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Notations

The following is a list of some notations used throughout this thesis:

R : A fixed commutative ring
K : A fixed field
Set : The category of sets

Ab : The category of abelian groups
R-Mod : The category of R-modules
C-modules : The category of functors from a category C to the category R-Mod

K-Vect : The category of K-vector spaces
Fct(A,B) : The category of functors from A to B if B is a category and A a small category
F* . The pre-composition by the functor F’
F, : The post-composition by the functor F'
S, : The symmetric group on n elements

zeA : An object x of the category A



Introduction (Frangais)

Des FI-modules aux FI;-modules

Les FI-modules sont les foncteurs de la catégorie FI des ensembles finis et des injections
(également notée I dans [Sch08| et © dans [DV19]) vers la catégorie R-Mod des R-modules
(pour R un anneau commutatif). Plus généralement, un C-module est un foncteur d’une caté-
gorie C vers la catégorie R-Mod. Les FI-modules ont été largement étudiés au cours de la
derniére décennie par Church, Ellenberg, Farb, Nagpal, Reinhold et d’autres (voir par exemple
[CEF15, [CEFN14! [CEF14, ICE17, [CF13, [Chul2l [CMNRIS8) Djal6l IDV19]). La théorie des FI-
modules a été introduite dans [CEF15] afin de transformer la notion complexe de stabilité de
représentation en un résultat de finitude sur la suite de représentations des groupes symétriques
considérée comme un objet unique. Une introduction détaillée & la théorie des FI-modules et a
la stabilité de représentation peut étre trouvée dans [Sam20] mais nous rappelons ici les principes
de base. La notation FI a été introduite dans [CEF15] en tant qu’acronyme pour la catégorie des
ensembles Finis (souvent représentés par leur cardinal dans le squelette) et des Injections. Un
FI-module correspond & une famille de représentations linéaires des groupes symétriques avec
des conditions de compatibilité données par des applications linéaires, ce qui peut étre représenté
par le diagramme suivant :

So S1 S2 Sn
N N n \
FI 0« > 1« > 2 < > < > n e >
7|
R-Mod F(0) — F(1) > F(2) .. y F(n) — ...
U U U U
F(So) F(S1) F(S2) F(Sn)

Chaque fléche de ce diagramme représente en fait plusieurs fléches que nous pouvons construire
par composition et via 'action des groupes symétriques. Un grand nombre d’exemples concrets
de FI-modules sont présentés dans [CEF13|. D’autres exemples intéressants de FI-modules de
type fini sont donnés par la cohomologie des groupes de tresses pures dans [Will8a] et des
groupes appelés pure string motion group dans [Will2].

Dans la littérature il existe plusieurs variantes (voir [Sam20] pour une liste détaillée) de
la catégorie FI : les catégories FI; que nous développons dans cette thése, FIg la catégorie
des ensembles finis et des couples d’une injection et d'un choix d’un élément du groupe G
pour chaque élément & la source (voir [Raml7b]), FS¢ la catégorie des ensembles finis et des
G-surjections pour G un groupe (voir [SS17]), FIy pour W certains groupes de Weyl dans
[Will2], FIM la catégorie des ensembles finis et des paires d’injection et de couplage parfait
sur le complémentaire de l'image (voir [MW19]), ou une version symplectique (voir [Sam20]).
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Il existe également des variantes pour les représentations des groupes linéaires, comme VI(R)
la catégorie des modules libres de rang fini et des applications linéaires injectives avec inverse
a gauche, qui est présentée en détail dans [Will8al]. Cette catégorie, et sa généralisation
VIC(R) des modules libres de rang fini et des applications linéaires injectives avec un choix de
supplémentaire de l'image, ont été introduites sous les noms S(ab) pour R =Z dans [DV19] et
S(R) dans [Djal6).

Dans cette thése, nous nous concentrerons sur la catégorie FI; pour d un entier non nul,
introduite par Sam et Snowden dans [SS17), dans laquelle les objets sont toujours les ensembles
finis et les morphismes sont les injections colorées. Nous étudions ici les FIz-modules et
nous soulignons en particulier les différences avec les FI-modules. Méme si nous étudions les
foncteurs dont la catégorie but est une catégorie de modules pour plus de clarté, 'essentiel de ce
travail reste vrai si nous remplagons R-Mod par une catégorie de Grothendieck générale (voir
[Gar01]). Nous récupérons en particulier les FI-modules puisque la catégorie FI; est isomorphe
a la catégorie FI (voir Section [2.1). La premiére différence majeure est que 1'unité 0 est un
objet initial dans FI ~ FI;, mais pas dans FI; pour d > 1. Nous montrons également dans la
Section que le foncteur oubli FI; — FI, qui relie les FI;-modules et les FI-modules, posséde
une famille d’adjoints A. : FI - FI; qui ajoutent la couleur ¢ & tous les morphismes de FI. Par
précomposition, ils permettent de considérer un FI;-module comme un FI-module.

Pour toute catégorie C, une famille d’exemples importants de foncteurs de C vers R-Mod sont
les foncteurs projectifs standard. Ces foncteurs fondamentaux apparaissent pour les foncteurs
entre les espaces vectoriels IF,, dans [Kuh94], pour FI; dans [SS17], et pour d = 1 dans [DV19]
Djal6, Ves19|, ou sous le nom de modules libres dans [CEF15] [CEFN14, MW19| ou encore de
foncteurs représentables dans [Will8a]. Ils jouent le role des modules libres dans la théorie
classique des modules. Nous pouvons déduire beaucoup d’informations sur les FIj;-modules
de la structure des foncteurs projectifs standards puisqu’ils forment une famille de générateurs
projectifs de FI;-Mod (Proposition [2.2.5)).

Les FI;-modules simples

La catégorie FI; est une catégorie EI : 1.e. une catégorie dont les endomorphismes sont des
isomorphismes. Ces catégories et leurs représentations ont été introduites par Dieck dans [Die87|
dans le contexte de la K-théorie algébrique, et plus récemment étudiées par Li dans [Lil4],
en particulier leur propriété de Koszul. Cette propriété nous donne déja un résultat sur les
FI;-modules simples, c’est-a-dire les FIz-modules qui n’ont pas de sous-foncteurs propres non
nuls. Pour exprimer ce résultat, nous rappelons que les représentations irréductibles du groupe
symétrique S,, sur un corps de caractéristique nulle sont indexées par les partitions A de n. Nous
désignons par M? la représentation irréductible associée a la partition A de n, qui est définie
comme l'idéal de 'anneau K[S,,] engendré par un élément idempotent associé a la partition A,
appelé le symétriseur de Young. Par exemple, la représentation associée a la partition A = (n) est
la représentation triviale, celle associée a X = (1™) est la signature, et celle associée & A = (n—1,1)
est la représentation standard. Nous donnons ensuite dans la Proposition la description
suivante des FI;-modules simples :

Proposition. Pour R un corps de caractéristique nulle, les objets simples de la catégorie
F1;-Mod sont les foncteurs (M)‘)k qui envoient un objet n € F1; sur M» sin =k et sur
z€ro sinon, pour A une partition de k.
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Stabilité de représentation

Bien que la catégorie FI ait été étudiée dans différents contextes combinatoires, elle a été
utilisée pour la premiére fois dans la cadre de la stabilité de représentation. Cette théorie
a été introduite par Church et Farb dans [CE13| pour étudier certaines familles compatibles
de représentations de groupes qui admettent une décomposition en irréductibles qui finit par
devenir stable. Il s’agit d’une généralisation de la stabilité homologique classique dans le cas
ou les applications induites en homologie ne deviennent pas des isomorphismes. Une suite
de représentations de groupes, tels que les groupes symétriques, est stable en ce sens lorsque
les noms des représentations irréductibles (avec une maniére appropriée de les indexer) qui
apparaissent dans la décomposition finissent par se stabiliser, méme si les espaces changent.
Des exemples concrets de cette stabilisation sont donnés dans [Sam20| et dans |[CEF13]|. En
caractéristique nulle, les représentations irréductibles des groupes symétriques sont indexées par
les partitions. Alors la stabilité de représentation pour ces groupes peut étre résumée comme
suit (voir [CEF15] [CEEN14, [Farl4]) : une famille compatible (V},),, de représentations est stable
si nous obtenons la décomposition de la représentation V,,,1 de S,41 en ajoutant une case sur
la ligne supérieure des diagrammes associés a la décomposition de la représentation V,, de S,.
Ce processus, ainsi que I’équivalence entre ces deux définitions, est décrit sur des exemples dans
[CE13] et [Will8al Ex. XXXI].

La théorie des FI-modules a été introduite dans [CEF15| pour encoder ce phénomeéne en
un unique objet : en effet, il est prouvé dans [Farld] que, si un FI-module est de type fini,
alors la famille associée de représentations des groupes symétriques est stable. Notons que la
réciproque est vraie pour les foncteurs a valeurs de type fini, et que la preuve est basée sur la
propriété noethérienne des FI-modules et sur le fait que les familles associées aux générateurs
projectifs Pf T sont stables comme expliqué dans [Wil18b|. Les exemples concrets de FI-modules
introduits dans [CE13|| et [Will8b] ont d’abord été considérés comme des représentations stables
des groupes symétriques et ont été compris comme étant des FI-modules de type fini aprés, par
exemple dans [CEF15]. Un autre exemple intéressant de stabilité de représentation est donné
par la cohomologie des pure string motion group. Il est traité en détail dans [Will2| et illustre
par un exemple. En pratique, il est généralement plus facile de prouver un résultat de finitude
sur un objet que de prouver la stabilité d’une famille entiére.

Les résultats centraux sur la stabilité de représentation sont résumés et présentés sur
un exemple concret dans [Will8al, Section 5]. Les principaux outils de ces résultats sont
I’étude des représentations apparaissant dans les foncteurs projectifs standard, et les polynémes
des caractéres (voir [Farldl 4.2] pour une définition simple) : il est montré dans [CEF15|
et [CMNRI8| que les caractéres d'un FI-module de type fini finissent par étre égaux a
un polyndme. En particulier, si F' est un FI-module de type fini sur un corps, alors la
dimension des espaces vectoriels F'(n) devient polynomiale. Ce résultat, comme beaucoup
d’autres concernant les FI-modules, a été prouvé pour la premiére fois dans [CEF15] et dans
[Snol3l Theorem 3.1] sur un corps de caractéristique nulle, et a été étendu dans [CEFN14]
pour des anneaux plus généraux. De plus, Sam et Snowden ont montré dans [Snol3| et
[SS16] que si un FI-module est de type fini alors sa série de Hilbert, codant la dimension
de ses valeurs, est de la forme p(t) + e'q(t) ol p et q sont des polynémes. Par exemple, les
polynoémes des caractéres de [CEF15] peuvent étre récupérés a partir de la fonction polynomiale
p de cette série et la fonction polynomiale ¢ peut étre récupérée a partir de la cohomologie locale.
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Cette théorie a été étendue dans [Raml17a] aux FI;-modules avec une notion généralisée de
stabilité de représentation. Ramos obtient alors le résultat suivant : un FIz;-module F' est de
type fini si et seulement si I’espace F'(n) est de dimension finie pour tout n € N et, pour toute
partition A de poids |A| et toute suite d’entiers ny > --- > ng > |A[+ A1, si ¢y p,,.. n, désigne la mul-
tiplicité de la représentation irréductible associée a la partition (nq —|A|,...,ng—|A|, A, ..., An),
alors ¢y p,41,...ny+1 €st indépendant de [ pour [ et n suffisamment grands. Ce théoréme est une
généralisation directe du théoréme analogue de [CEF15, [CEFN14| pour les FI-modules. Morale-
ment, le dernier point peut étre interprété en disant que les représentations irréductibles associées
a une partition d’au moins d lignes apparaissent avec une multiplicité qui devient stable dans
un FI;module de type fini. Ce théoréme ne prédit pas le comportement des représentations
irréductibles associées a des partitions plus petites, mais le Théoréme B de [Raml7al traite cer-
tains de ces cas. Depuis, Sam et Snowden ont défini une série de Hilbert "améliorée" qui encode
plus d’informations sur la structure d'un FIj-module en tant que représentations des groupes
symétriques et ils ont prouvé un résultat similaire & celui de la série de Hilbert "classique" ci-
dessus pour cette série améliorée, pour d = 1 dans [SS16] et pour un d général dans [SS17] et
[SS18].

Les foncteurs fortement polynomiaux

Dans une catégorie de foncteurs il existe de trés grands foncteurs, souvent incontrélables, et la
propriété polynomiale est un moyen de mesurer la complexité d’un foncteur. Ainsi, les foncteurs
polynomiaux doivent étre considérés comme un analogue des fonctions polynomiales pour les
foncteurs, qui sont plus faciles & comprendre. La notion de foncteur polynomial remonte aux
années 1950, lorsque Eilenberg et Mac Lane 'ont introduite dans [EM54] pour les foncteurs entre
catégories de modules. Depuis, les foncteurs polynomiaux ont été étudiés pour un large éventail
d’applications telles que leur connexion a la théorie des représentations ou & la cohomologie des
groupes.

La définition originale d’Eilenberg et Mac Lane a été étendue pour différentes familles de
catégories a la source, comme dans [HPV15] au cas ou la source est une catégorie monoidale dont
I'unité est un objet nul. Une approche complémentaire dans la généralisation de ces foncteurs
polynomiaux consiste & étudier les foncteurs d’une catégorie monoidale vers une catégorie non
abélienne telle que la catégorie des groupes (voir [BP99)). La définition d’Eilenberg et Mac
Lane basée sur la notion d’effets croisés est équivalente & la définition basée sur 'endofoncteur
différentiel utilisée par Kuhn dans [Kuh94] et Powell dans [Pow98|. Dans [DV19], les auteurs
introduisent deux notions de foncteurs polynomiaux & partir d’une catégorie monoidale
symeétrique M dont 'unité est un objet initial vers une catégorie abélienne : la généralisation
naive des foncteurs polynomiaux donne la notion de foncteurs fortement polynomiaux qui ont
de mauvaises propriétés comme le fait de ne pas étre stables par sous-objet. Cela conduit
aux foncteurs faiblement polynomiaux définis en introduisant une catégorie quotient suivant
la construction de Gabriel dans [Gab62l pages 366-372]. L’idée de cette catégorie quotient est
d’inverser les morphismes dont le noyau et le conoyau sont dans la sous-catégorie en question.
Les foncteurs fortement polynomiaux dans ce contexte sont définis en utilisant les endofoncteurs
différentiels 6y, pour k € M, généralisant celui de [Kuh94] et [Pow98|. Dans [DV19|, Djament et
Vespa ont également adapté la définition des effets croisés a leur cadre et ont montré que les
foncteurs fortement polynomiaux sont égaux & ceux obtenus en utilisant ces effets croisés. La
définition utilisant les endofoncteurs différentiels est mieux adaptée a ’étude des comportements
stables et a l'avantage d’étre récursive, c’est pourquoi nous choisissons de présenter et de
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généraliser ce point de vue pour les FI;-modules.

En particulier, la catégorie FI s’inscrit dans le cadre de Djament et Vespa et nous
obtenons la définition suivante des FI-modules fortement polynomiaux en utilisant uniquement
I’endofoncteur différentiel ; puisque 1 € FI est un générateur : le foncteur F : FI - R-Mod
est fortement polynomial de degré n si nous obtenons le foncteur nul en lui appliquant n + 1
fois 'endofoncteur é;. Ceci est analogue aux polynémes habituels : une fonction f : R - R
est polynomiale de degré n si sa (n + 1)-iéme dérivée est nulle. L’endofoncteur d; qui joue le
role de la dérivée est utilisé dans divers contextes : ceux de Kuhn et Powell sur les foncteurs
des Fp-espaces vectoriels vers les Fp-espaces vectoriels ([Kuh94, Pow98|), dans la théorie de la
stabilité de représentation ([CEF15, [CEFN14] [(CE17, [CMNRIS]), dans la définition des foncteurs
polynomiaux par Randal-Williams et Wahl dans [RWW17]|, dans la théorie des algébres com-
mutatives tordues ([SS12, [SS16]) ou dans les travaux de Ramos (JRaml17b, [LR18]). Les notions
de foncteurs polynomiaux introduites dans [DV19] donnent une autre fagon d’exprimer et de
comprendre les résultats sur les FI-modules. Par exemple, les foncteurs fortement polynomiaux
avec des valeurs de type fini sont les FI-modules de type fini. En utilisant [CEF15], nous
déduisons que, sur un corps de caractéristique nulle, la dimension des espaces vectoriels associés
4 un FI-module polynomial avec des valeurs de dimension finie devient polynomiale. Il existe
de nombreux exemples de FI-modules polynomiaux qui apparaissent dans différents contextes.
En particulier, un grand nombre des FI-modules présentés dans [CEF13| sont fortement poly-
nomiaux. La cohomologie des espaces de configuration sur une variété réguliére donne un
FI-module fortement polynomial d’un intérét particulier. Plusieurs FI-modules étudiés par
Church, Ellenberg et Farb ont plus de structure : ce sont des S(ab)-modules, ou S(ab) est la
catégorie des groupes abéliens et des monomorphismes scindés, correspondant & VIC(Z) de
[Will8a]. Les S(ab)-modules polynomiaux sont étudiés dans [DV19].

Dans la Section nous définissons les foncteurs fortement polynomiaux sur FI; de la méme
maniére que sur FI, en utilisant une famille d’endofoncteurs 0] indexés par les d couleurs de FI;
au lieu d’un seul endofoncteur é; pour les FI-modules. Pour d = 1, nous retrouvons la définition
des foncteurs fortement polynomiaux sur FI de [DV19| puisque la seule couleur de FI; donne
I'unique endofoncteur 6; de [DV19]. Nous définissons également une notion d’effets croisés pour
les FI;-modules dans la Section en introduisant la catégorie cotranche (0 | FI;) (parfois
appelée la catégorie au-dessous de 0 comme dans [MLI8| P.45]) des paires (k,z) ou k est un
objet de FI; et z un morphisme dans FI;(0,k). En effet, nous prouvons dans la Proposition
que la catégorie cotranche (0 | F1,;) est une catégorie monoidale dont l'unité est un objet
initial, ce qui nous permet de définir les effets croisés d’'un FIj-module via le foncteur oubli
(0§ F1;) - FI, et les travaux de Djament et Vespa dans [DV19]. Nous montrons ensuite dans
la Proposition que les foncteurs polynomiaux définis avec les effets croisés sur FI; sont les
mémes que les foncteurs fortement polynomiaux définis avec les endofoncteurs 47 :

Proposition. Pour n €N et F un Flz-module, F est dans Pol®" "9 (F1;, R-Mod) si et scule-
ment si crpy1(F) ( - ) est le foncteur nul sur (0| FIz)"L,

Nous utilisons ensuite cette définition alternative des FIj-modules fortement polynomiaux
pour montrer dans la Proposition [5.4.18|le résultat suivant.

Proposition. Pour m,neN, si F: FI; - R-Mod est fortement polynomial de degré inférieur
ou égal a m et si X : R-Mod — R-Mod préserve les épimorphismes et est un foncteur polynomial
de degré inférieur ou égal ¢ n, alors la composée X o F : FI; - R-Mod - R-Mod est fortement
polynomiale de degré inférieur ou égal a nm.
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Nous utilisons ce résultat pour obtenir dans le Théoréme que le produit tensoriel terme
& terme de deux FIz-modules fortement polynomiaux est fortement polynomial :

Théoréme. Pour n,m € N et F,G : FI; - R-Mod, si F est dans Pol5"""9(FI;, R-Mod)
et si G est dans Pol¥"°"9(FI;,R-Mod), alors leur produit tensoriel F ® G est dans
Pols7omd ,(FI;, R-Mod).

2max(n,m

Cependant, dans ce théoréme la borne n’est peut-étre pas la meilleure possible. En effet,
nous pourrions nous attendre & ce que F' ® G soit fortement polynomial de degré inférieur ou
égal & n+m. Par exemple, pour d =1 il est montré dans [Djal6] quun FI-module est fortement
polynomial de degré inférieur ou égal a n si et seulement s’il est un quotient d'une somme des
foncteurs projectifs standards PZ»FI pour i < n. Cela permet de prouver que, sur FI, le produit
tensoriel F'®G est polynomial de degré n+m si F est de degré n et G de degré m. Nous prouvons
également dans I'annexe A le méme résultat dans le cadre étudié par Djament et Vespa dans
[DV19], c’est-a-dire les foncteurs sur une catégorie monoidale symétrique générale dont 1'unité
est un objet initial :

Théoréme. Soit M une petite catégorie monoidale symétrique dont l'unité est un objet ini-
tial. Pour n,m € N et F,G : M —» R-Mod, si F est dans Pol5"""9(M,R-Mod) et si G
est dans pol®"°"9(M,R-Mod), alors leur produit tensoriel F ® G : M — R-Mod est dans
Polyrnt (M, R-Mod).

Pour d = 1, les foncteurs projectifs standard P¥ I constituent un exemple vraiment important
de FI-modules fortement polynomiaux, comme montré dans la [Djal6l Proposition 4.4]. Cela
rend I’étude des foncteurs polynomiaux sur FI beaucoup plus facile. En particulier, cela implique
qu’étre fortement polynomial (avec des valeurs de type fini) est équivalent a étre de type fini
pour les FI-modules. Ceci est spécifique a la catégorie FI, di au fait que les foncteurs projectifs
standards sont polynomiaux, et n’est pas vrai en général pour d’autres catégories. Pour les FI-
modules, ces résultats n’ont aucune raison d’étre vrais puisque nous montrons dans le Corollaire

b.2.2] ce qui suit :

Proposition. Pour d > 1, le foncteur projectif standard P¥Y n'est pas fortement polynomial.

L’exemple des espaces de configuration

Comme expliqué ci-dessus, il existe de nombreux exemples de FI-modules dans la littérature
dans une grande variété de domaines. Nous présentons principalement un exemple donné
par ’homologie des espaces de configuration d’une variété, qui est entiérement décrit dans
[Sam20, Will9| et [CE13|. Pour M une variété réguliére, la cohomologie rationnelle des
espaces de configuration de M est un FI-module de type fini (JCEF15, Théoréme 6.2.1]), ce
qui est presque équivalent & fortement polynomial. De plus, pour M une variété connexe de
dimension au moins 2 et vérifiant d’autres hypothéses, il a été montré dans [CMNRI8|, Theorem
A] que 2k est une borne supérieure pour le degré polynomial du FI-module H (Conf(,) (M) ,K).

Les résultats concernant le FI-module H® (Conf(_) (M ) ,K) sont prouvés pour une variété
de dimension au moins deux. Cette hypothése est nécessaire pour garantir que les espaces de
configuration soient connexes et que les points peuvent se déplacer les uns autour des autres.
Mais pour une variété de dimension 1, comme un graphe, il n’y a pas assez d’espace et les
points se bloquent les uns les autres dans les espaces de configuration, de sorte que la méme
approche n’est plus valable. Par exemple, I'espace de configuration d’un graphe linéaire avec
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une seule aréte est homotopiquement équivalent & n! points disjoints. Par conséquent, Ramos
a introduit dans [Raml9| ’homologie d'un genre d’espaces de configuration modifiés pour les
graphes qui forment un FI;-module. Dans ces espaces modifiés, appelés espaces de configuration
sink, nous prenons n points (ordonnés) sur le graphe, comme pour les espaces classiques, mais
ils peuvent étre distincts deux a deux ou se chevaucher en un sommet du graphe mais pas a
I'intérieur d’une aréte. Les d sommets du graphe correspondent alors aux d couleurs de FIg,
ce qui donne la structure d’'un FI;-module lorsque nous prenons I’homologie rationnelle de ces
espaces topologiques. Cela donne un exemple intéressant de FI;-module puisque, avant cela,
tous les FI;-modules de la littérature étaient soit libres, soit obtenus & partir de FI-modules via
le foncteur oubli. Ramos a prouvé dans [Raml9] que ces FI;-modules sont de type fini pour
tout degré homologique et tout graphe connexe. Dans la Proposition nous donnons une
description explicite de ces foncteurs pour les graphes linéaires :

Proposition. Pour G; le graphe linéaire sur d  sommets, le  Flz-module
Hy ( C’onf(sf’;k (gd, [d]) ,Q ) est le foncteur constant Q, tandis que pour i > 1 le FIj-module

H; ( Conft™™* (G4,[d]),Q )
est le foncteur envoyant n sur QN(d’Hl) sin=1+1 et sur zéro sinon, o

(d-1)* —(TDE+1)! sid2i+2

N(d,i+1)= g Nl
(dyi+1) {N(d—l)”l sid<i+1

Dans la Proposition nous déduisons de cette description que ces foncteurs sont fortement
polynomiaux et nous donnons leur degré :

Proposition. Pour ¢ € N et Gyg le graphe linéaire sur d sommets, le Flg-module
HZ( Conf(sf?k (Qd, [d]) ,Q ) est polynomial de degré 0 pour i =0, et de degré i + 1 pour i > 1.

Les algébres commutatives tordues

La théorie des algébres commutatives tordues (ACTs) remonte aux années 1950 et est apparue
en topologie algébrique. Elle a été introduite pour étudier différentes structures, telles que des
suites d’objets munies d’'une action de groupes linéaires ou symétriques. C’est également un
analogue de la théorie de ’algébre commutative adaptée a 1’étude des représentations de ces
groupes. Par exemple, dans [Bar78| Barratt a défini une algébre tordue générale et a ajouté
une condition pour étre une algébre de Lie tordue ou une algébre commutative tordue. Comme
nous le verrons, les FI;-modules apparaissent dans ce contexte puisqu’il existe une équivalence
de catégories entre les FIz;-modules et les modules sur ’ACT libre sur d générateurs.

Une ACT est un monoide dans la catégorie monoidale Fct(X,K-Vect), ou X est la
catégorie des ensembles finis et des bijections. En considérant plusieurs catégories équivalentes
a Fct(3,K-Vect) nous obtenons différentes définitions équivalentes des ACTs comme expliqué
dans [SS12] et [GS10] : il peut s’agir d’un foncteur des espaces vectoriels vers des anneaux
commutatifs, ou d'un anneau commutatif muni d'une action du groupe linéaire infini par un
morphisme d’algébre, ou d’un anneau gradué unitaire associatif doté d’une action des groupes
symétriques. Dans chaque cas une condition supplémentaire, appelée polynomialité (dans un
sens différent de celui des foncteurs polynomiaux que nous étudions ici), est ajoutée pour
former une ACT. Parfois, les ACTs sont également traitées comme des objets d’une catégorie
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abstraite équivalente a n’importe laquelle des catégories précédentes, ce qui conduit & une autre
définition équivalente donnée dans [GS10| par l'intermédiaire des opérades. Nous choisissons
de considérer les ACTs principalement comme des foncteurs F : ¥ — K-Vect, munis d'une
loi de multiplication v : F ® F — F et d’une unité (Définition [£.1.5)). La définition en termes
de représentations du groupe linéaire infini GL(o0), souvent utiliste par Sam et Snowden,
est bien décrite dans [SS12] et [DES17]. Ces deux notions utilisant les groupes symétriques
ou le groupe linéaire infini sont équivalentes pour K de caractéristique nulle via la dualité
de Schur-Weyl, mais donnent deux notions différentes d’ACTs pour K de caractéristique positive.

Le premier exemple d’ACT, provenant de [Bar78|, est le foncteur envoyant n sur l’espace
K[S,] sur lequel le groupe S,, agit par conjugaison et dont la multiplication est donnée par
I'inclusion standard de S, xS,, dans S,,+,,. Une facon simple de créer d’autres ACTs est de
prendre l'algebre symétrique d’une représentation de GL(K*). Ces exemples, appelés "ACTs
polynomiales" (ce qui n’a rien & voir avec nos foncteurs polynomiaux) sont entiérement décrits
dans les différentes définitions équivalentes dans [SS12, Section 8.2.3]. Nous nous concentrons
sur les ACTs libres sur d générateurs de degré un Sym((K?)()), qui ont été largement étudiées,
par exemple dans [SS12| [SS16, [SS19, [GS10]. En particulier, Sam et Snowden ont montré dans
[SS12] que la catégorie des modules sur cette ACT est équivalente, via le choix d’une base de
Kd, a la catégorie des FIz-modules. Comme mentionné ci-dessus, cela explique comment les
FI;-modules apparaissent dans la théorie des ACTs. Nous donnons la description concréte
de 'ACT Sym((K?)() dans la Définition et le détail de I’équivalence dans la Section
Un autre exemple d’ACT est Sym( A?(K*™)) qui est étudié dans [SSI5]. Par exemple, ils
montrent qu’il existe une équivalence similaire & celle de FI; : les modules de type fini sur cette
ACT sont équivalents aux modules de type fini sur la catégorie FIM de [MW19] dont les objets
sont des ensembles finis et dont les morphismes sont des paires d’injection et de couplage parfait
sur le complémentaire de 'image.

Il existe une action naturelle de GL(K?) sur les modules sur PACT Sym((K?)™)) qui agit
diagonalement sur les composantes (K4)®" de Sym((K?)(") avant d’appliquer la loi de multipli-
cation. Dans la Section , nous utilisons l'équivalence de catégories de [SS12| pour transformer
ceci en une action de GL(K?) sur les FIz-modules. Nous obtenons dans la Proposition la
description concréte suivante :

Proposition. Soit B une base de K, pour p € GL(K?) et G € F1;-Mod, le foncteur ¢p- G :
FI; - K-Vect envoie un objet n € FIy sur G(n) et un morphisme (f,g) € Flgz(n,m) sur la
somme

> ( I1 mg'u),g(n) G(f.9)-
g'FL (0 f(n)) \lem~f(n)

ol (M j)1<i j<d est la matrice de ¢ dans la base B de K?.

