-closed objects (De�nition 6.1.10) and the Propo-
sition 6.1.12 to show that there is a monomorphism from δxk ○Sd to Sd ○(δxk)St. This will be used
in Section 7.4 in order to describe the polynomial functors of degree 0.

Proposition 7.1.10. For all k ∈ FId and all x ∈ FId(0, k) there is a natural monomorphism

δxk ○ Sd Sd ○ (δxk)St .

Proof. Let η ∶ Id → Sd ○ πd be the unit of the adjunction of πd and Sd, then for X ∈
St(FId,R-Mod), k ∈ N and x ∈ FId(0, k), the object ηδx

k
○Sd(X) is in Fct(FId,R-Mod). Since
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the co-unit of the adjunction of πd and Sd is always an isomorphism between πd ○ Sd and Id, we
can consider η̃X the composition

δxk ○ Sd(X) Sd ○ πd ○ δxk ○ Sd(X) Sd ○ (δxk)St ○ πd ○ Sd(X) Sd ○ (δxk)St(X),
ηδx

k
○Sd(X) ∼ ∼

where the �rst isomorphism is given by Proposition 7.1.6 and the second by Proposition 1.3.10.
By de�nition, the kernel of η̃X is the same as the kernel of ηδx

k
○Sd(X) and, by Proposition 1.3.13

it is in the subcategory SN (FId,R-Mod) since it is the kernel of the unit of the adjunction of
πd and Sd. Moreover, by Lemma 1.3.14 the functor Sd(X) is SN (FId,R-Mod)-closed. Then
the inclusion j of the kernel Ker(η̃X) within δxk ○Sd(X) is in Hom ( Ker(η̃X), δxk(Sd(X)) ), with
Ker(η̃X) in SN (FId,R-Mod) and Sd(X) which is SN (FId,R-Mod)-closed. By Proposition
6.1.12 we get j = 0 and so η̃X is a monomorphism from δxk ○Sd(X) to Sd○(δxk)St(X). It is natural
since the co-unit is natural and the two isomorphisms inside η̃X are also natural.

Finally we construct an homology functor hFId
∗ (−) from the quotient category

St(FId,R-Mod) to the graded category R-Modgr over R-Mod as the usual homology func-
tor H∗(FId,−) from the category Fct(FId,R-Mod) passing to the quotient. This de�nition is
inspired by Propositions 2.17 and 2.18 of [DV19]. Recall that for R-Mod we use the constant
functor R to de�ne the usual homology functor H∗(FId,−) as the functor TorFId

∗ (R,−).

Proposition 7.1.11. For F a FId-module, if the morphism ixk(F ) is a split monomorphism for
all k ∈ FId and all x ∈ FId(0, k), then

1) For every functor H ∈ SN (FId,R-Mod) we have Ext∗(H,F ) = 0.

2) For every functor G ∈ Fct(FId,R-Mod), the morphism

Ext∗Fct(FId,R-Mod) (G,F ) Ext∗St(FId,R-Mod) (πd(G) , πd(F ))
(πd)∗

is an isomorphism. In particular, πd ∶ Hom(G,F ) → Hom(πd(G), πd(F ) ) is an isomor-
phism.

3) If X ∶ FIopd →R-Mod is a functor such that the morphism ixk(X) is a split epimorphism for
all k ∈ FId and all x ∈ FId(0, k), then for all H ∈ SN (FId,R-Mod) we have Tor∗(X,H) =
0.

4) Let R-Modgr be the graded category over R-Mod. The homology functor H∗(FId,−) ∶
Fct(FId,R-Mod)→R-Modgr passes to the quotient St(FId,R-Mod), which means that

there exists a unique functor hFId
∗ (−) ∶ St(FId,R-Mod)→R-Modgr such that hFId

∗ ○πd =
H∗(FId,−).

Proof. 1) For H a functor in SN (FId,R-Mod), we �rst assume that there exist k ∈ FId and
x ∈ FId(0, k) such that ixk(H) = 0. For all natural transformations σ ∶ H → F , the naturality of
ixk implies the relation τk(σ) ○ ixk(H) = ixk(F ) ○ σ, so the following diagram commutes:

Hom (H,F) Hom (H,τk(F ))

Hom (τk(H), τk(F ))

(ixk(F ))∗

τk (ixk(H))
∗
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Since we assumed that ixk(H) is zero the morphism (ixk(F ))∗ is also zero. Moreover ixk(F ) is a
split monomorphism by hypothesis, so (ixk(F ))∗ is also an epimorphism. Since Hom(−, F ) and
Hom(−, τk(F )) are left exact functors, their derived functors Ext∗(−, F ) and Ext∗(−, τk(F ))
are universal δ-functors. So there exist unique morphisms (ixk(F ))

n

∗ ∶ Extn (H,F) Ð→
Extn (H,τk(F )) extending (ixk(F ))∗. By unicity of the extending morphisms all the morphisms

(ixk(F ))
n

∗ are both split monomorphisms and zero. This implies that, for all n ∈ N, the object
Extn(H,F ) is zero proving the statement if there exist k ∈ FId and x ∈ FId(0, k) such that
ixk(H) = 0. For H an arbitrary functor in SN (FId,R-Mod), we still have

H = κ(H) = ∑
k∈FId

∑
x∈FId(0,k)

κxk(H).

By de�nition, for all k ∈ FId and all x ∈ FId(0, k), the morphism ixk(κxk(H) ) is zero, so from
the previous point we get Ext∗(κxk(H) , F ) = 0. Since the functor Hom(−, F ) commutes with
colimits, its derived functors also commute with colimits because they are universal δ-functors.
This implies the equality

Ext∗ (H , F ) = Ext∗
⎛
⎝ ∑k∈FId

∑
x∈FId(0,k)

κxk(H) , F
⎞
⎠
= ∑
k∈FId

∑
x∈FId(0,k)

Ext∗ (κxk(H) , F ) = 0.

2) By Proposition 1.2.3 the functor πd is full up to inner isomorphisms, so the morphism
πd ∶ Hom(G,F ) → Hom(πd(G), πd(F )) is surjective since we use skew categories (these in-
ner isomorphisms do not count) and we prove that it is also injective. Let σ ∶ G → F be
a natural transformation such that πd(σ) is zero, by Proposition 1.2.4 its image Im(σ) is in
SN (FId,R-Mod). Since the category Fct(FId,R-Mod) is abelian, the morphism σ splits into
j ○ e with e ∶ G → Im(σ) an epimorphism and j ∶ Im(σ) → F a monomorphism. Then j is in
Hom(Im(σ), F ) and Im(σ) is in SN (FId,R-Mod). From the previous point we get j = 0, so
σ = 0. This means that πd(σ) = 0 implies σ = 0 and (since both categories Fct(FId,R-Mod)
and St(FId,R-Mod) are additives) it means that πd is injective, so bijective. Now πd is an
exact functor, so Hom(−, F ) and Hom(πd(−), πd(F )) are left exact functors, and their derived
functors Ext∗(−, F ) and Ext∗(πd(−), πd(F )) are universal δ-functors. Then there exist unique
morphisms

(πd )∗ ∶ ExtnFct(FId,R-Mod) (G,F )Ð→ ExtnSt(FId,R-Mod) (πd(G), πd(F ))

extending πd. By unicity of the extending morphisms, all the morphisms (πd)∗ are also
isomorphisms.

3) This is the dual statement of point 1).

4) The constant functor R ∶ FIopd → R-Mod satis�es the hypothesis of point 3) since,
for all k ∈ FId and all x ∈ FId(0, k), the morphism ixk(R) = R(Id+x) = IdR is a split
monomorphism. We then deduce that, for all functors H ∈ SN (FId,R-Mod), we have the
equality H∗ (FId,H) = TorFId

∗ (R,H) = 0, so the functor H∗(FId,−) is zero on the subcategory
SN (FId,R-Mod). Moreover the functor H∗(FId,−) gives a long exact sequence for every short
exact sequence in Fct(FId,R-Mod). We conclude with Proposition 1.3.6 (with this long exact
sequence), and we get the existence of a unique functor hFId

∗ (−) ∶ St(FId,R-Mod)→R-Modgr
such that hFId

∗ ○ πd = H∗(FId,−).
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7.2 Generalities on the category Poln(FId,R-Mod)

In this section we introduce the weak polynomial functors over FId, which are the FId-modules
that become polynomial objects of St(FId,R-Mod) when passed to the quotient. To de�ne these
polynomial objects of St(FId,R-Mod) we use the endofunctors (δc1)St of St(FId,R-Mod) from
Proposition 7.1.6, for the di�erent colours c ∈ C. After the de�nition we give the basic properties
of these objects. In particular, we show in Proposition 7.2.5 that, unlike to strong polynomial
functors, they form a thick subcategory of the quotient St(FId,R-Mod).

De�nition 7.2.1. The full subcategories of St(FId,R-Mod) of polynomial objects of degree
less than or equal to n, denoted by Poln(FId,R-Mod), are de�ned by induction. By con-
vention, Pol−1(FId,R-Mod) is zero and, for n ∈ N, an object X of St(FId,R-Mod) is in
Poln(FId,R-Mod) if

(δc1)St (X) ∈ Poln−1(FId,R-Mod) for all c ∈ C,

where (δc1)St is the endofunctor from Proposition 7.1.6. A FId-module F is a weak polyno-
mial functor of degree less than or equal to n if its projection πd(F ) is in the subcategory
Poln(FId,R-Mod) of St(FId,R-Mod).

Remark 7.2.2. We say that a functor over FId is weak polynomial if its image in the quotient
category St(FId,R-Mod) by πd is a polynomial object. By de�nition of the endofunctors (δxk)St
we get that a strong polynomial functor is weak polynomial, but the converse is not true as shown
in Example 5.1.7. This justi�es the terminology introduced by Djament and Vespa in [DV19].

Remark 7.2.3. In an abuse of notation, we sometimes also denote by Poln(FId,R-Mod)
the full subcategory of Fct(FId,R-Mod) of weak polynomial functors of degree less than or
equal to n, i.e. the functors F such that πd(F ) is in the subcategory Poln(FId,R-Mod) of
St(FId,R-Mod). In the contrary, we sometimes call by polynomial functors the polynomial
objects of St(FId,R-Mod), even if they are objects of the quotient category.

One may expect that the image by the section functor of a polynomial object in the quotient
category St(FId,R-Mod) gives a strong polynomial FId-module with the same degree, but this
is not always true as shown in the following example.

Example 7.2.4. There exist polynomial objects of degree 1 such that their image by the section
functor is not a polynomial FId-module of degree 1. We give an example for R = Z adapted from
[DV19, Example 5.3]. Let F ∶ FId →Ab be the kernel of the augmentation map Z[−]→ Z, where
Z is the constant functor equal to Z and Z[−] is the linearization that sends an object n to Zn
and a map (f, g) ∈ FId(n,m) to the injection of Zn in Zm along f . Then we get that δc1(F ) = Z≥1
for all c ∈ C and by the Example 5.1.7 the functor F is strong polynomial of degree 2. It is weak
polynomial of degree 1 since we have πd ○ δc1(F ) = πd(Z≥1) = πd(Z) which is weak polynomial of
degree 0. We then compute that κ(Z[−]) = 0 and κ(Z[−]) = 0 so, by Proposition 6.1.12, we get
Hom(H,Z[−]) = 0 and Hom(H,Z) = 0 for allH ∈ SN (FId,R-Mod). Similarly, since Z[−] is pro-
jective we get Ext1(H,Z) = 0 and we deduce from the exact sequence 0 F Z[−] Z
that F is SN (FId,R-Mod)-closed (De�nition 6.1.10). Finally, Proposition 1.3.12 gives that
F ≅ Sd ○ πd(F ), and we showed that πd(F ) is polynomial of degree 1 while Sd ○ πd(F ) is strong
polynomial of degree 2.

We now prove that the subcategories Poln(FId,R-Mod) of St(FId,R-Mod) are thick.



Chapter 7. Weak polynomial functors on FId 111

Proposition 7.2.5. For all n ∈ N, the subcategory Poln(FId,R-Mod) of St(FId,R-Mod) is
thick, closed under colimits and stable by the endofunctors (τk)St and (δxk)St for all k ∈ FId and
all x ∈ FId(0, k).

Proof. The �rst assumption is proved by induction using Proposition 7.1.6, which implies that
all endofunctors (δc1)St are exact and commute with colimits. The second assumption is true
since τk and δ

x
k commute with δc1 as endofunctors of Fct(FId,R-Mod), and it is still true when

they pass to the quotient as endofunctors of St(FId,R-Mod) by Proposition 7.1.6.

Using only the endofunctors (δc1)St for c ∈ C in De�nition 7.2.1 seems a bit restrictive, but the
following lemma shows that, if we use all the endofunctors (δxk)St for k ∈ FId and x ∈ FId(0, k),
we get an equivalent de�nition.

Lemma 7.2.6. An object X of St(FId,R-Mod) is in Poln(FId,R-Mod) if and only if
(δxk)St (X) is in Poln−1(FId,R-Mod) for all k ∈ FId and all x ∈ FId(0, k).

Proof. One implication is obvious by taking k = 1 and c ∈ C = FId(0,1), we prove the

converse. For X in Poln(FId,R-Mod) and c, c̃ ∈ C, we prove that for (δ(c,c̃)2 )St (X) is in
Poln−1(FId,R-Mod). By Proposition 7.1.6 we have the identities πd ○ τ1 = τSt1 ○ πd and
πd ○ δxk = (δxk)St ○ πd, and by Proposition 6.1.7 we have πd ○ κxk = 0. Applying the exact functor
πd to the exact sequence of Proposition 2.6.6.7) we get the short exact sequence

0 (δc̃1)St ○ πd (δ(c,c̃)2 )St ○ πd τSt1 ○ (δc1)St ○ πd 0 .

The co-unit of the adjunction of πd and Sd gives a natural isomorphism η ∶ πd ○ Sd ≃ Id by
Proposition 1.3.10, so applying this exact sequence to the functor Sd(X), we get the following
short exact sequence in St(FId,R-Mod):

0 (δc̃1)St(X) (δ(c,c̃)2 )St(X) τSt1 ○ (δc1)St(X) 0 .

By Proposition 7.2.5 the subcategory Poln−1(FId,R-Mod) is thick and stable by τ1, so the �rst
and last terms of the short exact sequence are in Poln−1(FId,R-Mod) by hypothesis, and so

the middle term (δ(c,c̃)2 )St(X) is also in Poln−1(FId,R-Mod). We then proved that for any

colours c, c̃ ∈ C, the functor (δ(c,c̃)2 )St (X) is in Poln−1(FId,R-Mod) and we conclude simi-
larly, using the exact sequence of Proposition 2.6.6.7) in a general version, that (δxk)St (X) is in
Poln−1(FId,R-Mod) for all k ∈ FId and all x ∈ FId(0, k) by induction.

Remark 7.2.7. For d = 1, the weak polynomial degree corresponds to the notion of stable degree
of [CEF15] and [CEFN14] while the local degree precise how the weak and strong degrees are
linked. It morally gives the strong polynomial degree modulo the weak polynomial degree and
controls the rank from which the representation become stable. For example, in [CMNR18] they
use these notions and spectral sequences to obtain representation stability results for two families
of FI-modules.

We end this section by showing that the precomposition by the forgetful functor O ∶ FId → FI
from De�nition 2.1.6 passes to the quotient and respects the polynomiality.

Lemma 7.2.8. The functor O∗ ∶ Fct(FI,R-Mod) → Fct(FId,R-Mod) passes to the quotient
and induces a functor O∗ ∶ St(FI,R-Mod)→ St(FId,R-Mod) de�ned by the relation O∗ ○π1 =
πd ○O∗.
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Proof. By Lemma 6.3.5 we have an inclusion O∗ ( SN (FI,R-Mod) ) ⊂ SN (FId,R-Mod).
This shows that the composition πd ○ O∗ is zero on the subcategory SN (FI,R-Mod) of
Fct(FI,R-Mod). Since the functor O∗ is exact, we can use Proposition 1.3.4, which gives
the result.

We now show that the precomposition by the forgetful functor preserves the polynomiality
when passed to the quotient categories.

Proposition 7.2.9. For n ∈ N and X ∈ St(FI,R-Mod), if X is in Poln(FI,R-Mod) then
O∗(X) is in Poln(FId,R-Mod), where O∗ ∶ St(FI,R-Mod)→ St(FId,R-Mod) is the functor
from Lemma 7.2.8.

Proof. We prove the result by induction on n ∈ N, the case n = 0 is being a special case of the
following reasoning. For X ∈ Poln(FI,R-Mod) and c ∈ C, we have the isomorphism

(δc1)St ○O∗ ○ π1 = (δc1)St ○ πd ○O∗ = πd ○ δc1 ○O∗ ≅ πd ○O∗ ○ δ1 = O∗ ○ π1 ○ δ1 = O∗ ○ (δ1)St ○ π1

given by Propositions 2.7.1, 7.1.6 and 7.2.8. Since the co-unit always gives an isomorphism
from π1 ○ S1 to the identity by Proposition 1.3.10, we conclude that there is an isomorphism
(δc1)St ○O∗ ≅ O∗ ○(δ1)St. Finally, since (δ1)St(X) is in Poln−1(FI,R-Mod), we get that (δc1)St ○
O∗(X) ≅ O∗○(δ1)St(X) is in Poln−1(FId,R-Mod) by induction. Since this is true for all colours
c ∈ C, it implies that O∗(X) is in Poln(FId,R-Mod).

Finally, we explain in the following remark that the notion of weak polynomial functors
corresponding to another quotient category of Fct(FId,R-Mod) by stably zero functors is more
complex and have less properties than in St(FId,R-Mod).

Remark 7.2.10. We recall that the composition πd ○ δxk is an exact functor because of the
exact sequence (I) from Lemma 2.6.4 since κxk(F ) ∈ SN (FId,R-Mod) by Proposition 6.1.7.
For ci1 , . . . , cim ∈ C some colours, in order to de�ne the polynomial objects in the quotient of
Fct(FId,R-Mod) by its thick subcategory SN ci1 ,...,cim

(FId,R-Mod), we must check that the
endofunctors δxk pass to this quotient. However, if π denotes the quotient functor associated
with this quotient category, the composition π ○ δxk is not an exact functor. Indeed, in general
κxk(F ) is not in SN ci1 ,...,cim

(FId,R-Mod): for example, if FFI2
c1 is the functor from Example

2.3.3 sending all objects to R, the maps containing the colour c1 to zero and the others to the
identity, then we see that κc11 (F ) = F is stably zero in c1 but not in the other colours. We must
then adapt Proposition 1.3.4 as we did in Proposition 1.3.6 by replacing the short exact sequence

of an exact functor by the exact sequence 0 κxk Id τk δxk 0

(I) from Lemma 2.6.4. This allows us, as in Proposition 7.1.6, to de�ne the endofunctors

(κxk)
Stci1 ,...,cim and (δxk)

Stci1 ,...,cim of the quotient of Fct(FId,R-Mod) by its thick subcategory
SN ci1 ,...,cim

(FId,R-Mod) by the relations

π ○ δxk = (δxk)
Stci1 ,...,cim ○ π and π ○ κxk = (κxk)

Stci1 ,...,cim ○ π.