Les foncteurs faiblement polynomiaux

La notion de foncteurs faiblement polynomiaux donne un raffinement de la notion de foncteurs
fortement polynomiaux qui est plus intuitive mais manque de propriétés essentielles. En effet,
pour une catégorie source qui est une catégorie monoidale symétrique dont 1'unité est un objet
nul, les sous-catégories de foncteurs polynomiaux sont épaisses (voir [Djal6] pour le cas général)
ce qui permet de regarder les quotients par ces sous-catégories. Cependant, lorsque 'unité est
juste un objet initial comme dans FI, un sous-foncteur d’un foncteur fortement polynomial
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peut étre de degré plus élevé, ou méme ne pas étre polynomial. Pour éviter ces phénomeénes
d’instabilité, Djament et Vespa ont défini une notion de foncteurs faiblement polynomiaux
dans [DV19] en supprimant les foncteurs problématiques dans une catégorie quotient. Ils ont
montré que la catégorie SN (FI,R-Mod) de ces foncteurs, appelés les foncteurs stablement
nuls, est composée des FI-modules dont la colimite est nulle. Ces foncteurs stablement
nuls correspondent aux modules de torsion sur 'ACT libre sur un générateur de degré 1
étudiés dans [SS16] ou [NSS18|, et 'endofoncteur x qui donne le sous-foncteur maximal d’un
FI-module dans SN (FI,R-Mod) correspond au foncteur de cohomologie locale noté HO (-)
dans [SS16], INSS18|, [CEFN14|. En particulier, les propriétés de leurs foncteurs dérivés a droite
H! (-) sont étudiées dans [SS16, INSSI8| afin de comprendre comment Fct(FI,R-Mod) est
construite a partir des deux morceaux SN (FI, R-Mod) et St(FI,R-Mod). De méme, le degré
polynomial faible pour les FI-modules correspond a la notion de degré stable de [CEF15| et
[CEEN14]| tandis que le degré local précise comment les degrés faibles et forts sont reliés. 1l
donne moralement le degré polynomial fort modulo le degré polynomial faible et contréle le rang
a partir duquel la famille de représentations associée devient stable.

L’un des principaux objectifs de cette thése est d’introduire et d’étudier les FIz-modules
faiblement polynomiaux. L’une des différences avec la situation précédente est qu’il existe
plusieurs sous-catégories qui peuvent remplacer les foncteurs stablement nuls dans ce cas : les
foncteurs globalement stablement nuls SAV(FI;, R-Mod) et les foncteurs stablement nuls le
long de différentes combinaisons de couleurs SN, Ci yerCim (FI;,R-Mod). Ces sous-catégories for-
ment un raffinement de la notion des foncteurs stablement nuls introduite dans [DV19] pour FI.
En effet, pour d = 1 il y a une inclusion de I'unique sous-catégorie de foncteurs stablement nuls
SN (FI,R-Mod) dans Fct(FI, R-Mod) mais, pour un d général, ces sous-catégories forment un
ensemble partiellement ordonné plus riche pour l'inclusion. Par exemple, pour d = 2, I’ensemble

partiellement ordonné est le suivant :

SN, (FI5,R-Mod)
/
SN¢, o, (FI,R-Mod) SN (F1,,R-Mod) < Fct(FI,, R-Mod)

— P

SN.,(FI,,R-Mod)

Dans la Proposition et le Corollaire nous montrons que les sous-catégories
SN (FI;,R-Mod) et S./\/cil,_“,cim (FIz;,R-Mod) de Fct(FI;, R-Mod) sont épaisses, c¢’est-a-
dire stables par sous-objet, quotient et extension. Nous pouvons alors considérer la catégorie
quotient de Fct(FI;, R-Mod) par n’importe laquelle de ces sous-catégories en suivant la
construction de Gabriel dans [Gab62|, et y définir des objets polynomiaux en utilisant les
endofoncteurs ¢6f de Fct(FI;, R-Mod) qui passent aux quotients. Ceci est possible parce que
ces sous-catégories sont stables par colimites et que le foncteur quotient 74 a un adjoint a droite
Sy appelé le foncteur section.

La sous-catégorie SN (FI;,R-Mod) des foncteurs globalement stablement nuls est définie
dans la Section [6.1]a 'aide d’une famille d’endofoncteurs x{ de Fct(FI;, R-Mod). Ces foncteurs
sont définis dans la Section [2.6{dune maniere duale & 07, et ils s'insérent tous dans la suite exacte
d’endofoncteurs

-C

'
0 > K > Id > T1 > 0] >0,

ou 71 est Uendofoncteur décalage F'(—) — F(— +1) et i une transformation naturelle associée
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a la couleur c¢. Nous définissons également une structure d’ensemble partiellement ordonné sur
N? pour lordre du produit et un foncteur &; : N¢ - FI; qui envoie un objet (n1, ... ,nq) € N4
sur I'objet nq + -+ +ng de FI;. Nous montrons ensuite dans la Proposition qu’il existe une
définition équivalente de la catégorie SN (FI;, R-Mod) utilisant une colimite filtrée sur N :

Proposition. Soit F' un FIz-module, alors F est dans SN (FI;,R-Mod) si et seulement si

colim Flo&;=0.
Nd

Pour d = 1, nous retrouvons la description de SN (FI,R-Mod) de [DV19] Proposition 5.7],
a savoir que les foncteurs stablement nuls sont ceux dont la colimite est nulle. Rappelons
que, par [SS12], la catégorie des FIz-modules est équivalente a la catégorie des Sym((K?)(1))-
modules. Dans la Section , nous donnons une description de SN (FI;, R-Mod) en termes
de Sym((K%)™M)-modules par le biais de cette équivalence. Nous montrons également dans la
Proposition que, pour d > 1, la sous-catégorie SN (FI;, K-Vect) de Fct(FI;, K-Vect)
n’est pas stable par I'action de GL(K?) définie ci-dessus.

La sous-catégorie SNCila--wCim (FI;,R-Mod) de Fct(FI;,R-Mod) des foncteurs stable-
ment nuls le long des couleurs ¢;,,...,c;, est définie dans la Section de maniére simi-
laire aux foncteurs globalement stablement nuls, mais en utilisant les endofoncteurs ] pour
chaque couleur ¢ dans {¢;,...,¢,, }. Dans le Corollaire nous montrons que ces caté-

gories admettent également une définition équivalente, cette fois par I'intermédiaire des foncteurs
A’ :Fct(FI;,R-Mod) - Fct(FI,R-Mod) :

Proposition. Un FI;-module F est dans la sous-catégorie SNCip---,cz'm (FI;,R-Mod) de
Fct(FI;,R-Mod) si et seulement si les foncteurs AZ(F) sont dans la sous-catégorie
SN (FI,R-Mod) de Fct(FI,R-Mod) pour toutes les couleurs ¢ dans {c;,,...,c;,, }

Cette définition équivalente nous permet d’utiliser les résultats déja prouvés pour les
foncteurs sur FI, en particulier ceux de Djament et Vespa dans [DV19]. Cependant, nous
montrons dans la Section que dans le quotient par une sous-catégorie de foncteurs stablement
nuls le long des couleurs, les objets polynomiaux sont un peu plus difficiles a définir. Dans ce
processus, nous perdons certaines propriétés importantes comme le fait que les endofoncteurs
k{ deviennent nuls et que les endofoncteurs §f deviennent exacts dans le quotient. C’est une
premiére raison pour laquelle nous ne développons que les foncteurs faiblement polynomi-
aux correspondant a la sous-catégorie globale SN (FIz;, R-Mod) : celle-ci se comporte mieux
avec les endofoncteurs 67 qui constituent un outil crucial pour I’étude des foncteurs polynomiaux.

Dans le Chapitre |7, nous nous concentrons sur la catégorie St(FI;, R-Mod) des foncteurs
stables, i.e. le quotient par les foncteurs globalement stablement nuls SN (FI;, R-Mod), la plus
grande de ces sous-catégories, afin d’obtenir une catégorie quotient plus petite qui peut étre plus
facile a décrire. Bien que les objets de la catégorie quotient St(FI;, R-Mod) soient par définition
les foncteurs de FI; vers R-Mod, il faut les considérer comme des objets abstraits puisque
les morphismes dans le quotient sont modifiés par certaines classes d’isomorphismes. Dans la
Définition nous définissons les FI;-modules faiblement polynomiaux comme les foncteurs
sur FI; dont l'image dans la catégorie quotient St(FI;, R-Mod) par le foncteur quotient my
est un objet polynomial (nous identifions parfois F' et mq(F') par abus de langage). Avec cette
définition, un foncteur fortement polynomial est faiblement polynomial mais la réciproque n’est
pas vraie, ce qui justifie la terminologie introduite par Djament et Vespa dans [DV19] pour les FI-
modules. Nous désignons par Pol,(FI;, R-Mod) la sous-catégorie pleine de St(FI;, R-Mod)
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des objets polynomiaux de degré inférieur ou égal & n. Par abus de langage, cela désigne aussi la
sous-catégorie pleine de Fct(FI;, R-Mod) des foncteurs dont ’image par le foncteur quotient my
est un objet polynomial de degré inférieur ou égal & n. Nous prenons alors R = K un corps pour
nous assurer que le produit tensoriel est exact et nous montrons dans le Théoréme que le
produit tensoriel terme & terme de deux objets polynomiaux de St(FI;, R-Mod) est polynomial

Théoréme. Soit R = K un corps, pour X € Pol,(FI;,K-Vect) et Y € Pol,,(F1;,K-Vect), nous
avons
X ®Y € Polyim(FlIy, K- Vect).

Alors que la compréhension des catégories de foncteurs polynomiaux est un probléme
difficile en général, sauf pour les petites valeurs, le quotient des foncteurs polynomiaux de
degré n modulo les foncteurs de degré m — 1 est bien compris dans plusieurs contextes. En
particulier, Djament et Vespa ont décrit ce quotient dans [DV19, Théoréme 2.26] pour les objets
polynomiaux de St(FI,R-Mod) comme nous le rappelons dans le Chapitre [l Pour n = 0, ils
obtiennent que les seuls objets de Polo(FI, R-Mod) sont les foncteurs constants.

Dans la Section , nous décrivons les objets polynomiaux de degré 0 de St(FI;, R-Mod),
qui forment une catégorie plus riche que pour d = 1. Pour cela, nous introduisons dans la Défini-
tion la catégorie R-Mod, des R-modules avec d — 1 automorphismes qui commutent deux
a deux. De méme, nous introduisons la catégorie des modules sur ’anneau des polynémes com-
mutatifs R[z3!,...,25!] en les d—1 variables o, ..., x4 toutes inversibles. Un de nos principaux
résultats est alors la description suivante obtenue dans le Théoréme :

Théoréme. Il existe des équivalences de catégories entre la catégorie Poly(FI;, R-Mod) des
objets polynomiauzr de degré 0 de St(FIz;,R-Mod), la catégorie R-Mod, et la catégorie
R[z3',...,25']-Mod.

Pour d = 1 nous retrouvons que les FI-modules polynomiaux de degré 0 sont les foncteurs
constants, mais pour un d général ces foncteurs forment une catégorie plus complexe. Nous
prouvons ce théoréme en deux étapes : tout d’abord, nous montrons dans la Proposition[7.4.2]que
les objets polynomiaux de degré 0 de St(FI;, R-Mod) satisfont une condition abstraite appelée
(POLO0). Nous utilisons ensuite la catégorie intermédiaire FI; définie dans la Section pour
montrer, dans les Propositions et que, pour chaque objet F' du quotient satisfaisant
(POLO0), 'image de F par le foncteur section Sy est complétement déterminée par son image
sur les morphismes ¢ € FI;(0,1). Ces images des morphismes ¢ € FI1;(0,1) correspondent aux
d — 1 isomorphismes de modules de la catégorie R-Modg, lorsque nous trivialisons 'action de
c1. Du point de vue des R[x%l,...,le]—modules, les images des morphismes ¢; € FI;(0,1)
correspondent & ’action des z;, ott 1 agit par I'identité lorsque nous trivialisons 'action de ¢;.

Exemples de quotients polynomiaux des foncteurs Pr

Le fait que les générateurs projectifs standards PF1¢ soient fortement polynomiaux pour d = 1
simplifie I’étude des foncteurs polynomiaux sur la catégorie FI. Comme expliqué ci-dessus, ce
n’est pas le cas pour d > 1. Nous décrivons donc plusieurs quotients des foncteurs P¥ qui sont
polynomiaux. En plus de fournir des exemples concrets, ces quotients peuvent aussi nous donner
une meilleure idée de ce & quoi ressemblent les foncteurs polynomiaux sur FI;. Par exemple,
dans la Section nous obtenons une famille de quotients du foncteur Pg? La qui sont faiblement
polynomiaux de degré 0 en filtrant ses générateurs par le nombre d’occurrences des couleurs.
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En effet, pour ki,...,kqg € N, T c {c1,...,¢cq} et o € FI4(0,k) nous notons v;(«) le nombre
d’occurrences de la couleur ¢; dans . Nous disons alors que a € FI;4(0, k) satisfait la condition
(Prjey,...ky) st vi(a) > k; pour tout i € I ou s'il existe j € {c1,...,cq} N 1 tel que vj(a) > kj.
Avec ces notations, nous introduisons dans la Définition le sous-foncteur Gy, . i, de POF La
donné par

Gl ka(n) =R [a-X|aeFI;(0,n) qui satisfait la condition (Pr, . k,)]

ou X € FI;(0,n) est un morphisme fixé dans FI;(0,n) satisfaisant la condition (Prg, . k,)-
Nous montrons alors dans la Proposition [8.1.15| ce qui suit :

Proposition. Pour ky,...,kgeN et I c{cy,...,cq}, le quotient de P(Fld par son sous-foncteur
Glkr,.. ky €5t faiblement polynomial de degré 0.

De plus, la preuve est basée sur le Lemme qui montre que ce quotient est égal
a un foncteur constant modulo un foncteur stablement nul de SN(FI;,R-Mod). Cela
implique que son image dans le quotient correspond, par ’équivalence donnant la description
de Poly(FI;, R-Mod), al'objet (R,1d,...,Id) de R-Mod, ou au R[z3!, ..., 23! ]-module trivial.

Parallélement, dans la Section nous étudions le quotient du foncteur P,]f Ia par son
sous-foncteur correspondant & l'action des groupes symétriques par post-composition. Ce sous-
foncteur, noté F,, dans la Définition est donné sur les objets par

Eo(m) =R [oo(f,9) - (f,9)|(f,9) € Fla(n,m), o € Spa].

Nous montrons que le quotient du foncteur PFY¢ par F, est faiblement polynomial dans le
Théoréme :

Théoréme. Pour tout n € N, le foncteur quotient de Pfld par F, est faiblement polynomial de
degré 0, ot Fy, est le sous-foncteur de PYY de la Définition [8.2.1]

Un bon représentant de 'image de ce quotient dans la catégorie St(FI;, R-Mod) pourrait
nous aider a le décrire dans la catégorie R[z3',...,25!']-Mod via l'¢quivalence donnant la
description de Poly(FIz;, R-Mod). Cependant, nous expliquons dans la Section qu’il n’est
pas facile d’en trouver un puisque le passage a la catégorie quotient n’est pas une construction
explicite.

Dans la Section nous donnons un quotient de P}: L4 qui est faiblement polynomial de degré
n : pour un morphisme (f,g) dans FIz(n,m) la seconde application g correspond & un choix
de m —n couleurs. Il existe alors une action du groupe symétrique Sy,—, permutant ces choix de
couleurs, qui donne une action de S,,_, sur P¥ Li(m). Le sous-foncteur de P¥ L4 correspondant a
cette action des groupes symétriques, noté H,, dans la Définition [8.3.2] est donné sur les objets
par

Hn(m) =R [(f?a'g)_(fvg)l(fag) EFId(n7m)v UESm—n]'

Nous montrons que le quotient du foncteur P¥l¢ par H,, est faiblement polynomial dans le

Théoréme :

Théoréme. Pour tout n € N, le quotient de Pfld par Hy, est faiblement polynomial de degré n,
ot H,, est le sous-foncteur de P,fld de la Définition .
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Nous le prouvons de deux maniéres : premiérement, nous calculons directement 0] de ce
quotient, ce qui est tres similaire au calcul de d{ de P,f‘ T4 dans la Proposition mais, puisque
nous quotientons par ’action des groupes symétriques sur les couleurs, la composante qui em-
péche Pf La d’etre polynomial disparait ici. Deuxiémement, nous introduisons dans la Définition
la catégorie C4 dont les objets sont les entiers et dont les morphismes de n vers m sont les
(m —n)-uplets de couleurs (¢;,,...,c;,, ) quotientés par I’action de S,,—, (ce qui est la méme
chose que les choix non ordonnés de m —n couleurs). Nous montrons ensuite dans la Proposition
que le quotient de Pf Lo par F), est équivalent au foncteur Pgd, et décrivons le quotient de
P¥la par H,, comme un produit tensoriel dans la Proposition via la formule :

Proposition. Pour tout n € N, il existe un isomorphisme naturel
FI - + pFI C
P g, = (0P ) @ Pyt ((=)-n) o,

ot O est le foncteur oubli F1; — FI et ou Q : FI; — Cy envoie n € F1; surn € Cy et un morphisme
(f,9) € FIz(n,m) sur les couleurs de g quotientées par laction de Sp,—p.

Ceci explique comment les injections et les couleurs sont mélangées pour former le foncteur
P,f‘ a3 Daction des groupes symétriques sur les choix de couleurs prés. De plus, comme le
foncteur P¥ I est fortement polynomial de degré n pour d = 1, I'image des fleches de P¥ I vers la
somme directe de tous les P,f I pour k < i est faiblement polynomial de degré i pour tout i € N.
Nous construisons ensuite dans la Proposition un quotient de P}f L qui est faiblement
polynomial de degré i pour tout i € N en utilisant la formule ci-dessus du quotient de P¥l¢ par
H,.

La construction Cospan

Afin d’étudier les foncteurs polynomiaux sur les catégories monoidales symétriques dont I'unité
est un objet initial, Djament et Vespa ont introduit dans [DVI9] un foncteur M — M qui
transforme la catégorie M dont D'unité est un objet initial en la catégorie M dont Punité est un
objet nul. Cette construction, qui est universelle au sens ou elle donne un adjoint au foncteur
oubli, ajoute moralement des morphismes "décroissants" des objets de la catégorie vers 'unité
tout en préservant les morphismes "croissants" de 'unité vers les objets. Cette construction est
équivalente a la construction Cospan(-) de [Ves07| o les foncteurs sur Cospan peuvent étre vus
comme une généralisation des foncteurs de Mackey. Comme cette construction préserve les fonc-
teurs polynomiaux, elle permet & Djament et Vespa dans [DV19] Théoréme 4.8] de transformer
I’étude des foncteurs polynomiaux sur une catégorie dont 'unité est un objet initial en 1’étude
des foncteurs polynomiaux sur une catégorie dont 'unité est un objet nul, qui sont mieux connus.

Ils appliquent ensuite ce résultat & FI dont I'unité est un objet initial. Cela leur permet
de décrire le quotient des objets polynomiaux (dans la catégorie quotient St(FI, R-Mod)) de
degré inférieur ou égal & n sur FI par sa sous-catégorie épaisse des foncteurs polynomiaux de
degré inférieur ou égal a n — 1. En effet, les catégories Cospan(FI) et FI sont équivalentes
a la catégorie FI# des injections partielles d’ensembles finis de [CEF15]. Ils utilisent ensuite
une variante d’'un théoréme de type Dold-Kan de Pirashvili pour décrire le méme quotient pour
les foncteurs sur Cospan(FI). Ce théoréme de Pirashvili de [Pir00] donne une équivalence de
catégories entre les foncteurs sur la catégorie I' des ensembles finis pointés et les foncteurs sur
Q) la catégorie des ensembles finis et des surjections, en utilisant les effets croisés. La variante
utilisée dans [DV19], qui est décrite explicitement dans [CEF15, Théoréme 4.1.5], donne une
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équivalence de catégories entre les foncteurs sur la catégorie FI# et les foncteurs sur la catégorie
3 des ensembles finis et des bijections, étant donné que FI# est une sous-catégorie de I' et
que X est une sous-catégorie de ). La combinaison de ces deux résultats donne la description
suivante dans [DV19, Proposition 5.9] : pour n € N, il existe une équivalence de catégories

Pol,, (FI
ol ( )/Pl ~ Fet (2, R-Mod),
O

_ Pol, (Cospan(FI)) /
n-1 (FI) ) Pol

ou 3, est la catégorie associée au groupe symétrique S,. Nous montrons que cette approche ne
peut pas étre directement généralisée pour décrire les foncteurs polynomiaux sur FI,.

n-1 (Cospan(FI))

Dans le Chapitre [9] nous introduisons une généralisation de la construction Cospan pour
FI; comme suit : les objets de Cospan(FI;) sont les mémes que les objets de FI; et les
morphismes sont des classes de diagrammes sous une relation d’équivalence. Ces diagrammes
sont moralement composés d’une injection et de deux choix de couleurs différents sur des
ensembles différents qui interagissent l'un avec 'autre. Ainsi, nous montrons dans la Proposition
que la catégorie Cospan(FI;) est isomorphe a une catégorie combinatoire FI;# dont
les morphismes consistent en une injection partiellement définie et deux choix de couleur
distincts, 'un sur le complémentaire & la source et l'autre sur le complémentaire au but.
De plus, nous montrons dans la Proposition que chaque morphisme dans Cospan(FIy)
admet un diagramme représentatif minimal de la classe, ce qui implique que les morphismes
de 0 & n et les morphismes de n & 0 dans Cospan(FI;) sont en bijection avec FI;(0,n).
Ceci souligne que la catégorie Cospan(FI;) est essentiellement obtenue en conservant les mor-
phismes de 0 & n de FI; et en ajoutant de nouveaux morphismes de n a 0 qui leur correspondent.

Nous étudions ensuite les Cospan(FI;)-modules comme nous Pavons fait pour les FI;-
modules : dans la Section nous deéfinissons les foncteurs polynomiaux sur Cospan(FIy)
en utilisant une famille d’endofoncteurs 0f de Cospan(FI;) pour les différentes couleurs. Une
différence majeure est que les foncteurs stablement nuls sur Cospan(FI;) sont nuls puisque
cette catégorie a un objet nul, ainsi les notions faibles et fortes de foncteurs polynomiaux sur
Cospan(F1,) coincident. Nous obtenons alors dans le Théoreéme[9.4.9|1a description suivante des
Cospan(F1I,;)-modules polynomiaux de degré 0 :

Théoréme. Un foncteur F' € Fct(Cospan(FI;), R-Mod) est dans Poly(Cospan(FI;), R-Mod)
si et seulement si ¢’est un foncteur constant. Il existe une équivalence des catégories

Polp( Cospan(FI1;),R-Mod ) ~ R-Mod.

Avec la description des objets polynomiaux de degré 0 de St(FI;, R-Mod) (Théoréme
[7.4.12)), ceci montre que pour un d général la premicre équivalence de [DVI9, Proposition 5.9
présentée ci-dessus échoue déja pour n = 0, c’est-a-dire que le quotient de Pol, (FI;, R-Mod)
par Pol,,_; (FI;, R-Mod) n’est pas équivalent au méme quotient sur Cospan(FI;).

Structure du document

L’organisation du manuscrit est la suivante : dans le premier chapitre nous rappelons la con-
struction et les faits importants concernant le quotient d’une catégorie par une sous-catégorie
épaisse. Nous présentons les FI;-modules dans le Chapitre 2 et nous donnons un apergu des
résultats basiques déja connus a leur sujet. Nous introduisons également les principaux outils
pour leur étude et décrivons les objets simples de cette catégorie. Dans le Chapitre 3, nous
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présentons I'exemple des espaces de configuration et le décrivons explicitement dans des cas
simples. Le Chapitre 4 concerne les algébres commutatives tordues et leur lien avec les FI;-
modules. Dans le Chapitre 5, nous définissons les foncteurs fortement polynomiaux sur FI; et
donnons des exemples et des contre-exemples. Nous étendons également les effets croisés & ces
foncteurs et montrons que la notion résultante de foncteurs polynomiaux coincide avec celle util-
isant I’endofoncteur différentiel. Le Chapitre 6 est consacré aux différentes notions de foncteurs
stablement nuls et & I’ensemble partiellement ordonné qu’elles forment. Dans le Chapitre 7, nous
étudions la catégorie quotient St(FI;, R-Mod) et les foncteurs polynomiaux dans ce quotient.
En particulier, nous décrivons les objets polynomiaux de degré zéro de St(FI;, R-Mod), qui ne
sont pas simplement les foncteurs constants. Dans le Chapitre 8, nous donnons des exemples de
quotients polynomiaux des foncteurs projectifs standards. Enfin, dans le dernier chapitre nous
introduisons la catégorie Cospan(FI;) et nous montrons que la méthode de [DV19] pour décrire
les FI-modules faiblement polynomiaux ne fonctionne pas de la méme maniére aux FI;-modules
faiblement polynomiaux.
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From FI-modules to FI;-modules

The FI-modules are the functors from the category FI of finite sets and injections (also denoted
by Iin [Sch08| and © in [DV19]) to the category R-Mod of R-modules (for R a commutative
ring). More generally, a C-module is a functor from a category C to the category R-Mod. The
FI-modules have been studied extensively in the last decade by Church, Ellenberg, Farb, Nagpal,
Reinhold and others (see for example [CEF15, ICEFN14, [CEF14] I(CE17, [CF13| [Chul2, (CMNR18|
Djal6, IDV19]). The theory of FI-modules was introduced in [CEF15| in order to transform
the complex notion of representation stability into a finiteness result about the sequence of
representations of the symmetric groups viewed as a unique object. A detailed introduction to
the theory of FI-modules and representation stability can be found in [Sam20] but we recall the
basic principles here. The notation FI was introduced in [CEF15] as an acronym for the category
of Finite sets (often represented by their cardinality in the skeleton) and Injections. A FI-
module is a family of linear representations of the symmetric groups together with compatibility
conditions given by linear maps, which can be represented by the following diagram:

So 51 So s,
n N n g
FI 0« > 1« > 2 < ; < > n < >
|
R-Mod F(0) —— F(1) > F(2) .. y F(n) —— ...
U U U U
F(So) F(S1) F(S2) F(Sn)

Each arrow in this diagram actually represents many arrows that we can construct by composition
with the action of the symmetric groups. A large number of concrete examples of FI-modules are
presented in [CF13|. Other interesting examples of finitely generated FI-modules are given by
the cohomology of the pure string motion groups in [Wil12] and the pure braid groups in [Wil18al.

In the literature there are several variants (see [Sam20] for a detailed list) of the category
FI: the categories FI; that we develop in this thesis, FI4 the category of finite sets and couples
of an injection and a choice of an element of the group G for each element at the source (see
[Ram17bl), FSq the category of finite sets and G-surjections for G a group (see [SS17]), FIy
for W some Weyl groups in [Will2], FIM the category of finite sets and pairs of injection
and perfect matching on the complement of the image (see [MW19]), or a symplectic version
(see [Sam20]). There are also variants for representations of linear groups such as VI(R) the
category of free modules of finite rank and injective linear maps with left inverse which is
presented in detail in [Will8a]. This category, and its generalization VIC(R) of free modules
of finite rank and injective linear maps with a choice of direct complement of the image, were
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introduced under the names S(ab) for R =Z in [DV19] and S(R) in [Djal6].

In this thesis we will focus on the category FI; for d a nonzero integer, introduced by
Sam and Snowden in [SS17], in which the objects are still the finite sets and the morphisms
are the coloured injections. We study here the FI;-modules and we emphasize in particular
the differences with FI-modules. FEven if we study the functors whose target category is a
module category for more clarity, most of this work stays true if we replace R-Mod by a
general Grothendieck category (see [Gar01]). We recover in particular the FI-modules since the
category FI; is isomorphic to the category FI (see Section . The first major difference is
that the unit 0 is an initial object in FI 2 FI; but not in FI; for d > 1. We also show in Section
that the forgetful functor FI; — FI, that connects the FI;-modules and the FI-modules,
has a family of adjoints A, : FI - F1; called the colouring functors which add the colour ¢ to
all morphisms of FI. By precomposition, they allow us to consider a FI;-module as a FI-module.

For any category C, a family of important examples of functors from C to R-Mod are the
standard projective functors. These fundamental functors appear for functors between IF)-vector
spaces in [Kuh94], for FI; in [SS17], and for d = 1 in [DV19, Djal6], Ves19|, or under the name
of free modules in [CEF15, [CEFN14, [MWT19) or of representable functors in [Will8a)]. They play
the role of the free modules in the classical theory of modules. We can deduce a lot of information
about the FI;-modules from the structure of the standard projective functors since they form a
family of projective generators of FI;-Mod (Proposition 2.2.5)).

Simple FI;-modules

The category F1; is an El-category: i.e. a category whose endomorphisms are isomorphisms.
These categories and their representations have been introduced by Dieck in [Die87] in the
context of algebraic K-theory, and more recently studied by Li in [Lil4], in particular their Koszul
property. This property already gives us a result about the simple FI;-modules, that is the FI;-
modules which do not have non-zero proper subfunctors. In order to express this result, we recall
that the irreducible representations of the symmetric group S,, over a field of characteristic zero
are indexed by the partitions A of n. We denote by M* the irreducible representation associated
with the partition A of n, which is defined as the ideal of the ring K[S,] generated by an
idempotent element associated to the partition A called the Young symmetrizer. For example,
the representation associated with the partition A = (n) is the trivial representation, the one
associated with A = (1™) is the sign representation, and the one associated with A = (n-1,1) is
the standard representation. We then give in Proposition the following description of the
simple FI;-modules:

Proposition. For R « field of characteristic zero, the simple objects of the category F1;-Mod
are the functors (M™), that sends an object n € FIg to M if n = k and to zero else, for \ a
partition of k.

Representation stability

Although the category FI has been studied in different combinatorial contexts, it was first
used in the frame of representation stability. This theory was introduced by Church and
Farb in [CEF13| to study some compatible families of representations of groups which admit a
decomposition in irreducible that eventually becomes stable. [t was thought as a generalization
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of the classical homological stability in the case where the induced maps in homology do
not eventually become isomorphisms. A sequence of representations of groups, such as the
symmetric groups, is representation stable when the names of the irreducible representations
(with an appropriate way of indexing them) that occur in the decomposition eventually stabilize,
even if the spaces change. Concrete examples of this stabilization are given in [Sam20| and
in [CE13]. In characteristic zero, the irreducible representations of the symmetric groups are
indexed by the partitions. Then the representation stability for these groups can be summarized
as follows (see [CEF15, I[CEFN14, Farl4]): a compatible family (V4,),, of representations is stable
if we obtain the decomposition of the representation V.1 of S,4+1 by adding a box on the top
row of the diagrams associated with the decomposition of the representation V,, of S,. This
process, along with the equivalence between these two definitions, is described on examples in
[CF13] and [Will8al, Ex. XXXIJ.