We can then de�ne polynomial objects in this quotient as we did for St(FId,R-Mod) using
these endofunctors (δxk)

Stci1 ,...,cim . The problem is that, during this process, we lost the fact
that the endofunctors κxk become zero in the quotient. We then also lost the exactness of

the endofunctors (δxk)
Stci1 ,...,cim , which is fundamental to study the polynomial objects of the

quotient. For example these subcategories of polynomial objects in this quotient do not seem to
be closed under subobjects.
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7.3 The pointwise tensor product

In this section we show that the pointwise tensor product respects polynomial objects of
St(FId,R-Mod), as for strong polynomial FId-modules (Section 5.5) but with a simpler ar-
gument. To do this we introduce a long exact sequence of vector spaces connecting the kernel
and the cokernel of the tensor product of two linear maps. We then use it to obtain a natural long
exact sequence of functors associated with the tensor product of the two maps ixk(F ) ∶ F → τk(F )
and iyl (G) ∶ G→ τl(G) of De�nition 2.6.1. Finally, we use a part of this exact sequence to prove
by induction that the tensor product preserves polynomial degree, with more precise bound than
for the strong degree. Since this argument requires the stability by subobject, it does not work
for strong degree which is why we used the arguments of Section 5.5. In this section we assume
that R = K is a �eld but all the statements are true if we consider only �at R-modules and mor-
phisms of R-modules with �at kernels and cokernels. We start by showing that the pointwise
tensor product from De�nition 5.5.1 passes to the quotient St(FId,K -Vect).

Lemma 7.3.1. The pointwise tensor product from De�nition 5.5.1 passes to the quotient of
Fct(FId,K -Vect) by the subcategory SN (FId,K -Vect), which gives a functor

⊗ ∶ St(FId,K -Vect) × St(FId,K -Vect)→ St(FId,K -Vect).

Proof. If F or G is in the subcategory SN (FId,K -Vect), then so is F ⊗ G. Indeed, we can
compute for all n ∈ FId that

colim
(n1,...,nd)∈Nd

(F ⊗G)○ξd (n1, . . . , nd) = colim
(n1,...,nd)∈Nd

F ○ξd (n1, . . . , nd)⊗ colim
(n1,...,nd)∈Nd

G○ξd (n1, . . . , nd)

since on vector spaces the tensor product commutes with colimits. By Proposition 6.1.5, if F
is in SN (FId,K -Vect) then the colimit of F ○ ξd is zero, and so is the colimit of (F ⊗G) ○ ξd.
Using Proposition 6.1.5 again, this implies that F ⊗G is in SN (FId,K -Vect) and it is similar
if G is in SN (FId,K -Vect). Now the functor ⊗ ∶ K -Vect×K -Vect → K -Vect is exact since
every vector space is �at which implies that the pointwise tensor product ⊗ of FId-modules over
K is also exact. We can post-compose it with the exact functor πd and, using Proposition 1.3.4
two times, we get an exact tensor functor on the quotient as stated.

We now introduce a lemma about the tensor product of linear maps, which we will use to
construct the long exact sequence of Proposition 7.3.4.

Lemma 7.3.2. Let f ∶X → Y and f ′ ∶X ′ → Y ′ be two linear maps between K-vector spaces, the
two exact sequences associated with their kernel and cokernel 0 K X Y C 0i f p

and 0 K ′ X ′ Y ′ C ′ 0i′ f ′ p′
can be combined to form the following long exact

sequence associated with the tensor product f ⊗ f ′:

0 K ⊗K ′ (K ⊗X ′)⊕ (X ⊗K ′) X ⊗X ′

0 C ⊗C ′ (C ⊗ Y ′)⊕ (Y ⊗C ′) Y ⊗ Y ′

(IdK ⊗i′)⊕(i⊗IdK′) (i⊗IdX′)−(IdX ⊗i′)

f⊗f ′

(IdC ⊗p′)−(p⊗IdC′) (p⊗IdY ′)⊕(IdY ⊗p′)

Proof. The kernel K of f is a vector subspace so we can choose a complement S such that
X =K⊕S. Then the classical isomorphism X/Ker(f) ≅ Im(f) gives an isomorphism Im(f) ≅ S.
By de�nition we also have C = Coker(f) ≅ Y /Im(f), which means that C ≅ Y /S and that
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Y ≅ C ⊕ S since every short exact sequence of vector spaces splits. Then we have a new exact
sequence

0 K K ⊕ S C ⊕ S C 0
IdK ⊕0 0⊕IdS IdC ⊕0 ,

and there is a natural equivalence between this exact sequence and the one with f from the
statement since the following diagram commutes

0 K X Y C 0

0 K K ⊕ S C ⊕ S C 0.

i f p

≅

IdK ⊕0 0⊕IdS IdC ⊕0

The same construction works for f ′ and we can combine the two commutative diagrams (for f
and f ′) with the tensor product to make the following sequence equivalent to the one of the
statement:

0 K ⊗K ′ (K ⊗K ′)⊕2 ⊕ (K ⊗ S′)⊕ (S ⊗K ′) (K ⊗K ′)⊕ (K ⊗ S′)
⊕(S ⊗K ′)⊕ (S ⊗ S′)

0 C ⊗C ′ (C ⊗C ′)⊕2 ⊕ (C ⊗ S′)⊕ (S ⊗C ′) (C ⊗C ′)⊕ (C ⊗ S′)
⊕(S ⊗C ′)⊕ (S ⊗ S′)

∆K⊗K′ ⊕0 ∇K⊗K′ ⊕ Id

0⊕ IdS⊗S′

∇C⊗C′ ⊕0 ∆C⊗C′ ⊕Id⊕0

where ∆K⊗K′ ∶ K ⊗K ′ → (K ⊗K ′)⊕2 is the diagonal map and ∇K⊗K′ ∶ (K ⊗K ′)⊕2 → K ⊗K ′
is the identity on the �rst component and minus the identity on the second one. We can check
at each term that this sequence is exact since it consists only of zero and identity maps. This
implies that the long sequence of the statement is also exact since they are equivalent.

Remark 7.3.3. The proof of Lemma 7.3.2 is not canonical since it depends strongly on the
choice of the complements S and S′ of K and K ′ in X and X ′.

To study the tensor product of polynomial functors we use the exact sequence of vector spaces
of Lemma 7.3.2 to induce a similar exact sequence of functors associated with the endofunctors
κxk and δxk .

Proposition 7.3.4. Let R = K be a �eld, then for F,G in FId -Mod = Fct(FId,K -Vect) there
is an exact sequence of functors associated with the tensor product ixk(F )⊗ i

y
l (G):

0→ κxk(F )⊗ κ
y
l (G) (κxk(F )⊗G)⊕ (F ⊗ κ

y
l (G)) F ⊗G

0← δxk(F )⊗ δ
y
l (G) (δxk(F )⊗ τl(G))⊕ (τk(F )⊗ δ

y
l (G)) τk(F )⊗ τl(G)

Id⊗ιG⊕ιF⊗Id ιF⊗Id− Id⊗ιG

ixk(F )⊗i
y
l
(G)

Id⊗ρG−ρF⊗Id ρF⊗Id⊕ Id⊗ρG

Proof. For n ∈ FId, we apply Lemma 7.3.2 to the two exact sequences of vector spaces

0 κxk(F )(n) F (n) τk(F )(n) δxk(F )(n) 0
ixk(F )(n)

and

0 κyl (G)(n) G(n) τl(G)(n) δyl (G)(n) 0
iy
l
(G)(n)

,
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obtained from the exact sequence (I) from Lemma 2.6.4. It implies that, for all n ∈ FId, the long
sequence of vector spaces corresponding to the one of the statement evaluated in n is exact. This
exact sequence of vector spaces is natural in n ∈ FId by the de�nitions of the endofunctors τk,
δxk , κ

x
k and of the tensor product.

In the following result we extract a short exact sequence from the long exact sequence of
Proposition 7.3.4 that we will use to prove the Theorem 7.3.6.

Corollary 7.3.5. Let R = K be a �eld, for F,G ∈ FId -Mod there is a natural short exact
sequence

0 δxk(F ⊗G) (δxk(F )⊗ τk(G))⊕ (τk(F )⊗ δxk(G)) δxk(F )⊗ δxk(G) 0.

Proof. By de�nition of the pointwise tensor product we get τk(F ⊗ G) = τk(F ) ⊗ τk(G) and
ixk(F ⊗ G) = ixk(F ) ⊗ ixk(G). The exact sequence (I) from Lemma 2.6.4 associated with the
functor F ⊗G can then be written as

0 κxk(F ⊗G) F ⊗G τk(F )⊗ τk(G) δxk(F ⊗G) 0=ixk(F )⊗ixk(G)
ixk(F⊗G) .

We then get the short exact sequence of the statement by splitting the long exact sequence of
Proposition 7.3.4 for k = l and x = y with the following epi-mono factorization:

τk(F )⊗ τk(G) δxk(F ⊗G) (δxk(F )⊗ τk(G))⊕ (τk(F )⊗ δxk(G)) ,

which holds since Coker ( ixk(F )⊗ ixk(G) ) ≅ δxk(F ⊗G).

We �nally prove that the pointwise tensor product respects polynomiality. In addition to
providing numerous examples of polynomial FId-modules, an interesting application of this the-
orem is to give a second proof (in Theorem 8.3.11) that the quotient of PFId

n that we study in
Section 8.3 is weak polynomial of degree n.

Theorem 7.3.6. For R = K be a �eld, X ∈ Poln(FId,K -Vect) and Y ∈ Polm(FId,K -Vect), we
have X ⊗ Y ∈ Poln+m(FId,K -Vect).

Proof. We proceed by induction on n, form �xed. By symmetry we also have the result for n �xed
as m varies and the two together give the result for all n,m ∈ N. For X in Poln+1(FId,K -Vect)
and Y in Polm(FId,K -Vect), by Corollary 7.3.5 we have a short exact sequence

0 δxk(F ⊗G) (δxk(F )⊗ τk(G))⊕ (τk(F )⊗ δxk(G)) δxk(F )⊗ δxk(G) 0.

associated with the FId-modules F = Sd(X) and G = Sd(Y ). As shown in Lemma 7.3.1 we have
πd(F )⊗ πd(G) = πd(F ⊗G), so we can apply the exact functor πd to this short exact sequence.
Because of the isomorphisms πd ○ δxk = (δxk)St ○ πd, πd ○ τk = τStk ○ πd and πd ○ Sd ≅ Id from
Propositions 7.1.6 and 1.3.10, we get the following short exact sequence in St(FId,R-Mod):

0 (δxk)St(X ⊗ Y )
((δxk)St(X)⊗ (τk)St(Y ))
⊕((τk)St(X)⊗ (δxk)St(Y ))

(δxk)St(X)⊗ (δxk)St(Y ) 0

By hypothesis, (δc1)St(X) is in Poln(FId,R-Mod) for all c ∈ C. Since the subcategory
Polm(FId,R-Mod) is stable by (τ1)St and (δc1)St by Proposition 7.2.5, we get by induction that
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both (δc1)St(X) ⊗ (τ1)St(Y ) and (τ1)St(X) ⊗ (δc1)St(Y ) are in Poln+m(FId,R-Mod). Using
Proposition 7.2.5 again, this subcategory is closed under subobjects so the short exact sequence
above implies that (δc1)St(X ⊗ Y ) ∈ Poln+m(FId,R-Mod) for all c ∈ C, showing that X ⊗ Y ∈
Poln+m+1(FId,R-Mod). For n = 0, since (δxk)St(X) = 0, the above short exact sequence gives
an isomorphism (δc1)St(X ⊗ Y ) ≅ (τ1)St(X) ⊗ (δc1)St(Y ) with (τ1)St(X) ∈ Pol0(FId,R-Mod)
and (δc1)St(Y ) ∈ Polm−1(FId,R-Mod). We conclude this case by induction on m ∈ N to prove
that X ⊗ Y ∈ Polm(FId,R-Mod).

Remark 7.3.7. Since the method used in the proof of Theorem 7.3.6 requires the stability by
subobject, it does not work for strong degree. This is why we used a di�erent argument in
Section 5.5 to prove that the pointwise tensor product preserves the notion of strong polynomial
FId-modules.

7.4 Description of Pol0(FId,R-Mod)
In this section we give a description of the category Pol0(FId,R-Mod) of polynomial objects
of St(FId,R-Mod) of degree 0. These functors are actually given by an object M of the
category R-Mod, together with d − 1 automorphisms of M which commute two by two or by
a R[x±12 , . . . , x±1d ]-module. More precisely, we de�ne R-Modd the category whose objects are
the tuples (M, φ2, . . . , φd), where M is an object of R-Mod and φ2, . . . , φd ∶M →M are d − 1
isomorphisms in R-Mod commuting two by two and we prove the following in Theorem 7.4.12.

Theorem. There is an equivalence of categories Pol0(FId,R-Mod) ≅ R-Modd given by the
functor πd ○Θd, where Θd(M, φ2, . . . , φd) is the functor that sends all objects k in FId to M and
a morphism x = (cj1 , . . . , cjk) ∈ FId(0, k) to φj1 ○ ⋅ ⋅ ⋅ ○ φjk , with φ1 = Id.

Since R-Modd is equivalent to the category of R[x±12 , . . . , x±1d ]-modules (see Remark 7.4.9)
we also have an equivalence between Pol0(FId,R-Mod) and R[x±12 , . . . , x±1d ]−Mod. For d = 1
we recover a special case of [DV19, Theorem 2.26] which says that, for FI, the only objects in
Pol0(FI,R-Mod) are the constant functors, and that the equivalence is given by πM ○ c, where
c ∶R-Mod→ Fct(FI,R-Mod) sends M ∈R-Mod to the constant functor M .

We prove the Theorem 7.4.12 in two steps: �rst we de�ne an abstract condition (POL0)
and we show in Proposition 7.4.2 that the polynomial objects of degree 0 are those which satisfy
this condition. Then we show that the objects satisfying the condition (POL0) correspond to
the objects of R-Modd.

De�nition 7.4.1. An object X of St(FId,R-Mod) satis�es the condition (POL0) if, for all
k ∈ FId and all x ∈ FId(0, k), the morphism

ixk( Sd(X) ) = Sd(X) ( Id(−) +x) ∶ Sd(X)(−)Ð→ τk (Sd(X))(−),

is an isomorphism, where Sd is the section functor of Lemma 7.1.5.

Proposition 7.4.2. An object X of St(FId,R-Mod) is in Pol0(FId,R-Mod) if and only if it
satis�es the condition (POL0) from De�nition 7.4.1.

Proof. If X satis�es the condition (POL0), then for any c ∈ C the morphism ic1(Sd(X)) is an
isomorphism, so its cokernel δc(Sd(X)) is zero. Then we have

δStc (X) ≅ δStc ○ πd ○ Sd(X) ≅ πd ○ δc(Sd(X) ) ≅ πd(0) = 0,
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where the �rst equivalence is given by the co-unit ηX ∶ πd ○ Sd(X) ≅ X of the adjunction of πd
and Sd (Proposition 1.3.10) and the second by Proposition 7.1.6. This shows that δStc (X) = 0
for all c ∈ C, so X is in Pol0(FId,R-Mod). Conversely, if X is in Pol0(FId,R-Mod), we show
that for any k ∈ FId and any x ∈ FId(0, k) the morphism ixk(Sd(X)) is a monomorphism and an
epimorphism in the abelian category Fct(FId,R-Mod), i.e. an isomorphism. First, since X is
in Pol0(FId,R-Mod) by Lemma 7.2.6 the functor (δxk)St(X) is zero and so we have

δxk(Sd(X))↪ Sd ○ (δxk)St(X) = Sd(0) = 0,

where the monomorphism is given by Proposition 7.1.10. This proves that ixk(Sd(X)) is an
epimorphism. Moreover, by adjunction of πd and Sd we have, for all H ∈ SN (FId,R-Mod):

HomFct(FId,R-Mod) (H,Sd(X)) ≅ HomSt(FId,R-Mod) (πd(H),X) = Hom (0,X) = 0.

By Proposition 6.1.12, this implies that κ(Sd(X)) = 0. Since the endofunctor κ is the sum of all
the κx̃

k̃
, the minimality of the sum implies that all κx̃

k̃
(Sd(X)) are zero. We then have κxk = 0 and

so ixk is a monomorphism.

Remark 7.4.3. The Proposition 7.4.2 and the de�nitions of strong and weak polynomial FId-
modules give the following two characterizations for the degree 0:

� A functor F ∈ Fct(FId,R-Mod) is in Polstrong0 (FId,R-Mod) if and only if the morphism
ixk(F ) is an epimorphism for all k ∈ FId and all x ∈ FId(0, k).

� An object X ∈ St(FId,R-Mod) is in Pol0(FId,R-Mod) if and only if the morphism
ixk(Sd(X)) is an isomorphism for all k ∈ FId and all x ∈ FId(0, k).

For d = 1, the �rst point is included in [DV19, Proposition 2.9] and the second in the proof of
[DV19, Proposition 2.26]. For F ∈ Fct(FId,R-Mod) and X ∈ St(FId,R-Mod) by applying the
exact functor πd to the exact sequence (I) from Lemma 2.6.4, by Proposition 6.1.7 we have the
following:

� If X is in Pol0(FId,R-Mod) then Sd(X) is in Polstrong0 (FId,R-Mod),

� If F is in Polstrong0 (FId,R-Mod) then πd(F ) is in Pol0(FId,R-Mod).

Note that the �rst point is very speci�c to the degree 0, while the second one is true in general
(see Remark 7.2.2).

We now give an explicit description of the functors satisfying the condition (POL0),
which will be used to prove Theorem 7.4.12. First recall that by De�nition 7.4.1, if X ∈
St(FId,R-Mod) satis�es the condition (POL0), then Sd(X)(ck1) is an isomorphism for all
k ∈ FId. Using this, the Proposition 2.5.4 and the category FId given in De�nition 2.5.2 we
de�ne a functor HX isomorphic to Sd(X) and we give an explicit description of this functor.
This equivalence is essential for the proof of Theorem 7.4.12.

De�nition 7.4.4. For X ∈ St(FId,R-Mod) satisfying the condition (POL0), the functor HX ∶
FId → R-Mod is given on an object n ∈ FId by HX(n) = Sd(X)(0), and on a morphism
x ∈ FId(0, k) = FId(0, k) by

HX(x) = ( Sd(X) (ck1) )−1 ○ Sd(X) (x),

where c1 is a �xed colour, and by the identity on FId(k, k) = FId(k, k) = Sk.
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This functor extends to a unique functor HX ∶ FId → R-Mod by Proposition 2.5.4 since
it sends every morphism to isomorphisms. We now explain how the functor HX is completely
determined by its image on the morphisms c ∈ FId(0,1) = C using the subcategory FId of FId
from De�nition 2.5.2. These images correspond to the d − 1 isomorphisms of modules of the
category R-Modd as we trivialize the action of c1.

Proposition 7.4.5. If X ∈ St(FId,R-Mod) satis�es the condition (POL0), then HX is deter-
mined by the images

HX(c) = ( Sd(X) (c1) )
−1 ○ Sd(X) (c) ∶ Sd(X)(0)→ Sd(X)(0)

for c ∈ C and by the relations HX(c) ○HX(c′) =HX(c′) ○HX(c) for c, c′ ∈ C.

Proof. For x ∈ FId(0, k) and y ∈ FId(0, l), by applying the functor Sd(X) to the relation (Idl +x)○
cl1 = (cl1 + Idk) ○ x in FId we get Sd(X) ( Idl +x ) ○ Sd(X) (cl1) = Sd(X) ( cl1 + Idk ) ○ Sd(X) (x).
Using this, by de�nition of HX , we get the identities

HX(x) ○HX(y) = ( Sd(X) (ck1) )
−1 ○ Sd(X) (x) ○ ( Sd(X) (cl1) )

−1 ○ Sd(X) (y)

= ( Sd(X) (ck1) )
−1 ○ ( Sd(X) ( cl1 + Idk ) )

−1 ○ Sd(X) ( Idl +x ) ○ Sd(X) (y)

= ( Sd(X) (ck+l1 ) )
−1 ○ Sd(X) ( (y, x) )

=HX( (y, x) ).

This proves that for any two morphisms x, y starting from 0 we have the relationHX(x)○HX(y) =
HX(y, x) and by induction we conclude that HX is determined only by the image HX(c) of the
colour morphisms c ∈ FId(0,1). Finally, since Sd(X)(ck) is an isomorphism for all k ∈ FId and
all c ∈ C, we have Sd(X) (y, x) = Sd(X) (y, x) by Proposition 2.5.1. This gives for c, c̃ ∈ C, with
the previous relations, the identity

HX(c) ○HX(c̃) =HX( (c̃, c) ) =HX( (c, c̃) ) =HX(c̃) ○HX(c).

Finally, any family of commuting isomorphisms (HX(c))c ∈C of Sd(X)(0) (i.e. satisfying the
identities HX(c) ○HX(c̃) =HX(c̃) ○HX(c) for c, c̃ ∈ C) determines a unique functor HX ∶ FId →
R-Mod by the formulas above.

Proposition 7.4.6. If X ∈ St(FId,R-Mod) satis�es the condition (POL0), then HX is deter-

mined by the images HX(c) = ( Sd(X) (c1) )
−1 ○ Sd(X) (c) ∶ Sd(X)(0) → Sd(X)(0) for c ∈ C,

and by the relations HX(c) ○HX(c′) =HX(c′) ○HX(c) for c, c′ ∈ C.

Proof. It is a consequence of Proposition 7.4.5 and Proposition 2.5.4, which state that a FId-
module is determined by its underlying functor over FId.

We now prove that, for X ∈ St(FId,R-Mod) which satis�es the condition (POL0), the
functor Sd(X) is equivalent to the functor HX of De�nition 7.4.4. This allows us to conclude
that the FId-module Sd(X) is determined by its image on the colouring morphism c ∈ C, which
is the key point in the proof of the theorem.

Lemma 7.4.7. For X ∈ St(FId,R-Mod) satisfying the condition (POL0) there is a natural
equivalence ε ∶ HX ≅ Sd(X) given by εn = Sd(X)(cn1) ∶ HX(n) = Sd(X)(0) → Sd(X)(n) for
n ∈ FId.
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Proof. Let u ∈ FId(n,n +m) be a general morphism in FId, the identity

HX(cn1) =HX(cn1) = (Sd(X) (cn1))−1 ○ Sd(X) (cn1) = Id

gives that HX(u) =HX(u○cn1) = ( Sd(X) (cn+m1 ) )−1○Sd(X) (u○cn1). This implies the naturality
of ε:

εn+m ○HX(u) = Sd(X) (cn+m1 ) ○ HX(u) = Sd(X) (u ○ cn1) = Sd(X) (u) ○ εn.

Finally, ε is a natural equivalence by de�nition of the condition (POL0).

Finally, we de�ne the category R-Modd which will be isomorphic to the category
Pol0(FId,R-Mod) of polynomial objects of degree 0. The equivalence is given in Theorem
7.4.12.

De�nition 7.4.8. The category R-Modd has for objects the tuple (M, φ2, . . . , φd), where M
is an object of R-Mod and φ2, . . . , φd ∶ M → M are d − 1 isomorphisms in R-Mod which
commute two by two. The morphisms in R-Modd from (M, φ2, . . . , φd) to (M ′, φ′2, . . . , φ

′
d)

are the morphisms f ∶ M → M ′ in R-Mod such that φ′j ○ f = f ○ φj for all 2 ≤ j ≤ d, and the
composition in R-Modd comes from R-Mod.

Remark 7.4.9. The category R-Modd is equivalent to the category R[x±12 , . . . , x±1d ]−Mod of
modules over the ringR[x±12 , . . . , x±1d ] of commutative polynomials in the d−1 variables x2, . . . , xd,
all invertible. The equivalence is given by the functor that sends a R[x±12 , . . . , x±1d ]-module M
to the tuple (M, φ2, . . . , φd), where φi is given by the action of the variable xi for 2 ≤ i ≤ d.

We use the subcategory FId of FId to de�ne the functor Θd which gives the equivalence of
categories in Theorem 7.4.12.

De�nition 7.4.10. The functor Θd ∶ R-Modd → Fct (FId,R-Mod ) is given on an object
(M, φ2, . . . , φd) by Θd(M, φ2, . . . , φd) (k) = M, for all k ∈ FId, and for x = (cj1 , . . . , cjk) ∈
FId(0, k) by Θd(M, φ2, . . . , φd) (cj1 , . . . , cjk) = φj1 ○ ⋅ ⋅ ⋅ ○ φjk , where φ1 denotes the identity.
The image of a morphism f from (M, φ2, . . . , φd) to (M ′, φ′2, . . . , φ

′
d) by Θd is the natural trans-

formation ε de�ned by εn = f ∶M →M ′.

Remark 7.4.11. Since the images of the morphisms by Θd(M, φ2, . . . , φd) are all isomorphisms,
this de�nition is extended to obtain a functor Θd from R-Modd to Fct(FId,R-Mod) using
Proposition 2.5.4.

We end this section with the theorem describing the polynomial functors of degree 0.

Theorem 7.4.12. There is an equivalence of categories Pol0(FId,R-Mod) ≅ R-Modd given
by the functor πd ○Θd ∶ R-Modd → St(FId,R-Mod).

Remark 7.4.13. For d = 1, since R-Mod1 = R-Mod we recover the description of
Pol0(FI,R-Mod) given by Djament and Vespa in Theorem 2.26 of [DV19]:

Pol0(FI,R-Mod) ≅R-Mod .

Proof of Theorem 7.4.12. First we prove that the essential image of πd ○Θd is the subcategory
Pol0(FId,R-Mod): for (M, φ2, . . . , φd) ∈R-Modd and c ∈ C, we have

δStc (πd ○Θd(M, φ2, . . . , φd) ) = πd ( δc(Θd(M, φ2, . . . , φd)) ) = πd(0) = 0,
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where the �rst equality is given by Proposition 7.1.6 and the second comes from the fact that
Θd(M, φ2, . . . , φd) (Id+c) is an isomorphism. This shows that the image of the functor πd ○Θd

is in Pol0(FId,R-Mod). Now if X is in Pol0(FId,R-Mod) it satis�es the condition (POL0)
by Proposition 7.4.2 and, by Lemma 7.4.7, the functor Sd(X) is equivalent to the functor HX

which is exactly the image of

MX ∶= (Sd(X)(0), (Sd(X) (c1))
−1 ○ Sd(X) (c2) , . . . , (Sd(X) (c1))

−1 ○ Sd(X) (cd) )

by the functor Θd by Proposition 7.4.6. By Proposition 1.3.10 the co-unit of the adjunction of πd
and Sd is always an isomorphism from πd○Sd to Id and, since πd is exact, we get the isomorphism

X ≅ πd ○ Sd (X) ≅ πd ○HX ≅ πd ○Θd (MX).

Finally, we show that the functor πd ○Θd is full and faithful. The functor Θd is faithful since we
have (Θd(f) )0 = f for any morphism f in R-Modd. For ε a natural transformation between
Θd(M, φ2, . . . , φd) and Θd(N, ψ2, . . . , ψd), by naturality we have the relations ε1 ○ φj = ψj ○ ε0
and εn ○ (φjn ○ ⋅ ⋅ ⋅ ○φj1) = (ψjn ○ ⋅ ⋅ ⋅ ○ψj1) ○ ε0 for all 1 ≤ j, j1, . . . , jn ≤ d with φ1 = ψ1 = Id. Using
the second relation with j1 = ⋅ ⋅ ⋅ = jn = 1 we get εn = ε0 for all n ∈ FId. The �rst relations then
give ε0 ○ φj = ψj ○ ε0 for all 2 ≤ j ≤ d. This means exactly that ε = Θd(ε0 ∶ M → N), so the
functor Θd is full and faithful. Moreover, the functor Θd(N ψ2, . . . , ψd) sends all morphisms to
isomorphisms which are split monomorphisms. Then it satis�es the hypothesis of Proposition
7.1.11 so the functor πd is an isomorphism on arrows and, with the previous point, we get a
natural bijection

HomR-Modd
( (M, φ2, . . . , φd) , (N, ψ2, . . . , ψd) )

≅ HomFct(FId,R-Mod) ( Θd(M, φ2, . . . , φd) , Θd(N, ψ2, . . . , ψd) )
≅ HomSt(FId,R-Mod) ( πd ○Θd(M, φ2, . . . , φd) , πd ○Θd(N, ψ2, . . . , ψd) ).

This shows that the functor πd ○ Θd is full and faithful and that its essential image is
Pol0(FId,R-Mod).



Chapter 8

Weak polynomial quotients of the
projective standard functors

By Proposition 5.2.1, the standard projective generators PFId
n from De�nition 2.2.4, which

form a very important family of FId-modules, are not polynomial for d > 1. Since the fact
that they are polynomial for d = 1 simpli�es the study of polynomial FI-modules, we give
di�erent examples of quotients of the functors PFId

n which are (weak) polynomial. In addition
to give some concrete examples, these quotients may give us a better approach of what the
polynomial functors on FId look like. The �rst examples are a family of quotients of the
functor PFId

0 , obtained in Section 8.1 by �ltering its generators by the number of occurrences
of the colours, which are weak polynomial of degree 0. We also show that the image of
these quotients in St(FId,R-Mod) is equal to the image of a constant functor. Then these
functors correspond, through the equivalence of categories given in Theorem 7.4.12 giving the
description of Pol0(FId,R-Mod), to the object (R, Id, . . . , Id) of R-Modd or to the trivial
R[x±12 , . . . , x±1d ]-module.

In Section 8.2 we show that the quotient of the functor PFId
n by the subfunctor corresponding

to the action of the symmetric groups by post-composition is weak polynomial of degree 0.
However, we explain that it is not easy to �nd the corresponding object of R-Modd through
the equivalence of categories giving the description of Pol0(FId,R-Mod) since the passage to
the quotient category is not explicit. In Section 8.3 we give a quotient of PFId

n , which is weak
polynomial of degree n, obtained as the quotient by the action of the symmetric groups on the
colour choices. To prove this we use a formula from Proposition 8.3.8 which links this quotient of
PFId
n with PFI

n and the functor P Cd0 over the category Cd, introduced in De�nition 8.2.5, whose
objects are the integers and whose morphisms from n to m are the unordered choice of m − n
colours in C. Finally, in Section 8.4 we construct a quotient of PFId

n that is weak polynomial of
degree i for any i ∈ N using the above formula and similar quotients of PFI

n .

8.1 Weak polynomial quotients of PFId
0

In this section we give examples of quotients of the functor PFId
0 which are weak polynomial

of degree 0 by �ltering its generators by the occurrences of the colours. We begin with a �rst
example where we quotient PFId

0 by identifying all its generators.

De�nition 8.1.1. For n ∈ FId, the submodule G0(n) of PFId
0 (n) is given by

G0(n) = ⟨α − cn1 ∣α ∈ FId(0, n)⟩
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that is the submodule generated by the elements α − cn1 for α ∈ FId(0, n).

Lemma 8.1.2. The submodules G0(n) of PFId
0 (n) de�ne a subfunctor G0 of PFId

0 .

Proof. For (f, g) ∈ FId(n,m) and α − cn1 a generator of G0(n) we have

PFId
0 (f, g) (α − cn1) = (f, g) ○ α − (f, g) ○ cn1 .

We then deduce from the equality (f, g)○α−(f, g)○cn1 = ( (f, g)○α−cm1 )−( (f, g)○cn1 −cm1 ) that
PFId
0 (f, g) (α − cn1) is in G0(m). This shows that PFId

0 (f, g) (G0(n)) is a submodule of G0(m)
and so G0 de�ne a subfunctor of PFId

0 .

We show that this quotient of PFId
0 is strong polynomial of degree 0 as it is a constant functor.

Proposition 8.1.3. The quotient P
FId
0 /G0 is the constant functor equal to R and, in particular

it is in Polstrong0 (FId,R-Mod).

Proof. For n ∈ FId, the quotient P
FId
0 /G0 (n) is the module generated by the class cn1 of cn1 , so

it is isomorphic to R. For (f, g) ∈ FId(n,m) we have P
FId
0 /G0 (f, g) (cn1) = (f, g) ○ cn1 , but in

the quotient we have (f, g) ○ cn1 = cm1 . This shows that P
FId
0 /G0 (f, g) sends the basis element

of P
FId
0 /G0 (n) to the basis element of P

FId
0 /G0 (m) and so it is the identity of R. Finally, a

constant functor is in Polstrong0 (FId,R-Mod) by Example 5.1.7.

We now generalize this example by identifying only the morphisms with at least i occurrences
of c1 and we show that it gives weak polynomial quotients of PFId

0 . We �rst recall that a morphism
α in FId(0, n) corresponds to a choice of n colours in C(d) = {c1, . . . , cd}. In the following, we
then denote by γk(α) the number of occurrences of ck in α, for 1 ≤ k ≤ d.

De�nition 8.1.4. For i ∈ N and n ∈ FId, the submodule Gi(n) of PFId
0 (n) is given by

Gi(n) = ⟨α − cn1 ∣α ∈ FId(0, n), γ1(α) ≥ i⟩

that is the submodule generated by the elements α − cn1 , for α ∈ FId(0, n) such that γ1(α) ≥ i.

Lemma 8.1.5. The submodules Gi(n) of PFId
0 (n) de�ne a subfunctor Gi of P

FId
0 .

Proof. It is similar to the proof of Lemma 8.1.2.

We show now that the quotient of PFId
0 by its subfunctor Gi is weak polynomial for all i ∈ N.

Proposition 8.1.6. For i ∈ N, the quotient PFId
0 /Gi is weak polynomial of degree 0, which means

that πd(P
FId
0 /Gi) ∈ Pol0(FId,R-Mod).

Proof. For n ∈ FId, we have by de�nition

PFId
0 /Gi (n) =

R [α ∈ FId(0, n)]/⟨α − cn1 ∣α ∈ FId(0, n), γ1(α) ≥ i⟩ .

This quotient module is generated by the class cn1 of cn1 and by the classes α for α ∈ FId(0, n)
such that γ1(α) < i. For c ∈ C, the module δc1(P

FId
0 /Gi) (n) is the cokernel of the morphism
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PFId
0 /Gi (Idn +c). This morphism is obtained as R[(Idn +c)∗] passing to the quotient by Gi.

Since (Idn +c)∗ sends cn1 to (cn1 , c) = cn+11 , this gives for n ≥ i the formula

δc1(P
FId
0 /Gi) (n) = ⟨α ∣α ∈ FId(0, n + 1), γ1(α) < i, and α ≠ (β, c) with β ∈ FId(0, n)⟩ .

For (f, g) ∈ FId(n,m), the map δc1(P
FId
0 /Gi) (f, g) is obtained as the morphism R [(f, g)∗]

passing to the quotient of PFId
0 by Gi, then to the cokernel δc1(P

FId
0 /Gi). In particular, for

n ∈ FId and (f, g) = (Idn +ci1) ∈ FId(n,n + i) this gives that

i
ci1
i ( δ

c
1(P

FId
0 /Gi) )n = δ

c
1(P

FId
0 /Gi) (Idn +c

i
1) = 0.

Then κ
ci1
i ○ δc1(P

FId
0 /Gi) is equal to δc1(P

FId
0 /Gi) since it is the kernel of this map, and so

δc1(P
FId
0 /Gi) is in SN c1(FId,R-Mod) by De�nition 6.2.1. Using Proposition 7.1.6 we get that

πd(P
FId
0 /Gi) ∈ Pol0(FId,R-Mod).

These examples are part of a family of weak polynomial quotients of PFId
0 obtained by �ltering

its generators by the number of occurrences of the di�erent colours. Indeed, for d integers
k1, . . . , kd ∈ N we can de�ne a family of subfunctors indexed by the subsets I of A = {1, . . . , d}.
After introducing some notation, we de�ne these subfunctors of PFId

0 , denoted by GI,k1,...,kd .

De�nition 8.1.7. For k1, . . . , kd ∈ N and I a subset of A = {1, . . . , d}, the morphism α ∈ FId(0, k)
satis�es the condition (PI,k1,...,kd) if γi(α) ≥ ki for all i ∈ I, or if there exists j ∈ {c1, . . . , cd} ∖ I
such that γj(α) ≥ kj , where γi(α) denotes the number of occurrences of ci in α.
De�nition 8.1.8. For k1, . . . , kd ∈ N, n ∈ FId and a subset I ⊂ A, the submodule GI,k1,...,kd(n)
of PFId

0 (n) is given by

GI,k1,...,kd(n) = ⟨α −X ∣α ∈ FId(0, n) that satis�es the condition (PI,k1,...,kd)⟩

that is the submodule generated by the elements α −X, for α ∈ FId(0, n) satisfying the condi-
tion (PI,k1,...,kd) from De�nition 8.1.7 and X ∈ FId(0, n) is a given morphism in satisfying the
condition (PI,k1,...,kd).

Lemma 8.1.9. The submodules GI,k1,...,kd(n) of P
FId
0 (n) de�ne a subfunctor GI,k1,...,kd of PFId

0 .

Proof. This is similar to the proof of Lemma 8.1.2. For any morphism (f, g) ∈ FId(n,m)
the morphism PFId

0 (f, g) is the linearization of the post-composition by (f, g) which can
only add more colour and increase γi. So for any n ∈ N we have an inclusion of modules
PFId
0 (f, g) (GI,k1,...,kd(n) ) in GI,k1,...,kd(m).

Remark 8.1.10. The subfunctor Gi given in De�nition 8.1.4 is a particular case of De�nition
8.1.8. In fact, we have GA,i,0,...,0 = Gi.

In general, the cases I = ∅ and I = A are easy to describe. Indeed, for n ∈ N, we have

G∅,k1,...,kd(n) = ⟨α −X ∣α ∈ FId(0, n), ∃j ∈ A ∖ I such that γj(α) ≥ kj⟩ =∶ Gk1∨⋅⋅⋅∨kd(n),

and
GA,k1,...,kd(n) = ⟨α −X ∣α ∈ FId(0, n), ∀i ∈ A γi(α) ≥ ki⟩ =∶ Gk1∧⋅⋅⋅∧kd(n).

We prove in Proposition 8.1.15 that the quotient of PFId
0 by the subfunctor GI,k1,...,kd is weak

polynomial of degree 0. To do this, we de�ne a similar family of subfunctors FI,k1,...,kd of PFId
0

and we show that the quotient by these subfunctors are stably zero. Then, we show in Lemma
8.1.14 that the quotient of PFId

0 by GI,k1,...,kd is constant modulo this stably zero quotient.
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De�nition 8.1.11. For k1, . . . , kd ∈ N, n ∈ FId and a subset I ⊂ A, the submodule FI,k1,...,kd(n)
of PFId

0 (n) is given by

FI,k1,...,kd (n) = ⟨α ∈ FId(0, n) ∣α that satis�es the condition (PI,k1,...,kd) ⟩

that is the submodule generated by the elements α ∈ FId(0, n) satisfying the condition (PI,k1,...,kd)
from De�nition 8.1.7.

Lemma 8.1.12. The submodules FI,k1,...,kd(n) of P
FId
0 (n) de�ne a subfunctor FI,k1,...,kd of P

FId
0 .

Proof. It is similar to the proof of Lemma 8.1.9.

The cases I = ∅ and I = A are easy to describe. Indeed, for n ∈ N, we have

F∅,k1,...,kd(n) = ⟨α ∈ FId(0, n) ∣∃j ∈ A ∖ I such that γj(α) ≥ kj⟩ =∶ Fk1∨⋅⋅⋅∨kd(n),

and

FA,k1,...,kd(n) =R [α ∈ FId(0, n) ∣∀i ∈ A γi(α) ≥ ki] =∶ Fk1∧⋅⋅⋅∧kd(n).