The theory of FI-modules was introduced in [CEF15] to encode this phenomenon in a
single object: indeed, it is proven in [Farl4] that, if a FI-module is finitely generated, then the
associated family of representations of the symmetric groups is stable. Note that the converse
is true for functors with finitely generated values, and that the proof is based on the noetherian
property of FI-modules and on the fact that the families associated with the projective genera-
tors PX1 are stable as explained in [WilI8b]. The concrete examples of FI-modules introduced
in [CF13] and [Will8b] were first thought to be stable representations of the symmetric groups
and were understood to be finitely generated FI-modules after, for example in [CEF15]. Another
interesting example of representation stability is given by the cohomology of pure string motion
groups. It is treated in detail in [Will2] and illustrated by an example. In practice, it is gener-
ally easier to prove a finiteness result on one object than to prove the stability of an entire family.

The central results on representation stability are summarized and presented on a concrete
example in [Will8al section 5|. The main tools of these results are the study of the repre-
sentations appearing in the standard projective functors, and the character polynomials (see
[Farl4, 4.2| for a simple definition): it is shown in [CEF15] and [CMNRI8| that the characters
of a finitely generated FI-module eventually becomes equal to a polynomial. In particular,
if F'is a finitely generated FI-module over a field, then the dimension of the vector spaces
F(n) eventually become polynomial. This result, as many others about the FI-modules, was
first proved in [CEF15] and in [Snol3l Theorem 3.1] over a field of characteristic zero, and
was extended in [CEENI14] for more general rings. Moreover, Sam and Snowden showed in
[Snol3] and [SS16] that if a FI-module is finitely generated then it’s Hilbert series, encoding the
dimension of its values, is of the form p(t) + e'q(t) where p and q are polynomials. For example,
the character polynomials of [CEF15] can be recovered from the polynomial function p of this
series and the polynomial function ¢ can be recovered from the local cohomology.

This theory was extended in [Raml7al to FI;-modules with a generalized notion of repre-
sentation stability. Ramos then got the following result: a FIz-module F is finitely generated if
and only if the space F'(n) is finite dimensional for all n € N and, for any partition A\ of weight
|\| and any sequence of integers nq > - > ng > |\|+ A1, if ¢ ;... n, denotes the multiplicity of the
irreducible representation associated with the padded partition (ny —|A|,...ng = [Al, A\1,... An),
then ¢y n,41,... n,+1 1s independent of [ for [ and n large enough. This theorem is a direct general-
ization of the analogous theorem of [CEF15| [CEFN14] for FI-modules. Morally, the last point
can be interpreted by saying that the irreducible representations associated with a partition of
at least d rows eventually appear with a stable multiplicity in a finitely generated FI;-module.
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This theorem does not predict the behavior of the irreducible representations associated with
smaller partitions, but the Theorem B from |[Raml7al treats some of these cases. Since then,
Sam and Snowden defined an "enhanced" Hilbert series that encodes more information about
the structure of a FIz-module as representations of the symmetric groups and they proved a
result similar to the one for the "classical" Hilbert series above for this enhanced series, for d = 1
in [SS16] and for a general d in [SS17| and [SS18§].

The strong polynomial functors

In a functor category there are very huge functors, often out of control, and the polynomial
property is a way of measuring the complexity of a functor. Thus, polynomial functors
should be thought of as an analog to polynomial functions for functors, which are easier to
understand. The notion of polynomial functors dates back to the 1950s when Eilenberg and
Mac Lane introduced it in [EM54] for functors between categories of modules. Since then,
polynomial functors have been studied for a wide range of applications such as their connection
to representation theory or group cohomology.

The original definition of Eilenberg and Mac Lane has been extended for different families
of categories at the source, as in [HPV15| to the case where the source is a monoidal category
whose unit is a null object. A complementary approach in the generalization of these polynomial
functors is to study functors from a monoidal category to a non-abelian category such as
the category of groups (see [BP99]). The definition of Eilenberg and Mac Lane based on the
notion of cross effects is equivalent to the definition based on the differential functor as used by
Kuhn in [Kuh94] and by Powell in [Pow98]. In [DV19] the authors introduce two notions of
polynomial functors from a symmetric monoidal category M whose unit is an initial object to
an abelian category: the naive generalization of polynomial functors gives the notion of strong
polynomial functors which have some bad properties like not being closed under subobject.
This leads to the weak polynomial functors defined by introducing a quotient category following
the construction of Gabriel in [Gab62, pages 366-372]. The idea of this quotient category is
to invert the morphisms whose kernel and cokernel are in the subcategory in question. The
strong polynomial functors in this context are defined using the differential endofunctors dy, for
k € M, generalizing the one from [Kuh94| and [Pow98]|. In [DV19], Djament and Vespa also
adapted the definition of cross effects to their framework and showed that the strong polynomial
functors are equal to the ones obtained by using these cross effects. The definition using the
differential endofunctors is better suited for the study of stable behaviour and has the advantage
to be recursive, so we choose to mainly present and generalize this point of view for FI;-modules.

In particular, the category FI falls into the framework of Djament and Vespa and we get
the following definition of strong polynomial FI-modules using only the differential endofunctor
01 since 1 € FI is a generator: the functor F' : FI -» R-Mod is strong polynomial of degree
n if we get the zero functor by applying n + 1 times the endofunctor §; to it. This is analog
to the usual polynomials: a function f : R — R is polynomial of degree n if its (n + 1)-th
derivative is zero. The endofunctor §; which plays the role of the derivative is used in various
contexts: in Kuhn’s and Powell’s work over functors from F,-vector spaces to [Fj,-vector spaces
([Kuh94, Pow98]), in representation stability theory ([CEF15, [CEFNI14] I[CE17, [CMNR1S]), in
the definition of polynomial functors by Randal-Williams and Wahl in [RWW17]|, in the theory
of twisted commutative algebras ([SS12 [SS16]) or in the work of Ramos ([Ram17b, LR18]).
The notions of polynomial functors introduced in [DV19| give an alternative way to express
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and understand results on FI-modules. For example, the strong polynomial functors with
finitely generated values are the finitely generated FI-modules. Using [CEF15| we then deduce
that, over a field of characteristic zero, the dimension of the vector spaces associated with
a polynomial FI-module with finite dimensional values is eventually polynomial. There are
many examples of polynomial FI-modules that occur in different contexts. In particular, a
large number of the FI-modules presented in [CF13] are strong polynomial. The cohomology of
configuration spaces over a regular manifold gives a strong polynomial FI-module of particular
interest. Several FI-modules studied by Church, Ellenberg and Farb have more structure: they
are S(ab)-modules, were S(ab) is the category of abelian groups and split monomorphisms,
which correspond to VIC(Z) from [Will8a]. The polynomial S(ab)-modules are studied in
[DV19].

In Section we define the strong polynomial functors over FlI; in a similar way as over FIL,
using a family of endofunctors 0 indexed by the d colours of FI,; instead of just one endofunctor
01 for FI-modules. For d = 1 we recover the definition of strong polynomial functors over FI
from [DV19] since the only colour in FI; gives the unique endofunctor §; of [DVI9]. We also
define a notion of cross effects for FI;-modules in Section by introducing the coslice category
(0| FI;) (sometimes called the undercategory under 0 as in [MLI8, P.45]) of pairs (k,x) where
k is an object of FI; and = a morphism in FI;(0,%). Indeed, we prove in Proposition that
the coslice category (0 | FI;) is a monoidal category whose unit is an initial object, which allows
us to define the cross effects of a FI;-module via the forgetful functor (0 | FI;) - FI; and the
work of Djament and Vespa in [DV19]. We then show in Proposition that the polynomial
functors defined with the cross effects over FI; are the same as the strong polynomial functors
defined with the endofunctors 47:

Proposition. For n € N and F a Flg-module, F is in Poly"""(FI4, R-Mod) if and only if
ctns1(F) (=) is the zero functor over (0 FI;)*"*.

We then use this alternative definition of strong polynomial FI;-modules to show in Propo-
sition [5.4.18| the following result.

Proposition. For m,n e N, if F': FI; - R-Mod is a strong polynomial functor of degree less
than or equal to m and if X : R-Mod — R-Mod preserves epimorphisms and is a polynomial
functor of degree less than or equal to n, then the composite X o F': FI; - R-Mod - R-Mod
s a strong polynomial functor of degree less than or equal to nm.

We use this result to get in Theorem that the pointwise tensor product of two strong
polynomial FIj;-modules is strong polynomial:

Theorem. For n,m €N and F,G : FI; - R-Mod, if F is in Pol5"°"(FI;, R-Mod) and if G
is in Pol""9(F1;, R-Mod), then their tensor product F ® G is in Polgtgg;‘(‘%n’m)(FId, R-Mod).

However, in this theorem the bound may be not the best possible. Indeed, we could expect
for F® G to be strong polynomial of degree less than or equal to n+m. For example, for d =1 it
is shown in [Djal6] that a FI-module is strong polynomial of degree less than or equal to n if and
only if it is a quotient of a sum of the standard projective functors PiFI for ¢ <m. This allows us
to prove that, over FI the tensor product F'® G is polynomial of degree n+m if F' has degree n
and G has degree m. We also prove in Appendix A the same result in the framework studied by
Djament and Vespa in [DV19], that is the functors over a general symmetric monoidal category
whose unit is an initial object:
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Theorem. Let M be a small symmetric monoidal category whose unit is an initial ob-
ject. For n,m € N and F,G : M - R-Mod, if F is in Poli""9(M,R-Mod) and if
G is in Pols"°"9(M,R-Mod), then their tensor product F @ G : M — R-Mod is in
Pols"" (M, R-Mod).

2max(n,m)

For d = 1, the standard projective functors Pf I form a really important example of strong
polynomial FI-modules, as shown in |[Djal6|, Proposition 4.4]. This makes the study of polyno-
mial functors over FI much easier. In particular, it implies that being strong polynomial (with
finitely generated values) is equivalent to being finitely generated for FI-modules. This is specific
to the category FI, due to the fact that the standard projective functors are polynomial, and
is not true in general on other categories. For the FI;-modules these results have no reason to
hold since we show in Corollary the following:

Proposition. For d > 1, the standard projective functor Pfld 15 mot strong polynomial.

The example of configuration spaces

As explained above, there are many examples of FI-modules in the literature in a wide variety
of areas. We mainly present one given by the homology of the configuration spaces of a
manifold, which is fully described in [Sam20), [Will9] and [CEF13]. For M a regular manifold,
the rational cohomology of the configuration spaces of M is a finitely generated FI-module
(JCEEF15L Theorem 6.2.1]), which is almost equivalent to being strong polynomial. Furthermore,
for M a connected manifold of dimension at least 2 and under some more assumptions, it was
showed in [CMNRI18| Theorem A| that 2k is an upper bound for the polynomial degree of the
FI-module H' (Conf_y (M) ,K).

The results about the FI-module H* (Conf(,) (M ) , K) are proved for a manifold of dimension
at least two. This hypothesis is necessary to ensure that the configuration spaces are connected
and that the points can move around each other. But for a manifold of dimension 1, like a
graph, there is not enough space and the points block each other in the configuration spaces, so
the same approach is no longer valid. For example, the configuration space of the linear graph
with only one edge is homotopy equivalent to n! disjoint points. Therefore, Ramos introduced
in [Ram19] the homology of a kind of modified configuration spaces for graphs that form a
FI;module. In these modified spaces, called the sink configuration spaces, we take n (ordered)
points on the graph, as for the classical ones, but now they can either be distinct two by two
or they can overlap at a vertex of the graph but not within an edge. Then, the d vertices of
the graph correspond to the d colours of FI; which gives the structure of a FI;-module when
we take the rational homology of these topological spaces. This gives an interesting example of
FI;-module since, before this, all the FI;-modules in the literature were either free or obtained
from FI-modules via the forgetful functor. Ramos proved in [Ram19] that these FI;-modules
are finitely generated for every homological degree and every connected graph. In Proposition
we give an explicit description of these functors for the linear graphs:

Proposition. For Gy the linear graph on d vertices, the FI1j-module H ( C’onf(sfslk (gd, [d]) ,Q )
1s the constant functor Q, while for i > 1 the FI;-module

Hy( Conf™™* (4, 1]),Q )
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1s the functor sending n to QN (di+1) ifn=1+1 and zero else, where

o@D (T ifdzi2
N(d’Hl)_{ (d-1)*! (i) ifd<i+1

In Proposition we deduce from this description that these functors are strong polynomial
and we give their degree:

Proposition. For i € N and Gg the linear graph on d wvertices, the FIlz-module
Hl( Conf(sf?k (gd, [d]) ,Q ) is polynomial of degree 0 for i =0, and of degree i +1 for i > 1.

The twisted commutative algebras

The theory of twisted commutative algebras (TCAs) dates back to the 1950s and appeared in
algebraic topology. It was introduced to study different structures, such as sequences of objects
endowed with an action of linear or symmetric groups. It is also an analog of the theory of
commutative algebra adapted to the study of representations of these groups. For example,
in [Bar78| Barratt defined a general twisted algebra and added a condition to be a twisted
Lie algebra or a twisted commutative algebra. As we will see, the FI;-modules appear in this
context since there is an equivalence of categories between the FIj-modules and the modules
over the free TCA on d generators.

A TCA is a monoid in the monoidal category Fct(X,K-Vect), where ¥ is the category
of finite sets and bijections. By considering several categories equivalent to Fct(X,K-Vect)
we get different equivalent definitions of the TCAs, as explained in [SS12| and [GS10]: it can
be a functor from vector spaces to commutative rings or a commutative ring endowed with
an action of the infinite linear group by an algebra morphism, or an associative unital graded
ring endowed with an action of the symmetric groups. In each case there is an additional
condition, called polynomiality (in a different sense than the polynomial functors we study
here) which is added to form a TCA. Sometimes the TCAs are also treated as objects of an
abstract category equivalent to any of the previous ones, which leads to another equivalent
definition given in [GSI10| via operads. We choose to think of the TCAs mainly as functors
F : 3 - K-Vect, endowed with a multiplication law v : F ® F' - F and a unit law (Definition
4.1.5). The definition in terms of representations of the infinite linear group GL(o0), often
used by Sam and Snowden, is well described in [SS12| and [DES17|. These two notions using
the symmetric groups or the infinite linear group are equivalent for K of characteristic zero
via the Schur-Weyl duality, but give two different notions of TCAs for K of positive characteristic.

The first example of TCA, coming from [Bar78|, is the functor sending n to the space K[S,,]
on which the group S,, acts by conjugation and whose multiplication is given by the standard
inclusion of S, xS,, in S,+m. An easy way to create other TCAs is to take the symmetric
algebra of a representation of GL(K®). These examples, called "polynomial TCAs" (which
has nothing to do with our polynomial functors) are fully described in the different equivalent
definitions in [SS12), Section 8.2.3]. We focus on the free TCAs on d generators of degree one
Sym((K4)M), which has been studied extensively, for example in [SS12 [SST6, SS19, [GS10].
In particular, Sam and Snowden showed in [SS12] that the category of modules over this TCA
is equivalent, via a choice of a basis of K¢, to the category of FIz;modules. As mentioned
above, this explains how the FI;-modules appear in the theory of TCAs. We give the concrete
description of the TCA Sym((K?)(") in Definition and the detail of the equivalence in
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Section Another such example of TCA is Sym( A?(K*)) which is studied in [SSI5]. For
example, they show that there is a equivalence similar to the one of FI;: the finitely generated
modules over this TCA are equivalent to the finitely generated modules over the category FIM
of [MW19| whose objects are finite sets and whose morphisms are pairs of injection and perfect
matching on the complement of the image.

There is a natural action of GL(K?) on the modules over the TCA Sym((K?)(1)) that acts
diagonally on the components (K%)®" of Sym((K%)™)) before applying the multiplication law.
In Section [4.3] we use the equivalence of categories from [SS12] to transform this into an action of
GL(Kd) on the FIj-modules. We obtain in Proposition the following concrete description:

Proposition. Let B be a basis of K¢, for o € GL(K?) and G ¢ FI;-Mod, the functor op-G :
F1; -» K-Vect sends an object n € F1; to G(n) and a morphism (f,g) € F1;(n,m) to the sum

2 ( I mg'<z>,g<1)) G(f,9")-
g'€eFI;(0,m~f(n)) \lem~f(n)

were (M j)1<ij<d 15 the matriz of ¢ in the basis B of K.

The weak polynomial functors

The notion of weak polynomial functors gives a refinement of the notion of strong polynomial
functors which is more intuitive but lacks essential properties. Indeed, for a source category
which is a symmetric monoidal category whose unit is a null object, the subcategories of
polynomial functors are thick (see [Djal6] for the general case) which allows us to look at the
quotients by these subcategories. However, when the unit is just an initial object as in FI, a
subfunctor of a strong polynomial functor can be of higher degree or even non-polynomial. To
avoid these instability phenomena, Djament and Vespa defined a notion of weak polynomial
functors in [DV19] by erasing the problematic functors in a quotient category. They showed that
the category SN (FI,R-Mod) of these functors, called the stably zero functors, is composed
of the FI-modules whose colimit is zero. These stably zero functors correspond to the torsion
modules over the free TCA over a generator of degree 1 studied in [SS16] or [NSS18|, and
the endofunctor k which gives the maximal subfunctor of a FI-module in SN (FI,R-Mod)
corresponds to the local cohomology functor denoted by H2 (=) in [SS16, NSSIS8, [CEFN14]. In
particular, the properties of their right derived functors H! (=) are studied in [SS16, INSSIS| in
order to understand how Fct(FI, R-Mod) is constructed from the two pieces SN (FI, R-Mod)
and St(FI,R-Mod). Similarly, the weak polynomial degree for FI-modules corresponds to the
notion of stable degree of [CEF15| and [CEFNI4] while the local degree precise how the weak
and strong degrees are linked. It morally gives the strong polynomial degree modulo the weak
polynomial degree and controls the rank from which the associated family of representations
becomes stable.

One of the main goal of this thesis is to introduce and study weak polynomial FI;-
modules. One of the differences with the previous situation is that there are several subcat-
egories that can replace the stably zero functors in this case: the globally stably zero func-
tors SN (FI;, R-Mod) and the functors that are stably zero along different colour combination
SNei,....ci,, (FIg,R-Mod). These subcategories form a refinement of the notion of stably zero
functors introduced in [DV19] for FI. Indeed, for d = 1 there is an inclusion of the unique subcat-
egory of stably zero functors SNV (FI, R-Mod) in Fct(FI,R-Mod) but, for a general d, these
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subcategories form a richer poset for the inclusion. For example, for d = 2, the poset looks like
this:

SN, (FI;, R-Mod)
/
SN, e, (FIy, R-Mod) SN (FI, R-Mod) < Fct(FI,, R-Mod)
/

SN, (FI;,R-Mod)

In Proposition and Corollary we show that the subcategories SNV (FI;, R-Mod)
and S./\/'Cipm,cim (FIz;,R-Mod) of Fct(FI;, R-Mod) are thick, that is closed under subobject,
quotient and extension. Then we can consider the quotient category of Fct(FI;, R-Mod) by
any of these subcategories following Gabriel’s construction in [Gab62], and define polynomial
objects in them using the endofunctors 6f of Fct(FI;, R-Mod) which pass to the quotients.
This is possible because these subcategories are closed under colimits and so the quotient functor
mq has a right adjoint Sy called the section functor.

The subcategory SNV (FI;, R-Mod) of globally stably zero functors is defined in Section
using a family of endofunctors x§ of Fct(FI;, R-Mod). These functors are defined in Section
in a dual way to the 6¢, and they all fit in the exact sequence of endofunctors

C

'
0 > K > Id > T1 > 0] >0,

were 71 is the shifting endofunctor F'(-) ~ F (- +1) and 4{ a natural transformation associated
to the colour ¢. We also define a poset structure on N for the product order and a functor
ISR N% - FI,; that sends an object (ng, ... ,ng) € N? to the object ny +---+ng of F1;. We then
show in Proposition[6.1.5|that there is an equivalent definition of the category SN (FI;, R-Mod)
using a filtered colimit over N%:

Proposition. Let F be a FIz-module, then F is in SN (F1;, R-Mod) if and only if

colim Flo&;=0.
Nd

For d = 1 we recover the description of SN (FI,R-Mod) from [DV19, Proposition 5.7],
namely that the stably zero functors are those whose colimit is zero. Recall that, by [SS12],
the category of FIg-modules is equivalent to the category of Sym((K?)())-modules. In
Section we give a description of SA(FI;, R-Mod) in terms of Sym((K?)("))-modules
through this equivalence. We also show in Proposition that, for d > 1, the subcategory
SN (FI4,K-Vect) of Fet(FI;, K-Vect) is not closed under the action of GL(K?) define above.

The subcategory S/\/'cil,,._pim (FIz,R-Mod) of Fct(FI;, R-Mod) of functors that are stably
zero along the colours ¢;,,...,c;,, is defined in Section similarly to the globally stably zero
functors, but using the endofunctors § for each colour ¢ in {¢;,,...,¢;,, }. In Corollary
we show that these categories also admit an equivalent definition, this time via the colouring
functors A} : Fct(FI;, R-Mod) — Fct(FI, R-Mod):

Proposition. A Flj-module F is in the subcategory SNCi17,__7cim (FI;,R-Mod) of
Fct(F1;,R-Mod) if and only if the functors A% (F) are in the subcategory SN (FI,R-Mod) of
Fct(FI,R-Mod) for all colours c in {c;i,,... ¢, }.
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This equivalent definition allows us to use the results already proved for functors over FI,
especially those of Djament and Vespa in [DV19]. However, we show in Section that in the
quotient by a subcategory of functors that are stably zero along colours the polynomial objects
are a bit harder to define. In this process we lose some important properties like the fact that
the endofunctors k] become zero, and the endofunctors 4] become exact in the quotient. This
is a first reason why we develop only the weak polynomial functors corresponding to the global
subcategory SN (FI;, R-Mod): this one behaves better with the endofunctors §§ which are a
crucial tool for the study of polynomial functors.

In Chapter [7] we focus on the category St(FI;, R-Mod) of stable functors, i.e. the quotient
by the globally stably zero functors SN (FI;, R-Mod), the largest of these subcategories, in
order to get a smaller quotient category that may be easier to describe. Although the objects
of the quotient category St(FI;, R-Mod) are by definition the functors from FI; to R-Mod,
one should think of them as abstract objects since the morphisms in the quotient are modified
by some isomorphisms classes. In Definition [7.2.1] we define the weak polynomial FI;-modules
as the functors over FI; whose image in the quotient category St(FI;, R-Mod) by the quotient
functor 7, is a polynomial object (we sometimes identify F' and m4(F") by an abuse of notation).
With this definition, a strong polynomial functor is weak polynomial but the converse is not true,
which justifies the terminology introduced by Djament and Vespa in [DV19] for FI-modules. We
denote by Pol, (FI;, R-Mod) the full subcategory of St(FI;, R-Mod) of polynomial objects of
degree less than or equal to n. In an abuse of notation, it also denotes the full subcategory of
Fct(FI;, R-Mod) of functors whose image by the quotient functor 7y is a polynomial object
of degree less than or equal to n. We then take R = K a field to ensure that the tensor prod-
uct functor is exact and we show in Theorem that the pointwise tensor product of two
polynomial objects of St(FI;, R-Mod) is polynomial:

Theorem. Let R = K be a field, for X € Pol,(FI;,K-Vect) and Y € Pol,,(FI;, K -Vect), we
have X ® Y € Pol,. (FI;, K -Vect).

While the comprehension of the categories of polynomial functors is a hard problem in
general, except for small values, the quotient of polynomial functors of degree n modulo the
functors of degree n— 1 is well understood in several contexts. In particular, Djament and Vespa
described this quotient in [DVI19l Theorem 2.26| for the polynomial objects of St(FI, R-Mod),
as we recall in Chapter @ For n =0, they get that the only objects in Polg(FI, R-Mod) are the
constant functors.

In Section[7.4) we describe the polynomial objects of degree 0 of St(FI,;, R-Mod), which form
a richer category than for d = 1. For this, we introduce in Definition the category R-Mody
of R-modules together with d — 1 automorphisms which commute two by two. Similarly, we

introduce the category of modules over the ring of commutative polynomials R[z3!,...,23!] in
the d—1 variables x3, ..., x4 all invertible. One of our main result is then the following description

obtained in Theorem

Theorem. There are equivalences of categories between the category Polg(Flz, R-Mod) of
polynomial objects of degree 0 of St(FI;, R-Mod), the category R-Mody and the category
R[z3',...,25!']-Mod.

For d = 1 we recover that the polynomial FI-modules of degree 0 are the constant functors, but
for a general d these functors form a more complex category. We prove this theorem in two steps:
first, we show in Proposition that the polynomial objects of degree 0 of St(FI;, R-Mod)
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satisfy an abstract condition called (POL0). We then use the intermediate category FI; defined
in Section to show, in Propositions [7.4.6] and [7.4.7] that, for each object F' in the quotient
satisfying (POLO), the image of F' by the section functor S; is completely determined by its
image on the morphisms ¢ € FI;(0,1). These images of the morphisms ¢ € FI;(0,1) correspond
to the d — 1 module isomorphisms of the category R-Mod,; when we trivialize the action of ¢;.
From the point of view of R[z3?,... ,xﬁl]—modules the images of the morphism ¢; € FI;(0,1)
correspond to the action of x;, where x1 acts by the identity when we trivialize the action of c;.

Examples of polynomial quotients of the functors pFla

The fact that the standard projective generators PTF L4 are strong polynomial for d = 1 simplifies
the study of polynomial functors over the category FI. As explained above, this is not the case
for d > 1. Therefore we describe several quotients of the functors PY which are polynomial. Tn
addition to providing some concrete examples, these quotients may also give us a better idea of
what the polynomial functors on FI; look like. For example, in Section we obtain a family of
quotients of the functor Pg? Ia which are weak polynomial of degree 0 by filtering its generators
by the number of occurrences of the colours. Indeed, for ki,...,kq € N, I c {c1,...,¢q} and
a € FI;(0,k) we denote by v;(«) the number of occurrences of the colour ¢; in a. We then say
that a € F1;(0,k) satisfies the condition (Prp, . k,) if vi(a) > k; for all i € I, or there exists
je{ct,...,cq} NI such that vj(a) > kj. With these notations, we introduce in Definition
the subfunctor Gy, .k, of Pgld given by

Gri,..k,(n)=R [a - X |a e FI;(0,n) that satisfies the condition (Pl,kl,..‘,kd)] ,

where X € FI;(0,n) is a given morphism in FI4(0,n) satisfying the condition (Prg,  x,). We
then show in Proposition [8.1.15] the following:

Proposition. For ki,...,kg € N and I c {c1,...,cq}, the quotient of POFId by its subfunctor
Gk, k, s weak polynomial of degree 0.

Moreover, the proof is based on the Lemma which shows that this quotient is
equal to a constant functor modulo a stably zero functor of SN (FI;, R-Mod). This implies
that its image in the quotient corresponds, through the equivalence giving the description of
Poly(FI;, R-Mod), to the object (R,Id,...,Id) of R-Mod, or to the trivial R[x3!,... ,xfjl]—
module.

In parallel, in Section we study the quotient of the functor P¥I¢ by its subfunctor corre-
sponding to the action of the symmetric groups by post-composition. This subfunctor, denoted
by F, in Definition [8.2.1], is given on objects by

Fo(m) =R [oo(f,9) - (f,9)|(f,9) € Fla(n,m), o € Spa].
We show that the quotient of the functor P¥ by F), is weak polynomial in Theorem [8.2.11

Theorem. For all n € N, the quotient functor of PXle by F, is weak polynomial of degree 0,
where F, is the subfunctor of P¥Y from Definition .

A nice representative of the image of this quotient in the category St(FI;, R-Mod)
could help us to describe it in the category R[z3!,...,z%']-Mod through the equiva-
lence giving the description of Poly(FI;, R-Mod). However, we explain in Section that
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it is not easy to find one since the passage to the quotient category is not an explicit construction.

In Sectionwe give a quotient of P¥ L4 which is weak polynomial of degree n: for a morphism
(f,g9) in FI;(n,m) the second map g corresponds to a choice of m —n colours. So there exists
an action of the symmetric group S,,—, permuting these colour choices, which gives an action
of Sp—n on PX¥li(m). The subfunctor of P corresponding to this action of the symmetric
groups, denoted by H,, in Definition [8.3.2] is given on objects by

Hn(m) =R [(f,O'g) - (fvg) | (fag) € FId(n7m)7 o€ Sm—n] :
We show that the quotient of the functor Pfld by H, is weak polynomial in Theorem [8.3.14

Theorem. For all n € N, the quotient of Pfld by H,, is weak polynomial of degree n, where H,

1s the subfunctor of P}:Id from Definition .

We prove this in two ways: first, we directly compute 07 of this quotient, which is very
similar to the computation of 67 of Pf La in Proposition but, since we take the quotient
by the action of the symmetric groups on the colours, the component that prevents P¥! from
being polynomial vanishes here. Second, we introduce in Definition the category Cq whose
objects are the integers and whose morphisms from n to m are the (m — n)-tuple of colours
(Ciyy---,Ciy,_,,) quotiented by the action of S,,_,, (which is the same as the unordered choices of
m —n colours). We then show in Proposition that the quotient of P¥ ld by F, is equivalent
to the functor Psd, and describe the quotient of Pf L4 by H,, as a tensor product in Proposition
B.3.8 via the formula:

Proposition. For all n € N, there is a natural isomorphism
Pfld/Hn =~ ((’)*PEI) ® Pg‘i((—)—n) o),

where O is the forgetful functor F1; - FI and Q : FI; - C4 sends n € FI; to n € Cg and a
morphism (f,g) € FIz(n,m) to the colours of g quotiented by the action of Sy—p.

This explains how the injections and the colours are mixed to form the functor Pl up to
the action of the symmetric groups on the colour choices. Moreover, since the functor Pf Tis
strong polynomial of degree n for d = 1, the image of the arrows from PX! to the direct sum of
all PF! for k < is weak polynomial of degree i for any i € N. We then construct in Proposition
a quotient of P¥M that is weak polynomial of degree i for any i € N using the above formula
for the quotient of Pf Ly by Hp.