All the subfunctors FI,k1,...,kd behave in a similar way so we can consider them all at once,
independently of the subset I ⊂ A and of the d-tuple (k1, . . . , kd). Indeed, in all cases the quotient
of PFId

0 by one of these subfunctors is stably zero as explained in the following proposition.

Proposition 8.1.13. For k1, . . . , kd ∈ N and I ⊂ A, the quotient of PFId
0 by its subfunctor

FI,k1,...,kd is in the subcategory SN (FId,R-Mod) of Fct(FId,R-Mod). In particular, we have

πd (P
FId
0 /FI,k1,...,kd) = 0.

Proof. By de�nition, the functor P
FId
0 /F I,k1,...,kd is given on an object n ∈ FId by the quotient

of R [α ∈ FId(0, n)] by its submodule FI,k1,...,kd (n) from De�nition 8.1.11, which gives

PFId
0 /FI,k1,...,kd (n) = ⟨α ∈ FId(0, n) ∣∃i ∈ I such that γi(α) < ki, and ∀j ∈ A ∖ I, γj(α) < kj ⟩ .

However, the morphism PFId
0 /FI,k1,...,kd (Id(−) + (c

k1
1 , . . . , c

kd
d ) ) is zero since it is given by the

map PFId
0 ( Id(−) + (ck11 , . . . , c

kd
d ) ), which is the linearization of the map (Id(−) + (ck11 , . . . , c

kd
d ) )∗ ,

passing to the quotient. The functor

κ
(ck11 ,...,c

kd
d
)

k1+⋅⋅⋅+kd (PFId
0 /F I,k1,...,kd)

being the kernel of this morphism, it is equal to P
FId
0 /FI,k1,...,kd itself, showing that the quotient

of PFId
0 by FI,k1,...,kd is in SN (FId,R-Mod).

The quotients of PFId
0 by GI,k1,...,kd and by FI,k1,...,kd are linked in a short exact sequence by

a constant functor as explained in the following.

Lemma 8.1.14. For k1, . . . , kd ∈ N and I ⊂ A, there is a short exact sequence in
Fct(FId,R-Mod):

0 R PFId
0 /GI,k1,...,kd PFId

0 /F I,k1,...,kd 0 .
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Proof. By de�nition, the functor P
FId
0 /GI,k1,...,kd is given on an object n ∈ FId by the quotient

of R [α ∈ FId(0, n)] by its submodule GI,k1,...,kd (n) from De�nition 8.1.8, which gives

PFId
0 /GI,k1,...,kd (n) = ⟨{X} ⊔ {α ∣∃i ∈ I such that γi(α) < ki, and ∀j ∈ A ∖ I, γj(α) < kj} ⟩ .

Then, the quotient of PFId
0 (n) by GI,k1,...,kd(n) is generated by the class X of the �xed morphism

X, and by the classes α corresponding to the generators of the quotient P
FId
0 /F I,k1,...,kd(n)

given in the proof of Proposition 8.1.13. Moreover, both PFId
0 /GI,k1,...,kd and PFId

0 /F I,k1,...,kd
send a morphism ϕ in FId to the morphism induced by the post-composition by ϕ passing to the

quotient. In particular, P
FId
0 /GI,k1,...,kd(ϕ) sends the class X to itself and so the submodules ⟨X⟩

generated by the class of the �xed morphism X of P
FId
0 /GI,k1,...,kd(n) give a constant subfunctor

of P
FId
0 /GI,k1,...,kd . Then the quotient of P

FId
0 /GI,k1,...,kd by this constant subfunctor evaluated

on n ∈ FId is generated by the same elements as P
FId
0 /F I,k1,...,kd , which gives the short exact

sequence of the statement on an object n ∈ FId. It is natural since both PFId
0 /GI,k1,...,kd and

PFId
0 /F I,k1,...,kd act on morphism by the post-composition passing to the quotient.

Finally, we show that the quotient of PFId
0 by its subfunctor GI,k1,...,kd is weak polynomial of

degree 0. To do this, we use the short exact sequence of Lemma 8.1.14 and Proposition 8.1.13.

Proposition 8.1.15. For k1, . . . , kd ∈ N and I ⊂ {c1, . . . , cd}, the quotient of PFId
0 by its subfunc-

tor GI,k1,...,kd is weak polynomial of degree 0. In other words, we have πd (P
FId
0 /GI,k1,...,kd ) ∈

Pol0(FId,R-Mod).

Proof. By Lemma 8.1.14 there is a short exact sequence

0 R PFId
0 /GI,k1,...,kd PFId

0 /F I,k1,...,kd 0 ,

and by Proposition 8.1.13 the last term is in the subcategory SN (FId,R-Mod) of
Fct(FId,R-Mod). Since the quotient functor πd is exact, we get an isomorphism πd(R) ≅
πd(P

FId
0 /GI,k1,...,kd ). Then for c ∈ C, we have (δc1)St ○ πd (P

FId
0 /GI,k1,...,kd ) ≅ (δ

c
1)St ○ πd(R) ≅

πd ○ δc1(R) = 0. Since this is true for all c ∈ C, this shows that πd(P
FId
0 /GI,k1,...,kd) is in

Pol0(FId,R-Mod).

Remark 8.1.16. As explained above, the short exact sequence of Lemma 8.1.14 shows that

this quotient is equal to a constant functor modulo the stably zero functor P
FId
0 /FI,k1,...,kd . This

implies that its image in the quotient is equal to πd(R) and so it corresponds through the
equivalence of categories given in Theorem 7.4.12 to the object (R, Id, . . . , Id) of R-Modd, or to
the trivial R[x±12 , . . . , x±1d ]-module.

We proved that the quotient of PFId
0 by the subfunctor GI,k1,...,kd is weak polynomial of

degree 0 for any k1, . . . , kd ∈ N and I ⊂ A, and that the quotient by the subfunctor FI,k1,...,kd is
stably zero. In the end of this section we look at the strong polynomiality of these quotients.
In Proposition 8.1.19 we show that, for I = ∅ and k1, . . . , kd ∈ N∗, they are strong polynomial
because they are constant after some rank. But we explain in Proposition 8.1.18 that, when
∣I ∣ ≥ 1, they are not strong polynomial based on the case I = A.
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Lemma 8.1.17. For I = A, 1 ≤ i ≤ d and the functor Fk1∧⋅⋅⋅∧kd = FA,k1,...,kd of De�nition 8.1.11,
we have the relation

δci1 (P
FId
0 /Fk1∧⋅⋅⋅∧kd) ≅

d

⊕
j=1,j≠i

PFId
0 /Fk1∧⋅⋅⋅∧k̃j∧⋅⋅⋅∧kd ,

where k̃j = kj − 1 if kj ≥ 1, and 0 if kj = 0.

Proof. For n ∈ FId, by de�nition δci1 (P
FId
0 /Fk1∧⋅⋅⋅∧kd)(n) is the cokernel of the map

PFId
0 /Fk1∧⋅⋅⋅∧kd(Idn +ci). We can compute

δci1 (P
FId
0 /Fk1∧⋅⋅⋅∧kd) (n) ≅ ⟨α ∈ FId(0, n + 1)∣α ≠ (β, ci) ,∃r ∈ A such that γr(α) < kr⟩

≅ ⟨α = (β, c)∣β ∈ FId(0, n), c ≠ ci, ∃r ∈ A such that γr(α) < kr⟩

≅
d

⊕
j=1,j≠i

⟨β ∈ FId(0, n) ∣γj(β) < kj − 1 or ∃r ∈ A ∖ j, γr(β) < kr, ⟩

This shows that δci1 (P
FId
0 /Fk1∧⋅⋅⋅∧kd) (n) is isomorphic to

d

⊕
j=1,j≠i

⟨β ∈ FId(0, n)∣∃r ∈ Aγr(β) < k′r⟩ ≅
d

⊕
j=1,j≠i

PFId
0 /Fk′1∧⋅⋅⋅∧k′d(n),

with k′r = kr − 1 if r = j and k′r = kr else, proving the relation when k1, . . . , kd ≥ 1. This relation
is natural in n ∈ N since oth δci1 (P

FId
0 /Fk1∧⋅⋅⋅∧kd) and P

FId
0 /Fk1∧⋅⋅⋅∧k̃j∧⋅⋅⋅∧kd act on morphisms by

the post-composition passing to the quotient. The other cases are done in a similar way.

We now use this lemma to prove that the quotient of PFId
0 by the subfunctors FI,k1,...,kd and

GI,k1,...,kd are not strong polynomial when ∣I ∣ ≥ 1.

Proposition 8.1.18. For k1, . . . , kd ∈ N all non-zero, n ∈ FId and a subset I ⊂ A, the quotients
of PFId

0 by FI,k1,...,kd and GI,k1,...,kd are not strong polynomial when the cardinality of I is greater
than or equal to 1.

Proof. For I = A, by Lemma 8.1.17 we have the relation for all n ∈ FId and all ci ∈ C:

δci1 (P
FId
0 /Fk1∧⋅⋅⋅∧kd) (n) ≅

d

⊕
j=1,j≠i

PFId
0 /Fk1∧⋅⋅⋅∧k̃j∧⋅⋅⋅∧kd (n),

with k̃j = kj − 1 if kj ≥ 1, and 0 if kj = 0. These relations combined prove that the iterated

functors (δc11 )i (P
FId
0 /Fk1∧⋅⋅⋅∧kd) (n) for i ∈ N are never zero, and so P

FId
0 /Fk1∧⋅⋅⋅∧kd is not strong

polynomial. Using the short exact sequence from Lemma 8.1.14, it implies that P
FId
0 /Gk1∧⋅⋅⋅∧kd

is not strong polynomial since these categories are closed under quotients by Proposition 5.1.3.
This gives the result when I = A, the general case is proved in a similar way because the parts
associated with the colours in I take over from the parts associated with the colours in A∖I and
they prevent the quotient to be strong polynomial.

While these quotients are not strong polynomial when ∣I ∣ ≥ 1, the cases I = ∅ give polynomial
quotients of PFId

0 when all the integers k1, . . . , kd are non-zero as explained in the following.
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Proposition 8.1.19. For k1, . . . , kd ∈ N∗, the quotients of PFId
0 by the subfunctors Fk1∨⋅⋅⋅∨kd and

Gk1∨⋅⋅⋅∨kd are strong polynomial of degree k1 + ⋅ ⋅ ⋅ + kd − d.

Proof. For n ∈ FId, the quotient of PFId
0 (n) by Fk1∨⋅⋅⋅∨kd(n) is generated by the morphisms

α ∈ FId(0, n) such that γi(α) < ki for all 1 ≤ i ≤ d. Since the integers k1, . . . , kd are non-zero, it
implies that P

FId
0 /Fk1∨⋅⋅⋅∨kd (n) is zero for n > k1+⋅ ⋅ ⋅+kd−d. Using Lemma 5.1.5 we conclude that

PFId
0 /Fk1∨⋅⋅⋅∨kd is strong polynomial of degree less than or equal to k1 + ⋅ ⋅ ⋅ + kd − d. Finally, the

short exact sequence from Lemma 8.1.14 implies that P
FId
0 /Gk1∧⋅⋅⋅∧kd is also strong polynomial

of degree k1 + ⋅ ⋅ ⋅ + kd − d since this category is closed under extension by Proposition 5.1.3 and
since the constant functor R is strong polynomial of degree 0.

8.2 The quotient of PFId
n by the action of symmetric groups

In this section we de�ne the quotient of the functor PFId
n by the subfunctor, called Fn in De�nition

8.2.1, which corresponds to the action of the symmetric groups by post-composition. We show
in Theorem 8.2.11 that this quotient of PFId

n is weak polynomial of degree 0. We also show in
Proposition 8.2.9 that this quotient of PFId

n is isomorphic to P Cd0 over the category Cd, introduced
in De�nition 8.2.5, whose objects are the integers and whose morphisms from n to m are the
unordered choice of m−n colours in C. In a second time, we try to �nd a nice representative of
the class of this quotient in the quotient category St(FId,R-Mod) for n = 0. The objective is to
describe the class of P

FId
0 /F0 in terms of the category R-Modd via the equivalence of categories

given in Theorem 7.4.12 but this is not always possible since the passage to the quotient category
is not an explicit construction.

De�nition 8.2.1. For m ∈ FId, we denote by Fn(m) the submodule of PFId
n (m) given by

Fn(m) = ⟨σ ○ (f, g) − (f, g) ∣ (f, g) ∈ FId(n,m), σ ∈ Sm⟩ .

that is the submodule generated by the elements σ ○ (f, g) − (f, g), for (f, g) ∈ FId(n,m) and
σ ∈ Sm.

Lemma 8.2.2. The submodules Fn(m) of PFId
n (m) de�ne a subfunctor Fn of PFId

n .

Proof. For (f̃ , g̃) ∈ FId(m, l) and σ ○ (f, g) − (f, g) a generator of Fn(m), we compute

PFId
n (f̃ , g̃) (σ ○ (f, g) − (f, g)) = (f̃ , g̃)∗ (σ ○ (f, g) − (f, g)) = (f̃ , g̃) ○ σ ○ (f, g) − (f̃ , g̃) ○ (f, g).

Then there exists σ̃ ∈ Sl (we can take σ̃ which acts as σ on Im(f̃) ≅ m and is the identity on
l ∖ Im(f̃)) such that σ̃ ○ (f̃ , g̃) ○ (f, g) = (f̃ , g̃) ○ σ ○ (f, g). Therefore we have

PFId
n (f̃ , g̃) (σ ○ (f, g) − (f, g)) = σ̃ ○ ( (f̃ , g̃) ○ (f, g) ) − (f̃ , g̃) ○ (f, g) ∈ Fn(l).

We then proved on the generators of Fn(m) that we have the inclusion of submodules
PFId
n (f̃ , g̃) (Fn(m) ) ⊂ Fn(l).

For a n-tuple (ci1 , . . . , cin) of colours we denote by (ci1 , . . . , cin) the class of this n-tuple under
the action of the symmetric group Sn permuting the positions in the n-tuple. For each class we
can choose a representative n-tuple (cj1 , . . . , cjn) of the class (ci1 , . . . , cin) such that the colours
are in the natural order, i.e. such that 1 ≤ j1 ≤ ⋅ ⋅ ⋅ ≤ jn ≤ d. Using this notation we can give a
description of the quotient P

FId
n /Fn in the following proposition.
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Proposition 8.2.3. The quotient functor P
FId
n /Fn sends an object m ∈ FId to the free R-module

generated by the class of (m−n)-tuples (ci1 , . . . , cim−n) under the action of symmetric group Sm−n.
In other words, we have

PFId
n /Fn (m) ≅R [ (ci1 , . . . , cim−n) ∣1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im−n ≤ d] .

Moreover, it sends a map (f̃ , g̃) ∈ FId(m, l) to the morphism of R-modules R [ ( Idn +g̃)∗ ] that
sends a basis element (ci1 , . . . , cim−n) to the element basis (ci1 , . . . , cim−n , g̃).

Remark 8.2.4. In this proposition we could choose a representative of the class (ci1 , . . . , cin , g̃)
where the colours are in the natural order to make it more consistent, but it would need more
notations for no more information. We give here an example to make it clearer: for d = 5, n = 1,
m = 3 and l = 5 the map ( (0 → 2) + Id3 , (c3, c2) ) ∈ FI4(3,5) sends the basis element (c2, c4) of
PFI5
1 /F1 (3) to the element (c2, c4, c3, c2) = (c2, c2, c3, c4) of PFI5

1 /F1 (5).

Proof of Proposition 8.2.3. For m ∈ FId, by de�nition of Fn we have

PFId
n /Fn (m) =

R [(f, g) ∈ FId(n,m)]/⟨σ ○ (f, g) − (f, g)∣(f, g) ∈ FId(n,m), σ ∈ Sm⟩ .

The action of Sm permutes both the injection f and the colours g, so we can choose for each class
in the quotient a representative with the injection being the inclusion of the �rst n elements in
m, and with the colours in the natural order. This gives the isomorphisms

PFId
n /Fn (m) ≅ ⟨ ( n m

Idn +(0→m−n)
, (ci1 , . . . , cim−n) ) ∣1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im−n ≤ d⟩

Since these elements are free, it gives an isomorphism of modules

PFId
n /Fn (m) ≅ R [ (ci1 , . . . , cim−n) ∣1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im−n ≤ d] .

For a map (f̃ , g̃) ∈ FId(m, l), the morphism PFId
n /Fn (f̃ , g̃) is induced by PFId

n (f̃ , g̃) =R[(f̃ , g̃)∗]
passing to the quotient. Since we take the quotient by the action of Sl, the injection f̃ can be
supposed to be the inclusion of the m �rst elements. Then P

FId
n /Fn (f̃ , g̃) is the morphism of

R-modules adding the colours of g̃ on each basis element.

The description of the quotient of PFId
n by Fn of Proposition 8.2.3 suggests de�ning a category

Cd corresponding to this functor. More precisely, after giving the de�nition of this category, we
show in Proposition 8.2.9 that the quotient P

FId
n /Fn is isomorphic to the functor P Cdn .

De�nition 8.2.5. The category Cd has for objects the integers and its morphisms from n to m
are the class of the (m − n)-tuples (ci1 , . . . , cim−n) of colours in C(d) quotiented by the action of
the symmetric group Sm−n. In other words, we have

Cd(n,m) =
⎧⎪⎪⎨⎪⎪⎩

{c1, . . . , cd}×(m−n)/Sm−n = {(ci1 , . . . , cim−n)∣1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ in ≤ d} if m ≥ n
∅ if m < n.

The composition is given by the concatenation of two representatives of each class:

(cj1 , . . . , cjk−m) ○ (ci1 , . . . , cim−n) = (cj1 , . . . , cjk−m , ci1 , . . . , cim−n).
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Remark 8.2.6. As in Remark 8.2.4, in the de�nition of the composition we could choose a
representative of the class of (cj1 , . . . , cjk−m , ci1 , . . . , cim−n) where the colours are in the natural
order to make it more consistent, but it would need more notations for no more information.
We give here an example to make it clearer: For d = 5, n = 1, m = 3 and k = 5 we have
(c2, c5) ○ (c1, c3) = (c2, c5, c1, c3) = (c1, c2, c3, c5).

There is a natural functor between FId and Cd which we de�ne in the following.

De�nition 8.2.7. The functor Ω ∶ FId → Cd sends an object n of FId to n in Cd, and a morphism
(f, g) ∈ FId(n,m) to the morphism g = (ci1 , . . . , cim−n) ∈ Cd(n,m), where g is the class of the
colour choice g = (ci1 , . . . , cim−n) in the quotient by Sm−n.

Remark 8.2.8. The functor Ω ∶ FId → Cd is essentially surjective, full but not faithful for d > 1
since Ω(c1, c2) = (c1, c2) = Ω(c2, c1).

Proposition 8.2.9. For all n ∈ N, there is a natural isomorphism in Fct(FId,R-Mod):

PFId
n /Fn ≅ P

Cd
n ○Ω.

Proof. For m ∈ FId, by de�nition of Cd and by Proposition 8.2.3 we have an isomorphism of
R-modules

PFId
n /Fn (m) ≅R [(ci1 , . . . , cim−n) ∣1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im−n ≤ d] =R [Cd(n,m)] = P

Cd
n ○Ω(m).