The construction Cospan

In order to study the polynomial functors over symmetric monoidal categories whose unit
is an initial object, Djament and Vespa introduced in [DVI9] a functor M - M which
transforms the category M whose unit is an initial object into the category M whose unit
is a null object. This construction, which is universal in the sense that it gives an adjoint to
the forgetful functor, morally adds "decreasing" morphisms from the objects of the category
to the unit while preserving the "increasing" morphisms from the unit to the objects. This
construction is equivalent to the construction Cospan(—) of [Ves07| where the functors over
Cospan can be seen as a generalization of the Mackey functors. Since this construction
preserves the polynomial functors, it allows Djament and Vespa in [DV19, Theorem 4.8] to
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turn the study of polynomial functors over a category whose unit is an initial object into the
study of polynomial functors over a category whose unit is a null object, which are better known.

They then apply this result to FI whose unit is an initial object. It allows them to describe
the quotient of polynomial objects (in the quotient category St(FI,R-Mod)) of degree less
than or equal to n over FI by its thick subcategory of polynomial functors of degree less than
or equal to n — 1. Indeed, the categories Cospan(FI) and FI are equivalent to the category
FI+# of partial injections of finite sets of [CEF15]. They then use a variation of a Dold-Kan
type theorem of Pirashvili to describe the same quotient for functors over Cospan(FI). This
Pirashvili’s theorem from [Pir00] gives an equivalence of categories between the functors over the
category I' of pointed finite sets and the functors over €2 the category of finite sets and surjections,
using the cross effects. The variation used in [DV19], which is described explicitly in [CEF15]
Theorem 4.1.5], gives an equivalence of categories between the functors over the category FI#
and the functors over the category 3 of finite sets and bijections, since FI1# is a subcategory
of I and ¥ of Q. The combination of these two results give the following description in [DV19,
Proposition 5.9]: for n € N, there is an equivalence of categories

Pol,, (FI)/
Pol

Pol,, (C FI
_ Pol, (Cospan(FT)) /Pol > Fet (X,,R-Mod),

n—1 (FI) ) n—-1 (Cospan(FI))
where ¥, is the category associated with the symmetric group S,,. We show that this approach
cannot be directly generalized to describe the polynomial functors over F1,.

In Chapter [0 we introduce a generalization of the construction Cospan for FI; as follows:
the objects of Cospan(F1,;) are the same as the objects of FI; and the morphisms are classes of
diagrams under an equivalence relation. These diagrams are morally composed of an injection
and two different colour choices on different sets which interact with each other. Thus, we show
in Proposition that the category Cospan(FI1,;) is isomorphic to a combinatorial category
FI;# whose morphisms consist of a partial injection and two distinct colour choices, one on
the complement at the source and one on the complement at the target. Moreover, we show in
Proposition that each morphism in Cospan(FI;) admits a minimal representative diagram
of the class, which implies that both the morphisms from 0 to n and the morphisms from n to 0
in Cospan(F1,) are in bijection with FI;(0,n). This emphasizes that the category Cospan(FI;)
is essentially obtained by keeping the morphisms from 0 to n of FI; and adding new morphisms
from n to 0 corresponding to them.

We then study the Cospan(FI;)-modules as we did for FI;-modules: in Section [9.3|we define
the polynomial functors on Cospan(FI;) using a family of endofunctors ¢ of Cospan(FI;) for
the different colours. A major difference is that the stably zero functors over Cospan(FI1,;) are
zero since this category has a null object, so the weak and strong notions of polynomial functors
over Cospan(FI;) coincide. We then obtain in Theorem the following description of the
polynomial Cospan(FI;)-modules of degree 0:

Theorem. A functor F' € Fct(Cospan(FI;), R-Mod) is in Poly(Cospan(FI1;), R-Mod) if and
only if it is a constant functor. There is an equivalence of categories

Poly( Cospan(FI;),R-Mod ) 2 R-Mod.

Together with the description of the polynomial objects of degree 0 of St(FI;, R-Mod)
(Theorem , this shows that for a general d the first equivalence of [DV19, Proposition
5.9] presented above already fails for n = 0, that is the quotient of Pol,(FI;, R-Mod) by
Pol,,-1 (FI;,R-Mod) is not equivalent to the same quotient over Cospan(FI;).
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Document layout

The organization of the manuscript is the following: in the first chapter we recall the construction
and the important facts about the quotient of a category by a thick subcategory. In Chapter
2, we present the FIz;-modules and give an overview of the basic results already known about
them. We also introduce the main tools for their study and describe the simple objects of
this category. In Chapter 3 we present the example of configuration spaces and describe it
explicitly in simple cases. The Chapter 4 concerns the twisted commutative algebras and their
connection with the FI;-modules. In Chapter 5 we define the strong polynomial functors over
FI; and give examples and counterexamples. We also extend the cross effects to these functors
and show that the resulting notion of polynomial functors coincides with the one using the
differential endofunctor. Chapter 6 is dedicated to the different notions of stably zero functors
and the poset they form. In Chapter 7 we study the quotient category St(FI;, R-Mod) and the
polynomial functors in this quotient. In particular, we describe the weak polynomial objects of
degree zero of St(FI;, R-Mod), which are not just the constant functors. In Chapter 8 we give
examples of polynomial quotients of the standard projective functors. Finally, in the last chapter
we introduce the category Cospan(FI;), and we show that the method of [DV19] for describing
the weak polynomial FI-modules does not work the same for weak polynomial FI;-modules.



Chapter 1

Recollection on quotient categories

The aim of this section is to recall the construction and some important properties of the quotient
of a category by a thick subcategory. Most of these properties are taken from the pages 366-372
of Gabriel’s thesis [Gab62] and we refer to it for the proofs of these propositions. In this section
A is an abelian category and C is a subcategory of A.

1.1 Definition of a quotient category

We start with the construction of the quotient of the category A by C, when C is a thick subcate-
gory which is defined below. We will see that this construction depends on the thick hypothesis,
so it will be important in the following sections to always check whether the subcategories we
are considering are thick or not. The idea of this quotient category is to inverse the morphisms
whose kernel and cokernel are in the subcategory C.

Definition 1.1.1. A subcategory C of A is thick if it is closed under subobjects, quo-
tients and extensions. In other words, C is thick if, for every short exact sequence
00— M — N — P — 0 in A the object N is in C if and only if both M and P are in
C.

Since A is an abelian category it admits a biproduct denoted by [I. We then give basic
results on the thick subcategories that we use in the following constructions:

Lemma 1.1.2. For C a thick subcategory of an abelian category A and any two objects A and B
of C, then A1I B is in C and, if A and B are subobjects of C € A, then A+ B:=Im(A][B — C)
15 1n C.

Proof. The first point is a classical result about abelian categories (see for example [ML9g|)
obtained using the short exact sequence

0 — A—— AlIB—— B —— 0,

and the second point comes from the definition of a thick subcategory since A + B is a quotient
of Al B. O

In order to define the quotient category we introduce some notations.

Definition 1.1.3. For a thick subcategory C of A and any two objects A and B of A we define
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o A poset
Lap={(A,B)eA’ |AcA Algyec B cB B ec},

where the order relation is given by: (A’,B") < (A”,B") if A’> A” and B’ c B".
e The category 14 p associated with the poset 14 p.

e The functor Fap : Zap — Ab sending an object (A’,B’) of Iy p to the group
Hom(A’, B/p’) and a map (A’, B") < (A”,B") in 4 p to the map

Homy(A', B/p) — Homu(A",B/p)
f = pg:/ o f o 7/21;/ ;
where iﬁ:, is the inclusion of A” in A" and pg:, the projection of B/’ onto B/pgr.

We then want to define the quotient category A/C as the category with the same objects as
A and whose morphisms from A to B are the elements of the colimit of F4 g as in [Gab62], p.
365|. However, using this as a definition of the morphisms, it would be really abstract and not
easy to use and the composition would be hard to define. We then use the fact that the category
T4 B is filtered when C is thick to give a more concrete description of this colimit.

Definition 1.1.4. A category M is filtered if it is not empty, if for every two objects X and
Y in M there exist an object Z and two arrows f: X - Z and g:Y - Z in M and if for
every two parallel arrows f,g: X — Y there exist an object Z and an arrow h : Y — Z such
that ho f = hog. The colimit of a functor is a filtered colimit if the source category is a filtered
category.

Lemma 1.1.5. For a thick subcategory C of A and for any two objects A, B € A, the category
Za,B 1s filtered.

Proof. For (A’,B') and (A", B") two objects of Z4 g, we pose X = A'n A" and Y = B'+ B :=
Im(B'[I B"” - B). Since C is thick (X,Y") is an object of Z4 p, i.e. an element of the poset I4 p.
Then we have that (A’, B’) < (X,Y) and (A", B"”) < (X,Y’) by construction. Furthermore, the
element (A,0) is minimal in 14 g so Z4 p is non-empty and, by construction there is one or zero
arrow in Z4 g between two objects, so two parallel arrows in Z4 g are equal. O

We now recall a description of filtered colimits over R-modules, which will be useful to
describe the colimit of F4 g in a concrete way, even though it is not directly related to quotient
categories.

Proposition 1.1.6. [Bor9j, Proposition 2.15.3] For F :C - R-Mod a functor, if C is a small
filtered category then the colimit (M, uc: F(C) - M) of F is given by:

e The R-module M is the quotient of the direct sum of all F(C) for C € C by the equivalence
relation given by: a € F(C) and a' € F(C") are equivalent if there exist C" € C and two
maps f€C(C,C") and f" e C(C',C") in C such that F(f)(a)=F(f")(a"),

e The map of R-modules pc : F(C) — M is the composition of the inclusion of F(C) in
the direct sum and of the quotient map by the equivalence relation that sends an element
a € F(C) to its equivalence class.

In particular, an element a € F(C) is in the same equivalence class as zero if and only if there
exists an object C" € C and a map f:C — C" such that F(f)(a)=0.
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We deduce the following description of the colimit of the functor F4 g over the category Z4 p.

Corollary 1.1.7. For A, B € A, there is an isomorphism

colim Fy p = P Hom 4 (AlaB/B') /N
TaB (A",B")ela,p

where f € HomA(A’,B/B') and f € HomA(A’,B/B') are equivalent if there exist X c A'n A’

and Y > B' + B such that (X,Y) e Iap and flx = flx : X — Bly.

Proof. The Proposition implies that the colimit of 4 g is equivalent to the direct sum of all
Hom 4 (A’,B/B') for (A’,B") € 14 p quotient by an equivalence relation. This relation is given
by: f e Homu(A', B/p’) and f e Hom4(A’, B[ ') are equivalent if there exist (X,Y) € I g, ¢ €
Homgz, ( (A’,B/B'), (X,Y)) and ¢ € Homz, , ( (A’,B/B'), (X,Y)) such that Fa g()(f) =
F.5(¢)(f). The result then follows from the definitions of 14 p and of Fi4  on the arrows. [

We can now define the quotient of an abelian category A by a subcategory C if it is a thick
subcategory.

Definition 1.1.8. The quotient category A/C of the abelian category A by its thick subcategory
C is given by:

e The objects of ’A/C are the objects of A,

e The morphisms in A/C from A to B are the elements of the direct limit

lim Hom (A", B/p’) = colim Fy g = ) Homy (A", B/p’) /.
(A",B")elaB ( /B) Za,B o (A",B")ela B ( / ) /
where the equivalence relation is given in Corollary [1.1.7, We denote by [f] the class of a

morphism f € Hom4(A’, B/B’) in this quotient.

e The composition of two morphisms is defined by choosing a representative of the class of
each morphism and by composing the (co)-restrictions of them in a natural way:

HomA/C(A,B)xHomA/C(B,C) - HomA/c(f},C)
([f1, La]) = [goaof],

where [ Goao f ] is the class of the composition jo a o f. These last morphisms are
defined by: « is the isomorphism A’ + A"/A’ = A"/A' A A", f is the (co)-restriction f :
A+ A”/A') - A+ A"/A' where f € HomA(A’,B/B') is a representative of [f] and
g A”/A’ A A"~ C’/Cl +g(A’n A") is the morphism obtained as g : A" - C/Cf passing
to the quotient, where g e Hom4(B”,C/¢) is a representative of [g].

Remark 1.1.9. The idea of the composition is to restrict f at the target to the subobject
A+ A"/A’ of A/A’ and g at the source to A"/A’ n A’, so that we can compose them via the
isomorphism o : A" + A”/A’ = A”/A’ A A”. The hypothesis that C is thick is crucial to define
the composition in such a way because we use that these objects (or quotients of them) are in
C. However, this definition of the composition of two morphisms depends on the choice of two
representatives f of [f] and ¢ of [¢g]. We check (see [Gab62, p.365]) that the result does not
depend on these choices by making a commutative diagram showing, for [f'] =[f] and [¢'] = [g],
that [ g’ oo f']=[ Goao f ] when restricted to some (F, F) € Ia g so that E is small enough

to get the information from f and f’, and F is large enough to get the information from g and
/

g .
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Proposition 1.1.10. [Gab62, Proposition 1 p.367] The quotient category A/C 15 abelian.

We give an example of morphisms in the quotient category which illustrates that this quotient
is difficult to understand explicitly, even in simple cases.

Example 1.1.11. For C a thick subcategory of A and A, B e A, if A or B is in C we have

HomA/C(A,B) =0.

Indeed, if A € C, for (A, B') in I4 5 we have (0,B’) € I p since A/ = A € C, and by definition of
the order on the poset I4 p we have (A’, B") < (0, B"). Then the map F4 g(A’, B") - colim Fy4 p
factors through F4 p(0,B") = HomA(O,B/B') = 0. This shows that the maps Fy p(A’,B') —»
colim Fy g are zero for all (A, B") € I4 g if A €C, and so the colimit is zero by minimality. In
the case where B € C, we apply the same reasoning but with (A’, B) € 14 p satisfying (A’, B") <
(A',B) and Fa p(A’,B) =Homyu (A',B/B) =0.

1.2 The quotient functor

In this section we describe the properties of the canonical quotient functor « from A to the
quotient A/ C-

Definition 1.2.1. The canonical quotient functor m: A — A/C sends an object A in A to itself

in A/C and a morphism f on its class [ f] in the colimit for (A,0) € I4 p, according to Definition
18

We now describe some properties of this quotient functor.

Proposition 1.2.2. [Gab62, Proposition 1 p.367] The quotient functor m is essentially surjective
and ezact.

Moreover, the quotient functor is almost a full functor: it is full up to isomorphisms, as
explained in the following proposition.
Proposition 1.2.3. [Gab62,  Corollary 1 p.368] For any short ezact sequence
0— M i> N-ZLP-—>0 in A/c, there 1s a short exact sequence

f

0 s M; —22s Ny -2 P s 0

in A such that the induced sequence in the quotient obtained by applying the quotient functor is
ezact, and there exist isomorphisms u: M = (M), v: N 2 n(Ny), w: P = n(Py) in Alc such
that the following diagram commutes

0 s M LN AN & s 0

0 — n(My) —> 7(N1) ——> 7n(P1) —— 0.
m(f1) m(g1)

We now describe the conditions under which a morphism in A is sent by the quotient functor
7 to a monomorphism, an epimorphism or to zero in the quotient. We give a sketch of the proof
since it gives another example of how to compute morphismn in the quotient category.
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Proposition 1.2.4. [Gab62, Lemma 3 p.366] Let f : A — B be a morphism in the category A,
the morphism w(f) in the quotient A/C is zero (resp. a monomorphism, an epimorphism) if and
only if Im(f) (resp. ker(f), Coker(f)) is in the subcategory C of A. In particular, if w(A) =0
then A is in the subcategory C of A.

Proof. We give a sketch of the proof in the first case, the other being similar. If Im(f) € C, then
the image w(f) = [f] of f in the colimit is zero since (A,Im(f)) € I4 p so we have a representative
of this class in HomA(A,B/Im(f)) which is zero. For the converse, if w(f) = [f] is zero, we
can choose a representative of this class f': A" — B/B’ which is zero, with (A, B") e I4 p. This
implies that f(A’) c B’, and so f(A") € C since B’ € C. We have a short exact sequence

0 — f(A)) — Im(f) — A/ A’ 4 Ker(f) — 0

because Im(f) = A/Ker(f) and f(A) =z A[4n Ker(f) = A+ Kel"(f)/Ker(f). We then con-
clude that Im(f) € C using this short exact sequence since A/A’ + Ker(f) is a quotient of A/A’
which is in C. The last point of the statement is obtained by applying the functor = to the
morphism identity of A. This gives a zero morphism in the quotient, and so the image A of this
morphism is in C. O

Finally, we can state a famous result about quotient categories which will not be used in the
following.

Theorem 1.2.5 (Gabriel-Popescu Theorem). If A is a Grothendieck category with a generator
G, then there is an equivalence of categories

A~ Mod-R /Ca

where R = End(G) and C is the thick subcategory corresponding to the kernel of the functor
Hom(G, -).

1.3 The section functor

The quotient functor m makes a link from the category A to the quotient one A/ C, but it is only
in one direction. However, under some hypothesis, this functor has an adjoint, called the section
functor, which makes the link in the opposite direction. In this case we say that C is localizing.
When A is a Grothendieck category, this hypothesis has a concrete description and, since we
will only consider Grothendieck categories, we only present this case (see [Gab62, p.377| for a
general version). We now describe this adjoint and we give some properties of the adjunction.

Definition 1.3.1. [Gar(1l p.7|] The category A is a Grothendieck category if it is an AB5 category
with a generator. This means that A is an abelian category with a generator (i.e. an object A in
A such that every object is a quotient of a direct sum of copies of A), such that every (possibly
infinite) family of objects in A has a coproduct (direct sum) in A, and every direct limit of short
exact sequences is exact (i.e. for every family of short exact sequences in A the induced sequence
of direct limits is a short exact sequence).

Example 1.3.2. For any ring R, the categories R-Mod and Mod-R are Grothendieck cate-
gories. Indeed, they are abelian categories generated by R in which one can consider infinite
direct sums. The last property can be checked by hand on elements (see [GarO1l, p.7]).

We can now give the condition that C must satisfy so that the quotient functor has an adjoint.
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Proposition 1.3.3. [Gab62, Special case of Propositions 8 and 9 p.377-378] Let A be a
Grothendieck category (Definition , the quotient functor ™ has a right adjoint

if and only if the subcategory C is closed under colimits. In this case, the quotient functor
commutes with all filtered colimits.

From now on we will assume that the quotient functor 7 has a right adjoint . Since we have
defined a quotient, we want a statement similar to the usual universal property of the quotient.
The following proposition gives this, but only if the functor we want to pass to the quotient is
exact.

Proposition 1.3.4. [Gab62, Corollary 2 p.368] Let F' be an exact functor from A to an abelian
category D. If F(C) is zero for all objects C of C, then there exists a unique functor G from
‘A/C to D such that F'=Gom.

More than that, since we need the functor F' : A - D to be exact, the resulting functor
G: -A/ ¢ — D is also exact by using the following corollary which describes when a functor from
a quotient is exact:

Corollary 1.3.5. [Gab62, Corollary 3 p.369] Let G be a functor from A/C to an abelian category
D, then G is exact if and only if G om is exact.

In particular, as stated above, if G is induced by an exact functor F' from A to D as in
Proposition then G is also exact. However, the exactness hypothesis on F' in Proposition
[1.3.4]is a bit restrictive, and at some point we will need a more general version of this proposition.
Indeed, if the functor F' is not exact but admits derived functors it is sufficient to obtain an
induced functor from the quotient as explained in the following proposition. For example, this
is typically the case for the Ext and Tor functors, or for the (co)homology functors.

Proposition 1.3.6. Let F' be a functor from A to an abelian category D left (resp. right) exact
such that it admits derived functors. If F(C) is zero for all objects C' of C, then there exists a
unique functor G from A/C to D such that F =Gom.

Proof. The only time we use the exactness of F' in the proof of Proposition ([Gab62l,
Corollary 2 p.368]) is when we want to define, for all A, B € A and all (A’, B") € I4 p, a bijection

¢ : Homp ( F(A), F(B) ) = Homp ( F(A"), F(B/B')).

To do this we consider the short exact sequences associated with iﬁ, : A" > A and p% N N —
N/N'. We get that F(i4,): F(A") » F(A) is an isomorphism using the fact that A/A’ € C, the
hypothesis F(C') =0 for all C' € C, and the exactness of F. The same works for p%/N,, showing
that F(p) is an isomorphism and the two together imply that the morphism 1) is a bijection.
This proof still works under the assumption that F' admits derived functors since it replace the
exactness of F': in the long exact sequence of derived functors the morphism F (iﬁ,) cF(A) >
F(A) is between two terms of the type F(A/A") which are zero since A/A’ € C, proving that
F(i4,) : F(A’") » F(A) is an isomorphism. The same argument works for p%/N, :N - N/N'
and the end of the proof is exactly the same. O

Remark 1.3.7. In the last proposition we need F'(C') to be zero for all C' € C. For example if
F = H,.(-,K) we need for all C €C that H,(C,K) =0 for all n € N, and not just Hy(C,K) = 0.
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We now give some properties of the adjunction of the quotient functor 7 and the section
functor S, in particular we describe the unit and the co-unit of this adjunction.

Definition 1.3.8. The natural transformations n :Id - Sow and € : 1o S - Id such that
(erom(n):m—>moSom—»>m)=1d; and (S(e)ons:S > SomoS - ) =1ds are respectively
the unit, and the co-unit of the adjunction of 7: 4 — A/c and S: A/c - A

Applying a general result concerning the unit and the co-unit of an adjunction given in
|[Bor94) P.115| to the adjunction of the quotient we obtain:

Proposition 1.3.9. If the unit n:1d - S om and the co-unit e : mo S — Id of the adjunction of
m and S are isomorphisms, then there is an equivalence of the categories A/C > A

Since we consider the adjunction corresponding to a quotient category, there a some other
results about the unit and the co-unit that arise in this case. For the co-unit we have the
following.

Proposition 1.3.10. [Gab62, Proposition 3.a p.371] The co-unit € : moS — Id of the adjunction
of m and S is always an isomorphism.

For the unit the description is a bit more complicated and we need the following definition,
which is a reformulation of the definition of [Gab62] p.371].

Definition 1.3.11. An object A € A is C-closed if Hom(H, A) and Ext!(H, A) are both zero for
all H €C.

Then, the following proposition describes when the unit is an isomorphism.

Proposition 1.3.12. [Gab62, Corollary p.371] Let A be an object of A, the unitng : A - Som(A)
of the adjunction of m and S is an isomorphism if and only if A is C-closed.

If the unit is not an isomorphism, we can still say something about its kernel and cokernel,
as in the following:

Proposition 1.3.13. [Gab62, Proposition 3.b p.371] For all objects A in A, the kernel and the
cokernel of the unit ng: A - Son(A) of the adjunction of ™ and S are in the subcategory C of
A.

Finally, we gave above some properties of the image of the quotient functor, but there is
an important property in the opposite direction about the image of an object of the quotient
category by the section functor S:

Lemma 1.3.14. [Gab62, Lemma 2 p.871] For any object N in the quotient category A/c, the
object S(N') of A is C-closed.



Chapter 2

Functors on the categories F1;

The functors from the category FI of finite sets and injections (also denoted by I in [SchOS§]
and by © in [DV19]) to R-Mod are called FI-modules. They have been studied extensively
in the last decade by Church, Ellenberg, Farb, Nagpal and some others (see for example
[CEF15, [CEFN14] [CEF14] ICE17, [CF13| [Chul2, [CMNRI1S8, Djal6, [DV19]), mostly for their
link to the theory of representation stability. A complete introduction to these subjects can
be found in [Sam20|, but we give an outline now: the theory of FI-modules was introduced
in [CE13| to study the compatible families of representations of the symmetric groups which
admit a decomposition in irreducible that eventually becomes stable (in the sense of [Farl4]).
It is a generalization of the classical homological stability taking into account the action of the
symmetric groups. A large family of concrete examples in a wide range of areas are presented
in [CE13| and [Will8b|. Church and Farb then proved that a FI-module is finitely generated if
and only if it has finitely generated values and the associated family is representation stable. In
practice, it is generally easier to prove a finiteness result on one objects than the stability of an
entire family, which shows the interest of studying these functors. Replacing the target category
R-Mod by a more combinatorial category we can also consider the non-abelian categories of
FI-posets, FI-graphs and more generally FI-sets with relations (see [RSW20]).

Since then, the category FI has been generalized in different directions. The one we are
concerned was introduced by Sam and Snowden in [SS17|, leading to the categories FI; for d
a non-zero integer in which the morphisms are coloured injections (see Definition . More
precisely, the category FI; is isomorphic to the category FI. We study here the functors from
FI; to R-Mod, called FI;-modules, and we emphasize in particular the differences with FI-
modules. These functors intervene, in particular, in the theory of TCAs and in representation
stability. Indeed, the FI;-modules are equivalent to the modules over the free TCA with d
generators of degree 1 (see Chapter , and there is a result similar to the one for FI from
[Ram19]: a FI;-module is finitely generated if and only if it has finitely generated values and the
associated family of representations is stable in a general sense (for large enough partitions). In
this Chapter, after recalling the definition of FI;, we give some examples of FIz-modules and we
describe the simple FI;-modules. We then define some endofunctors of the category FI;-Mod,
which we will use in the following chapters to define the notions of polynomial functors and we
study some functors between FI-modules and FI;-modules.
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2.1 The categories FI and F1;

We start with the definition of the category FI and its generalization, the category FI;. We give
their first properties and some notations that we will use throughout the manuscript.

Definition 2.1.1. The category FI has for objects the finite sets and for morphisms the injections
between these sets. The composition of morphisms is the usual composition of injections.

The category F1; is constructed as the category FI to which we add some colours on the
morphisms. Explicitly, for d € N* let C@ be a set of cardinality d whose elements are called
colours and are denoted by ¢; for 1 <7 <d.

Definition 2.1.2. The category F1; has for objects the finite sets and for morphisms the in-
jections together with a colour choice in C(? for each element in the codomain which is not
mapped to by any element. In other words, an arrow from X to Y is a pair noted by (f,g) with
f:X <Y an injection and g : Y \ f(X) — C(@D g set map. The composition is given for two
composable morphisms (f1,91) and (f2,g2), by

(f1:Y > Z gi)o(fa: X =Y, g2)=(fiofa: X > Z,g)

where ¢’ : Z~ (f10 f2)(X) - C@D is defined by

g’(z):{ g2(z) if zeZ N fo(Y)
a(f21(2)) if zefor(Y)N fao fi(X).

Example 2.1.3. We give an example of the composition of two morphisms with two different
colours in FI; :

Definition 2.1.4. The functor ® : FI; xFI; — FI; is given on objects X, X € FI; by the
disjoint union X; ® X3 = X; U X5 and on morphisms by

(fi: X1=oY1,01)0(fe: Xo=>Yo, go)=(fiufo: XiuXo = YiUYs, g1 +92).

Lemma 2.1.5. The functor ® gives a symmetric monoidal structure on ¥F1; with the empty set
as the unit.

The categories FI; generalize the category FI since for d = 1 we have an isomorphism of
categories FI; = FI. Indeed, the category FI; is easy to describe because c® = {c} so we can
define a functor A, : FI - FI; by the identity on objects and which sends an injection f: X - Y
to the morphism (f,g), where g is the unique map from Y  f(X) to C(!). This functor gives
an isomorphism of categories and its quasi-inverse is a forgetful functor O : FI; - FI which is
given by the identity on objects and which sends a morphism (f,¢) in FI; to the injection f in
FI. The functors A, and O can be generalized to get functors between FI and F1;, we define
the general forgetful functor now and the general functor A. in Section

Definition 2.1.6. The forgetful functor O : FI; - FI is defined on objects by O(X) = X and
on morphisms by O(f,g) = f.
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Lemma 2.1.7. The forgetful functor O is monoidal.

In order to simplify the notation, the set C4 is simply denoted by C'if this dos not leads to
misunderstandings. We also consider the skeleton of the category FI;, which is described in the
following.

Notation 2.1.8. The skeleton of the category FI; has for morphisms the integers, where n
corresponds to the class of sets of cardinality n (see also [Will8a] for d = 1). In this skeleton the
class of the empty set corresponds to 0 and a morphism from n to m is a couple (f,g) where
f:n —> mis an injection and g : m —n — C is a choice of m — n ordered colours. The monoidal
structure ® on FI,; corresponds to the addition "+" in the skeleton.

From now on FI; will always denote the skeleton of the category of finite sets and coloured
injections.

Remark 2.1.9. We use the notation "+" in the skeleton of FI; since the cardinality of the
disjoint union of two sets is the sum of their cardinality. However, this monoidal structure is
not a coproduct, even for d = 1. For example the following diagram cannot be completed by any

dashed arrow in FI or Fl:
1
In FI; the morphisms from 0 to an integer m are really important and will be used a lot.
We give there a nice description of these morphisms.

Remark 2.1.10. For m € FI;, an element of FI;(0,m) corresponds to a choice of m colours in
C, so we have a bijection FI;(0,m) = C™ given by:

FId(O,m) — cm
(0o>m,g:m—>C) » (g(1),...,g(m)).

We often denote an element z in FI1;(0,m) by = = (c1,...,¢p) for some colours ci,...,¢p € C
according to this bijection. In particular, for ¢ € C' we denote by ¢™ the morphism (0 - m,m —
{c} - C) in F1;(0,m).

The first important difference between FI and FI; is that 0 is an initial object in FI 2 FIy,
but it is not the case in F1; for d > 1. Indeed, the set of morphisms

FI;(0,m) = (CY" = {c1,...,cq}™

has d™ elements in general. This gives the existence of a unique morphism from 0 to m in FIy,
but such a morphism is not unique in FI; for d > 1.