For a morphism (f̃ , g̃) ∈ FId(m, l), we have by Proposition 8.2.3 that P
FId
n /Fn (f̃ , g̃) sends

the basis element (ci1 , . . . , cin) to (ci1 , . . . , cin , g̃). However, we also have by de�nition, that
P Cdn ○Ω(f̃ , g̃) = P Cdn ( ( g̃ ) ) sends (ci1 , . . . , cin) to ( g̃ )○(ci1 , . . . , cin) = (ci1 , . . . , cin , g̃). This implies
that the diagram

PFId
n /Fn (m) P Cdn ○Ω(m)

PFId
n /Fn (l) P Cdn ○Ω(l)

≅

P
FId
n /Fn (f̃ ,g̃) P

Cd
n ○Ω (f̃ ,g̃)=P

Cd
n ( g̃ )

≅

is commutative, showing that the isomorphism PFId
n /Fn ≅ Cd ○Ω is natural.

Using the explicit description of the quotient P
FId
n /Fn from Proposition 8.2.3 we compute its

image by the endofunctor δc1, for c ∈ C, in the following lemma. We then use this computation
to prove in Theorem 8.2.11 that the quotient of PFId

n by Fn is weak polynomial of degree 0.

Lemma 8.2.10. For c ∈ C, the functor δc1 (P
FId
n /Fn) sends an object m ∈ FId to the free R-

module generated by the class of the (m − n + 1)-tuples (ci1 , . . . , cim−n+1) under the action of
symmetric group that does not contain the colour c. In other words, we have

δc1 (P
FId
n /Fn) (m) =R [ (ci1 , . . . , cim−n , cim−n+1) ∣ cil ∈ C

(d) ∖ {c}, 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im−n ≤ im−n+1 ≤ d] .

Moreover, this functor sends a map (f̃ , g̃) ∈ FId(m, l) to zero if c appears in g̃, and to the
morphism of R-modules R [ ( Idn+1 +g̃)∗ ] if c does not appear in g̃.
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Proof. Form ∈ FId, by de�nition δc1 (P
FId
n /Fn) (m) is the cokernel of the map P

FId
n /Fn (Idm +c).

By construction, this morphism is given by the map R[ (Idm +c)∗ ] ∶ R[FId(n,m)] →
R[FId(n,m+1)] passing to the quotient. Using the explicit description of the quotient P

FId
n /Fn

from Proposition 8.2.3, we get that the morphism PFId
n /Fn (Idm +c) sends a basis element

(ci1 , . . . , cim−n) to (ci1 , . . . , cim−n , c) = (ci1 , . . . , ck, c, ck+1, . . . , cim−n). Then the image of the mor-

phism PFId
n /Fn (Idm +c) is generated by all the (m − n)-tuples of unordered colours where c

appears. We then deduce that its cokernel is

δc1 (P
FId
n /Fn) (m) =R [ (ci1 , . . . , cim−n , cim−n+1) ∣ cij ∈ C

(d) ∖ {c}, 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im−n ≤ im−n+1 ≤ d] .

For (f̃ , g̃) ∈ FId(m, l), the map δc1 (P
FId
n /Fn) (f̃ , g̃) is induced by the morphism

τ1 (PFId
n /Fn) (f̃ , g̃) = PFId

n /Fn ( (f̃ , g̃) + Id1 ) passing to the cokernel. However, by Proposi-

tion 8.2.3, this last morphism is the linearization of the map (Idn+1 +g̃)∗, so its image is in the

image of P
FId
n /Fn (Idn +c) if and only if the colour c appears in g̃. When passing to the cokernel,

this gives that δc1 (P
FId
n /Fn) (f̃ , g̃) is 0 if c ∈ g̃ and R [ ( Idn+1 +g̃)∗ ] else.

Theorem 8.2.11. For all n ∈ N, the quotient functor P
FId
n /Fn is weak polynomial of degree 0,

i.e. we have:
πd (P

FId
n /Fn) ∈ Pol0(FId,R-Mod).

Proof. For c ∈ C and m ∈ FId, by Lemma 8.2.10 the morphism δc1(P
FId
n /Fn)(Idm +c) is zero.

Since κc1○δc1(P
FId
n /Fn) (m) is the kernel of this map it is equal to δc1(P

FId
n /Fn) (m). This equality

is natural in m ∈ FId since κc1 ○ δc1(P
FId
n /Fn) is a subfunctor of δc1(P

FId
n /Fn), proving that the

functor δc1(P
FId
n /Fn) is in SN c(FId,R-Mod). We conclude using Proposition 7.1.6 because, for

all c ∈ C, we have
(δc1)St ○ πd (P

FId
n /Fn) ≅ πd ○ δ

c
1 (P

FId
n /Fn) = 0.

Example 8.2.12. We make this quotient explicit for n = 0 and d = 2. First we recall that
for n ∈ FId, we have PFId

0 (n) = R [FId(0, n)] = R [Cn], so a basis morphism α ∈ PFId
0 (n)

corresponds to a choice of n colours in C. Then the post-composition in FId by Sn = FId(n,n)
corresponds to the action of the symmetric group Sn on PFId

0 (n) permuting the colours of the

generators. Since the subfunctor F0 of PFI2
0 correspond to this action, this gives for d = 2 and

n ∈ FI2 the following description:

PFI2
0 /F0 (n) ≅ R [ (ci1 , . . . , cin) ∣1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ in ≤ 2] .

Moreover, the quotient P
FI2
0 /F0 sends a morphism (f, g) ∈ FI2(n,m) to the linearization of

the map (Idn +g)∗ passing to the quotient. In particular this quotient functor sends a bijective
morphism σ ∈ FI2(n,n) = Sn to the identity and the image of a morphism (f, g) ∈ FI2(n,m) is
determined only by the colour choice g. We then have an explicit description of the quotient of
PFI2
0 by F0 as the following diagram. Note that each arrow in the category FI2 in this diagram

actually represents many arrows that we can construct by composition with the action of the

symmetric groups. This diagram also represent the functor P C20 since P C20 ○ Ω ≅ P
FI2
0 /F0 by

Proposition 8.2.9.
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FI2 R -Mod

0 R[Id0]

1 R[c1] R[c2]

2 R[(c1, c1)] R[(c1, c2)] R[(c2, c2)]

3 R[(c1, c1, c1)] R[(c1, c1, c2)] R[(c1, c2, c2)] R[(c2, c2, c2)]

⋮ . . . . . . . . . . . . . . .

PFI2
0 /F0

c2c1
(Id0 +c2)∗(Id0 +c1)∗

c2c1 (Id1 +c1)∗

⊕
(Id1 +c2)∗

c2c1 (Id2 +c1)∗

⊕ ⊕
(Id2 +c2)∗

c2c1

⊕ ⊕ ⊕

Remark 8.2.13. We proved in Theorem 8.2.11 that the quotient of PFId
n by its subfunctor Fn

of De�nition 8.2.1 corresponding to the action of the symmetric groups, is weak polynomial of
degree 0. We would like to use Theorem 7.4.12 to describe this quotient in terms of the category

R-Modd, but to do that we need to �nd a representative of the class πd (PFId
n /Fn) which is

constant on the objects and which sends arrows from 0 to 1 to commutative isomorphisms.
However, this is generally di�cult to do since passing to the quotient category St(FId,R-Mod)
is not very explicit.

In the end of this section we give ideas on how to �nd a nice representative of the class

πd (PFId
n /Fn) as explained in Remark 8.2.13 for n = 0. Recall that the quotient PFId

0 /F0 sends

an object n to the free R-module generated by the class (ci1 , . . . , cin) of the n-tuples of colours
quotiented by the action of Sn permuting the colours. For each class we can choose a repre-
sentative n-tuple (ci1 , . . . , cin) such that the colours are in the natural order, i.e. such that

1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ in ≤ d. We start by de�ning a �ltration of subfunctors of the quotient P
FId
0 /F0

according to the number of occurrences of the colour c1. We show in Proposition 8.2.18 that

each of these subfunctors gives a proper subfunctor of P
FId
0 /F0, however they are not strictly

smaller since they are isomorphic to P
FId
0 /F0 itself with a shift, as shown in Proposition 8.2.19.

De�nition 8.2.14. For k ∈ N and n ∈ FId, the submodules Lk(n) of P
FId
0 /F0 (n) are generated

by the class of the n-tuple (ci1 , . . . , cin) in the quotient by the action of the symmetric group Sn
in which the colour c1 appears at least k times.

Lemma 8.2.15. The submodules Lk(n) of P
FId
0 /F0 (n) de�ne a family a subfunctors

⋅ ⋅ ⋅ ⊂ Lk+1 ⊂ Lk ⊂ ⋅ ⋅ ⋅ ⊂ L2 ⊂ L1 ⊂ L0 = P
FId
0 /F0.

Proof. For (f, g) ∈ FId(n,m), the morphism PFId
0 /F0 (f, g) is the linearization of the post-

composition by (f, g) passing to the quotient by F0. This morphism can only add more colour
in the n-tuples of colours and then only increase the number of occurrences of c1. When passing
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to the quotient, this shows that all these subfunctors of P
FId
0 /F0 are well de�ned since we have

the inclusion of R-modules P
FId
0 /F0 (f, g) (Lk(n)) ⊂ Lk(m). The inclusions follow directly from

the de�nition of Lk.

Remark 8.2.16. Recall that the quotient of PFId
0 by its subfunctor Gi from De�nition 8.1.4

is given on an object n ∈ FId by the free R-module generated by the class cn1 of cn1 and by the

classes α for α ∈ FId(0, n) such that γ1(α) < i. Then the quotient of P
FId
0 /Gi by the action of the

symmetric groups by post-composition is equivalent to the quotient of P
FId
0 /F0 by its subfunctor

Li from De�nition 8.2.14.

Remark 8.2.17. We chose to de�ne Lk as the subfunctor where c1 appears at least k times for
simplicity but this is arbitrary. Instead, we could consider any mix of colour and de�ne Lk1,...,kd
the subfunctor generated by the classes of the n-tuple of colour choices in the quotient by the
symmetric group in which c1 appears at least k1 times, c2 at least k2 times, ... and cd appears

at least kd times. In fact, it appears that every non-zero subfunctor H of P
FId
0 /F0 is a sum of

subfunctors similar to Lk1,...,kd of PFId
0 . Indeed, there is a minimal n ∈ N∗ such that H(n) ≠ 0.

For x non-zero in H(n), H contains a subfunctor similar to Lk1,...,kd starting at x: it is the
subfunctor generated by the classes containing x and in addition at least k1 times c1, ... , at
least kd times cd. Either H is equal to this subfunctor, either it is greater and we can restart the
reasoning with the quotient. The process stops in a �nite number of steps because each time the
number of possible occurrences of the di�erent colours decrease. Then, the subfunctors Lk1,...,kd
generate all the subfunctors of P

FId
0 /F0. However studying all of them is similar to studying

only Lk, but with more complex notations, so we write the details for Lk using only c1 for more
clarity.

We show that the image in St(FId,R-Mod) of each of the subfunctors Lk of P
FId
0 /F0 gives

a representative of the class of P
FId
0 /F0 itself.

Proposition 8.2.18. For k ∈ N, there is a natural isomorphism πd(Lk) ≅ πd (P
FId
0 /F0).

Proof. For k ∈ N, let Kk denote the quotient of (PFId
0 /F0) by its subfunctor Lk. By de�ni-

tion the functor κ
(c1)k
k (Kk ) is the kernel of the map Kk ( Id(−) +(c1)k) obtained as the mor-

phism PFId
0 /F0 (Id(−) +(c1)

k ) passing to the quotient by Lk. By Proposition 8.2.3, this last

morphism is the map that sends a basis element (ci1 , . . . , cin) of P
FId
0 /F0 (n) to the element

( (c1)k, ci1 , . . . , cin) of P
FId
0 /F0 (n+ k), which is in Lk(n+ k) since the colour c1 appears at least

k times. This shows that the image of the map P
FId
0 /F0

( Id(−) +(c1)k ) is in the subfunctor Lk.

When passing to the quotient, it implies that the map Kk ( Id(−) +(c1)k ) is zero. We then have

κ
(c1)k
k (Kk ) = Kk, and so Kk is in SN c1(FId,R-Mod). By de�nition, we have a short exact

sequence 0 Lk PFId
0 /F0 Kk 0 in Fct(FId,R-Mod) and, since the functor πd

is exact, we get the wanted natural isomorphism.

This gives us a family of representatives of the class πd (P
FId
0 /F0), but neither of them is

constant on the objects. More than that, we show that each of these subfunctors Lk is in fact

isomorphic to a shift of P
FId
0 /F0 himself.

Proposition 8.2.19. For all k ∈ N, there is a natural isomorphism τk (Lk) ≅ P
FId
0 /F0.
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Proof. For n ∈ FId, by de�nition the R-module Lk(n + k) is generated by the classes
(ci1 , . . . , cin+k) with 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ in+k ≤ d such that c1 appears at least k times. Then we have
i1 = ⋅ ⋅ ⋅ = ik = 1, so Lk(n+k) is equivalent to the module generated by the classes (cik+1 , . . . , cik+n)
with 1 ≤ ik+1 ≤ ⋅ ⋅ ⋅ ≤ in+k ≤ d. This corresponds to the generators of the module P

FId
0 /F0 (n),

so we have the equivalence of R-modules P
FId
0 /F0 (n) ≅ Lk(n + k) = τk (Lk) (n). Since Ln is a

subfunctor of P
FId
0 /F0 we have, for any morphism (f, g) ∈ FId(n,m), the identity

τk(Lk)(f, g) = Lk ( (f, g) + Idk ) = P
FId
0 /F0

((f, g) + Idk ).

By Proposition 8.2.3 this last morphism is induced by R [ ( Idn +g + Idk )∗ ] passing to the quo-
tient. In these identities the term "Idk" corresponds to the k occurrences of c1 that disap-

pear in the equivalence of modules P
FId
0 /F0 (n) ≅ τk (Lk) (n) above. This shows the natu-

rality of this equivalence since the morphism τk(Lk)(f, g) corresponds then to the morphism

R [ ( Idn +g)∗ ] = P
FId
0 /F0 (f, g).

Remark 8.2.20. We can prove in the same way that there is a natural isomorphism

τk1+⋅⋅⋅+kd (Lk1,...,kd) ≅ P
FId
0 /F0, where Lk1,...,kd is the subfunctor of P

FId
0 /F0 described in Re-

mark 8.2.17, where c1 appears at least k1 times, ... and cd appears at least kd times.

8.3 The quotient of PFId
n by the action of symmetric groups on

colours

In this section we de�ne the quotient of the functor PFId
n by the subfunctor, called Hn in De�-

nition 8.3.2, corresponding to the action of the symmetric groups on the colour choices, and we
prove in two di�erent ways that:

Theorem. For all n ∈ N, the quotient P
FId
n /Hn is weak polynomial of degree n, i.e. we have

πd (PFId
n /Hn) ∈ Poln(FId,R-Mod).

First, we prove this theorem if R = K is a �eld in Theorem 8.3.11, using the decomposition

PFId
n /Hn ≅ (O

∗PFI
n ) ⊗ P Cd0 ( (−) − n ) ○Ω ,

from Proposition 8.3.8 since the pointwise tensor product respects the polynomial degree. In
a second time we prove the theorem in the general case in Theorem 8.3.14 using the direct
computation

(δc1)
St ○ πd (P

FId
n /Hn) ≅ πd (P

FId
n−1 /Hn−1)

⊕n
.

from Proposition 8.3.13. In both cases there is a non-trivial stably zero functor that prevents
this quotient from being strong polynomial.

Remark 8.3.1. For (f, g) ∈ FId(n,m) the map g = (ci1 , . . . , cim−n) corresponds to a choice of
m − n colours in C. There is an action of the symmetric group Sm−n on these colour choices by
permutation, which gives an action on PFId

n (m). For a m−n-tuple (ci1 , . . . , cim−n) of colours we
denote by (ci1 , . . . , cim−n) the class of this m − n-tuple under this action and, for each class, we
can choose a representative m − n-tuple (cj1 , . . . , cjm−n) such that the colours are in the natural
order, i.e. such that 1 ≤ j1 ≤ ⋅ ⋅ ⋅ ≤ jm−n ≤ d.

We start with the de�nition of the subfunctorHn of P
FId
n using an action of Sm−n on PFId

n (m).
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De�nition 8.3.2. For m ∈ FId, the submodule Hn(m) of PFId
n (m) is given by

Hn(m) = ⟨ (f, σ ⋅ g) − (f, g) ∣ (f, g) ∈ FId(n,m), σ ∈ Sm−n⟩

that is the submodule generated by the elements (f, σ ⋅ g) − (f, g), for (f, g) ∈ FId(n,m) and
σ ∈ Sm acting on the colours as described in Remark 8.3.1.

Lemma 8.3.3. The submodules Hn(m) of PFId
n (m) de�ne a subfunctor Hn of PFId

n .

Proof. For (f̃ , g̃) ∈ FId(m, l), we have PFId
n (f̃ , g̃) ((f, σ⋅g)−(f, g)) = (f̃ , g̃)○(f, σ⋅g)−(f̃ , g̃)○(f, g).

Then there exists σ̃ ∈ Sl−n (we can take σ̃ which acts as σ on Im(f̃) ∖ Im(f̃ ○ f) ≅ m − n, and is
the identity on l − Im(f̃) ≅ l −m) such that σ̃ ⋅ ( (f̃ , g̃) ○ (f, g) ) = (f̃ , g̃) ○ (f, σ ⋅ g). We then get

PFId
n (f̃ , g̃) ( (f, σ ⋅ g) − (f, g) ) = σ̃ ⋅ ( (f̃ , g̃) ○ (f, g) ) − (f̃ , g̃) ○ (f, g) ∈Hn(l)

showing, on the generators (f, σ ⋅ g)− (f, g) of Hn(m), that we have the inclusion of R-modules
PFId
n (f̃ , g̃) (Hn(m)) ⊂Hn(l).

Remark 8.3.4. For d = 1 the subfunctor Hn of PFI1
n is zero since the symmetric groups acts

on the unique colour choice and so σ ⋅ (f, g) = (f, g) for all (f, g) ∈ FI1(n,m) and σ ∈ Sn. In
particular, Theorem 8.3.11 for d = 1 tells that PFI

n is weak polynomial of degree less than or
equal to n. In fact, it is even strong polynomial of degree n as explained in Remark 5.2.3.

We �rst give a concrete description of the quotient P
FId
n /Hn that we will use in both proofs

of Theorems 8.3.11 and 8.3.14.

Proposition 8.3.5. The quotient functor P
FId
n /Hn sends an object m ∈ FId to the free R-module

generated by the pairs ( f, (ci1 , . . . , cim−n) ), where f ∶ n ↪ m is an injection and (ci1 , . . . , cim−n)
is a class of a (m − n)-tuple of colours under the action of the symmetric group Sm−n. In other
words, there is an isomorphism of R-modules

PFId
n /Hn (m) ≅R [ (f, (ci1 , . . . , cim−n) ) ∣ f ∈ FI(n,m), 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im−n ≤ d] .

Moreover, for (f̃ , g̃) a morphism in FId(m, l), the image of (f̃ , g̃) ∈ FId(m, l) by PFId
n /Hn is

the morphism of R-modules R [ ( f̃ , g̃)∗ ] that sends a basis element (f, (ci1 , . . . , cim−n) ) to the

element (f̃ ○ f, (ci1 , . . . , cim−n , g̃) ).

Remark 8.3.6. As in Remark 8.2.4, in this proposition we could choose a representative of the
class (ci1 , . . . , cin , g̃) where the colours are in the natural order to make it more consistent but it
would need more notations for no more information.

Proof of Proposition 8.3.5. By de�nition, for m ∈ FId we have

PFId
n /Hn (m) =

R [(f, g) ∈ FId(n,m)]/⟨(f, σ ⋅ g) − (f, g)∣ (f, g) ∈ FId(n,m), σ ∈ Sm−n⟩ .

Then the action of Sm−n permutes the colours of g so we can choose for each class in the
quotient a representative with the colours in the natural order as explained in Remark 8.3.1.
This gives the formula for P

FId
n /Hn (m) since these elements are free. For (f̃ , g̃) ∈ FId(m, l), the

morphism PFId
n /Hn (f̃ , g̃) is induced by PFId

n (f̃ , g̃) = R[(f̃ , g̃)∗] passing to the quotient, which

acts on the �rst component of (f, (ci1 , . . . , cin)) by post-composition by f̃ and on the second
component, since we take the quotient by the action of Sl−m, it adds the colours of g̃ to the class
(ci1 , . . . , cim−n).
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We now introduce a negative shift on the category Cd from De�nition 8.2.5 that we will use in
the following. Recall that this category has for objects the integers and for morphisms from n to
m the unordered choices of m−n colours in C, and that there is a natural functor Ω ∶ FId → Cd.

De�nition 8.3.7. For F ∶ Cd → R-Mod and n ∈ N, the shifted functor F( (−) − n ) is given on
objects by

F( (−) − n )(m) = { 0 if m < n
F (m − n) if m ≥ n,

and on morphisms by F( (−)−n ) = F (−) using the natural bijection Cd(m,m′) ≅ Cd(m−n,m′−n).

The �rst consequence of the description of the quotient P
FId
n /Hn in Proposition 8.3.5 is that

we can express it as a tensor product of PFI
n by P Cd0 shifted using the shift from De�nition

8.3.7. This explains how the injections and the colours are mixed to form the functor PFId
n up

to the action of the symmetric groups on the colour choices. This relation will allow us to prove
in Theorem 8.3.11 that P

FId
n /Hn is weak polynomial of degree n using the fact that pointwise

tensor product preserves the polynomial degree (see Theorem 7.3.6).

Proposition 8.3.8. For all n ∈ N, there is a natural isomorphism

PFId
n /Hn ≅ (O

∗PFI
n ) ⊗ P Cd0 ( (−) − n ) ○Ω ,

which can equivalently be written as τn (PFId
n /Hn ) ≅ τn (O

∗PFI
n ) ⊗ P

FId
0 /H0.

Remark 8.3.9. For d = 1, the subfunctor Hn of P
FI
n is zero as explained in Remark 8.3.4. Using

this, we can rewrite the formula of Proposition 8.3.8 into a more homogeneous one:

PFId
n /Hn ≅ O

∗ (PFI
n /Hn ) ⊗ P

Cd
0 ( (−) − n ) ○Ω .

Proof of Proposition 8.3.8. For m ∈ FId, using the description of P
FId
n /Hn (m) from Proposition

8.3.5 for = 0 we see that the elements x ∶= (ci1 , . . . , cim) with 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im ≤ d form a set of

generators of P
FId
0 /H0 (m) that we denote by Gm. Using the general isomorphism R[A ×B] ≅

R[A] ⊗R[B], for any two sets A and B, we can reformulate the isomorphism of Proposition
8.3.5 as:

PFId
n /Hn (m) ≅R [ (f, x) ∣ f ∈ FI(n,m), x ∈ Gm−n] ≅R [ FI(n,m) ]⊗R [x ∈ Gm−n] .

We then have an isomorphism of modules

PFId
n /Hn (m) ≅ P

FI
n (m) ⊗ P

FId
0 /H0 (m − n) ≅ (O

∗PFI
n ) (m) ⊗ P Cd0 ( (−) − n ) ○Ω (m) .

This isomorphism is natural inm ∈ FId since, for (f̃ , g̃) ∈ FId(m, l) the map P
FId
n /Hn (f̃ , g̃) sends

a basis element (f, (ci1 , . . . , cim−n) ) to the element ( f̃○f , (ci1 , . . . , cim−n , g̃) ) by Proposition 8.3.5.
On the �rst component of these morphisms P

FId
n /Hn (f̃ , g̃) sends f to f̃ ○f which corresponds to

O∗(PFI
n ) (f̃ , g̃) (f) = PFI

n (f̃) (f) = f̃ ○f , while on the second component it sends (ci1 , . . . , cim−n)
to (ci1 , . . . , cim−n , g̃) which is exactly the de�nition of P Cd0 ( (−) − n ) ○ Ω(f̃ , g̃) = P

Cd
0 (g). This

shows the naturality since the isomorphism is given by the separation of the �rst and the second
components.

The formula of Proposition 8.3.8 for n = 0 implies that the quotient P
FId
n /Hn is weak poly-

nomial of degree 0 as explained in the following:
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Corollary 8.3.10. There are natural isomorphisms of FId-modules

PFId
0 /H0 ≅ P

Cd
0 ○Ω ≅ P

FId
0 /F0 ,

where F0 and H0 are the subfunctors of PFId
0 from De�nitions 8.2.1 and 8.3.2. In particular,

these functors are weak polynomial of degree 0.

Proof. For d = 1, the functor PFI
0 is a constant functor, and so is O∗ (PFI

0 ) by Proposition
7.2.9. Then the formula of Proposition 8.3.8 applied for n = 0 gives the �rst equivalence since
M cst⊗F is equivalent to F for any FId-module F and any constant FId-moduleM cst. The second
equivalence is given by Proposition 8.2.9 and the quotient of PFId

0 by F0 is weak polynomial of
degree 0 by Theorem 8.2.11.

Finally, the relation from Proposition 8.3.8 allows us to prove that the quotient P
FId
n /Hn is

weak polynomial of degree n using the fact that tensor product preserve polynomiality if R = K
is a �eld.

Theorem 8.3.11. If R = K is a �eld, for all n ∈ N the quotient P
FId
n /Hn is weak polynomial of

degree less than or equal to n, i.e. we have πd (PFId
n /Hn) ∈ Poln(FId,R-Mod).

Proof. The functor PFI
n is weak polynomial of degree n on FI by Lemma 5.2.1 for d = 1, and

the functor O∗ preserves polynomiality by Proposition 7.2.9. The FId-module P Cd0 ○ Ω is weak

polynomial of degree 0 by Corollary 8.3.10. Then the FId-module P Cd0 ( (−) − n ) ○ Ω is also
weak polynomial of degree 0 since it is the same functor but shifted by n and the weak poly-
nomiality concerns the stable behavior. We then have πd (O∗PFI

n ) ∈ Poln(FId,K -Vect) and
πd (P Cd0 ((−) − n) ○Ω ) ∈ Pol0(FId,K -Vect). Finally, since R = K is a �eld, we conclude that

πd (PFId
n /Hn) ∈ Poln(FId,R-Mod) by Proposition 8.3.8 and Theorem 7.3.6.

A second consequence of the description of the quotient of PFId
n by the subfunctor Hn from

Proposition 8.3.5 is that we can compute explicitly the functor δc1(P
FId
n /Hn

). In particular, we
describe it with a short exact sequence in Lemma 8.3.12 and we give a description of its image in
the quotient category St(FId,R-Mod) in Proposition 8.3.13. The following proposition is very
similar to the calculation of δc1(PFId

n ) in Proposition 5.2.1. However, the second component of
the direct sum in Proposition 5.2.1, which prevents PFId

n from being polynomial, vanishes here
since we take the quotient by the action of the symmetric groups on the colours.

Lemma 8.3.12. For c ∈ C, the submodules

I(m) ∶=R [(f ′ ∶ n↪m + 1, (ci1 , . . . , cim+1−n) ) ∣1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im+1−n ≤ d, m + 1 ∈ Im(f ′)]

of δc1(P
FId
n /Hn) (m), for m ∈ FId, de�ne a subfunctor I of δc1(P

FId
n /Hn), which �ts into the

following short exact sequence whose last term is in SN c(FId,R-Mod):

0 I δc1(P
FId
n /Hn)

δc1(P
FId
n /Hn)/

I
0 .

Proof. We write the proof for c = c1, the other cases are obtained by symmetry. By Proposition
8.3.5, the module P

FId
n /Hn (m) is generated by the pairs ( f, (ci1 , . . . , cim−n) ), where f ∶ n↪m

is an injection and (ci1 , . . . , cim−n) is a class of a (m−n)-tuple of colours under the action of the
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symmetric group Sm−n. For ιm the injection m ↪ m + 1 of m on the �rst m elements of m + 1,
by de�nition the functor δc11 (P

FId
n /Hn) is the cokernel of the morphism PFId

n /Hn (Idm +c1)
which sends a basis element ( f, (ci1 , . . . , cim−n) ) to the element ( ιm ○ f , (c1, ci1 , . . . , cim−n) )
by Proposition 8.3.5. This implies that its cokernel is generated by the elements ( f ′ ∶ n ↪
m + 1 , (ci1 , . . . , cim+1−n) ) such that m + 1 is in Im(f ′) or that c1 does not appear, which gives
the isomorphism of R-modules

δc11 (P
FId
n /Hn) (m) ≅R [ (f

′ ∶ n↪m + 1, (ci1 , . . . , cim+1−n) ) ∣m + 1 ∈ Im(f ′) or cik ∈ C ∖ {c1}] .

For (f̃ , g̃) ∈ FId(m, l), by Proposition 8.3.5 the map τ1(PFId
n /Hn) (f̃ , g̃) =

PFId
n /Hn

( (f̃ , g̃) + Id1 ) sends (f ′, (ci1 , . . . , cim+1−n)) to ( (f̃ + Id1) ○ f ′ , (ci1 , . . . , cim+1−n , g̃)).
The image by δc11 (P

FId
n /Hn) of (f̃ , g̃) is induced by this map passing to the quotient, which im-

plies that δc11 (P
FId
n /Hn) (f̃ , g̃) sends the basis elements (f ′ ∶ n↪m + 1, (ci1 , . . . , cim+1−n) )

of δc11 (P
FId
n /Hn) (m) (with either m + 1 ∈ Im(f ′) or c1 that does not appear) to

( (f̃ + Id1) ○ f ′ ∶ n ↪ l + 1 , (ci1 , . . . , cim+1−n , g̃) ). In particular, if m + 1 ∈ Im(f ′) then

l + 1 ∈ Im( (f̃ + Id1) ○ f ′ ). Then the submodules I(m) of δc11 (P
FId
n /Hn) (m) are stable by

the morphisms δc11 (P
FId
n /Hn) (f̃ , g̃) for all (f̃ , g̃) ∈ FId(m, l) so they de�ne a subfunctor

I ⊂ δc11 (P
FId
n /Hn). The quotient of δc11 (P

FId
n /Hn) by this subfunctor I is then generated by

the elements ( f ′ ∶ n ↪ m + 1 , (ci1 , . . . , cim+1−n) ) such that m + 1 ∉ Im(f ′) and c1 does not

appear. The map δc11 (P
FId
n /Hn) (Idm +c1) become zero when passed to the quotient by I since

it sends such elements to (ιm+1 ○ f ′ ∶ n↪m + 2, (c1, ci1 , . . . , cim+1−n) ), proving that the quotient
of δc11 (P

FId
n /Hn) by I is in SN c1(FId,R-Mod).

We can now use this short exact sequence to give a formula for (δc1)St of πd(P
FId
n /Hn) similar

to the calculation of δc1(PFId
n ) in Proposition 5.2.1.

Proposition 8.3.13. For all colours c ∈ C, there is a natural isomorphism

(δc1)
St ○ πd (P

FId
n /Hn) ≅ πd (P

FId
n−1 /Hn−1)

⊕n
.

Proof. Applying the exact functor πd to the short exact sequence of Lemma 8.3.12, by Proposition
7.1.6 we get the natural isomorphisms

(δc1)
St ○ πd (P

FId
n /Hn) ≅ πd ○ δ

c
1 (P

FId
n /Hn) ≅ πd(I)

since the last term of the short exact sequence is in SN (FId,R-Mod). We conclude by show-

ing that there is a natural isomorphism I ≅ (PFId
n−1 /Hn−1)

⊕n
. Indeed, we have the following

isomorphisms

I(m) =R [(f ′ ∶ n↪m + 1, (ci1 , . . . , cim+1−n) ) ∣1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im+1−n ≤ d, m + 1 ∈ Im(f ′)]

≅R [( f ′′ ∶ n − {i}↪m, (ci1 , . . . , cim−(n−1)) ) ∣1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ im+1−n ≤ d]
⊕n

≅ (PFId
n−1 /Hn−1)

⊕n
(m − 1) ,

where the �rst is obtained by removing the injection of i ∶= (f ′)−1(m + 1) ∈
n = {1, . . . , n} in m + 1 and where the direct sum on n comes from the choice
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of i in n. This isomorphism is natural since we showed in Lemma 8.3.12 that
δc1(P

FId
n /Hn) (f̃ , g̃) sends the basis element ( f ′, (ci1 , . . . , cim+1−n) ) of δc1(P

FId
n /Hn) (m)

to ( (f̃ + Id1) ○ f ′ ∶ n↪m + 1↪ l + 1 , (ci1 , . . . , cim+1−n , g̃) ) because it comes from

τ1(PFId
n /Hn) (f̃ , g̃) = PFId

n /Hn ( (f̃ , g̃) + Id1 ). This description also works for the image

I (f̃ , g̃) since I is a subfunctor of δc1(P
FId
n /Hn). Finally, since the pre-image of m+1 by f ′ is the

same as the pre-image of l + 1 by (f̃ + Id1) ○ f ′, this gives the naturality of the decomposition
into the direct sum.

We then use the computation from Proposition 8.3.13 to prove that the quotient of PFId
n by

the subfunctor Hn is weak polynomial of degree n for any ring R, generalizing Theorem 8.3.11.

Theorem 8.3.14. For all n ∈ N, the quotient P
FId
n /Hn is weak polynomial of degree less than

or equal to n, i.e. we have πd (PFId
n /Hn) ∈ Poln(FId,R-Mod).

Proof. We proceed by induction on n ∈ N using Proposition 8.3.13 and, for n = 0, Corollary
8.3.10 which shows that the quotient of PFId

0 by H0 is weak polynomial of degree 0.

Remark 8.3.15. In both proofs that the quotient of PFId
n by the subfunctor Hn is weak poly-

nomial, there is a non-trivial stably zero functor that appears, which prevents P
FId
n /Hn to be

strong polynomial: in the �rst proof (Theorem 8.3.11) we use Corollary 8.3.10 which says that

P Cd0 ○ Ω is weak polynomial of degree 0 based on Theorem 8.2.11 because P Cd0 ○ Ω ≅ P
FId
0 /F0 .

But this functor is not strong polynomial since the proof of Theorem 8.2.11 use heavily the
fact that the functor δc1(P

FId
n /Fn) is in SN (FId,R-Mod) and so that it vanishes in the quo-

tient. In the second proof (Theorem 8.3.14) we use the short exact sequence of Lemma 8.3.12
which gives an isomorphism in the quotient category St(FId,R-Mod) since the last term is in
SN (FId,R-Mod).

8.4 Weak polynomial quotients of PFId
n of arbitrary degrees

We explained in Remark 5.2.3 that the functor PFI
n is strong polynomial of degree n over FI.

In this section we present a quotient of PFI
n that is weak polynomial of degree i for each i ∈ N,

and we explain why this quotient is not strong polynomial of degree less than n. We then use
it and the formula from Proposition 8.3.8 to describe a corresponding quotient of PFId

n that is
weak polynomial of degree i for each i ∈ N.

De�nition 8.4.1. For n, i ∈ N, the functor Qin ∶ FI→R-Mod is given by

Qin = Im
⎛
⎜
⎝
PFI
n ⊕

k≤i
⊕

jk∈FI(k,n)
PFI
k

⊕
k≤i

⊕
jk∈FI(k,n)

j∗k ⎞
⎟
⎠
,

where j∗k is the precomposition by the injection jk ∈ FI(k,n).

We explain in the following that Qin is a weak polynomial quotient of PFI
n of degree i and

that it is not strong polynomial of degree less than n.

Proposition 8.4.2. For n, i ∈ N, the quotient Qin of PFI
n is strong polynomial of degree n, but

not n − 1.
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Proof. The functor Qin is a quotient of PFI
n since it is the image of a natural transformation

starting from PFI
n and the FI-module PFI

n is strong polynomial of degree n by Proposition
5.2.1 for d = 1. Since the strong polynomial functors are closed under quotient by Proposition
5.1.3 we conclude that Qin is strong polynomial of degree less than or equal to n. However,
for m < n we have PFI

n (m) = 0, and so Qin(m) = 0 since Qin(m) is the image of the morphism
PFI
n (m) → ⊕PFI

k (m). Then Qin(m) = 0 for m < n and, using Lemma 5.1.6, we conclude that
Qin is not strong polynomial of degree n − 1.

Proposition 8.4.3. For n, i ∈ N, the quotient Qin of PFI
n is weak polynomial of degree less than

or equal to i.

Proof. The Proposition 5.2.1 implies, for d = 1, that the FI-module PFI
k is weak polynomial

of degree k. Then the sum ⊕k≤i (PFI
k )⊕FI(k,n) is weak polynomial of degree i and Qin is by

de�nition a subfunctor of this sum. We conclude using the fact that the weak polynomial functors
are closed under subobjects by Proposition 7.2.5.

Remark 8.4.4. It is reasonable to believe that Qin is the largest quotient of PFI
n in

Poli(FI,R-Mod), even if it is not proven yet.

We now use this quotient of PFI
n to get a quotient of PFId

n that is weak polynomial of degree
i for any i ∈ N using the formula

PFId
n /Hn ≅ (O

∗PFI
n ) ⊗ P Cd0 ( (−) − n ) ○Ω (8.1)

from Proposition 8.3.8.

Proposition 8.4.5. For n, i ∈ N, the formula (O∗Qin ) ⊗ P Cd0 ( (−)−n ) ○Ω de�nes a FId-module

which is a quotient of PFId
n and is weak polynomial of degree less than or equal to i.

Proof. By Proposition 8.3.8 the quotient of PFId
n by its subfunctor Hn from De�nition 8.3.2 is

described by the formula (8.1) above. The FId-module P Cd0 ○Ω is weak polynomial of degree 0 by

Corollary 8.3.10. Then the FId-module P Cd0 ( (−)−n ) ○Ω is also weak polynomial of degree 0 since
it is the same functor but shifted by n and the weak polynomiality concerns the stable behavior.
However, in Proposition 8.4.3 we showed that Qin is a quotient of PFI

n which is weak polynomial
of degree less than or equal to i. Since the functor O∗ is exact and preserves the polynomiality by
Proposition 7.2.9, we get that O∗Qin is a quotient of O∗PFI

n in Poli(FI,R-Mod). As the point-
wise tensor product respects epimorphisms, we get that (O∗Qin )⊗ P Cd0 ( (−)−n ) ○Ω is a quotient

of P
FId
n /Hn, so a quotient of PFId

n . Finally, by Proposition 7.3.6, the pointwise tensor product

preserves the polynomiality so we conclude that this quotient of PFId
n is in Poli(FI,R-Mod).



Chapter 9

Functors on the categories Cospan(FId)

In order to study the polynomial functors over a symmetric monoidal category whose unit is
an initial object like FI, Djament and Vespa introduce in [DV19, Dja16] the constructionM →
M̃ which turns the category M whose unit is an initial object into the category M̃ whose
unit is a null object. This construction is a variation of a construction of Quillen in K-theory,
and it morally adds morphisms from the objects of the category to the unit, while preserving
the morphisms from the unit to the objects. Since this construction preserves the polynomial
properties, it allows us to turn the study of polynomial functors over a category whose unit is an
initial object into the study of polynomial functors over a category whose unit is a null object,
as shown in [DV19, Theorem 4.8]. The advantage is that the functors on those categories with a
null object are better known. In particular, for FI-modules, Djament and Vespa show in [DV19,
Proposition 5.9] the following equivalences of categories

Poln (FI)/
Poln−1 (FI)

≅ Poln ( Cospan(FI) )/
Poln−1 ( Cospan(FI) )

≅ Fct (Σn), (9.1)

where Σn is the category associated with the symmetric group and Cospan(FI) is equivalent
to F̃I. This result combines two equivalences of categories: the �rst describes the quotient
of polynomial functors over FI as the same quotient of polynomial functors over the inter-
mediate category Cospan(FI). The second equivalence describes the quotient of polynomial
functors over Cospan(FI) using a variation of a Dold-Kan type theorem of Pirashvili from
[CEF15] which gives an equivalence of categories between the functors over the category FI# of
�nite sets and partial injections, and the functors over Σ the category of �nite sets and bijections.