Remark 2.1.11. In the literature they are several variants (see [Sam20] for a detailed list) of
the category FI: The categories FI;, FIy for W some Weyl groups in [Will2], FSq the category
of finite sets and G-surjections for G a group (see [SS17]), or a symplectic version (see [Sam20]).
There are also variants for representations of linear groups presented in [Will8a), such as VI(R)
the category of free modules of finite rank and injective linear maps with left inverse, and its
generalization VIC(R) of free modules of finite rank and injective linear maps with a choice
of direct complement of the image. These categories are particular cases of the category S(A)
introduced by Djament in [Djal2] for A an abelian category. For A = R-Mod this category is



44 Chapter 2. Functors on the categories Fly

denoted by S(R) in |[Djal6] and for A = Z-Mod it is denoted by S(ab) in [DV19]. They are
similar to FI and F1,; since the morphisms are given by an injective map coupled with a choice on
the complement of the image. Most of these categories are example of the construction 4(G) from
[RWW17]: for G = S,, we get the category FI, and for G = GL,(R) we get S(R). The functors
over such categories have been studied, like the category G in [DV15| for G = Aut(F;,) and &g
in [Sou20] for G = B,,. Another variant of the category FI is the category FIg of finite sets and
couples of an injection and a choice of an element of the group G for each element at the source.
The functors over this category have been studied for example in [Raml17bl [LRI8| and Sam and
Snowden showed that the category of finitely generated FIg-module is noetherian. This result
was extended in [Raml7b] to the notion of degree wise coherent modules using endofunctors
similar to the ones we define in Section In |[LR18] they show that the dimension of the
functors over Flg eventually becomes polynomial, as for FI.

2.2 Functors on the categories FI;

The main objects that we study in this thesis are the FI;-modules, which are the functors from
FI,; to the category of modules R-Mod. The theory of FI-modules was introduced by Church
and Farb in [CEF13| to encode a large quantity of information about a family of representations of
the symmetric groups in one object. Concrete examples of this are given in [CE13| and [Wil18b].
Indeed, it was proven in [CEF15| that if a FI-module is finitely generated, then the family of
representations of the symmetric groups associated is stable (in the sense of [CEF15] [(CEFN14]
Farl4]). The FI;-modules were then introduced as a generalization of the FI-modules, and it was
proven in [Ram17a) that, if a FI;-module is finitely generated, then the family of representations
of the symmetric groups associated is stable in a generalized sense (for large enough irreducible
representations). In this part we give general results on this category of functors. We start with
the definition of this abelian category and we give a family of generating functors which are the
standard projective. We will see that we can get a lot of information about the FIj-modules
from the structure of these projective standard functors. We only consider here functors with
values in R-modules but most of the results admit generalizations for functors with values in a
Grothendieck category A (Definition [1.3.1).

Definition 2.2.1. The category FI;-Mod = Fct(FI;, R-Mod) is the category of functors from
F1,; to the category of modules R-Mod, with natural transformations as morphisms.

Proposition 2.2.2. The category FI1;-Mod = Fct(F1;, R-Mod) is a Grothendieck category
(Definition m), in particular it 1s abelian.

Proof. The category R-Mod is a Grothendieck category and a functor category with values in
a Grothendieck category is also a Grothendieck category (see [Gar01]). O

Remark 2.2.3. The structure of a FI;-module can be represented by a diagram: it is a family
of linear representations of the symmetric groups together with compatibility conditions given
by linear maps. We give an example for d = 1, the diagram for a general d being analogue with
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more arrows:

So S1 Sa Sn
0 0 n g
FI 0« > 1« > 2 < > < > n < >
gl
R-Mod F(0) — F(1) > F(2) > y F(n) —— ...
U U U U
F(So) F(S1) F(S2) F(Sn)

Each arrow in this diagram represents in fact many arrows, however every arrow from ¢ to j in
FI is obtained from one by composition with an element of the symmetric group S;.

A family of important examples of FIg-modules are the standard projective functors. These
functors naturally exist in every category of functors with values in an abelian category and
we will show that they form a family of generators of FI;-Mod. These fundamental functors
introduced in a different context in [Kuh94| appear for FI; in [SS17] and for d = 1 in [DV19
Djal6l, Ves19], or under the name of free modules in [CEF15| [CEFN14, [MW19] or representable
functors in [Will8a]. They play the role of the free modules in the classical theory of modules.

Definition 2.2.4. For n € Fl, the standard projective functor on F1; associated with n, denoted
by PF¥le: FI; - R-Mod, is given by

Pyt = R [Homgy, (n,-)],

where R[ -] : Set -~ R-Mod is the R-linearization functor (i.e. the left adjoint to the forgetful
functor R-Mod — Set). It sends an object m € FI; to the R-module R [HomFId (n,m)] and
a morphism (f,g) € FI;(m,k) on R[(f,g).], the linearization of the post-composition by (f,g).
This functor is sometimes called the representable functor on F1; associated with n.

We recall that a family F of objects in a category C is a generator of C if for every object C'
in C there exists an epimorphism from a direct sum of elements in F to C. We now show that
the projective functors generate the category FI;-Mod and that they are projective objects in
the category FI;-Mod, following [Vesl19].

Proposition 2.2.5. The family (Pfld)neN of standard projective functors forms a set of pro-
jective generators of the category of F13-modules.

Proof. Let F be an object of FI;-Mod, the linear Yoneda lemma gives, for all n € FI;, a
bijection

&n : Hompr, Mod (P, F) = F(n).
Then the natural transformation

o @ (=)

neFIy xeF(n)

is an epimorphism since, for any n € FI; and = € F(n), the natural transformation &,%(x)
sends the identity of n to the elements z € F(n). Moreover, every functor PF1e is a projective
object in the category FI;-Mod. Indeed, for an epimorphism f: F — G in FI; and a natural
transformation g: P¥% - @, the Yoneda lemma gives two natural bijections

HomFId-Mod (Prfld F) = F(TL) and HomFId_Mod (Pgld G) = G(n)
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Since the map f, : F(n) - G(n) is surjective, there exist h : P¥l — F such that foh =g,
thus the functor P,f L is projective. Equivalently, the functor Hom(Pf La _) is equivalent to the
evaluation functor F' — F'(n) which is exact, so it is also exact. Since the category FI;-Mod is
abelian, it implies that the functor P,]l? L is projective. O

This property allows us to define the notion of finitely generated FI;-module. Indeed, we
have shown that every FIz-module is a quotient of a direct sum of projective standard functors,
and so we say that it is finitely generated if it is a quotient of a finite one.

Definition 2.2.6. A FI;-module F is finitely generated if there exists an epimorphism

k (PiFId)@Ci o F
i=0

2

from a finite direct sum of standard projective functors to F.

There are equivalent ways to define the finitely generated FI;-modules: in [CEF15, [CEFN14]
Raml17a] a FI-module F is said finitely generated if and only if there exists a finite set of integers
such that every subfunctor of F' that coincides with F' on this set is equal to F'. The equivalence
with Definition is explicitly described in [CEFN14l Proposition 2.3| or in [RamlT7al, and
from the point of view of TCAs in [SS12, Section 8.3.2]. Sometimes F' might be defined as
finitely generated if every growing family of subfunctors of F' whose union is F' is stationary.
The equivalence is given, for a large family of categories such as FI;, in [Djal6, Prop 2.7].

Remark 2.2.7. In recent years it has been proved that several algebraic structures are noetherian
(i.e. a submodule of a finitely generated module is finitely generated), such as the FI-modules
(see [CEFN14)SS16]), the FS-modules where F'S is the category of finite sets and surjections also
denoted by Q in [Pir00] (see [SS17]), the VIC(R)-modules (see [PS17]) and many others. The
category FI; and its ordered version OI; appears in [SS17, Section 7.1] where they show that Ol
is Grobner and FI; quasi-Grobner (i.e. morally there is an essentially surjective functor from
the Grobner category OIy to FI;) and thus that the categories of FI;-modules are noetherian
over any left-noetherian ring R. The idea is to add an order to the category to get a Grébner
category and then use the forgetful functor to transfer the noetherian property from one to the
other. This result was first proved in [Snol3, Theorem 2.3] over a field of characteristic zero,
then for d = 1 in [CEF15] (in characteristic zero) and [CEEFN14]. The noetherian property is a
crucial tool to prove that a sequence of representation stabilizes since it is equivalent to prove
that the FI-module associated is finitely generated.

Remark 2.2.8. For d =1, if F'is a finitely generated FI-module over a field, then the dimension
of the vector spaces F'(n) eventually becomes polynomial in n. This result was first proved in
[Snol3] and in [CEF15] over a field of characteristic zero, then in [CEFN14] and in [SS17] in
general. This is false for d > 1 since POFId is finitely generated but POFId (n) = R[FI1;(0,n)] =
R[C™] is of dimension d". However, this result admits a generalization for finitely generated FI;-
modules with the notion of Hilbert series introduced by Sam and Snowden. More precisely, they
showed in [SS17, Corollary 7.1.7| that if F' is a finitely generated FI;-module, then its Hilbert
series Hp(t) = Y. dimg F(n)t" is of the form P(t)/Q(t), where P(t),Q(t) are polynomials in
K[t] with Q(t) = H;-lzl(l - jt)% for some e; > 0. In particular, this implies that the dimension
of F'(n) eventually becomes a sum on 1 < j < d of a polynomial multiplied by j". For d =1 we
recover that the dimension of F'(n) is eventually polynomial, but for d > 1 it has a more complex
expression.
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As explained above, the theory of FI-modules was introduced to encode the notion of rep-
resentation stability. It then was proven in [CEF15| that, if a FI-module is finitely generated,
then the family of representations of the symmetric groups associated is stable (in the sense of
[CEF15, [CEEN14] [Fari4]). In order to present the theorem [Rami7a, Theorem A], which is the
analogue result for FI;-modules, we first introduce the padded partitions:

Definition 2.2.9. For A = (\1,...,\,) a partition of weight [A| = Y \;, and ny > -+ > ng >
|A| + A1 d positive integers, the associated d-padded partition is given by A[n] = (n1—|A|,...,ng—
AL Aty ooy An).

As explained in [CF13] [Far14l (Will2] this is a way to name the irreducible representations of
the symmetric groups such that the name is independent of the index of the symmetric group.
Then the representation stability of [CF13| for the symmetric groups can be summarized as
follows (see [CEF15l, [CEFN14l [Fari4]): a coherent family (V},), of representations is stable if;
for each partition A, the multiplicity of the irreducible representation associated with the 1-
padded partition A[n] = (n = |\, A1,...,Ap) in V, is eventually independent of n. For example,
the family of spaces K", together with the injections of the canonical basis, is stable since each
space decomposes into K" = M,y ® M(,,_1 1) = Mgy[n] ® M(;)[n]. We now state the analogous
theorem for FIz-modules:

Theorem 2.2.10. [Ramli7d, Theorem A] For K a field of characteristic 0, a F1;-module F is
finitely generated if and only if the space F(n) is finite dimensional for all n € N and, for n large
enough:

e The intersection of the kernels Ker(F(f,q)), for (f,g) the maps starting at n, is zero,

e The sum of the spaces F((f,g) :n —-n+1)(F(n)), for the maps (f,g) in FIz(n,n+1),
generates F(n+ 1) as a representation of Sp+1,

e For any partition X of weight |A| and any integers ny > -+ > ng > [A + A, if cany.nyg
is the multiplicity of the irreducible representation associated with the I-padded partition
Aln] = (n1 = |N,...,ng = |Al, AL, ..o An), then eyl ng+1 1S independent of 1 for 1 large
enough.

This theorem is quite technical, but it is a direct generalization of the analogue theorem of
[CEF15, [CEFNI4] for FI-modules. Morally, one can interpret the last point by saying that the
irreducible representation associated with a partition with at least d rows appears eventually
with a stable multiplicity in a finitely generated FI;-module. This theorem does not predict the
behavior of the irreducible representations associated with smaller partitions, but the Theorem
B in [Raml17a| treats some of these cases.

2.3 First examples of FI;-modules

In this section we give examples of FI;-modules. We start with some elementary functors
and with a family of functors induced by the tensor product of modules. The first example
we can construct is the constant functor. Let M ¢ R-Mod be an object, we still denote by
M : FI; - R-Mod the constant functor which sends any object to M and any morphism to
the identity. Since there are only maps in FIz(n,m) when n < m, we can define variations of
some of the examples of functor given in [DV19| over a symmetric monoidal category with an
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initial object. Indeed, we can construct the twisted atomic functor My : F1; - R-Mod, which
is defined on objects by
M ifn=k

Mk(n):{ 0 else

and on a morphism (f,g) € FI;(n,m) by My(f,g) = Mi(c) if n = m = k and zero else with
o €8S,. When the action of the symmetric group S,, on M given by My (o) is trivial, we simply
say that My is atomic. Note that such a functor cannot be defined over a source category with
compatible maps a - b — a such that the composition is the identity. We can also consider
M : F1; - R-Mod the subfunctor of the constant functor M defined on objects by

M ifn>k
M*sz{ 0 ifn<k

and on a morphism (f,g) € FIz(n,m) by My (f,g) = Idas if n,m > k and zero else. For d =1,
this functor is called the truncated module associated to the constant functor in [Will8al. We
can combine these functors and, for a set I c N, we can define the functors

@M and EPMs,c M.

iel i€l iel
Moreover, we can define a functor M. by the short exact sequence
0 — My — M — M, — 0. We can check that we have

M itn<k
M@O”:{ 0 ifnxk

and Mk (f,g) =Idys if n,m < k and zero else.

Remark 2.3.1. Neither M, or M..,1 are subfunctors of the constant functor since, in both
cases, the image of the spaces My (k) = M and M ,1(k) = M by the maps M(k - k+1) =1dy
are equal to M, which is not a subspace of My (k+1) =0 or M1 (k+1) = 0. Thus the category of
FI;-modules is not semisimple since the short exact sequence 0 — Msp — M — M4 — 0
do not split.

Remark 2.3.2. For d = 1, the functor Ry corresponds to the image of the functor P,fl (see
Definition ) by the arrow PkFI - Pg?I given by the unique morphism 0 — k in FI.

We also give a first example of a functor that acts in differently depending on the colours
associated with a morphism:

Example 2.3.3. Let Fgld : FI; - R-Mod be defined on objects by Fgld(n) =R for all n e FI,
and on an arrow (f,g) in FI;(n,m) by

FI 0 ifg ' (a)=+o,
G- { gy
In other words, FCIIId sends a morphism to zero if it uses the colour ¢; and to the identity else.
It defines a functor since the colour ¢; appears in the composition (f,g) o (f’,¢") if and only if
it appears in (f,g) or in (f’,¢’). One can note that for d = 1 this functor is equal to the sum
on ¢ € N of the atomic functors M; defined above since it sends every non-bijective morphism to
zero and all bijective morphism on the identity.
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Another interesting example is given by the tensor product on modules. We will see in
Example [5.1.12| that it belongs to a family of strong polynomial functors since the tensor power
is a usual polynomial functor over modules.

Example 2.3.4. For k € N an integer, let Tlgd) be the FI;-module defined on objects by
T (n) = (KM,

and on a morphism (f,g) € FI;(n,m) by the arrow (K™)®* — (K™)®* induced by the map that
injects K" into K" along f. For d =1 we get that Tk(l) is the composition of F': FI - K-Vect
which sends n to K", with T}, : K-Vect - K-Vect which sends V to V®. Since the functor is
defined on injections independently of the colour, we also have the composition Tlgd) =T, ,51) 00 =

O*(Tk(l) ), where O is the forgetful functor of Definition m

2.4 Simple FI;-modules

We give a description of the simple objects of the category FI;-Mod using the fact that FI; is
an El-category. The El-categories and their representations have been introduced among others
by Dieck (in [Die87]) in the context of algebraic K-theory and have been studied more recently
by Li (in [Lil4]), in particular their Koszul property.

Remark 2.4.1. The representation theory of the symmetric groups is well known. A brief
summary of the results used in the context of twisted commutative algebras and FI-modules can
be found in [SS12]. In particular, over a field of characteristic zero, the irreducible representations
of the symmetric group S, are indexed by the partitions A of n. The irreducible representation
associated to A, denoted by M?, is often defined as the ideal of the ring K[S,,] generated by an
idempotent element associated to the partition A called the Young symmetrizer. For example,
the representation associated with the partition A = (n) is the trivial representation, the one
associated with A = (1) is the sign representation, and the one associated with A = (n—-1,1) is
the standard representation.

Definition 2.4.2. An El-category is a category in which every endomorphism is an isomorphism.

The category FI; is an El-category. Indeed, by definition for n € N we have
Fl;(n,n)={(f:non,g:in-n->C)}={(ceS,,0->C) }=8S,.

Recall that the simple elements of a category of functors Fct(C,R-Mod) are the functors F
which do not have non-zero proper subfunctors. When the source category C is an El-category
as it is the case here, the simple objects of Fet(C,R-Mod) can be described as follows:

Proposition 2.4.3. For K a field of characteristic zero, the simple objects of the category
Fct(FI;, K - Vect) are the twisted atomic functors (M), that sends an object n € FI; to M™ if
n =k and to zero else, for M € K - Vect the irreducible representation of Sy associated with a
partition A of k.

Proof. First, if a functor F': FI; - K-Vect is non-zero, there exists k € FI; such that F(k) # 0.
Then the twisted atomic functor F(k); defined in Section is a subfunctor of F which is
not zero. If F' is not equal to this twisted atomic functor F'(k)g, it then admits a proper
subfunctor and so it is not simple. Since the category F1; is an El-category, we conclude that
a simple element of Fect(FI;, K-Vect) is a twisted atomic functor Mj for some k € N and
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some M € R-Mod. Such a functor is given by the vector space M and by the action of the
endomorphisms corresponding to the symmetric group Si. Then the twisted atomic functor My
is a linear representation of Sy and it is simple as an object of FI;-Mod if and only if it is
irreducible as a representation. O

Remark 2.4.4. The proof of Proposition remains valid for a general commutative ring R,
even if there is no classification of the irreducible representations of S,, on R-modules. Then
the simple objects of the category Fet(FI;, R-Mod) are the twisted atomic functors (M )y, for
M € R-Mod a simple representation of Sg.

2.5 The category FI,

In this section we explain that a functor on FI; is completely determined by the image of the
morphisms starting from 0 if they are sent to isomorphisms. This property will be used in
the following chapters, in particular to describe the polynomial functors of degree 0 on FI,
in Section To prove it we introduce a subcategory FIy of FI; which contains only the
morphisms starting from 0 and the symmetric groups. Then we show that, under the condition
of sending these morphisms to isomorphisms, the functors on FI; correspond to the functors on
FI1,;. First we explain that, under this hypothesis, the order of the colours is not important to
define a FI;-module.

Proposition 2.5.1. For F: F1; - R-Mod, if there ezxist an object k € F1; and a colour ce C
such that F(c*) is an isomorphism, then

e For all permutations o € Sy, the morphism F (o) is the identity,

o For all k-tuples of colours cj,,...,cj, € C we have the following identity:

F( (le,. .. 7Cjk) ) = F( (Cja(l)"" 7Cja(k)) )
Proof. By definition, the two morphisms ¢* and o o ¢¥ are equal in FI;, which give the identity
F(0)oF(c¥) = F(c*). Since F(c*) is an isomorphism by hypothesis, we get the first point. The
second point is a consequence using the identity

F(J)oF( (Cjis--Cj) ) :F( (cjo-(l)""’cjo(k)) )
O]

We now define the subcategory F1; of FI; and we emphasize that a functor ' on FI; induces
canonically a functor F on Flg by restriction.

Definition 2.5.2. The category FI is the subcategory of FI; with the same objects (finite sets)
and whose morphisms are given by

FI;(0,m) ifn=0
FIg(n,m) =4 {Sm} ifn=m
1% else .

The following lemma and proposition explain that, if a functor F' sends the morphisms
starting from zero to isomorphisms, then it can be re-constructed from its induced functor F :
FI; -~ R-Mod. Morally this states that such a FIz-module is completely determined by its
image on the morphisms starting from 0.
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Lemma 2.5.3. Let F' be a FI;-module, if F(x) is an isomorphism for all k € FI; and all
x € FI4(0,k) then, for each u € Fly(n,m), the morphism F(u) is obtained from F by the
formula:

F(u)=F(v) o (E(c))7,

where v =wo cf € FI5(0,m). Moreover, the only relations between the images of morphisms in

FI,; by F are the one from Proposition (2.5.1)

Proof. For u € FI;(n,n+m) a morphism in FI; and ¢} € F1;(0,n) we have uoc} € FI;(0,n+m).
By hypothesis, F'(c}') and F'(uoc}) are isomorphisms, so the relation F'(u)o F(c}') = F(uocl) =
F(v) implies the identity

F(u)=F(v) o (F(c})) " =E(w) o (E(c})) ™.

By Proposition we get ['(0) = Id and so F(0) = Id. Then, for z,y € FI4(0,k) we have
F(x) = F(y) when there exist o € Sy, such that y = 0 ox. This gives the conclusion since the only
possible compositions in FI; are of the form y = o oz with z € FI4(0,%) and y € FI4(0,k) and
o € Sk O

Proposition 2.5.4. Let F : FI; - R-Mod be a functor such that the image of all morphisms
in Flg is an isomorphism. This functor can be extended in a unique way in a functor F from
F1; to R-Mod.

Proof. By hypothesis, F(z) is an isomorphism for all & € FI; and all x € FI;(0,k). Then we
can define a functor F € Fct(FI;, R-Mod) by the formula of Lemma and by the relations
necessary to have a functor. This same lemma proves that F' is an extension of F. O

2.6 Some endofunctors of FI;-modules

In this section we define some endofunctors of Fct( FI;, R-Mod ) which will be used throughout
this manuscript, for example to define strong polynomial functors in Section or to construct
subcategories of Fct(FI;, R-Mod) in Chapter [ These definitions are inspired by [DV19,
Section 2| concerning functors over a symmetric monoidal category where the unit is an initial
object. As said in Section [2.1] this is not the case for FI; so these definitions are adapted for FI4-
modules. We present here the definitions of these endofunctors and the first general properties
about them.

Definition 2.6.1. For k € F1,, the endofunctor
71 : Fet(FI;, R-Mod ) — Fct(FI;, R-Mod)

is defined by 7% (F') = F((-) + k). This means that 7 (F) sends an object n to F(n+k) and a
morphism (f,g) to F((f,g)+1dy). For x € F1;(0, k), the natural transformation

ip : Id - 7
is defined on a functor F € Fet(FI;, R-Mod) by if(F) = F(1d_y+z): F(-) > F((-) +k).

The main difference with FI-modules is that for FI; there is one natural transformation ¢}
for each morphism x € FI;(0, k), while for FI there is only one natural transformation i for k
fixed. For example, when k = 1 we have FI;(0,1) 2 C and so there are d natural transformations
i, one for each ce C.
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Definition 2.6.2. For k € FI; and x € FI4(0,k), the endofunctor xj is the kernel of i}, and 6}
is its cokernel. Finally, the endofunctor x is the sum

— x
k=YY K
kEFId IEGFId(O,k)

For k =1, the endofunctor 67 is called the c-coloured differential endofunctor.

Remark 2.6.3. The endofunctors 7 and §; appears under different names in different contexts:
in Joyal’s work for functors over the category of finite sets and bijections (see [Joy86]), in [Kuh94]
for functors from Fy-vector spaces to F,-vector spaces, in the representation stability theory (see
[CEF15, [CEFN14] [CE1T, [CMNRIS]), in the definition of polynomial functors in [RWW17|, in
the theory of twisted commutative algebras (see [SS12) [SS16]) or in the work of Ramos (see
[Ram17b, LR18]). Palmer introduced variations of these endofunctors in [Pall7] for functor
over a category with stabilisers which encodes the existence of natural transformations like the
transformations .

Similarly than above, for d = 1 there are unique endofunctors J] and x{ for the only colour
c € C, which are denoted by 01 and k1, and respectively called the differential and evanescent
endofunctors in [DV19]. These endofunctors are used to construct both strong and weak polyno-
mial functors over FI. We will use all the endofunctors i and j, for k € FI; and z € F1;(0,k)
to define the polynomial functors over FI1;. These endofunctors are arranged in a very important
exact sequence:

Lemma 2.6.4. By definition for k € F1; and x € F1;(0,k) there is an exact sequence of endo-
functors

0 > KY > Id — 7, > OF > 0 (I)

It is important to note that, on FI; there are formulas that associate 75, with iterations of
71 and ¢y with iterations of i{ which are presented in the following proposition, but there is no
such formula for 6 or . In particular, ¢ is not the composition of k endofunctors 47.

Proposition 2.6.5. For k € Fl; and x = (c1,...,¢cx) € FIz(0,k), there are identities 1, =
Tio--o1 and if = 71 (17%) o ... o 71 (if?) o ii'. However, for d > 1 and k > 2, there is no
similar isomorphism for 67 or K, i.e. we do not always have 87 = 6% o---087" or ki, = k¥ o-- 0K .

Proof. Since F1 is the skeleton of the category of finite sets and coloured injections, 7y is strictly
equal to the composition 71 o --- o7 of 7 with itself £ times. The relation for ¢; also follows
from the definitions of 73, and 7. We give a counterexample to prove that there is no similar
relation for 67 and «{ if d > 1: Let F = FE' : FI; > R-Mod be the functor of Example [2.3.3]
we then compute that 67 (F) = 7 (F), 67*(F) = 0 and (5501’02)(}7) = 79(F"). This proves that
552 0 6S1(F) = 652 (71(F)) = 62(F) = 0 and 65 0 62(F) = 651(0) = 0, while 67 (F) = 75(F) is
not zero. Similarly we have k7' (F') = F and x{*(F') = 0 which gives x{?or{* (F) = k7' ok *(F') = 0,
while £\ (F) = F. O

Before using these endofunctors to define the polynomial functors in the following chapters,
we give some of their basic properties which will be used several times. For d = 1 we recover
most of [DV19, Proposition 2.4].

Proposition 2.6.6. For k,l € F1;, x € FI1;(0,k) and y € F1;(0,1) we have:
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0) For every short exact sequence 0 >~ F - G - H - 0 in Fct(FI;, R-Mod) there is an ex-
act sequence 0 — K{(F) — w{(G) — w{(H) — (F) — 03(G) — 07(H) — 0.

1) The endofunctors 1, and 7, commute up to a natural isomorphism. They also commute
with limits and colimits.

2) The endofunctors & and 5ly commute up to a natural isomorphism. They also commute
with colimils.

8) The endofunctors xj, and KZ? commute up to a natural isomorphism. They also commute
with limits.

4) The inclusion (k7)o (k}) = (k7) gives a natural isomorphism (k%)* = (k¥).
5) The endofunctors 7, and 6} commute up to a natural isomorphism.

6) The endofunctors 7, and K}, commute up to a natural isomorphism.

7) There is a natural ezact sequence

0 >/—£;’ >/@i:iy > T O Ky, >5ly >5,f:ly > 100 — 0.

8) The family of subobjects
(#x(F) )keFId,xeFId(O,k)

of F forms a filtered set for the inclusion.
9) The endofunctor k is left exact.

Proof. 0) The endofunctor 7 is exact by definition so the following diagram has exact rows

0 s > G s H > 0

|z | Jan

0 — (F) — (G) — m(H) —— 0
It commutes by naturality of 7, and the snake lemma gives the result.

1) Since FI; is the skeleton of the category of finite sets and coloured injections, we the
relation 6 : k+1 =1+ k in FI;. Then we get 7, o7} = Tpyy = Tiak = 71 © T;, where the
middle equality is given by the natural transformation sending F' : FI; - R-Mod to
F(Idy+p) : F'(-=) = F((=) + k +1). Moreover the endofunctors 7 and 7; behave well with
respect to the universal property of limits and colimits of functors, so they commute with both.

5,6) Applying the exact functor 7; to the exact sequence from Lemma on one
side, and pre-composing it with 7; on the other side, we get the following diagram with exact

TOWS
iy 0Ty

O—>/<;i07'l—>n—>k TRoT — dporp —— 0

I I
X idl LB Y

O—>Tloﬁi—>TlW>TlOTk—>TlO5z—>0
1®k
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By definition of 3 it commutes in the middle. Using the universal property of kernels for x, and
of cokernels for d;, we get the existence of the two dashed morphisms. They are isomorphisms
by the five lemma since § is an isomorphism.

2) We again use the exact sequence (I) with [ and y but this time we extract the short
exact sequence

¥ |Ker(s)
0 — Ker(s) —> 7 —— &/ > 0

from it, where Ker(s) is a subfunctor of the identity. Applying the right exact (by point 0)
functor 7 to it on one side, and pre-compose it with 07 on the other side, we get another
diagram with exact rows

6k o7 ‘Kcr(s)

0% o Ker(s) 6f oy ——— dfod) —— 0

| | |

0 —— Ker(s) o6} ﬁ) 100 ———— 0] 0df —— 0
b IKer(s) 2%
since Ker(s) is a subfunctor of the identity. It commutes in the middle by construction of 7 as
B passing to the quotient and because Ker(s) is a subfunctor of the identity. Then the universal
property of the cokernel induces the existence of the dashed arrow and it is an isomorphism by
the five lemma.

3) It is analogous to the point 2)
4) We again use the exact sequence by pre-composing it with the endofunctor i and

by applying the exact endofunctor 75 to it. We get the following diagram with exact rows and
columns:

0 0
T x NP4 iio;{i\ T 5% T
jv 7 ()
€T 3 h X
0 rRp 7 > > O > 0
Tk Tk © Tk

It commutes in the middle since the transformation ¢; is natural between id and 75. Since the
second row is exact we have 75,(j) o (if o k¥ ) =i} 0 j = 0 but 74(j) is a monomorphism since 7, is
exact, which implies that if ok} = 0. By exactness it means that the inclusion (s7)o (k7)) = (k%)
is an isomorphism.

7) Recall (see [MLI8| p.208) that for two composable morphisms v : a - b and v : b - ¢
there always exists an exact sequence

0 — Ker(u) - Ker(v o u) - Ker(v) — Coker(u) - Coker(v o u) - Coker(v) — 0.

We use this property for u = z? :Id > 7 and v = 7 (if) : 71 - 7 07, The endofunctor 7
commutes with kernels and cokernels as they are limits and colimits, so the result follows from
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the identity

vous= (7 (if))oil = (if +idy ) oif = i)

8) From point 7) we have an inclusion £} < &,/ and by symmetry we also have kf < r, 7.

9) By the point 8), the colimit x is a growing filtered colimit so it is exact since R-Mod is a
Grothendieck category (Definition [1.3.1). Knowing that each f is left exact by the point 0),
this implies that their colimit « is also left exact.

O

Unlike what the last proposition suggest, we warn the reader that these endofunctors do not
all commute together. In particular, the endofunctors 6; and m? do not commute, as explained
in the following.