In this chapter we show that this approach cannot be directly generalized to describe the
polynomial functors over FId. Indeed, after introducing a generalization of the construction
Cospan for FId and after de�ning polynomial Cospan(FId)-modules, we show that the
polynomial functors of degree 0 over Cospan(FId) are the constant functors. Together with
Theorem 7.4.12, this shows that the �rst equivalence in (9.1) already fails for n = 0. More
precisely, in Section 9.1 we introduce the category Cospan(FId) and we study its properties. In
particular, the morphisms in Cospan(FId) are given by some equivalence classes of diagrams
and we show that each class admits a minimal representative. This implies that the morphisms
in Cospan(FId) from 0 to 1 and from 1 to 0 are isomorphic to FId(0,1). In Section 9.2 we
introduce a combinatorial category FId# that is equivalent to Cospan(FId): it is the category
of �nite sets and of partial injections coupled with a choice of colours on the complement at the
source and the target. Finally, in the following sections we de�ne the polynomial functors over
Cospan(FId), we give their basic properties and we describe the ones of degree 0.
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9.1 The categories Cospan(FId)
In this section we present a generalization of the construction Cospan for the categories FId
and we give the main properties of the category Cospan(FId). This construction can be found
for other categories in [Ves07] and is equivalent to the construction ˜ ∶Monini →Monnul from
[DV19, Dja16]. The idea is to start with FId, which has only increasing morphisms (i.e. from
n to m when n ≤ m), and to add decreasing morphisms to it. For example, FI is a monoidal
category with an initial object and the construction Cospan turns it into Cospan(FI), a monoidal
category with a null object. The following de�nition extends the one from the category FI to
the category FId:

De�nition 9.1.1. The category Cospan(FId) has the same objects as FId. The morphisms in
Cospan(FId) from n ∈ FId to m ∈ FId are the classes of diagrams of the form

(D) =

⎛
⎜⎜⎜⎜⎜
⎝

m + 0

n m + k
Idm +α

f

⎞
⎟⎟⎟⎟⎟
⎠

,

with k ∈ FId, α ∈ FId(0, k) and f ∈ FId(n,m + k) in the quotient by the equivalence relation
generated by:

i) All diagrams from 0 to 0 are in relation,

ii) Two diagrams

(D) =

⎛
⎜⎜⎜⎜⎜
⎝

m + 0

n m + k
Idm +α

f

⎞
⎟⎟⎟⎟⎟
⎠

and (D′) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

m + 0

n m + k′
Idm +α′

f ′

⎞
⎟⎟⎟⎟⎟⎟
⎠

from n to m are in relation if there exists φ ∈ FId(k, k′) such that (Idm +φ) ○ f = f ′ and
(Idm +φ) ○ (Idm +α) = α′.

The class of the diagram (D) in the quotient is denoted by [D]. The composition in Cospan(FId)
is given by the relation

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

i + 0

m i + l
Idm +β

g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

○

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n m + k
Idm +α

f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i + 0 + 0

n m + k i + l + k
Idi +β+α

f g+Idk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we choose a representative diagram of each class.

Remark 9.1.2. A diagram (D) consists of an object k ∈ FId and two morphisms α ∈ FId(0, k)
and f ∈ FId(n,m+ k). The morphism α starts from zero, so it corresponds to a colour choice on
the object k, and the morphism f = (g, β) ∈ FId(n,m+ k) consists of an injection g and a colour
choice β on the complement of the image. This emphasizes that a morphism in Cospan(FId) is
morally composed of an injection g and colour choices on two sets α and β, which interact with
each other.
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Remark 9.1.3. The two diagrams [D] and [D′] of De�nition 9.1.1 from n to m are in relation
(along the point ii) if there exists φ ∈ FId(k, k′) such that the following diagram is commutative:

m + 0

n m + k

m + k′

Idm +α

Idm +α′
f

f ′

Idm +φ

The composition in Cospan(FId) corresponds to the natural way to complete the diagram that
links the two diagrams:

i + 0

m + 0 =m i + l

n m + k i + l + k.

Idi +β
g

Idm +α Idi+l +α

f g+Idk

Lemma 9.1.4. The composition in the category Cospan(FId) does not depend on the chosen
representative. The category Cospan(FId) is a symmetric monoidal category.

Proof. For two representatives (D) and (D′) of a morphism [D] ∈ Cospan(FId)(i,m) and two
representatives (D̃) and (D̃′) of a morphism [D̃] ∈ Cospan(FId)(m,n) connected by the com-
mutative diagrams

i + 0

m i + l

i + l′

Idi +β

Idi +β′
g

g′

Idi +ψ
and

m + 0

n m + k

m + k′

Idm +α

Idm +α′
f

f ′

Idm +φ

the commutative diagram

i + 0

i + l

n m + k i + l + k i + l′

m + k′ i + l′ + k′

Idi +β′Idi +β

Idi +ψ
Idi + Idl +α

f

f ′

g+Idk

Idm +φ

Idi +ψ+φ
Idi + Idl′ +α′

g′+Idk′

shows that the two composition diagrams are related and so their class is the same. For two
di�erent representatives (D) and (D′) of a morphism [D] from 0 to 0, the two compositions
[D]○ [D̃] and [D′]○ [D̃] give the same result due to the structure of monoidal category. Finally,
the structure of symmetric monoidal category directly comes from FId.
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Remark 9.1.5. For d = 1, the category Cospan(FI1) is equivalent to the category F̃I of
[DV19, Section 4] whose objects are the ones of FI and whose morphisms between n and m
are the elements of the �ltered colimit of the sets FI(n,m + a) for a ∈ F̃I. The equivalence
is given by the functor that sends an object k in F̃I to k in Cospan(FI1) and a morphism
[f] ∈ colim

a∈FI
HomFI(n,m + a) to the class of diagrams

[D] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m

n m + a
Idm +ca

f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
by choosing a representative f ∶ n → m + a of the class [f] in the �ltered colimit. The value of
the functor on a morphism does not depend on the chosen representative by Proposition 1.1.6.
This functor is essentially surjective, full and faithful since the equivalence relations de�ning
the morphisms in Cospan(FI) correspond exactly to the �ltered colimit relations de�ning the
morphisms in F̃I by Proposition 1.1.6 again.

We now prove that for every morphism [D] in Cospan(FId) we can choose a minimal repre-
sentative diagram (D) of the class [D]. This important property will be used in the following
and gives a description of the morphisms from 0 to m and from n to 0 in Cospan(FId).
Proposition 9.1.6. For each morphism [D] in Cospan(FId)(n,m), there exists 0 ≤ z ≤ n,
β ∈ FId(0, z) and g ∈ FId(n,m+ z) such that the diagram (D′) de�ned by these three elements is
a minimal representative of the class [D] (in the sense that z ≤ k for every k ∈ FId associated to
a representative (D) of the class [D]).
Proof. Let z be the subobject Im(f)∩k of k and σ be an isomorphism between k and z+(k∖z),
the following diagram commutes:

m + 0

n m + k

m + z + (k ∖ z).

Idm +α

Idm +(σ○α)
f

(Idm +σ)○f

Idm +σ

Since the image of f is in m+ z, we can de�ne some morphisms g ∈ FId(n,m+ z), h ∈ FId(0, k ∖
z), β ∈ FId(0, z) and γ ∈ FId(0, k ∖ z) by the relations (Idm +σ) ○ f = g + h and Idm +(σ ○ α) =
(Idm +β) + γ. Since f is an injection we get 0 ≤ z ≤ n. By de�nition, we have the following
equality

[D] ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n m + k
Idm +α

f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n m + z + (k ∖ z)

Idm +(σ○α)

(Idm +σ)○f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since there is only one equivalence class in Cospan(FId)(0,0), so we have

[D] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n m + z
Idm +β

g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0 k ∖ z

γ

h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n m + z
Idm +β

g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=∶ [D′] .
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Finally, the diagram (D′) is minimal since g restricted to g−1(z)→ z is surjective, i.e. bijective.

Then, the Proposition 9.1.6 gives, in particular, the following description of the morphisms
starting and ending at 0 in Cospan(FId):

De�nition 9.1.7. For n ∈ N and x ∈ FId(0, n), we denote by x ∈ Cospan(FId) (0, n) and by
x̃ ∈ Cospan(FId) (0, n) the morphisms given by the classes

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n

0 n

Idn

x

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and x̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

n n

x

Idn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proposition 9.1.8. For n,m ∈ N, with the notations of De�nition 9.1.7, the set
Cospan(FId) (0,m) is the disjoint union of the equivalence classes x for x ∈ FId(0,m). Similarly,
the set Cospan(FId) (n,0) is the disjoint union of the equivalence classes x̃ for x ∈ FId(0, n).
Moreover, for x ∈ FId(0, n) the composition x̃ ○ x is the identity.

Proof. For [D] ∈ Cospan(FId) (0,m), the Proposition 9.1.6 for n = 0 gives z = 0, so β = Id0 and
there exists a minimal representative of [D] associated with some x ∈ FId(0,m) as in De�nition
9.1.7. Two such diagrams are never related so we get the description of Cospan(FId) (0,m). For
[D] ∈ Cospan(FId) (n,0) the Proposition 9.1.6 for m = 0 gives a minimal representative of [D]
associated with 0 ≤ z ≤ n, β ∈ FId(0, z) and g ∈ FId(n, z). Since the set FId(n, z) is empty for
z < n we get z = n and g is in FId(n,n) = Sn, so it is bijective. We then have the commutative
diagram

0 + 0

n 0 + n = 0 + z

n.

Idm +β

Id0 +g−1○β
g

Idn

g−1

Then we get the equalities

Cospan(FId) (n,0) = ⋃
β∈FId(0,n)

⋃
g∈Sn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 + 0

n 0 + n
Id0 +β

g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ⋃
β∈FId(0,n)

⋃
g∈Sn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

n n

g−1○β

Idn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ⊔
x∈FId(0,n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

n n

x

Idn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where the last equality is obtained by checking that two diagrams associated with di�erent
x ∈ FId(0, n) are not related. Finally, for n ∈ N and x ∈ FId(0, n), the composition x̃ ○ x is a
morphism from 0 to 0 and therefore the identity.

The Proposition 9.1.8 implies that both Cospan(FId) (0, n) and Cospan(FId) (n,0) are in
bijection with FId(0, n). This emphasizes that the category Cospan(FId) is essentially obtained
by keeping the morphisms from 0 to n of FId and adding new morphisms from n to 0 corre-
sponding to them. This remark also shows that 0 is a null object in Cospan(FId) for d = 1, as
explained in [DV19], but this is not true for d > 1.

Remark 9.1.9. As a special case of Proposition 9.1.8, using the notations of De�nition
9.1.7, Cospan(FId) (0,1) is the disjoint union of the equivalence classes c for c ∈ C and
Cospan(FId) (1,0) is the disjoint union of the equivalence classes c̃ for c ∈ C. In summary,
both Cospan(FId) (0,1) and Cospan(FId) (1,0) are in bijection with FId(0,1) = C and, for
c ∈ C, we have two morphisms c ∈ Cospan(FId) (0,1) and c̃ ∈ Cospan(FId) (1,0) such that the
composition c̃ ○ c is the identity.

In the end of this section, we study the inclusion functor η of FId in Cospan(FId) and describe
an adjoint of this functor, generalizing Proposition 4.7 in [DV19]. This adjunction connects the
functors on FId and those on Cospan(FId) and, in particular, it allows us to create polynomial
FId-modules from polynomial Cospan(FId)-modules.

De�nition 9.1.10. The inclusion functor η ∶ FId → Cospan(FId) is given on objects by η(n) = n
and on a morphism f ∈ FId(n,m) by the class f from De�nition 9.1.7.

We describe the adjoint of this functor using the theory of Kan extensions, but �rst we
introduce the slice category (η ↓ n):

De�nition 9.1.11. For n in Cospan(FId), the slice category (η ↓ n) has for objects the pairs
(t, φ), where t ∈ Cospan(FId) and ϕ ∈ Cospan(FId) ( t , n), and for morphisms from (t, ϕ) to
(t′, ϕ′) the maps f ∶ t → t′ in Cospan(FId) such that ϕ′ ○ f = ϕ. The forgetful functor from
(η ↓ n) to FId is denoted by ιn.

Proposition 9.1.12. The precomposition functor

η∗ ∶ Fct(Cospan(FId) , R-Mod) Ð→ Fct(FId , R-Mod)

has a left adjoint α which is given on the objects by α(F ) (n) = colim
(t,ϕ)∈(η↓n)

(F ○ ιn) (t, ϕ).

Proof. Since R-Mod is cocomplete, the general theory of Kan extensions (see [ML98, P.236])
gives the existence of a left adjoint to the precomposition functor η∗. It is the functor α =
Lanη (−), given on a functor F ∶ FId →R-Mod by the functor α(F ) = Lanη (F ) ∶ Cospan(FId)→
R-Mod, described on objects by the formula of the statement, and its image on morphisms is
obtained by the universal properties of colimits.

9.2 Equivalence between Cospan(FId) and FId#

In this section we introduce the combinatorial category FId# and we prove that it is isomorphic
to Cospan(FId). For example, when d = 1 we recover the isomorphism F̃I ≅ FI# of [DV19,
Example 4.2] or [Wil19], where FI# is the category of partial injections of �nite sets from
[CEF15] and [Wil18a].
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De�nition 9.2.1. The category FId# has the same objects as FId and the morphisms in
FId# from n to m are the pairs (f,α) where f is a partially de�ned morphism in FId - i.e. a
morphism f ∈ FId(l,m) for l a subobject of n in FId - and α ∈ FId(0, n ∖ l) is a colour choice.
The composition is given by the relation

( l m
f

, 0 n ∖ lα ) ○ ( k n
g

, 0 i ∖ kβ ) =

( g−1(l) l m
g f

, 0 i ∖ k + Im(g̃) (i ∖ k) + (k ∖ g−1(l)) = i ∖ g−1(l)
β+(α∣Im(g̃)) Idi∖k +g̃−1 )

where g̃ is g restricted to k ∖ g−1(l) and co-restricted to its image within n ∖ l, so that it is an
isomorphism of k ∖ g−1(l).
Remark 9.2.2. As in Remark 9.1.2, a morphism (f,α) in FId#(n,m) morally consists of an
injection and two colour choices, one on the complement at the source and one on the complement
at the target, which interact with each other. Indeed, the morphism f = (g, β) ∈ FId(l,m) is
itself a pair formed by an injection g from l into m and a colour choice β on the complement of
the image of g in m.

We now de�ne two functors between Cospan(FId) and FId#, and we prove in Theorem 9.2.8
that they are inverse to each other.

De�nition 9.2.3. The functor Γ ∶ Cospan(FId) → FId# is given on objects by Γ(n) = n and
on morphisms by

Γ

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n m + k
Idm +α

f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

= ( f−1(m) m
f

, 0 Im(f) ∩ k n ∖ f−1(m)
α∣Im(f)∩k f̃−1 )

where f̃ is f restricted to n ∖ f−1(m) and co-restricted to Im(f) ∩ k so it is an isomorphism.

De�nition 9.2.4. The functor χ ∶ FId# Ð→ Cospan(FId) is given on objects by χ(n) = n and
on morphisms by

χ( l m
g

, 0 n ∖ lβ ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n = l + (n ∖ l) m + (n ∖ l)

Idm +β

g+Idn∖l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Lemma 9.2.5. The functors Γ ∶ Cospan(FId)→ FId# and χ ∶ FId# Ð→ Cospan(FId) are well
de�ned.

Proof. By de�nition of the composition in Cospan(FId) and FId#, both Γ and χ respect com-
position and identities. The de�nition of Γ does not depend on the choice of a representative (D)
of the class [D]: indeed, for two representatives (D) and (D′) of the morphism [D] connected
by the commutative diagram

m + 0

n m + k

m + k′,

Idm +α

Idm +α′
f

g

Idm +φ
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as in the proof of Proposition 9.1.6 we can choose k and k′ minimal such that Im(f) ∩ k = k
and Im(g) ∩ k′ = k′. The minimality for both k and k′ implies that φ is bijective. Then the
equality g = (Idm +φ) ○ f implies that f−1(m) = g−1(m) and that the restrictions of f and g to
this subobject are the same. This relation also implies that g̃ = φ ○ f̃ , and together with the
relation α′ = φ ○ α it gives the relations g̃−1 ○ α′ = (φ ○ f̃)−1 ○ φ ○ α = f̃−1 ○ φ−1 ○ φ ○ α = f̃−1 ○ α
which shows that Γ([D]) = Γ([D′]).

Remark 9.2.6. If we choose k minimal as in Proposition 9.1.6, then Im(f) ∩ k = k and the
injective morphism f restricted to n ∖ f−1(m) gives an isomorphism n ∖ f−1(m) ≃ k. This
isomorphism can be used to rewrite the image of the functor Γ on morphisms as follows:

Γ

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n m + k
Idm +α

f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

=
⎛
⎝
f−1(m) m

f
, 0 k n ∖ f−1(m)α

(f ∣n∖f−1(m))
−1 ⎞

⎠
.

In the end of the section we always choose such a minimal k and we use the alternative
de�nition of Γ given in Remark 9.2.6 to simplify the notations.

Remark 9.2.7. We can assume that f restricted to n ∖ f−1(m) is the identity by the following
commutative diagram:

m + 0

f−1(m) + (n ∖ f−1(m)) m + k

m + (n ∖ f−1(m))

Idm +α

Idm +((f ∣n∖f−1(m))
−1○α)f

f+Idn∖f−1(m)

Idm +(f ∣n∖f−1(m))
−1

.

This explains why the inverse image of f , restricted to n ∖ f−1(m), appears in the de�nition of
the functor Γ, and illustrates the equivalence below. Indeed, this representative diagram of the
class isolates the colour choice on the complement at the source n∖f−1(m) and the colour choice
on the complement m ∖ f(n) ∩m at the target, which corresponds to a morphism in FId# .

Theorem 9.2.8. The functors Γ ∶ Cospan(FId) → FId# and χ ∶ FId# Ð→ Cospan(FId) from
De�nitions 9.2.3 and 9.2.4 are inverse of each other. They give an isomorphism of categories

Cospan(FId) ≅ FId#.

Proof. By de�nition both compositions of Γ and χ are the identity on objects, we prove that
this is also the case for morphisms. For (g ∶ l →m, β ∶ 0→ n ∖ l) a morphism in FId#(n,m) we
have:

Γ ○ χ( ( l m
g

, 0 n ∖ lβ ) ) = Γ

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n = l + (n ∖ l) m + (n ∖ l)

Idm +β

g+Idn∖l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

.