Remark 2.6.7. For k,l € FI; and = € FI;(0,k), y € FI4(0,1), the endofunctors ] and 0} of
Fct(FI;,R-Mod) do not commute in general, even for d = 1. We give there a counterexample
for k=I1l=1and x =ce C: for M e R-Mod, let M : FI; - R-Mod be the functor defined in
Section [2.3] as a subfunctor of the constant functor. As explained later in Example [5.1.7, we can
compute that 71(Ms) = Msg—1 and that, for any colour ¢, kK{(Ms) = 0 and 0{(Msy) = M1,
where Mj,_; is the atomic functor of rank k£ — 1. This implies that «{ o 0{(Msy) is the atomic
functor of rank k -1, while 67 o k§ (M) is zero.

2.7 The forgetful and colouring functors

In this section we study the link between the FI;-modules and the FI-modules. In particular, we
present some properties of the forgetful functor O : FI; - FI from Definition 2.1.6] and a family
of right-adjoints A. : FI - FI; for ¢ € C called the colouring functors. We start this section
by showing that the endofunctors of the previous section (Definition behave well with the
precomposition by the forgetful functor.

Proposition 2.7.1. For all objects k € F1; and all morphism x € F14(0,k) there are natural
isomorphisms :

i) O%orp = 100"
it) O odp = 0700" .
ii) O%oryp = KLoO~

Proof. For F € Fct(FI,R-Mod), using the fact that the forgetful functor O is monoidal together
with the relations O(k) = k and O(Id) = Id, we have

O orp(F)=F(-+k)oO=F(O(-)+k)=F(O(-+k)) =1(Fo Q) =10 O*(F).
Moreover, for a natural transformation o € Fct(FIy, R-Mod)(F,G), we also have:
0% o1y(0) = O™ (0-+k) = 00(-)1k = 00(-+k) = Tk(T0(-)) = Tk © O (0).

This shows that there is an equality O* o 7, = 7, 0 O*. By pre-composing the exact sequence of
endofunctors of FI; (I) from Lemma by the functor O* we get the exact sequence

iToO*
0 —— Ko O" y OF u > 70 OF —— 07 00" —— 0 .
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By the definition of precomposition on natural transformations, we have for any functor F ¢
Fct(FI,R-Mod):

if o O (F) =if(Fo0)=FoO(id+z) = F(id+(0 > k) ) = i) (F).

Next we use the same exact sequence , but for FI = FI;, and we apply the exact functor O*
to it, which gives the exact sequence

O* (i) =ik

0 —— O*ory » OF > O orp(F) —— O o dp(F) —— 0 .

Applying the precomposition functor O* to the natural transformation iy, we have for any functor
F e Fct(FI,R-Mod):

O*(i)(F) = F(ido(-y +(0 > k) ) = F(iid(_y +(0 > k) ) = i (F).
We then have the following diagram with exact rows:

0 —— O%oky > O O<ik):ik>0*om—>0*05k—>0

| |
I
|
hd

I
0 —— Ko O > O > 7o OF —— 0y 0 OF —— 0.

I
igoO =iy,

hd

It commutes in the middle since i 0 O* =iy, = O*(iy,), so the two dashed arrows exist by universal
properties and they are isomorphisms by the five lemma. O

We now define a collection of functors from Fct(FI;, R-Mod) to Fct(FI,R-Mod) called
the colouring functors. These functors add a colour on the morphisms in FI to get morphisms
in FI; and, by precomposition they allow us to consider a FI;-module as a FI-module. We will
use this to describe the functors that are stably zero along colours in a concrete way in Section
6.2

Definition 2.7.2. For ¢ € C' = FI1;(0,1), the c-colouring functor A, : FI - FI; is the functor
given by the identity on objects and on a morphism f € FI(n,m) by

Af)=(f:nom, m~Im(f) > {c} >C).

Let A : Fct(FI;,R-Mod) — Fct(FI,R-Mod) denote the precomposition functor defined
by AX(F) = Fo A, for all functors F' € Fct(FI;,R-Mod) and by A.(0) = o for all natural
transformations o : F' - GG, where o on the right is seen as a natural transformation between

FoA.and Go A..

The functor A, is monoidal since adding the colour ¢ on the arrows does not affect the
monoidal structure. By definition we also get A.(0 - 1) = (0 - 1,¢) = ¢ € FI4(0,1) and
Ac(ig) = iik, where 7, : Id - 7, and zik : Id — 7, are the natural transformations of Definition
for FI and FI; respectively. Finally, the c-colouring functors are right-inverses of the
forgetful functor O : FI; - FI as explained in the following.

Proposition 2.7.3. For all colours c € C we have the identities:
Oo Ac = IdFI and AZ o O* = Icht(FI)>

where O is the forgetful functor of Definition [2.1.6]
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Proof. Following the definitions of O and A, it is a direct calculus. O

*

>, in particular

We now give some properties of the precomposition by colouring functors A
we describe how they behave with endofunctors 7, 0 and ky.

Proposition 2.7.4. For k e F1; and c € C there are natural isomorphisms:

i) TRroAl = Aoy
i) OpoAr = Alodp .
i) KrpoAL = Al okj

Proof. For F € Fct(FI;, R-Mod), the first isomorphism can be checked by hand: since A, is
monoidal, we have the following identity

ko AL(F)=FoA.(-+k)= F(AC(—) + k:) =F(-+k)o A=) =mk(F)oAc(-) = AL o1 (F).

This isomorphism is natural by definition of the precomposition functors on natural transforma-
tions. For the other isomorphisms we take the exact sequence (I) from Lemma for k e F1,
and z = ¢* € FI4(0, k) and we apply the exact functor A7 to it. It gives the exact sequence

ax(res)
—_—

0 —— Aokt (F) — AX(F) — A o7p(F) — A¥ o6 (F) — 0
and by definition of precomposition functor on natural transformations we have A*( F(zzk)) =

F(zik) Next we use the exact sequence H again, but for FI = FI;, and we precompose it with
the functor A2 (F'). This gives the exact sequence

AZ(F) (ir)

0 —— kpo AX(F) —— AX(F) To AX(F) — 68 0 AX(F) —— 0

and by definition we have A (F') (i) = FoA.(ix) = F(zzk) We then have the following diagram
with exact rows:

F(ic"
0 —— Afokt (F) — AX(F) P A% o my(F) — Al o5 (F) — 0

| |

I I

| |
v .k ~

0 — kg0 AX(F) —— AX(F) “9 1 o A(F) —— 63 0 AX(F) —— 0.

It commutes in the middle by the previous point, so the two dashed arrows exist by universal
properties and they are isomorphisms by the five lemma. O



Chapter 3

Homology of Sink configuration spaces
of graphs

There are many concrete FI-modules that occur in different contexts. Numerous examples are
presented in [CF13|. One interesting example, for a regular manifold M, is the cohomology of
the configuration spaces of M, which is fully detailed in [Sam20, Will8al, (Will9] and [CF13].
When M is open, there are a structure of FI-module and FI°’-module which are compatible
(the first one is given by adding points at infinity on the boundary). This gives a structure
of FI#-modules, where FI# is the category of finite sets and partial injections presented
in [Wili8a, MW19, MW20|, which is equivalent to the category Cospan(FI) from [DV19]
presented in Chapter [0} Even if there is an extensive literature on the cohomology of the
configuration spaces of a manifold, these groups essentially have been studied globally and are
known explicitly only in a few cases. The stability theorem from [CEF15] states that, for a
non-compact manifold, these FI-modules are finitely generated, which can be interpreted in
terms of polynomial functor since being finitely generated is almost equivalent to being strong
polynomial for FI-modules as we will see in Section

These results about the FI-module H’ (Conf(,) (M) ) R) are proved for a manifold M of
dimension at least two in order to ensure that the configuration spaces are connected and that
the points can move around each other. But for a manifold of dimension 1, like a graph, there
is not enough space and the points block each other in the configuration spaces, so the same
approach is no longer valid. Therefore, Ramos introduced in [Ram19] the homology of a kind of
modified configuration spaces of graphs, called the sink configuration spaces, in which we take n
(ordered) points on the graph as for the classical ones but in which they can either be distinct two
by two or they can overlap at a vertex of the graph but not within an edge. Then, the d vertices
of the graph correspond to the d colours of FI; which gives the structure of a FIz;-module when
we take the homology of these topological spaces. This gives an interesting family of examples
of FI;-modules. Ramos proved in [Raml9| that these FI;-modules are finitely generated for
every homological degree and every connected graph. In Proposition we give an explicit
description of these functors for the linear graphs and we show that they are either twisted atomic
or constant functors.

3.1 Cohomology of classical configuration spaces as FI-modules

We start by presenting the FI-module H* (Confy;(-),R) of the i-th cohomology of the config-
uration spaces of a manifold M. We give a concrete example of how it acts on maps and we
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summarize the results about this FI-module.

Definition 3.1.1. For M a manifold the n-strand configuration space of M is the topological
space
Conf, (M) = {(l‘l,...,l’n) eM"|V1<i+j<n,ax; ;ta:j},

where the topology is induced from M™.

In explicit words, we take n (ordered) points on the manifold distinct two by two. These
configuration spaces, presented among many others in [CF13, [CEF15, MW20l, [CF13| naturally
give a functor from FI°? to Top as explained in the following.

Definition 3.1.2. The contravariant functor Conf_(M) : FI°? — Top sends an object n € FI
to the topological space Conf, (M) and a map f € FI(n,m) to the map that sends (z1,...,2m)

t0 (Y15, Yn) = (Tf1)s -5 Tp(n))-

For example, if M is the torus and f the injection (0 - 1) +Idy € FI(2,3) which sends 1 to
2 and 2 to 3, it gives an map like the following one:

We can then take the cohomology of these topological spaces, which is contravariant, and
with the induced maps in cohomology, this gives a FI-module H* (Conf(_) (M) ,R).

Theorem 3.1.3. ForieN, if M is a connected oriented manifold of dimension at least 2 with
dimg(H*(M,Q)) > oo, then the FI-module H (Conf(_) (M) ,Q) 1s finitely generated.

Proof. Tt was proved by Church, Ellenberg and Farb in [CEF15, Theorem 6.2.1] . O]

For example, the hypothesis dimg H*(M,Q)) < oo is satisfied is M is compact. This result
is illustrated on a concrete example in [Will9, Section 3.1]. More than that, there is a stronger
result of polynomiality, which can be interpreted with Definitions and of strong and
weak polynomial FI-modules (already present in [DV19] for FI-modules). More precise bound-
aries are given in [MW20)] since the generation degree corresponds to the strong degree and the
presentation degree precise how to the weak and strong degrees are linked.

Theorem 3.1.4. For i € N, if M is a connected manifold of dimension at least 2, then the
FI-module H* (Conf(_) (M) ,R) 18 strong and weak polynomial of degree less than or equal to 2i.

Proof. Tt is proved in [CEF15, Theorem 1.8] for field of characteristic 0, and in [CMNRIS|
Application A] in general. O

Remark 3.1.5. An additional similar construction can be done if M is a non-compact manifold
of dimension at least 2, as explained in [Will8a)] and [Will9], by sending the injection Id,, +(0 —
1) :n <> n+1 to a map that adds a new point "at infinity" on the boundary of the rescaled
manifold. When dim(M) > 2, these maps define a functor over FI up to homotopy, where
the symmetric group S,, permutes the n points of the n-th configuration space. It has been
proven in [CEF15, Theorem 6.4.3] and [MW19, Theorem 3.12] that these FI-modules are finitely
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generated with better bounds than for the compact case which can be interpreted in terms of
polynomial functor since being finitely generated is almost equivalent to being strong polynomial
for FI-modules (see Section . The proof uses a vanishing result about the spectral sequence
associated with the semi-simplicial space called the arc resolution. These arcs connect the points
of the configuration space to the boundary of the manifold and are defined when the dimension
of M is at least 2. For an open manifold, the structure of FI-module and FI°’-module are
compatible, giving a structure of FI#-modules, where FI# is the category of finite sets and
partial injections (see in [Will8al, MW19, MW20]) and is equivalent to the category Cospan(FI)
from [DV19]. The theorem of [CEF15] which states that these FI-modules are finitely generated
can be interpreted as follows: if the homological degree is small enough relative to the number
of points, the homology of the configuration spaces is spanned by the classes corresponding to
the configuration spaces were at least one point is isolated near infinity (i.e. near the boundary
of the manifold). This was generalized for open manifolds in [MW19] where they showed that,
after some point, the homology of the configuration spaces is spanned by the classes were at least
one point is stationary at infinity or two points are orbiting around each other near infinity.

Remark 3.1.6. Other interesting examples of finitely generated FI-module are given by the
cohomology of the pure string motion groups in [Will2] and the pure braid groups in [Will8a.
The pure braid groups are equivalent to the fundamental group of the configuration spaces of C,
which gives another proof using the finiteness result about the configuration space.

3.2 Homology of a generalized configuration space of graphs as
FI,-modules

The results of the previous section are obtained for a manifold of dimension at least two but for
a manifold of dimension 1, like a graph, the same method does not work since the points block
each other in the configuration space. For example, as explained in [Will9| and [Ram19], if G is
the linear graph with only one edge then the configuration space is homotopy equivalent to n!
disjoints points, while it is always connected when M has higher dimension. In this section we
present a variation of this, which makes a FI;-module for graphs by using the homology of some
kind of modified configuration spaces introduced by Ramos in [Ram19|. This gives an interesting
non-trivial example of FI;-module since, before that, all the FI;-modules in the literature were
either free or obtained from FI-modules via the forgetful functor. In this section we calculate
and give an explicit description of these functors for the linear graphs. We show that they are
either twisted atomic or constant functors and we then recover for these examples that these
FI;modules are finitely generated as proved in [Ram19].

Definition 3.2.1. Let G be a graph with d vertices labeled by [d] = {1,...,d}, the n-strand sink
configuration space of G is given by

Conf5ink (G, [d]) ={(21,...., ) e G*|V1<i#j<n, z;#x; or z; =x;€[d]}.

In explicit words, as for the classical configuration spaces we take n (ordered) points on the
graph, but in these sink configuration spaces they can either be distinct two by two, or they can
overlap at a vertex of the graph but not within an edge. These configuration spaces naturally
give a functor from FI; to Top, as explained in the following, since the d vertices of the graph
will correspond to the d colours of F1,.
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Definition 3.2.2. The covariant functor Conf*™%(@G, [d]) : FI; - Top sends an object n € FI;
to the topological space ConfSk (G, [d]) and a map (f,g) € FIz(n,m) to the map that sends
('Tla s wmn) to (yla s 7ym) with

o { Tp-1(5) if j € Im(f)
i = g(j)e[d] else.

For the rest of this section, let G; be the linear graph on d vertices:

For d = 3, we give an example of an map (z1,...,2,) = (y1,...,ym) from Definition for
Gs and the injection c¢; + Idy € FI3(2,3) (which sends 1 to 2, 2 to 3 and colours the element 1
with ¢1):

1 2 3 1 2 3
— X)X _— K —Xe—Xe
T2 1 Y1 Y3 Y2

We can then consider the homology H; (Conf(si%k (G, [d]) ,Q) of these topological spaces
and, together with the induced maps in homology, this gives an FI;-module. We consider the
rational homology since it is the main framework studied by Ramos due to its connection with the
representation stability. It also allows us to do concrete computations and to use the classification
of the irreducible representations of the symmetric groups recalled in Remark However,
most of the following remains true for the homology over a general commutative ring R.

Theorem 3.2.3. ForieN and G a connected graph, the FI1z-module H; (Conf(sfr)‘k (G, [d]) ,Q)
is finitely generated.

Proof. 1t was proved by Ramos in [Ram19, Theorem 4.1]. O

Remark 3.2.4. The case i = 0 is simple to describe. Indeed, if G is connected then the space
Conf(sin)k (G, [d]) is connected and so Hy (Conf(sin)k (G, [d]) ,Q) is the constant functor Q. For a
general graph G, the same argument applies to the connected components of G which implies
that Hy (Confﬁf“k (G, [d]) ,Q) ~ Q™ where ¢ is the number of connected components.

In the end of this section, we give an explicit description of this FI;-module for the linear
graphs Gy. To do this we first describe the space Conf5"k (Ga,[2]) for d =2, then we deduce the
general case before computing the homology in Proposition

Proposition 3.2.5. Forn € N*, the space C’onfnsmk (gg, [2]) s homotopy equivalent to the sphere
S" 1 ifn>2, and to a point if n = 1.

Proof. There is an embedding of Gy in the subspace [-1,1] of R. This embedding sends
Confsink (G2,[2]) to a subset of the hypercube Cp = [-1,1]" = {X ¢ R"| || X [o< 1}. We

denote by I the image of ConfSink (G2,[2]) by this embedding. We then have the following
description

I=Co~ {(21,...,2) € [-1,1]"| 31 <i # j <n such that - 1<z =x; <1}
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The last inequalities are strict since the points in Confflink (9’2, [2]) can overlap at a vertex, so
the boundary 0C,, of the cube C, is in I. We show now that 0C, is a deformation retract of I.
Indeed, the center of the hypercube 0 € R" is not in I so we can define the central retraction (see
figure [3.1] for n = 2)

F: Ix[0,1] - 0C,

(X,t) = X+ (10X

Then we can check that F(X,t) is a deformation retraction. Finally, the boundary of the
hypercube 0C,, is homotopy equivalent to the sphere S™! which gives the result if n > 2. The
case n =1 is clear. O

(-1,1) / (1,1) (-1,1) (1,1)

|
|

A

(-1,-1) 7/ (1,-1)  (-1,-1) (1,-1)

Figure 3.1: The space Confgsmk (G, [2]) is homotopy equivalent to the sphere S?.

We now give a similar argument to prove that the space ConfSink (Ga, [d]) for a general d is
a bouquet of spheres 8”1

Proposition 3.2.6. Forn € N* and Gy the linear graph on d vertices, the space Confji"k (gd, [d])
is homotopy equivalent to the bouquet of N(d,n) spheres S %, where

[ @-n)r = ("Nl ifden+l
N(d’”)‘{ (d-1) if d<n.

Proof. We use the same argument than in the proof of Proposition [3.2.5] but with an embedding
of Conf®ink (Qd, [d]) in a big hypercube C, c R" given by the embedding of G in the subspace
[0,d - 1] of R. This big hypercube is composed of (d — 1)" small hypercubes [i1 — 1,i1] x -+ x
[in — 1,iy] for 1 <iy,...,4, <d-1. Each small hypercube corresponds to a possible choice of n
edges among the d -1 in G since (z1,...,z,) € Conf5i"k (Ga, [d]) is in [iy = 1,41] x -+ x [in = 1,4p]
if and only if x; is in the i;-th edge, x5 is in the 72-th edge, ..., z, is in the i,-th edge. If we
represent a small hypercube by its center, there are two possibilities:

o Either the center has two equal coordinates, and then the center do not belong to
Conf®ink (Ga, [d]). Since two points are on the same edge, we can use the central retraction
as in the proof of Proposition to show that the subspace of Confsink (gd, [d]) included
in this hypercube admits the boundary of the small hypercube as a deformation retract.

o Either the center does not have two equal coordinates, and then the whole hypercube is
in Conf®ink (Ga, [d]) since all the points are on different edges. In this case the subspace
of Confsink (gd, [d]) corresponding to this hypercube is contractible (it corresponds to the
grey squares on the figure [3.2)).
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The ﬁguregives an example of this process for n = 2, and d = 3. The space Conf®"k (Ga, [d]) is
then homotopy equivalent to a wedge of boundaries of hypercubes which are homotopy equivalent
to the sphere 8" '. The number of spheres in this wedge is given by the number of small
hypercubes such that their center has two equal coordinates. This is equal to the number of
total hypercubes (d — 1)" minus the number of choices of n different edges among the d - 1
possible, which is (d-1)(d-2)...(d-n) = (dgl)n! if n<d-1, and zero if n > d. O

12
12

Figure 3.2: The space Confsin (G, [3]) is homotopy equivalent to the wedge of two spheres S!.

Remark 3.2.7. The process in the proof of Proposition is similar to the discrete Morse
theory arguments used in [Ram19, Section 3.3]. Ramos proved in particular in the corollary 3.25
that, if (G,V, E) is a tree, then H; (Conf*™¥(G, V') ) is torsion free and depends only on 7,7 and
the number of edges |E| in G, and not on the structure of the graph. The proof of this result
is based on counting the number of "critical cells" that generates the homology group when
we view Conf,slink(G, V) as a CW complex. Then the small hypercubes whose center have two
equal coordinates in the proof of Proposition seems to correspond to the critical cells of the
discrete Morse theory, and the other small hypercubes corresponds to collapsible (or redundant)
cells. Moreover, the Theorem A in [Ram19] states that, if G is a tree, then ConfS™ (G, V) is
homotopy equivalent to a cubical complex and in the proof of [Raml19, Corollary 3.25], it is
shown that the group H; (ConfS™ (G, V)) is free on the number of critical cells, and so finitely
generated. This may indicate that the corresponding FI;-module has a quite simple description,
similar to Proposition if G is a tree.

Finally, using the description of the space ConfS" (Ga, [d]) from Proposition we can
compute its homology and describe the associated FI;-module.

Proposition 3.2.8. For i e N* and G4 the linear graph on d vertices, the FIz-module
H; ( Conf™* (G4, d]), Q)
1s a twisted atomic functor (QN(d’“l) )i+1 of rank i+ 1 defined in Section where

o[ @) (B! ifdzi2
N(d’”l)_{(d—n“l ' ifd<i+1.

For i =0, the FI;-module Hy ( Conf(sfgk (gd, [d]) ,Q ) is the constant functor Q.

Proof. By Proposition the space Conf5nk (gd, [d]) is homotopy equivalent to the bouquet of
N(d,n) spheres S"!. Since i > 0, we can use the reduced homology and we get the isomorphisms

N(d,n) B N(d,n) N(dn) _
H| V s”—1)=Hi( \/ s"—l); @ Hi(s").
k=1

k=1
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Since H; (S"‘l) is equal to Q if ¢ =n — 1 and zero else, this gives that

H; ( Confi™ (G4, [d]) Q)

1R

QN@HD if =41
0 else .

The case i = 0 is explained in Remark [3.2.4] Ul

Remark 3.2.9. In Proposition @I we describe the FIg-module H;( Conf(Si_n)k(gd, [d]),Q) on
objects but we do not give its values on morphisms for ¢ > 0. It is clear that all the non-bijective
morphisms in FI; are sent to the zero map by this functor since it is twisted atomic, however
there is a non-trivial action of the symmetric group S;.1 on @N(d’i“).

Remark 3.2.10. The proof of Proposition extends to homology over a general commutative
ring R, so the result remains true for the FI;-module H;( Conf(sfik(gd, [d]),Q).

Remark 3.2.11. Ramos also studied the classical unordered configuration spaces of graphs in
[Ram20]. He introduced a FI-module that sends n to the wedge of a fixed graph and n copies
of another fixed graph, and showed this has strong finiteness properties. In particular, this
generalizes the fact that homology of the unordered configuration space of a graph is finitely
generated.
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Twisted commutative algebras

In algebraic topology, the theory of twisted commutative algebras (TCAs) dates back to the
1950s. For example, Barratt defines in |[Bar78| a general twisted algebra and adds a condition
to be a twisted Lie algebra or a twisted commutative algebra. In this section we explain and
exploit the link between the FI;-modules and the theory of TCAs. Indeed, Sam and Snowden
showed in [SS12] [SS17| that there is an equivalence of categories between the modules over
Sym((K?)(M), the free TCA on d generators, and the FI;-modules. The modules over these
free TCAs have recently been studied in different contexts, such as in [SS12, [SS16] [SS19| or in
[GS10]. They focused on a family of quotient categories given by what they call the determinantal
ideals. The TCAs have been used in other contexts, for example, the modules over the TCA
Sym( Sym?(C*) ) are equivalent to the representations of the infinite orthogonal group. In a
first section we give some reminders about the different definitions and basic properties of the
TCAs. Then we construct explicitly two functors giving the equivalence stated by Sam and
Snowden. In a third part, we describe a natural action of the linear group GL(K?) on the
modules over the TCA Sym((K%)™) and in Proposition we make explicit the action of
GL(K?) on the FIzmodules induced by this action through the equivalence of categories. In
this chapter we assume that R =K is a field and, in order to use different equivalent definitions
of the TCAs, we assume that it is of characteristic zero in the first section.

4.1 A reminder about twisted commutative algebras

A twisted commutative algebra (TCA) is a monoid in an abstract category which is equivalent
to several concrete categories, thus there are different equivalent ways to define the TCAs. For
example, it can be defined as a functor from vector spaces to commutative rings, or a commutative
ring endowed with an action of the infinite linear group, or a graded algebra endowed with an
action of the symmetric groups. In each case there is an additional condition, called polynomiality
(in a different sense than the polynomial functors we study), which is added to form a TCA and
there is a corresponding notion of modules over a TCA. We choose to focus mainly on this last
definition, using the others from time to time when it is more relevant. The connection between
these definitions is given by the Schur-Weyl duality for a field of characteristic zero, so this is
the framework for this chapter. We start with a reminder on the definitions and the basic results
on the TCAs. We also introduce examples of TCAs, such as Sym((K%)(")), the free TCA on d
generators of degree one.

Definition 4.1.1. The category 3 has for objects the finite sets and for morphisms the bijections.
The composition of morphisms is the usual composition of bijections.
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We now construct a symmetric monoidal category with the functors over 3. First we intro-
duce the following tensor product on these functors, sometimes called the Day convolution as in
[MW19]:

Definition 4.1.2. The functor ® : Fet (2, K-Vect ) xFct (X, K-Vect ) - Fet (3, K-Vect )
is given on objects by

(FeG)(S)= @ FX)exG(Y),
Xuy=S

where the sum is taken on all the decompositions of S into a disjoint union of two sets X and Y.

The functor (F ® () is given on a morphism o : S - S by the induced map sending the factor
F(X)®G(Y) of (F®G)(S) to the factor F(o(X)) ® G(a(Y)).

Lemma 4.1.3. The category Fct(E, K-Vect) endowed with the functor ®, the functor Kg
which sends @ € X to K and everything else on 0, and with the natural symmetric structure T on
®, gies a symmetric monoidal category.

Proof. We refer to [SS12] Section 5.1] for a full proof. O

Remark 4.1.4. The category Fct ( 3, K-Vect ) admits another symmetric structure by intro-
ducing signs corresponding to the degree, but it has been shown in [SS12] Section 7.4] that both
symmetric categories are equivalent.

As for F1;, we consider the skeleton of the category X given by N, where n corresponds to
the class of the sets of cardinality n which is represented by the set n={1,...,n}. We now give
the definition of a TCA in the symmetric monoidal category Fct ( 3, K-Vect )

Definition 4.1.5. A twisted commutative algebra is a commutative monoid in the symmetric
monoidal category
(Fet (X, K-Vect ), ®,K’ 7).

In other words, a TCA is a functor A : 3 - K-Vect together with two laws v: A® A - A and
€: Ko - A such that v is associative, commutative and admits € as a unit.

Remark 4.1.6. For A : ¥ - K-Vect a TCA, by taking the sum of the vector spaces A(n)
for n € N we get an associative graded algebra with an action of S,, on the piece of degree n
compatible with the multiplication. Then the algebra

D A(n)

neN

is commutative, up to the "twist" which exchanges blocks, as explained in [SS12| or in [GS10].

Example 4.1.7. The first example, already presented in [Bar78| and in [GS10], is the functor
sending n € ¥ to K[S,,] on which S,, acts by conjugation, while the product is given by the
standard inclusion of S, xS, in Sym. This twisted algebra is commutative since the "twist"
which exchange the blocks S, xS,,, and S,, xS,, is given by the conjugation by the element of
Sn+m that exchange the n first integers with the last m.

Remark 4.1.8. The endofunctor 71 from Definition has an equivalent in the context of
TCAs. It is the Schur derivative, denoted by D, which is the adjoint of a shift on grading
functors. It was used by Joyal in [Joy86] and by Sam and Snowden in [SS12, Section 6.4] and
in [SS16, 5.4]. It should not be confused with the endofunctor § that we call differential. They
call it derivative because it verifies the Leibniz rule and a differential equation for the Hilbert
series they introduced. To generalize this endofunctor we define a family of endofunctors 7, for
k € N* while, in [SS12], they define a family Dy for A a partition to give adjoints of the shift
corresponding to the partition A.
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Remark 4.1.9. If K is a field of characteristic zero, we recall that the irreducible representations
of the symmetric groups are indexed by the partitions and that the Littlewood-Richardson rule
explains how the tensor product of two such representations is decomposed into irreducible
representations.

The Schur-Weyl duality (see [SS12, Section 1]) describes how the space (K")®* is decom-
posed into irreducible representations of S, xG L, (K), which are the product of the irreducible
representations of S, and GL,(K) associated with the same partition. This result is important
since it connects the representations of the symmetric and linear groups and gives a concrete
way to construct the irreducible representations of G L,,(K) from the representations of S,,. This
result is frequently used in the theory of TCAs, as in the following:

Lemma 4.1.10. For K a field of characteristic 0, the symmetric monoidal category
Fct(X, K- Vect) is equivalent to the following three other categories:

e The category Rep(S,) of infinite sequences of representations of symmetric groups endowed

with the Cauchy product (see Definition .

o The category Rep (GL) of polynomial representations of the group GL(K™), where K™ is
the vector space with the basis e1,es, ..., ey, ..., and where polynomial means a subquotient
of a direct sum of representations of the form (K*)®*.

e The full subcategory S of Fct(K -vect, K -Vect) of the functors which are isomorphic to
direct sums of the Schur functors ((=)®™ & M )5, with M a finite dimensional module on
the symmetric group S,.

Then, TCAs can then be defined as the monoids in any of those categories or even in an ab-
stract equivalent category. These different points of view, the equivalences between the categories
and the concrete description of the TCAs in these categories are presented in [SS12, [DES17|, and
with more details in [Fel20]. From the point of view in RepP°'(GL), frequently used by Sam and
Snowden, a TCA is a commutative, associative, unitary, K-algebra endowed with a compatible
polynomial action of GL(K*).

Remark 4.1.11. Note that the two notions of TCAs using the action of the symmetric groups
or the action of GL(K*) are equivalent in characteristic zero via the Schur-Weyl duality, but
give two different notions of TCAs in positive characteristic.

Remark 4.1.12. The different definitions of a TCA as a monoid in one of the equivalent cate-
gories of Lemma [£.1.10|1eads to another definition over the operad Com. In general, as explained
in [GS10], for any operad O one can define a twisted algebra over O as an O-algebra in the sym-
metric monoidal category Rep(S,). Explicitly, it is a graded algebra A = @ A(n) with an action
of S, on A(n) as in Remark [£.1.6] together with a map @ O,, ®s, A(n) > A(n) coming from the
maps O, ® A(i1) ® - ® A(ip) > A(i1 +---+1iy). To be a twisted algebra, we request in addition
that it satisfies the "twist" condition from Remark ET1.6l

We give right away the definition of a module over a TCA, which is simply a module over
the TCA viewed as a monoid in Fct ( 3, K-Vect ):

Definition 4.1.13. A module over the twisted commutative algebra (A,v,¢) is a module over
the monoid A in the symmetric monoidal category

Fct (X, K-Vect ), ®, K, 7).
(Fet( ) )
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In other words, a module over the twisted commutative algebra (A,v,¢) is a functor F': 3 —
K-Vect together with an map p: A® F' — F such that

po(ideu)=po(reid): A9 A® F - F.

Example 4.1.14. A simple family of examples of TCAs are the "polynomial TCAs" from [SS12]
(in a different sense than the polynomial functors) which are obtained by taking the symmetric
algebra of a space. The simplest of them is the symmetric algebra over the space K, denoted by
Sym((KH)M) which corresponds, in the category Fet(X,K-Vect), to the functor sending n to
K®" and, in the category of representations of GL(0), to the ring Sym(K*). Then we have the
symmetric algebras over the space K¢ for d > 1 which are the free TCAs generated in degree 1
denoted by Sym((K?)(1). They are the most studied ones (see for example [SST2, SS16, [SST9])
and are also called the multivariate TCAs.

While the full description of the "polynomial TCAs" in the different equivalent definitions
is given in [SS12| 8.2.3], we summarize now the important facts about them. For simplicity we
denote K¢ by V in the following.

Definition 4.1.15. The free twisted commutative algebra with d generators in degree 1 is the
functor Sym(V (D), which sends an object n of X to V®" and a morphism ¢ € (n,n) to the
map which permutes the tensor factors according to o~'. The multiplication map

Sym(V) @ Sym(V™) - Sym(v (V)
is the concatenation of the tensor products and the unit is given by Ko = Sym(V1))(0).

Remark 4.1.16. The notation "Sym" comes from the equivalent definition of the TCAs in
the category RepP®(GL) from Lemma in this category, the TCA Sym(V() is given
by the symmetric algebra Sym(V ® K* ) over the representation V ® K™ of GL(K*). As a
representation of GL(o0) it can be identified with the ring K[z; ;|1 < ¢ < d,1 < j], where z; ;
corresponds to the tensor product e;®¢; € VK™ for ey,...,e, a basis of V and e1,...,6p,... a
basis of K. For d = 1, the TCA Sym((K")(")) is then identified by Sam and Snowden in [SS16]
with the ring K[21,...,2p,...]. It may also be surprising that a o~! appears on the arrows
instead of a o in Definition [4.1.15 It follows from this equivalent definition, in which o permutes
the factors V®" according to o but, as we take the quotient by the action of the symmetric group
Sn, we can permute the factors back to get the image expressed in terms of the original factors.
This makes the o~! appear when we pass from this definition to the definition of TCAs in the
category Fct ( 3, K-Vect )

In [SS19], Sam and Snowden generalize their work for finitely generated Sym((K!)(M)-
modules of [SST6] to all Sym((K?)("))-modules. In particular, they introduce and describe
the spectrum and ideals of the TCA Sym((K%)™) and focus on a family of ideals called deter-
minantal ideals. The r-th determinantal ideal a,, introduced in [SS19] and in [SS12, 8.2.6],
is generated by all the (r + 1) x (7 + 1) minors of the matrix (x;;) with the identification
Sym(K?Y®K®) = K[z; ;|1 <i<d,1<j]. It also corresponds to the ideal A™*! (K%) ® A™*! (K*)
of the ring Sym(K?®K™) in its decomposition given by the Cauchy formula. They show in
[SS19, Theorem 3.3] that the spectrum of the TCA Sym((K%)()) (i.e. the set of all prime ideals
of Sym((K%4)(1))) is isomorphic to the total Grassmannian Gr(K?), which is the union of the
sets Gr(K?) of vector subspaces of K¢ of rank k for 0 < k < d.
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Remark 4.1.17. In [SS12| Sam and Snowden define the quotient of the category of modules
over a TCA by its full subcategory of modules locally annihilated by a power of a prime ideal
of the TCA. In [SSI9] they apply this construction to the TCA Sym((K%)(")) =: 4 and to the
determinantal ideals to define a filtration of subcategories of Sym(K?®K>)-modules: the rank
stratification

Mod g <o € Modg <1 € --- ¢ Mod g <q = Mod 4,

where the modules in Mod 4 <, are locally annihilated by a power of a,. They then define Mod 4,
as the quotient of Mod4 <, by Mod4 <,—1, which intuitively corresponds to the part of Modx
whose support is in Gr,(K%) within Gr(K?%). In particular, they compute the Grothendieck
group of Mod 4, which is free of rank (f) over the ring of symmetric functions. This construction
gives, through the equivalence of categories from [SS12] developed in Section a family of
quotients of FI;-Mod which would be interesting to compare with ours.

We focused on the free TCAs on d generators of degree one, which is the most fundamen-
tal example of TCA but there are other interesting examples given by a symmetric algebra
Sym( V') over a representation V of GL(K*). For example, for V = A2(K*) it gives the TCA
Sym( A?(K*)), or for V the space of symmetric bilinear forms over K (spanned by the elements
;= ejej for e, e, ... abasis of K*) this gives the TCA Sym( Sym?(K*) ) which is equivalent
to the algebra K[z; ;]. These two examples have been studied in [NSS16]. Another example is
the TCA Sym((K')(™) generated in degree n, corresponding to the ring Sym( (K*)®" ), which
is detailed in [SS12, 8.2.4]. The important result about all these TCAs are presented in details
in [DESI7).

Example 4.1.18. In Section we explain that the category of modules over the TCA
Sym((K%)(M) is equivalent to the category of modules over Flg, following [SS12]. There is a
similar equivalence for the two TCAs Sym( Sym?(C*) ) and Sym(A%(C>)). Indeed, Sam and
Snowden showed in [SS15] that the finitely generated modules over these TCAs are equivalent to
the finitely generated modules over the upwards Brauer category B(¢d). This last is equivalent
to the category FIM from [MW19| whose objects are finite sets, and whose morphisms are pairs
of an injection and a perfect matching on the complement of the image (see [NSS16] or [SS17]).
Moreover, there is an analog of the Schur-Weyl duality for the infinite orthogonal group which
is given by an equivalence of categories between the algebraic representations of O(oo) and the
functors over the upward Brauer category.

Remark 4.1.19. In the recent years, it has been proven that different algebraic structures
similar to the TCAs are noetherian, such as the FI-modules and FI;-modules (see [CEFN14],
[SS16l [SS19] and [Snol3l Theorem 2.3]), the FS-modules (see [SS17]), the VIC(R)-modules (see
[PS17]) and many others. Note that in [PS17| and [SS17] it is also shown that the category
of Fct(F,—mod,Fy—mod) is noetherian, which was known as the Lannes-Schwartz conjecture.
They are such results about TCAs, but it is still an open question to find if every finitely generated
TCA is noetherian. For now, it was proven that the TCAs generated in degree 1 are noetherian
(see [CEF15] and [SS16]), and that the two TCAs generated in degree 2 Sym( Sym?(C*) )
and Sym( A%(C*)) are noetherian (see [NSS16]). In particular, the last theorem implies that
the finitely generated FIM-modules are noetherian, recalling the result about the FI-modules
which can be proved using the TCA Sym(K)). Lately, it was shown in [DES17| that the TCA
Sym( Sym?®(C™) ) generated in degree 3 is topologically noetherian, which is a weaker notion.
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4.2 The equivalence between FI;modules and Sym( (K%M )-
modules

In this section we give an explicit construction of the equivalence of categories
FI;-Mod = Sym( V™) )-Mod

first stated by Sam and Snowden in [SS12] Section 10.2] for d = 1, then proved in [SS17], Proposi-
tion 7.2.5]. In particular, we give an explicit construction of two functors xz : Sym(V () -Mod -
FI;-Mod and I'z : FI;-Mod — Sym(V (1)) -Mod giving the equivalence. Note that these func-
tors depend on the choice of the basis B of V = K%, so we fix one B = (e1,...,eq) for this
section.

Remark 4.2.1. Since B = (ey, ..., eq) is a basis of V = K¢, then the elements ¢;, ®---®e;, of V"
for 1 <iy,...,i, < d form a basis of V®". We denote by C the set consisting of these elements,

and we have a canonical bijection
FI;(0,n) 2 Homget(n,d) 2 C.

For g € F14(0,n) we denote by e, the basis element e,1) ® -+ ® e4(,,) corresponding to g by this
bijection. This gives a decomposition
Ve P Koy .
geF1,(0,n)
We are now able to define the two functors yg and I'g which give the equivalence of categories.
To give the definition of xg we recall that, for a TCA A, a A-module is a pair (F,u), where

F:¥ > K-Vect is a functor and p: A® F' - F a natural transformation giving the action of A
on F.

Definition 4.2.2. The functor xz: Sym(V())-Mod — FI;-Mod sends a Sym(V1))-module
(F,n) to a FIg-module xp(F,un) : FI; - K-Vect sending the object n to F(n), and the mor-
phism (f,g) of FI; to the composition

F(f:n=>f(n))

K e n

F(TL) K-eg®F(f(n)) F(m) '
For e : F - F' a natural transformation in FI;-Mod, the natural transformation yz(¢) is given
for all objects n € FI; by

X5(&)n = en : x(F)(n) = F(n) - F'(n) = xg(F")(n).

To define the opposite functor I'g we need to see 3 as a subcategory of FI;. We then define
the functor 6 : ¥ — FI;, which sends an object n in 3 to n in FI;, and a morphism o :n - n in
¥ to the morphism (0,0 =@ — d) in FI,.

Definition 4.2.3. The functor I'g : FI;-Mod — Sym(V(l))—Mod sends a FIj-module G to
the functor G o 0 : ¥ — K-Vect together with the map p: Sym(VD) ® (G o 0) - G o0, where
for all objects n € 2, i, : (Sym(VD) ® (G0 0))(n) - Go0(n) is the composition

F(f(n)) —— K-eg® F(f(n))

& VHRG() —— @ @ KeolGl) —— & & G =" Gn).

itj=n i+j=n geFI4(0,i) i+j=n geFI,4(0,i)

For € : (G, 1) - (G', ;1) a natural transformation in Sym(V("))-Mod, the natural transforma-
tion I'g(e) is given for all objects n € X by

Ip(e)n =en:[B(G, 1) (n) = G(n) > G'(n) =Tp(G", 1) (n).
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Finally we can state the equivalence of categories shown by Sam and Snowden in [SS17]:

Theorem 4.2.4. For any basis B of V', the functors xp and ' give an equivalence of categories
FIL; -Mod = Sym( (K)") ) -Mod.

Proof. This theorem was first stated in [SS12, Section 10.2| for d = 1, and proved in [SS17.
Proposition 7.2.5]. The proof consist in checking that the functors xp and I'g are quasi-inverse,
but we refer to [Fel20] for more details. O

Remark 4.2.5. For the TCA Sym(V (1), the representable objects denoted by K < n > in [SS12]
correspond exactly to the projective standard functors PXe via the equivalence of Theorem m

4.3 An action of GL(K?) on FI;-modules

In this section we will use the natural action of GL(V') on the Sym(V"))-modules in the theory
of TCAs to get an action of GL(V') on the FI;-modules. To do this we will use the equivalence
of categories given in Theorem for a fixed basis B of V = K. We start with the definition
of this action of GL(V) on the Sym(V())-modules, then we will explain how we transpose it
into an action on FIj-modules.

Definition 4.3.1. For ¢ € GL(V) and (F,u) € Sym(V())-Mod, the Sym(V))-module ¢ -
(F,p) is defined by
¢ (F,p) = (F,o-p),

where ¢ - i : Sym(V()) ® F - F is the natural transformation given on an object n € 3, by the
composition

O ®eid
(p-mn=| ® VIOF() ——— & Ve F(j) " F(n)
i+j=n i+j=n

This gives an invertible endofunctor ¢ - (-) of the category Sym(V))-Mod sending an object
(F, ) to ¢-(F, 1) and a natural transformation o between (F, 1) and (F’, u’) to ¢-0 = o between

(Fop-p) and (F', 0 p').

Proposition 4.3.2. The group GL(V) acts on the category Sym(V ) -Mod by the invertible
endofunctor ¢ - ().

Proof. The map ¢ - (=) being an extension of the diagonal action of GL(V) on V®" we just
need to check that its image on a natural transformation in Sym(V(}))-Mod is still a natural
transformation in Sym(V(l)) -Mod. This is true since the following diagram, corresponding to
o:(F,u) - (F',u"), is commutative for all n € X:

] _+$_ id®0’j )
® Voo F(j) — @ VEF())

i+j=n i+j=n

o | I

F(n) > F'(n).

On
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This means that for all z € V® and all y E.F(j) for i+j = n, we have the equality o, 0 u,(x®y) =
pn(z® (0;(y)). In particular, for x = p®' (&) we have

on( 1 ((©%(F) ®y)) = on(pn(z®y) ) = (2@ (0;(y) ) = i ( (©®(2)) ® (05(y) ),

which shows that the following diagram, corresponding to o : (F,¢-pu) — (F',¢- '), is commu-
tative:

) Q id ®O’j .
D VERF(j) ——— @ Ve F(j)
1+J=n 1+J=n
(w)nl l(w-//)n
F(n) - > F'(n)

O

We now use the equivalence of categories to transfer this action of GL(V') from the
Sym(V(l))—modules to the FI;-modules. First, we define this action on FI;-modules using
the equivalence as follows, and then we describe it explicitly in a second step.

Definition 4.3.3. Let B be a basis of V, for p € GL(V) the endofunctor ¢g-(-) of FI;-Mod
is given by the composition

FI,-Mod — 25 Sym(V())-Mod £ Sym(V(D)-Mod —X2-5 FI,-Mod .

To give a more explicit description of this action we need to use the matrix M = (m; ) 1< j<d
of ¢ in the basis B = (e1,...,eq) of V. With this notation we can write a formula for ¢®*" which
will be useful in the following.

Remark 4.3.4. By definition, for 1 < k <d we have ¢(e;) = Y m ;€. Then, for g € FI4(0,n),
using the notation ey = e4(1) ® -+ ® ey(,) from Remark and the linearity of the tensor
product, we can give the following formula for p®"(e,):

d
P7(eg) = 2 M) Mgy (€0 @@ €)= DL Mg(1)6(1) Mg (n) g(n) €9’
li,ln=1 g’€FI;(0,n)
where the last equality is just a relabeling of the sum using the bijection FI;(0,n) = Homget(n, d).

Proposition 4.3.5. Let B be a basis of V, for ¢ € GL(V) and G € F1;-Mod, the functor
o -G : Fly — K-Vect sends an object n € FI1; to G(n) and a morphism (f,g) € F1z(n,m) to
the sum

( I mg’(l),g(l)) G(f.9").
g'eFI;(0,m~f(n)) \lem~f(n)

Moreover, for a natural transformation o : G - G’ in FIg-Mod, the action of op is given by
p-o=(on:p-G(n)=G(n) - G'(n)=¢-G'(n)).
Proof. First for a natural transformation o : G - G’, by the definitions above, we have

e (0) =xB(¢-(Is(0))) =x8(¢-(0))=xs(0) =0.
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Similarly, for a functor G we have ¢-(I'5(G)) = ¢-(Gob, 1) = (Gob,p-u). Then, by definition of
xB we get that -G = xg (¢p-T'(g)) is the functor sending an object n € FI; to Gof(n) = G(n)
and a morphism (f,g) € FI;(n,m) to the composition

Gn) S92 Girn)) — s Key® G(f(n)) —E2" s G(m)
y ——— G(f,2)(y) —— e, ® G(f,2)(y) —— (¢ 1)m (eg® G(f,2)()),

where f is the bijective map f:n — f(n). However, with Remarks and we get that the
transformation (- )y, is given on a basis object e, ® z of @K -¢, ® F(j) = (Sym(VD) ® F)(n)
by

(p-p)nleg®@x) = pin ( > (ﬁ Mg (1)) (€g ® x)) = (llI My (1).91)) G = n,g") ().

glii—>d I=1 gli—>d =1

This finally give

) ms f(n) )
(80 : M)m (eg ® G(fa @)(y)) = Z ( H mg’(l),g(l)) G(f(n) > mag,) ° G(f,Q)(y),

g m~f(n)—>d =1

and we conclude since (f(n) = m, g’ )o(f,2) is (f,g’) by the definition of composition in FI;. [

Example 4.3.6. For d = 1, the action of GL(V') = GL(K) = K* is simply described. Indeed, for
¢ € GL(V) the matrix Mg(¢) = (a) is one dimensional, with a € K* and so in the formula of
Proposition [1.3.5] the product is a power a™ " of the only possible term a. Also, the sum has only
one term since there is only one morphism from 0 to m\ f(n) in FI. Then, for G € FI-Mod, the
functor pp -G sends n € FI; to G(n) and (f,g) € FIz(n,m) to a™ ™ - (f,g) with a € K*. Then,
the automorphisms of G(n) given by the multiplication by a" € K* form a natural equivalence
between G and ¢ - G.
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Strong polynomial functors on F1;

The polynomial functors were introduced by Eilenberg and Mac Lane in [EM54] in the context
of functors from R-modules to R-modules using the notion of cross effects. In such functor cat-
egories there are huge functors which are difficult to understand and the polynomial property is
as a way to measure their complexity. Indeed, the polynomial functors are easier to understand
than the others, thus they should be thought as an analogue of polynomial functions approximat-
ing more complex functions. In [DV19] this notion was extended to functors from a symmetric
monoidal category with an initial object to the category R-Mod. Djament and Vespa used an
equivalent definition of the polynomial functors based on a differential endofunctor § instead of
cross effects. They show in [DV19] 3.3| that these two definitions coincide, however the definition
using the differential endofunctor is better suited for the study of stable behavior, so we choose
to mainly present and generalize this point of view for FI;-modules. In Section we then intro-
duce and study the strong polynomial FI;-modules, defined using all the c-coloured differential
endofunctors df of Definition to replace the unique endofunctor ¢ of FI-modules. In par-
ticular, for d = 1 we recover the definition of strong polynomial FI-modules from [DV19]. After
giving examples of polynomial FI;-modules, we show in Proposition that the FI;-modules
PFla are not strong polynomial for d > 1. In a third part, we study the support of FIz-modules
and we explain how it is linked to strong polynomial FI;-modules. In Section we generalize
the definition using cross effects and we show that the notion of polynomial functors obtained
coincides with the strong polynomial functors, which helps us to prove different kind of results.
For example, we prove in Proposition that the composition FI; - R-Mod — R-Mod of
two polynomial functors is polynomial and we use this in Section to show that the pointwise
tensor product respects strong polynomiality.

5.1 Definition and examples of strong polynomial FI;-modules

In this section we define the strong polynomial functors from FI; to R-Mod and we give some of
their basic properties. For d = 1, we recover the definition on FI-modules from [DV19]. We also
describe some explicit examples, such as the functors defined in Chapters[2and[3] First, we define
the strong polynomial FIj-modules using the ¢ -coloured differential endofunctors introduced in
Definition 2.6.21

Definition 5.1.1. The full subcategories of Fct(FI;, R-Mod) of strong polynomial functors
of degree less than or equal to n, denoted by Pol®""9(FI;, R-Mod), are defined by induc-
tion. By convention Pol®/”"(F1;, R-Mod) is zero and, for n € N, a FIgmodule F is in
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Pols""9(F1,;, R-Mod) if
¢(F) e Pol’" o™ (FI;,R-Mod) for all ceC,
where 6f is the c-coloured differential endofunctor from Definition [2.6.2]

Remark 5.1.2. For d = 1, since the cardinality of C' = {c} is 1, we recover the definition of strong
polynomial functors over FI from [DV19] using only one endofunctor §; = §{. In particular,
the polynomial functors give an alternative way to express and understand results about FI-
modules. For example, the strong polynomial functors with finitely generated values are the
finitely generated FI-modules. Also, the strong polynomial degree of a FI-module corresponds
exactly to its generation degree from [MWI19| and [CEFNI4] since it is given by the functor
denoted by Hg I which gives the minimal generators of a FI-module and which corresponds to
the cross effect functor on the element 1 of FI. Also, there is a stronger notion of polynomial
functors for FI-modules, called degree-r coefficient systems in [RWW17|, also defined using the
endofunctor 01, denoted by D(-). The comparison between the degree-r coefficient systems and
the strong polynomial functors of [DV19] is given in [Will8al 6.2|: morally, the difference is that
the degree-r coefficient systems include the stably zero functors of [DV19] in the degree 0, while
they are strong polynomial of higher degree (or even not polynomial) according to Djament and
Vespa.

We now present the first properties of the strong polynomial functor over FI;. In particular,
we show that in Definition if we use all the endofunctors 07 for k € FI; and x € FI4(0,k),
and not just for k = 1, we get an equivalent definition.

Proposition 5.1.3. Forn €N, k € FI and x € F14(0, k), the subcategory Pol*™(FI;, R-Mod)
of Fct(FI;, R-Mod) is closed under quotient, by extensions, by colimits and by the endofunctors
T, and oj,.

Proof. For c € C, by Proposition the endofunctor 6f commutes (up to isomorphism) with
the endofunctors 7, and 07 and with colimits. We then prove by induction on n € N that
Pol¥"°"8(FI;, R-Mod) is closed under colimits and by 7 and 67. We write the details for the
endofunctor 75, the other cases being similar. If F' € Pol®"*"8(FI;, R-Mod) then 6$(F) is in
Pol®"9"(F1,;, R-Mod). By induction, this subcategory is stable by 73, which gives

8 (e(F)) =71 (85(F) ) € Pol"8(F1,;, R-Mod).

Since this is true for all colours ¢ € C, we conclude that 7;,(F) € PolX'""8(FI;, R-Mod). As a
special case of the stability by colimits we get that the subcategories Pol®°"8(FI,;, R-Mod) are
closed under quotient. Finally, we show by induction on n € N that Pol™"¢(FI;, R-Mod) is
closed under extension. Let 0 > I > G > H > 0 be a short exact sequence
in Fct(FI;, R-Mod) such that F' and H are in Pol®™"¢(FI;, R-Mod), we want to prove that
G is also in Pol®*"*"8(FI;, R-Mod). For c € C, by Proposition 0) we have an exact sequence

0 — KS(F) —> w$(G) —> KS(H) — 85(F) L3 §5(G) —> 65(H) —> 0,
that we can split to get a short exact sequence
0 — Im(f) — 6(G) —— 6{(H) —— 0 .

By hypothesis, 6{(F) and 0{(H) are in Politf?ng(FId,R-Mod) and Im(f) is also in
Pol®"9"8(F1,;, R-Mod) since it is a quotient of {(F). Finally, we use induction on the short
exact sequence to get that 65(G) is in Pol>"S"8(FI;, R-Mod), for all ¢ € C, which means that G

is in Pol5"*"8(FI,;, R-Mod). O
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In this proposition we showed that the subcategories Poli™"8(FI;, R-Mod) of
Fct(FI;, R-Mod) are closed under quotient and by extensions. However, we explain in Re-
mark that this notion of strong polynomial functors is not completely satisfying since it
is not closed under subobjects. We now show that in Definition we can also use all the
endofunctors 07 for k € FI; and x € F1;(0,k) as explained above.

Proposition 5.1.4. A FIj-module F is in Pol?""(FI;, R-Mod) if and only if the functor
52(F) is in Pol’" ™ (F1,4, R-Mod) for all k € FI, and all z € F14(0,k).

Proof. One implication is obvious by taking k = 1 and ¢ € C' = FI4(0, 1), we prove the reverse.
Let F be in Pol®""(FI;,R-Mod) and ¢, € C be two colours, we prove that 550’6)(F) is in
Polfltflo "9(FI4, R-Mod). First, we apply the exact sequence of endofunctors of Fct(FI;, R-Mod)
from Proposition 7) to F'. We get an exact sequence that we can split to get the short exact
sequence

0 — Im(fr) — 6599 (F) —— 71 06%(F) — 0,

where fr is a map from &{(F) to 650’6) (F) By Proposition the subcategory
Polffff”g (FI;,R-Mod) is closed under quotient and by 71 so the first and last terms of this short
exact sequence are in Pol®” 7™ (F1,, R—Mod). Since the subcategory Pol®""(F1,;, R-Mod) is
also closed under extensions by Proposition[5.1.3|we then proved that, for any colours ¢, ¢ € C, the
functor 5( O(F) is in Pol®"" (F1,, R- Mod) By induction, using the exact sequence 7)

in a general version, we prove in a similar way that 6¢(F) is in Pol®"?"(FI,;, R-Mod) for all
ke FId and all x € FId(O ]{3) O

In the following we give some examples of strong polynomial functors, the first being the
functors that are zero after or until some rank.

Lemma 5.1.5. For F e FI;-Mod and k € N, if F(n) =0 for all n >k, then
F € Pol!"™™ (F1,;, R-Mod).

Proof. We prove this by induction. For k = 0 it is clear that, if F'(0) is the only non-zero part of
F, then 71 (F) and §§(F) are zero and F is in Pol}"*"8(FI,, R-Mod). Now if F(n) = 0 for n > k,
then 7 (F)(n) = F(n+1) =0 for n > k-1, and so for any colour ¢ € C, we have 0{(F)(n) =0 for
n> k- 1. By induction we get that 6¢(F) e Pol;""""® (FI,;, R-Mod) for any colour c € C, and so

F € Pol;"™" (FI;, R-Mod). O
The converse of this result is false (see[5.1.7)), but we still have:

Lemma 5.1.6. For F e FI;-Mod and k €N, if F(n) =0 for all n <k and F is non-zero, then
F ¢ Pol’™™ (F1,;, R-Mod).

Proof. We prove this by induction, the case k = 0 being empty. For k > 1, if F' is a non-zero
FI;-module such that F'(n) =0 for n < k+ 1, then for all ce C, 6{(F)(n) =0 for n < k since it
is a quotient of 71 (F)(n) = F(n+1). Since F' is non-zero, there exist m € N minimal such that
F(m) # 0. Since we consider k > 1, we have F(0) =0 and so m > 1. Then §{(F)(m —1) is the
cokernel of the map F(m—-1) =0 - F(m), so 0{(F)(m-1) = F(m) # 0. We get that §{(F) is
non-zero and by induction §(F) is not in Pol}"*"8 (FI;,R-Mod) for c € C, which gives that F
is not in Pol}"*"8 (FI;,R-Mod). O
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Some interesting examples are the functors defined in Section
Example 5.1.7.

1) For M € R-Mod, the constant functor equal to M is strong polynomial of degree 0. Indeed,
it sends every morphism to the identity and so we can compute for all ce C":

07 (M) = Coker (if(M)) = Coker (M (i)) = Coker (Id) = 0.

2) For k € N, the twisted atomic functor My, : FI; - R-Mod is strong polynomial of degree k.
Indeed, 71 (M}) = Mj—1 and so the natural transformation i§(My) : My - 71 (M) = My_q
is zero since either the source or the target is zero. This gives us that

67 (My) = 71 (M) = My
for all ¢ e C and by induction we get M, € Pol} "¢ (FI,, R-Mod).
3) Similarly, we have 71 (M) = Msj_1 and we can show that, for any colour c € C
01 (M) = My
proving that My, € Pol} ™" (FI;, R-Mod).

4) Finally, we can check that the direct sum on k € N of the constant functor M is strong
polynomial of degree zero, while the functors

@ Mk and EB Mzk
keN keN

are not strong polynomial since each My and each M} has a degree k where k goes to
infinity.

As a special case, we retrieve the example of FIz;-module developed in Chapter [3] of the
homology of the sink configuration spaces of graphs. In particular, we deduce from Proposition

the following:

Proposition 5.1.8. For i e N and G4 the linear graph on d vertices, the Fli-module
H; ( Confe™* (G4, [d]) , R )

from Definition [3.2.9 is strong polynomial of degree i+ 1 if i >0 and of degree 0 if i = 0.

Proof. By Proposition [3.2.8, for ¢ > 0 the FIz;-module Hi(Conf(Si_rik (Qd, [d]),@) is twisted
atomic of rank i + 1, so it is strong polynomial of degree i + 1 by Example [5.1.7]2). For i = 0,
this FIz-module is a constant functor by Proposition so it is strong polynomial of degree
0. This result remains true for the homology over R since the proof of Proposition extend
to this case. O

In Proposition we proved that the subcategories Pol®""8 (FI,;, R-Mod) are closed under
quotients, extensions and by the endofunctors 73 and 07, but they are not closed under subobjects
or by the endofunctors «j, as explained in the following remarks.
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Remark 5.1.9. A subfunctor of a strong polynomial functor is not necessarily strong polynomial
of lower degree or even strong polynomial at all. For d = 1, we can find counterexamples in [DV19,
p.362|. For FI;, we use the variations of these functors defined in Example : for M € R-Mod,
the subfunctor M,y of the constant functor M is strong polynomial of degree k, while M is
strong polynomial of degree 0. Moreover, the direct sum on k € N of the constant functor M
is strong polynomial of degree zero, while its subfunctor @ M is not strong polynomial at all.
These examples emphasize the interest of introducing the notion of weak polynomial functors in
Chapter [7]

Remark 5.1.10. As a complement of Proposition [5.1.3] we give a counterexample showing that
the subcategory Pol5""*"8(FI;, R-Mod) of Fct(FI;, R-Mod) is not stable by the endofunctors
kg for all k € FIg and all « € F1;(0,k). Indeed, for M € R-Mod we can consider the quotient of
the constant functor M by its subfunctor My defined in Section [2.3] This quotient is given on
objects by

M ifn<k
M/MZk(n):{ 0 else

and on a morphism (f,g) € FI;(n,m) by the identity if n,m < k and by zero else. We then
compute that 7 (M/Mzk) (n) = M/Mzk (n+1) for n € FI;. For ¢ € C, as this functor is a

quotient of the constant functor M, we deduce that zf(M/Mzk) = M/Mzk( ML | ) is

the identity of M if n >k —1 and zero else. This proves that 6§(M / M,y), which is the cokernel
of this map, is zero for all c e C, and so

)

M /g, €Poly™"(FI;, R-Mod).