Then, the image by Γ of this class is

⎛
⎜
⎝
(g + Id)−1(m) m

g+Idn∖l
, 0 n ∖ l

((g+Id)∣n∖(g+Id)−1(m))
−1
○β ⎞

⎟
⎠
= ( l m

g
, 0 n ∖ lβ ) ,
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showing the identity Γ ○ χ = Id on morphisms. For [D] a morphism in Cospan(FId)(n,m), we
use the de�nitions to get

χ ○ Γ( [D] ) ∶= χ ○ Γ

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

n m + k
Idm +α

f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

= χ
⎛
⎝
f−1(m) m

f ∣f−1(m)
, 0 k = n ∖ f−1(m)

(f ∣n∖f−1(m))
−1○α ⎞

⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + 0

f−1(m) + (n ∖ f−1(m)) m + (n ∖ f−1(m))

Idm +((f ∣n∖f−1(m))
−1○α)

f ∣f−1(m)+Idn∖f−1(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We denote by [D′] this last class of diagrams. Then, since f induces an isomorphism n∖f−1(m) ≅
k, we can make the following commutative diagram:

m + 0

n = f−1(m) + (n ∖ f−1(m)) m + (n ∖ f−1(m))

m + k,

Idm +((f ∣n∖f−1(m))
−1○α)

Idm +α
f ∣f−1(m)+Idn∖f−1(m)

f=f ∣f−1(m)+f ∣n∖f−1(m)

Idm +f ∣n∖f−1(m)

.

which shows that the class [D′] is the same as the initial class [D], implying that χ ○Γ = Id.

9.3 Polynomial Cospan(FId)-modules

In this section we study the polynomial functors from the category Cospan(FId) to the category
R-Mod, called Cospan(FId)-modules, as we did for FId-modules in the previous chapters. We
start by de�ning the endofunctors τk, δ

x
k and κxk on Fct(Cospan(FId),R-Mod) as we did for

Fct(FId,R-Mod) in Section 2.6 and we de�ne the polynomial functors on Cospan(FId) using
them, as for polynomial FId-modules in Section 5.1. One important di�erence is that all the
endofunctors κxk are zero for Cospan(FId)-modules, as we have shown in Proposition 9.3.4, which
simpli�es the study of these functors. For example, it implies that the subcategories of stably
zero functors over Cospan(FId) are zero so there is only one notion of polynomial Cospan(FId)-
modules.

De�nition 9.3.1. For k ∈ Cospan(FId), the endofunctor τk of Fct(Cospan(FId) , R-Mod )
is given on a functor F ∶ Cospan(FId) → R-Mod by τk(F ) = F (− + k) and on a natu-
ral transformation σ ∶ F → F ′ by τk(σ) = σ(−+k). For x ∈ Cospan(FId)(0, k), the nat-
ural transformation ixk ∶ Id → τk is given on a functor F ∶ Cospan(FId) → R-Mod by
ixk(F ) = F( Id(−) +x ) ∶ F (−)Ð→ F (− + k).
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Remark 9.3.2. The transformation ixk is natural: for any functor F ∶ Cospan(FId) → R-Mod
and any morphism [D] in Cospan(FId)(n,m), using the monoidal structure of Cospan(FId)
and Proposition 9.1.8 we have

τk(F )([D]) ○ F (Idn +x)

= F

⎛
⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + k

n m + k + l
Idm+k +α

(Idm +x+Idl)○f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟
⎠

= F

⎛
⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + k

n m + k + l
Idm+k +α

(f+Idk)○(Idn +x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟
⎠

= F (Idm +x) ○ F ([D]).

We then de�ne the endofunctors δxk and κxk as we did in De�nition 2.6.2 for FId-modules.
However, we immediately show that the endofunctors κxk are all zero over Cospan(FId).

De�nition 9.3.3. For k ∈ Cospan(FId) and x ∈ Cospan(FId)(0, k), the endofunctor κxk of
Fct(Cospan(FId) , R-Mod ) is the kernel of the natural transformation ixk, and δ

x
k is its cokernel.

Proposition 9.3.4. For all k ∈ Cospan(FId) and all x ∈ Cospan(FId)(0, k), the endofunctor κxk
is zero.

Proof. By Proposition 9.1.8 there exists a morphism x̃ in Cospan(FId)(k,0) such that x̃ ○ x =
Id0. Then, for all functors F ∶ Cospan(FId) → R-Mod we have the relation F (Id(−) +x̃) ○
F (Id(−) +x) = F (Id(−) + (x̃ ○ x) ) = IdF (−). This implies that the morphism ixk(F ) = F (Id(−) +x)
is a monomorphism, so its kernel κxk(F ) is zero. Since this is natural it shows that κxk is zero as
an endofunctor.

Remark 9.3.5. For k ∈ Cospan(FId) and x ∈ Cospan(FId)(0, k) there exists a short exact

sequence 0 κxk Id τk δxk 0
ixk .

We now show that the basic properties of these endofunctors that we proved for FId-modules
remain true for Cospan(FId)-modules. Some of them even become empty since all the endofunc-
tors κxk are zero by Proposition 9.3.4.

Proposition 9.3.6. For k, l ∈ Cospan(FId) and x ∈ Cospan(FId)(0, k), y ∈ Cospan(FId)(0, l),
we have

0) The endofunctor δxk is exact,

1) The endofunctors τk and τl commute up to a natural isomorphism. They also commute
with limits and colimits.

2) The endofunctors δxk and δyl commute up to a natural isomorphism. They also commute
with colimits.

3) The endofunctors τl and δ
x
k commute up to a natural isomorphism.

4) There is a natural short exact sequence 0 δyl δx+yk+l τl ○ δxk 0 .

Proof. The proof is the same as the proof of Proposition 2.6.6. The only di�erences are that
the exact sequence of points 0) and 4) becomes short since κxk is zero, which implies that all
endofunctors δxk are exact and not just right exact.
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Remark 9.3.7. Since all the endofunctors κxk of Fct(Cospan(FId) , R-Mod ) are zero
by Proposition 9.3.4, the analogues for Cospan(FId) of the categories SN (FId,R-Mod)
and SN ci1 ,...,cim

(FId,R-Mod) of De�nitions 6.1.1 and 6.2.1 are reduced to zero. Then
any corresponding quotient category by one of these subcategories is isomorphic to
Fct(Cospan(FId),R-Mod) and thus the di�erent notions of weak and strong polynomial func-
tors that we could de�ne for Cospan(FId)-modules coincide. Therefore, in the following section
we present only one notion of polynomial functors over Cospan(FId).

Finally, we de�ne the polynomial functors on Cospan(FId), as we did for functors on FId in
Section 5.1, using the endofunctors δc1 for c ∈ C.

De�nition 9.3.8. For n ∈ N, the full subcategories of Fct(Cospan(FId),R-Mod) of polynomial
functors of degree less than or equal to n, denoted by Poln(Cospan(FId),R-Mod), are de�ned
by induction. A Cospan(FId)-module F is in Poln(Cospan(FId),R-Mod) if, for all c ∈ C, we
have δc1(F ) ∈ Poln−1(Cospan(FId),R-Mod), where δc1 is the endofunctor of De�nition 9.3.3. By
convention Pol−1(Cospan(FId),R-Mod) is zero.

Remark 9.3.9. For d = 1, since C = {c} we recover the de�nition of polynomial functors
over the symmetric monoidal category Cospan(FI) with a null object of [DV19] using only one
endofunctor δ1 = δc1.

We end this section with the �rst properties of the polynomial functor over Cospan(FId).
In particular, we show that this de�nition using only the endofunctors δc1 for c ∈ C a colour
is equivalent to the similar de�nition using all endofunctors δxk for k ∈ Cospan(FId) and x ∈
Cospan(FId(0, k)).

Proposition 9.3.10. For all n ∈ N, the subcategory Poln(Cospan(FId),R-Mod) is thick,
closed under colimits and stable by the endofunctors τk and δxk , for k ∈ Cospan(FId) and
x ∈ Cospan(FId)(0, k).

Proof. The �rst assumption is proved by induction using Proposition 9.3.6 which implies that
all endofunctors δc1 are exact. The second assumption is true since τk and δxk commute with δc1
as endofunctors by Proposition 9.3.6 again.

Lemma 9.3.11. A functor F ∶ Cospan(FId) → R-Mod is in Poln(Cospan(FId),R-Mod) if
and only if the functor δxk (F ) is in Poln−1(Cospan(FId),R-Mod) for all k ∈ Cospan(FId) and
all x ∈ Cospan(FId)(0, k).

Proof. One implication is clear, the other is proved by induction using the short ex-

act sequence 0 δyl δx+yk+l τl ○ δxk 0 from Proposition 9.3.6 and the fact that

Poln(Cospan(FId),R-Mod) is thick and stable by the endofunctors τk by Proposition 9.3.10.

9.4 Description of Pol0(Cospan(FId),R-Mod)
We show that the polynomial functors of degree 0 over Cospan(FId) are the constant functors,
which gives an equivalence of categories between Pol0( Cospan(FId),R-Mod ) and R-Mod.
We start by adapting the Section 2.5 for Cospan(FId), which says that a functor on FId is
determined by the image of the morphisms starting from 0, if these images are isomorphisms.
We show that the same is true for functors over Cospan(FId) if we keep only the morphisms
starting from 0 corresponding to ck1 for k ∈ N. We then use the subcategory Cospan(FId) of
Cospan(FId) with only these morphisms to describe the polynomial Cospan(FId)-modules of
degree 0.
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De�nition 9.4.1. The subcategory Cospan(FId) of Cospan(FId) has the same objects as
Cospan(FId) and the morphisms in Cospan(FId) are the morphisms starting from 0 of the form

ck1 in Cospan(FId), for k ∈ FId, corresponding to ck1 ∈ FId(0, k) via the bijection of Proposition
9.1.8.

We now show that the functors over Cospan(FId) sending the morphisms ck1 to isomorphisms
correspond to the functors over Cospan(FId).

Lemma 9.4.2. A functor F ∶ Cospan(FId) → R-Mod induces a unique functor F ∶
Cospan(FId) → R-Mod. Moreover, if F (ck1) is an isomorphism for all k ∈ Cospan(FId), then
for all x ∈ Cospan(FId)(0, k) we have F (x) = F (ck1) and, for u ∈ Cospan(FId)(n,m), the mor-
phism F (u) is obtained from F by the formula:

F (u) = F (u ○ cn1) ○ (F (cn1) )
−1 = F (cm1 ) ○ (F (cn1) )

−1
.

Proof. For x ∈ Cospan(FId)(0, k), let x̃ be the morphism in Cospan(FId)(k,0) corresponding to
x by Proposition 9.1.8, then we have x̃ ○x = Id0. Since x̃ ○ ck1 is in Cospan(FId)(0,0) we also get
by de�nition x̃ ○ ck1 = Id0. Applying F to these relations, since F (ck1) is an isomorphism, we get

F (x̃)○F (ck1) = F (x̃○ck1) = F (Id0). This gives F (x̃) = (F (ck1) )
−1
. We then get (F (ck1) )

−1○F (x) =
F (x̃ ○ x) = IdF (0) and so F (x) = F (ck1). The rest of the proof is similar to the proof of Lemma
2.5.3 using that u ○ cn1 is in Cospan(FId)(0,m) and that F (u ○ cn1) = F (cm1 ) = F (cm1 ) because of
the relation F (x) = F (cn1).

Corollary 9.4.3. For F ∶ Cospan(FId) → R-Mod, if the image of all morphisms in
Cospan(FId) by F is an isomorphism, then this functor can be extended to a unique functor
F from Cospan(FId) to R-Mod.

Proof. By hypothesis, F (ck1) is an isomorphism for all k ∈ Cospan(FId), so we can de�ne a
functor F ∶ Cospan(FId) → R-Mod by the formula of Lemma 9.4.2. This lemma also proves
that F is the unique extension of F .

Under the hypothesis that a Cospan(FId)-module sends a morphism ck to an isomorphism,
we show that the actions of the symmetric groups on this functor are trivial.

Proposition 9.4.4. For F ∶ Cospan(FId) → R-Mod, if there exist k ∈ Cospan(FId) and c ∈ C
such that F (ck) is an isomorphism, then for all permutations σ ∈ Sk = Cospan(FId)(k, k), the
morphism F (σ) is the identity.

Proof. It is similar to the proof of Proposition 2.5.1 using the Lemma 9.4.2.

We �nally prove that the polynomial functors of degree 0 over Cospan(FId) are the constant
functors using the category Cospan(FId). We start by giving a concrete condition for functors
over Cospan(FId) to be polynomial of degree 0.

Lemma 9.4.5. A functor F ∶ Cospan(FId) → R-Mod is polynomial of degree 0 if and only if
the natural transformation ixk(F ) ∶ F → τk(F ) is an equivalence for all k ∈ Cospan(FId) and all
x ∈ Cospan(FId)(0, k).

Proof. By Proposition 9.3.11 F is in Pol0(Cospan(FId),R-Mod) if and only if the cokernel
δkk(F ) of each morphism ixk(F ) is zero, and by Proposition 9.3.4 its kernel κxk(F ) is always
zero.
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We now de�ne, for each functor F ∈ Pol0(Cospan(FId),R-Mod), an associated functor
HF ∶ Cospan(FId) → R-Mod and we show that this functor HF is constant and isomorphic
to F . By Corollary 9.4.3 we can de�ne HF on the subcategory Cospan(FId) and extend it

to a functor over Cospan(FId) if the morphisms ck1 are sent to isomorphisms. Moreover, if

F ∈ Pol0(Cospan(FId),R-Mod) the morphism i
ck1
k (F )(0) = F (c

k
1) ∶ F (0) → F (k) = τk(F )(0) is

an isomorphism by Lemma 9.4.5, which allows us to give the following de�nition of HF :

De�nition 9.4.6. For F ∈ Pol0(Cospan(FId),R-Mod), the functor HF ∶ Cospan(FId) →
R-Mod is given on objects by HF (n) = F (0), for n ∈ Cospan(FId), and on morphisms by

HF (ck1) = ( F (ck1) )
−1 ○ F (ck1) = IdF (0) for k ∈ Cospan(FId).

Remark 9.4.7. We then consider the functor HF ∶ Cospan(FId) → R-Mod, which is the one
extending HF by Corollary 9.4.3. This de�nition is similar to De�nition 7.4.4 for functors on FId
but, for Cospan(FId), HF is equal to the constant functor F (0)cst ∶ Cospan(FId)→R-Mod.

Lemma 9.4.8. For F ∈ Pol0(Cospan(FId),R-Mod), there is a natural equivalence ε ∶ F (0)cst =
HF ≅ F given by εn = F (cn1) ∶HF (n) = F (0)→ F (n).

Proof. The equality F (0)cst = HF follows from Corollary 9.4.3 and from the de�nition of HF .

For u ∈ Cospan(FId)(n,m), as F is in Pol0(Cospan(FId),R-Mod), the morphism i
ck1
k (F ) =

F (Id(−) +ck1) is an isomorphism for all k ∈ Cospan(FId) by Proposition 9.4.5. Then by Lemma
9.4.2 we have F (u ○ cn1) = F (cm1 ) since cm1 and u ○ cn1 are in Cospan(FId)(0,m). This implies the
relations

εm ○HF (u) = εm = F (cm1 ) = F (u ○ cn1) = F (u) ○ F (cn1) = F (u) ○ εn,

which shows that ε is natural. It is an isomorphism by the Lemma 9.4.5 since F (ck1) = i
ck1
k (F )(0)

is an isomorphism.

Finally, we can prove that the polynomial functors of degree 0 over Cospan(FId) are the
constant functors using the Lemma 9.4.8.

Theorem 9.4.9. There is an equivalence of categories

Pol0( Cospan(FId),R-Mod ) ≅ R-Mod

given by the functor c ∶ R-Mod → Fct(Cospan(FId),R-Mod) which sends a module M ∈
R-Mod to the constant functorM cst and a morphism f ∈R-Mod(M,N) to the constant natural
transformation equal to f .

Proof. By Lemma 9.4.8, if F is in Pol0(Cospan(FId),R-Mod) then F is equivalent to the
constant functor F (0)cst. Conversely, for all M ∈ R-Mod, the constant functor M cst is in
Pol0(Cospan(FId),R-Mod) since ixk(M cst) = IdMcst is a natural equivalence. This proves that
the essential image of the functor c is Pol0(Cospan(FId),R-Mod). This functor is by de�nition
faithful, and it is full since a natural transformation between two constant functors M cst and
N cst is obtained by a morphism in R-Mod(M,N).



Appendix A: The pointwise tensor
product on Monini

This appendix is a complement of [DV19]. In this contextM denotes a small symmetric monoidal
category whose unit is an initial object andMonini denotes the category of these small categories.
We prove that the pointwise tensor product of two strong polynomial functors overM is strong
polynomial. Djament and Vespa de�ned a notion of strong polynomial functors over these
categories which is similar to the de�nition over FId. We then use the Proposition 3.12 from
[DV19], which corresponds to Proposition 5.4.18 but for M ∈ Monini, to prove the following
result analogous to Theorem 5.5.4:

Theorem. For n,m ∈ N and F,G ∶ M → R-Mod, if F is in Polstrongn (M,R-Mod) and
if G is in Polstrongm (M,R-Mod), then their tensor product F ⊗ G ∶ M → R-Mod is in
Polstrong

2max(n,m)(M,R-Mod).

Proof. We consider the functor (F,G) in Fct(M,R-Mod×R-Mod). We start by proving by
induction on k ∈ N that δ○k1 (F,G) = ( δ○k1 (F ), δ○k1 (G) ), where δ○k1 is the composition of δ1 by itself
k times. For k = 0 it is by de�nition, and by induction we have δ○k+11 (F,G) = δ1( δ○k1 (F,G) ) =
δ1( δ○k1 (F ), δ○k1 (G) ) ). Then, for a ∈M, δ1( δ○k1 (F ), δ○k1 (G) )(a) is the cokernel of the map

( δ○k1 (F ), δ○k1 (G) )(a) → τ1( δ○k1 (F ), δ○k1 (G) )(a)
( δ○k1 (F )(a), δ○k1 (G)(a) ) ↦ ( δ○k1 (F )(a + 1), δ○k1 (G)(a + 1) ).

This shows the identity δ○k+11 (F,G) = ( δ○k+11 (F ), δ○k+11 (G)) on the objects a ∈M and we can
check that it is natural. Then, by hypothesis F ∈ Polstrongn (M,R-Mod) so δ○n+11 (F ) = 0, which
implies that δ

○max(n,m)+1
1 (F ) = 0 and we have the same for G. This gives

δ
○max(n,m)+1
1 (F,G) = ( δ○max(n,m)+1

1 (F ), δ○max(n,m)+1
1 (G) ) = (0,0),

showing that (F,G) is polynomial of degree less than or equal to max(n,m). We conclude by
applying the Proposition 3.12 from [DV19] to the composition

M R-Mod×R-Mod R-Mod
(F,G) −⊗−

.

Indeed, we showed in Lemma 5.5.3 that − ⊗ − is polynomial of degree 2, and we proved that
(F,G) is polynomial of degree less than or equal to max(n,m). The functor − ⊗ − preserves
epimorphisms since an epimorphism in R-Mod×R-Mod is a couple (f, g) of epimorphism in
R-Mod and then f ⊗ g is also an epimorphism.

Remark 9.4.10. In this theorem the bound may not be the best possible. Indeed, we could
expect for F ⊗G ∶M → R-Mod to be strong polynomial of degree less than or equal to n +m.
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For example, for M = FI, the Proposition 4.1 from [Dja16] shows that a FI-module is strong
polynomial of degree less than or equal to n if and only if it is a quotient of a sum of the standard
projective functors PFI

i for i ≤ n. This allows us to prove that, over FI the tensor product F ⊗G
is polynomial of degree n+m if F has degree n and G has degree m. Similarly, for functors over
a symmetric monoidal category where the unit is a null object, this theorem is true with the
optimal bound since we have deg(F ⊗G) ≤ deg(F ) + deg(G). The proof of this result is given
in [Ves19, Proposition 2.9] with a direct use of the cross e�ects. One could try to prove a more
re�ned version of the proposition 3.12 from [DV19] and use this re�nement in the proof to get a
better bound.
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