On the other hand, these identities also implies that nf(M/Mzk) = Mj_1, and we explained in

Example that Mj_; is strong polynomial of degree k—1, so it is not in Polf)trong(FId, R-Mod)
for k> 1.

We end this section by showing that the precomposition by the forgetful functor O : F1; - F1
from Definition respects the strong polynomiality.

Proposition 5.1.11. For n € N, we have the inclusion
O* ( Poli"*™(FI, R-Mod) ) c Pol{"*"(FI;, R-Mod).

Proof. We prove the result by induction on n € N, the case n = 0 being a special case of the
following reasoning. For F € Pol®™"¢(FI, R-Mod), by Proposition we have for all colours
c € C the isomorphism

§5(O*(F)) =600 (F) 20" 051 (F) =0"(6:1(F)).

By definition of strong polynomial functors over FI we have &;(F) € Pol®" " (FI, R-Mod) and

n

by induction we conclude that O* (§§(F') ) € Pol’"{"¢(F1,, R-Mod). O

The Proposition [5.1.11]explains that each strong polynomial functor over FI provides a strong
polynomial functor over FI;. We give here an example of this process which comes from the

Example [2.3.4]

Example 5.1.12. For k£ € N, let T,Sd) be the FI;-module defined in Example sending n
to (K™)®*. We recall that there is a relation T,Ed) = O*(Tél) ) and that, for d = 1, Tk(l) is the
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composition of F': FI - K-Vect, which sends n to K", with T} : K-Vect - K-Vect which
sends V' to V®*. It is a classical example that T}, is polynomial of degree k in the usual sense
(see Definition [5.4.1)), and we can compute that F' is strong polynomial of degree 1. Indeed, we
have

51(F)(n) = Coker (F(Id, +(0 1)) ) = Coker( g e ©O7K) pens1 ) “K.

Similarly, for any morphism f in FI, by definition we have 7 (F)(f) = F(f +id), which means
that 91 (F)(f) = Idg, showing that d;(F') is a constant functor. Since FI has an initial object
and T}, preserve epimorphisms, we can use the proposition 3.12 from [DV19] to conclude that

T,gl) € Politxnlmg (FI,K-Vect). Finally, using Proposition [5.1.11{ we get
T = 0* (T ) € Poli!™" (F1,, K -Vect).

Remark 5.1.13. This example comes from a factorization FI; - FI - R-Mod — R-Mod,
where the last functor is a polynomial functor in the classical sense (see Definition [5.4.1]). The
Proposition together with the proposition 3.12 from [DV19] prove that this kind of com-
position preserves polynomiality if the last functor preserves epimorphisms. We will show in
Proposition that a direct composition FI; - R-Mod - R-Mod which does not factor by
FTI also preserves polynomiality under a similar hypothesis, but with a non optimal bound.

5.2 The standard projective functors

A very important family of examples of strong polynomial FI-modules are the standard projective
functors P¥! from Definition [2.2.4, The fact that the functors P¥ are polynomial simplifies the
study of polynomial functors over FI and leads to important results. In this section we show
that the FIz-modules Pf L4 are not strong polynomial when d > 1 using an explicit description
of ¢(P¥la), which emphasizes an important difference between FI-modules and FI;-modules.

Proposition 5.2.1. Forn e FI; and ce€ C, we have the following relation:
F(PE ) = (PP 0 (PP )P

Proof. By definition 6{(Py') is the cokernel of the morphism i§(PF) = Py (1d(_y+c) which
is given by

R[(Id_y+c).] © PFY(=) = R[FI4(n,~)] — R[FIy(n, (=) +1)] = PF( (=) +1).

For k € FI; with k <n -1 we have PFl(k) = R[FI;(n, k)] = R[@] = 0. For k > n the morphism
i$(P¥) sends a basis element (f,g) € FIz(n,k) to the composition (Idg +c) o (f,g) :n —» k —
k + 1. Then, the only basis morphisms that do not vanish in its cokernel are the morphisms
(f,9) e F1;(n,k+1) such that either the element k +1 is in the image of f, or the element k + 1
is not in the image of f and is coloured with a colour other than ¢ (i.e. g(k+1) #¢). Then, we
have the isomorphism of R-modules

8Pyt (k) = R[(f,9) |k +1eIm(f)] ® R[(f.9)|k+1¢Im(f), g(k+1) #c].

The generators (f,g) of the first component correspond to all the morphisms in FIz(n~{j}, k+
1~ {k +1}) for all possible inverse images 1 < j < k of the element k + 1. The generators (f,g)
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of the second component correspond to all the morphisms in FI;(n, k) coupled with a colour
choice in C'~ {c} for k + 1. This gives the isomorphism of R-modules

5¢(PFLa) (k) 2 R[FLy(n -1, k)]®" @ R[FLy(n, k)]®@D

for all ¢ € C. Finally for (f,g) € FIy(k,1), the map 0$(PFY) (f,g) is obtained as the map
m(P¥L) (f,9) =R [( (fyg)+1dy )*] passing to the cokernel. Then, the decomposition is natural
since the post-composition by ((f,g) +Id; ) preserves the conditions mentioned above. O

Corollary 5.2.2. For d > 1, the standard projective functor P¥Y is not strong polynomial of
any degree.

Proof. 1t follows directly from the relation of Proposition and from the definition of strong
polynomial functors. O

Remark 5.2.3. For d = 1, the Proposition gives the relation
®
a(pt)= (BT

already present in the proof of [Djal6l prop 4.4]. By induction this shows that the functor
PF1 is strong polynomial of degree n. In particular, this implies that the finitely generated FI-
modules are the strong polynomial functors with finitely generated values over FI, as explained
in [DV19]. This result is very specific to the FI-modules, due to the fact that the projective
standard functors are polynomial. A similar formula is also present in [CEFNI14] where the
authors show that 7,( P¥' ) = ( P¥Y, ) @ Q. with Q, a direct sum of PF' with i < d- 1.
This formula is one of the key points to prove the noetherian property in a general context for
FI-modules.

5.3 Support of a FI;-module

For functors over a symmetric monoidal category with an initial object, such as FI, the notion
of support studied by Djament in [Djal6] is closely related to the notion of strong polynomial
functors. Indeed, for FI-modules being strong polynomial of degree less than or equal to 7 is
equivalent to being supported by the integers 0,...,4. This result is specific to the FI-modules
and is not easily generalized to other categories. In this section, we show that for FI;-modules
this is only an implication and the converse is false. Thus the notion of support has less important
applications for FIz;-modules than it has for FI-modules, although it is still related to the strong
polynomial functors.

Definition 5.3.1. For F' a FIz-module, a support of F is a set S of objects of FI; such that
for any subfunctor G c F', if G(n) = F(n) for all n € S, then G = F. A FI;-module is said to be
finitely supported if it admits a support of finite cardinality.

Remark 5.3.2. A support of a FIj-module F' is not unique. Indeed, if S is a support of F,
then S u{n} is another support of F for any object n of FI; that is not in S.

Example 5.3.3. If a FI;-module is zero after some rank then it is finitely supported. Conversely,
it is not enough to have zero maps after some rank to be finitely supported. For example, the
functor @rey My, has no finite support since every support of My must contain k.

The following proposition explains how the notion of support of a FIz-module is related to
being generated by the first standard projective functors.
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Proposition 5.3.4. Let I' be a F1;-module and S be a set of objects of F1y, then S is a support
of F if and only if F' is a quotient of the direct sum

B (P

nes

where ky, € Nu{oo}. In particular, if a Flg-module is finitely generated, then it is finitely sup-
ported.

Proof. This result was proved by Djament in the general context of functors over a small category
in the proposition 2.10 and corollary 2.11 from [Djal6]. O

Remark 5.3.5. The direct sum in Proposition can have an infinite number of terms P14,
This is why finitely generated implies finitely supported, but the converse is not true. For example
Pg? T4 admits {0} as a support, so the direct sum @ P(F L4 With an infinite number of terms also
admits {0} as a support, and so it is finitely supported even if it is not finitely generated. The
Proposition also shows that a functor is generated in degree < k, as defined in [Will8a) for
example, if and only if the first £ integers form a support of this functor.

Remark 5.3.6. As a consequence of Proposition the notion of finitely supported is closed
under quotient and extension. Indeed, for 0 > F > G > H > 0 a short exact

sequence of FIz-modules, if G is a quotient of a direct sum of P¥ for a finite number of n € N,
then H is also such a quotient since it is a quotient of G. Moreover, if F' and H are such
quotients the horseshoe lemma implies that G is also such a quotient. However, the notion of
finitely supported is not closed under subobjects. Indeed, the direct sum on k € N of the constant
functor M is supported by {0}, while its subfunctor @y My is not finitely supported, since
any support of M, must contain k.

We now explain the connection between the support of a FI;-module and the fact that it is
strong polynomial. Explicitly, we show that if F': FI; - R-Mod is in Politrong (FI;,R-Mod),
then the first ¢ integers form a support of F. This is inspired by [Djal6, Proposition 4.1] which
gives the same result for functors over a symmetric monoidal category with an initial object,
such as FI. We start with the case ¢ = 0 and we get the general case by induction.

Lemma 5.3.7. Let F be a ¥FI1;-module, if F is strong polynomial of degree 0, then {0} is a
support of F.

Proof. Let G be a subfunctor of F' such that G(0) = F/(0), then by hypothesis we have §{(F') =
Coker(Id(_y+c) =0 for all ce C. This shows that F'(Id, +c) is an epimorphism for all c € C' and
all n € N. We then show by induction that G(n) = F(n) for all n € N: the case n =0 is true by
hypothesis and if G(n) = F/(n) we have F(Id,, +¢) (G(n)) = F(Id,, +¢) (F(n)) = F(n+1). Since
G is a subfunctor of F, we also have that F(Id,, +¢) (G(n)) is a submodule of G(n + 1), which
shows that G(n+1) = F(n+1). O

Proposition 5.3.8. Let F' be a Flj-module, if ' is strong polynomial of degree less than or
equal to i, then {0,...,i} is a support of F.

Proof. We proceed by induction on ¢ € N, the case ¢ = 0 being given by Lemma For
F € Poll™"8 (FI;, R-Mod), let G be a subfunctor of F such that G(n) = F(n) for all n €

i+1

{0,...,4,i+1}. By Proposition [2.6.6/0) we have an exact sequence

0 — KH(G) — K{(F) — {(Flq) — 55(Q) 5 55(F) — 85(F/@) — 0
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for all ¢ € C. Let HY be the subfunctor of 0{(F") defined by Hf = Im(¢f : 6(G) — 65(F)).
We then have H{(m) = 0{(m) for all m € {0,...,i} since (¢)m, is constructed by the following
diagram

G(m) — n(G)(m)=G(m+1) — §(G) —— 0

| | [

F(m) — ni(F)(m)=F(m+1) — §(F) — 0,

and the first two vertical maps are epimorphisms for m € {0,...,7} by hypothesis, which implies
that the last one is an epimorphism. Since §§(F) € Pol$"™"8 (FI,, R-Mod), we have by induction
that {0,...,7} is a support of 6{(F"), and so Hf = Im( ¢f : 0{(G) = 6{(F) ) = 65(F'). This means
that ¢ is an epimorphism and, together with the exact sequence above, it gives that 6§ (£ / G)=0
for all ¢ € C. We conclude that '/ is in Pol}""® (FI;, R-Mod) and, by Lemma that
{0} is a support of ¥'/¢. Finally, (F/)(0) = 0 since G(0) = F(0) by hypothesis, so £’/ =0
since {0} is a support of F/G, and then G = F. O]

Remark 5.3.9. The converse of Proposition is true for FI-modules (Proposition 4.4 in
[Djal6]) but it is false for FI;-modules with d > 1. Indeed, PFl¢ admits {0,...,n} for support
by Proposition but it is not strong polynomial if d > 1 by Corollary The fact that
the converse of Proposition is true for FI-modules is very specific to the category FI. It
allows us to describe the strong polynomial functors over FI with the notion of support and it
comes from the fact that the standard projective functors are polynomial in this case (Remark
which is not often the case over other categories. However, the converse of Lemma
which is the case where ¢ = 0, is true for functors over a symmetric monoidal category with an
initial object (Remark 2.12 in [Djal6]), but it is particular to 0 since it is the initial object.

5.4 The coslice category (0| FI;) and cross effects

The original definition of polynomial functors given by Eilenberg and Mac Lane in [EM54]
for functors between categories of modules over a ring is based on the notion of cross ef-
fects, which as been extended several times. We recall in Definition the definition of
cross effects for functors over monoidal categories whose unit is initial given in [DV19]. In
this section we introduce and study the cross effects for FI;-modules (in Definition
following this generalization which is better adapted for such categories with only increasing
morphisms. We then prove in Proposition that the corresponding polynomial FIg-
modules are exactly the strong polynomial FIz-modules from Definition 5.1.1 To do this,
we introduce a new category which corresponds to the coslice category (0 | FI;) (sometimes
also called the undercategory under 0 like in [ML98|page 45) of couples (a,z), where a is an
object of FI; and x a morphism from 0 to a in FI;. Then we use this alternative definition
to prove that the composition of two polynomial functors is still polynomial in Proposition [5.4.18]

Since its introduction, the definition of polynomial functors based on cross effects has
been extended several times, like in [HPV15] to the case where A is a monoidal category whose
unit is a null object. The cross effects are generally defined by the kernel of a morphism where
we omit a term of a sum at the target but when the unit is a null object, it is equivalent to
use the cokernel of a morphism where we omit a term of a sum at the source (see [DV19)] for a
proof). In [DV19], Djament and Vespa define the following notion of cross effects for functors
over a monoidal category M whose unit is initial following the definition as a cokernel:



Chapter 5. Strong polynomial functors on Fly 83

Definition 5.4.1. For A and B two monoidal categories whose unit 0 is initial, the n-th cross
effect of F': A — B is the functor cr,,(F) : A™ — B given on n objects ai,...,a, of A by

n éLB F(U‘li) n
crp(F) (ai,...,an) = Coker EBF( '694(1]-) N F( @ aj) ,
=1 J* 7=1

where o0, is given by the unique map 0 — a; and the identity on the other components. The
functor F' : A - B is polynomial of degree less than or equal to n if its (n + 1)-th cross effects
crps1(F) (-, ...,—) is the zero functor.

When the source is a monoidal category whose unit is a null object, the cross effects
functors are exact which implies directly that the categories of (strong) polynomial functors
are thick. Djament and Vespa also define a notion of strong polynomial functors over a
monoidal category M whose unit is initial using the endofunctors ¢ as in Definition
They then show in [DV19, Proposition 3.3] that the two definitions are equivalent: a functor
F: M - R-Mod is polynomial of degree less than or equal to n if and only if the cross effect
crp+1(F) is the zero functor. However, since these categories only have an initial object, they lost
the exactness of the cross effect functors and so the stability of polynomial functor by subobjects.

We will show in this section that the same thing happens for FI;-modules. First we in-
troduce the coslice category (0 | FI;) whose unit is initial and then we define the n-th cross
effects functor of a FI;-module through a forgetful functor © : (0 | FI;) - FI; in Definition
This way the n-th cross effect cr,(F') of a FI;-module F' is a functor over (0 | FI;)"
and we show in Proposition that F is in Pol®""9(FI;, R-Mod) if and only if F o © is in
Pols""9( (0 | FI;),R-Mod).

Definition 5.4.2. The category (0 | F1;) has for objects the pairs (a,x) where a is an object
of FI; and x a morphism in FI;(0,a). The morphisms in (0 | FI;) from (a,z) to (b,y) are the
morphisms f € FI;(a,b) such that fox =y, and the composition comes from FI,.

Remark 5.4.3. For d =1, the unit 0 of FI is an initial object so for every a € FI, there exists a
unique morphism from 0 to a. There is then an isomorphism of categories between (0 | FI) and
FI

Proposition 5.4.4. The category (0 | Fly) is a symmetric monoidal category and its unit
(0,idg) s an initial object.

Proof. The monoidal structure on (0 | FI;) is induced by the monoidal structure on FI; (see
Lemma and the unit 0 of FI; gives the unit (0,Idy) of (0 | FI;). Now for any object
(a,z) in (0 | FI;), the only map from (0,idg) to (a,z) in (0 | FI;) is = since such a map f must
satisfy f oidg =x. This shows that (0,idg) is initial. O

Since (0 | F1;) is a symmetric monoidal category whose unit (0,Idg) is an initial object,
it falls in the framework of [DV19] and so there is a notion of cross effects for functors over
(0 | F1,;) recalled in Definition It gives the following:

Definition 5.4.5. For G : (0 | FI;) - R-Mod a functor, the n-th cross effect of G is the
functor cr,(G) : (0 | FI;)" - R-Mod given on n objects (a1, 1) ... (an,x,) of (0| FI;) by

n é_La G((a;,2;)) n
crn(G) ((@1,21), - (an,20) ) = Coker | @ G( £ (aj,5)) =——— G( T (,2)) |,
7=

=1 N g
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where (4, 5.) is given by the unique morphism z; : (0,Idg) - (a;, ;) in (0 | FI;) and the identity
on the other components.

We then can define the cross effects of functors over FI; using the forgetful functor ©: (0 |
F1;) —» F1,, which sends an object (a,z) of (0| FI;) to a € FIy, and an arrow f in (0| FIy) to
itself in FI;, and the definition over (0 | FI;):

Definition 5.4.6. For F' a FI;-module, n € N* and (a1,z1) ... (an,x,) objects of (0 | FI;), the
module cr,, (F) ( (a1,21), ..., (an, ) ) is the n-th cross effect cr,(Fo®) ( (a1, 1), .., (an,zn) )
of the functor F' o @ over (0| FI;).

Lemma 5.4.7. For F a Fl;-module and n € N*, the modules crp,(F)( (a1,21), ..., (an, zn) )
for all objects (a1, 1) ... (an,xy) of (0] Fly) define a functor

crn(F)(=...,-): (0} FI;)" -~ R-Mod,

called the n-th cross effect of F.

Proof. Tt is a consequence of the fact that cr,(F o ©) ( —yeeey— ) is a functor over (0 | FI)" in
the definition of cross effects over (0 | FI;) whose unit is initial, and that the maps in (0 | FI;)
are the maps in FI; that fits the colours. O

Remark 5.4.8. For d = 1, we recover the definition of cross effects for FI-modules from [DV19]
since (0 | FI) is isomorphic to FI.

We give an explicit description of the cross effects of functors over F1;, using the category
(0| F1;) and the morphisms o7 = @(U(ai,mi)) in FI; which are similar to the morphisms o, in
Definition 5.4.1]

Proposition 5.4.9. For F a FI;-module and n € N* the n-th cross effect of F' on the objects
(a1,21) ... (an,zn) of (01 FIy) is the R-module

n @ F(oa?)
crn(F)((al,xl),...,(an,xn)):Coker @F(Zaj) = F( aj) )
i=1 Ny J=1

3

where oyt = G(U(ai,xi)) is given by the morphism x; : 0 — a; and the identity on the other
components.

Proof. For F a FIz-module F' o © is a functor from (0 | FI;) to R-modules. Then cr,(F o
©)( (a1,21),...,(an,2y) ) is the cokernel of the map @ F o O(0(a;,2,) ) and by definition the
morphism ©(0(q, z,)) = 04! is given by the morphism x; : 0 - a; and the identity on the other
components. O

We now give a lemma about the cokernel of cokernel maps that will be used to prove basic
properties of the cross effects.

Lemma 5.4.10. Consider the diagram

A1

[0}

Py
—
h

19
-

<

By 45_-" Q

D2,
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in R-Mod where (C, Py) = Coker(f) and (F, Py) = Coker(g). If the left square of the diagram
is commutative, there exists a unique h : C' — D such that ho Py = Pyoh, and there is an

1somorphism

Coker(ﬁ) ;Coker( BeoD ﬂ FE )

Proof. The existence and unicity of A is given by the universal property of the cokernel applied
to Pyoh since Pyjoho f=PFP;0ogoa=0. Since Py is an epimorphism, the equality ho Py =P oh
implies that Im (E) =Im(P,oh), which is by definition the image of the map P, restricted to the
image of h. The kernel of the map P, restricted to the image of h being exactly Im(h) nIm(g),
this gives

1 (7) 2 1 (P ity) 2 30 e () = B0 1) ()

With classical isomorphisms we then get

Im (k) = Im(h) +Tm(g) /1y (g) = Tm(h @ 9) /1 (g)-

Finally, since F is the cokernel of g, we have

Coker (h) = /1 (1) = (E/Im(g))/(lm(h ®9) /Tm(g)

) 2 E[Im(h @ g) = Coker(h @ g).

O

We now show basic properties of the cross effects of functors over FI;. In particular, the
cross effects satisfy the usual induction relation cry .y, = cry,(crme1(—)), where in the second term
we use the cross effects of a functor over (0 | FI;).

Proposition 5.4.11. For F a FI;-module, n,m ¢ N* and (aj,z1)...(an,xn), (b1,y1)...
(bmvym): (k,.%') Obj66t5 in (0 l FId);

1) There is a natural isomorphism
T (F) ( (a1,21), -y (an,xn), (b1,91), -+ (bins Ym) ) >
Crn( et (F) (= (b1,51), -+ (b Ym) ) ) ((ar,21) ... (an,2n) ).
2) There is a natural isomorphism

o1 (F) (K, 2), (a1,21), ..., (an, zn) ) 2crn (65(F) ) (((a1,21), ..., (an, 20) ).

Proof. 1) It is a formal consequence of the fact that the same properties are true for functors
over monoidal categories whose unit is initial such as (0 | FI;) (see [DV19, Proposition 3.2|)
since cr,, (F') is cr,(F o ©) by definition.

2) We consider the following diagram in R-Mod:

@ F(Id S a; +z)

éF(J%aj) o m éF(]%aj k) ——— él 5,§(F)(j§iaj)
& Floi) @ F(ogi+idy) @1 57 (F)(05)
F(j%aj) > F(]éa]-lrk) —»5%(F)(§: a])

F(Idmj +x)
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where the two right horizontal maps are the projection on the cokernels. The left square com-
mutes by naturality of the transformation ¢ from Definition [2.6.1}, which corresponds to the
horizontal maps when applied to F and @ F. Also, cr, (67 (F) ) ( (a1,21), ..., (an,z) ) is ex-
actly the cokernel of the right vertical map cr,, (F') (Id +x) by Proposition Then the Lemma
gives an isomorphism between Coker (cr,(F') (Id+z) ) and

3

ézuo$+mw@F(M+x)
=1

Coker éF(Zaj+k‘)@F('laj)

=1 N j

Finally, this last cokernel is exactly crp.1(F) ( (k,2),(a1,21), ..., (an,zn) ) by Proposition
O

We now prove that the definition of the polynomial functors over FI; using the cross effects
as in Definition is equivalent to the definition of strong polynomial functors from Definition
using the endofunctors 9.

Proposition 5.4.12. Let F be a Fl;-module and n € N be an integer, then F is in
Pols"9 (FI;, R-Mod) if and only if crp (F)( =) is the zero functor over (0 | FIg)*(+1)
if and only if F o © is in Pol5""( (0 | FI;), R-Mod).

Proof. We prove the first equivalence by induction on n € N, the second one is given by [DV19,
Proposition 3.3] since (0 | FI;) is monoidal with an initial object. For n =0, the functor cry (F)
is zero if and only if the map F'(x) is an epimorphism for all k € FI; and all = € FI;(0, k), since
cri(F)(k,x) = Coker( F(x) : F(0) —» F(k)) for any (k,z) € (0 | FI;). In this case, for any
m € FI;, the map F( (id,, +x)oc]*) = F(idy, +x) o F(¢}") is an epimorphism, which implies that
F(idy, +z) is an epimorphism. Then cr;(F') = 0 implies that 07 (F')(m) := Coker(F'(id,, +x)) =0
for all m € FI,, k € FI; and all 2 € FI1;(0, k), which is equivalent to F € Pols" " (F14, R-Mod) by
Proposition The converse is direct by taking m = 0 since 67 (F') = Coker(F(z)) = 0 implies
that F(z) is an epimorphism. For n € N, by Proposition[p.1.4] F'is in Pol?77"¢(FL;, R-Mod) if
and only if the functor 67 (F) is in Pol3"*"(FI,;, R-Mod) for all k € FI, and all = € F1;(0,k),
which is equivalent to cry41 (6§(F)) = 0 by induction. However, by Proposition .2), we

have a natural isomorphism
o1 (O5(F)) (= ..o ) 2erpaa(F) (k) -, ..., - ).
This shows that F' is in Polzt:fng(FId, R-Mod) if and only if cr,2(F') is the zero functor. [

A direct consequence is that a FIz-module F is strong polynomial of degree n if and only
if F'o® is strong polynomial of degree n over (0 | FI;) because of Definition Moreover,
if a FI;-module is strong polynomial, then its cross effects are zero after some rank as in the
following:

Corollary 5.4.13. For F a Flg-module and n € N, if F is in Pol5" "9 (F1;, R-Mod) then the
functors cri(F) (=) are the zero functor over (0} FI;)** for k>n + 1.

Proof. 1t is a consequence of Proposition p.4.12 together with the induction relation from Propo-
sition m

Remark 5.4.14. For d = 1, the generation degree in [MW19] is exactly the strong polynomial
degree. Indeed, it is given by the functor denoted by Hg I which corresponds to the cross effect
functor on the element 1 of FI and gives the minimal generators of a FI-module.
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We end this section by using the cross effects to show that a composition FI; - R-Mod —
R-Mod of two polynomial functors is polynomial. In this goal we first prove a lemma that will
be central in the next proof.

Lemma 5.4.15. For F' a F1;-module, m € N, and E a set of k > m objects (a1,x1) ... (ag,xr) of
(0 | F1;) we denote by Pn(E) the set of the subsets of E of cardinality m and by oXE> = Y a; —>
i€l

ApE~I
> a; the morphism given by z; : 0 > a; for (a;,x;) € E N1 and the identity of a; for (a;,x;) € 1.
3
If the functor F is strong polynomial of degree less than or equal to m, then the morphism

TENT
F(U"'E:I)

>F( Zai)

el

is an epimorphism.

Proof. We proceed by induction on |E| = k > m. For k =m, we have Pp,(E) = { E} so there is only
one term in the sum (for I = E) and by definition 072 E is the identity so it is an epimorphism.
Now if the cardinality of F is k+ 1, we consider the following diagram

k+1

kel & e k+1
(<>) D F >oooa e > @ F > a;
I=1 IePm (E~{(a;,z;)} (ag,xi)el -0 @ F(o) =1 (as,xi)eEx{(ar,z1)}

=1 TePm (Ex{(aj,z])}

]

& #(ei)

e F > a; = > F > a;l.
JePm(E)  \(aj.2;)e] soE:Jepea(E)F(aaE:j) (ai,z:)eE

This diagram commutes because of the relation F(Jﬁfg\\;]’) = F(Uﬁfg\\{) o F(a;”;\\j) for I =
J u{(a;,z;)}. Then by induction each of the maps ¢p. ((4z,)} 15 an epimorphism be-
cause |pp N {(a;,2)}| = k, and so is their sum @ Yp ((q,z)})- Moreover, F is in
Pol*""9(F1;, R-Mod) so the Corollary implies that the functors cry,q (F)( - ) is the

zero functor over (0 | FI;)*®**1) because k+1 > m + 1. By Proposition m the module
crp+1 (F) ( (a1,21), .., (ag+1, Ths1) ) is the cokernel of the right vertical map, which implies that
this is an epimorphism. Then, by composition the diagonal of the diagram is an epimorphism,

so the bottom map ¢g is also an epimorphism. O

Remark 5.4.16. For d = 1, we recover the corollary 3.5 from [DV19| which is used to prove that
a composition FI - R-Mod — R-Mod of two polynomial functors is polynomial.

Remark 5.4.17. In Lemma/|5.4.15|we can replace the set P, (E) of the subsets of E of cardinality
m by the set P,,(F) of the subsets of E of cardinality less than or equal to m and the result
stays true. Indeed, the cokernels of the maps
P(oag) 128 oy FloeE25)

F( > ai) and (a5 F( > aj)

D
) 1P (E)
el JEPm(E) JeJ

@ F(Zai

IeP, (E) “iel

are equal.It comes from the fact that the new maps on the right (|.J| < m) all factor by maps that
are already present in both sides (|j| = m) and so they do not change the cokernel. For example
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if |[J|=m -1 and if (a;,x;) € B~ J then |I| =m for I = Ju{(a;,z;)} and we have the relation
F(awE\J) = F(awE\f) o F(O’xl\‘]), which shows that the image of the map F(J”CE\J) is included

ap~J ap~I arsJg ap~J
in the image of F(ai;g\\}), with |I] = m.

We can finally prove that the composition FI; - R-Mod - R-Mod of two polynomial
functors is polynomial.

Proposition 5.4.18. For m,neN, if F: FI; - R-Mod is strong polynomial of degree less than
or equal to m and if X : R-Mod — R-Mod preserves epimorphisms and is polynomial of degree
less than or equal to n (Definition , then the composite X o F': FI; - R-Mod - R-Mod
18 strong polynomial of degree less than or equal to nm.

Proof. e lfn+0and m#0: We pose £k = nm + 1 and we take E a set of k objects

(a1,21),...,(ag,x) of (0} FI;). Since n # 0 we have k = nm +1 > m so we can ap-
ply Lemma [5.4.15 to E and F € Pol¥"°"(FI;, R-Mod). Together with Remark |5.4.17] it
implies that the morphism

® F(oaB)

)Jefm(E) F( Z aj)

jeE

YE= @D F(Zaj

JEPm(E) Jed

is an epimorphism, where P,,(E) is the set of the subsets of E with cardinality less than
or equal to m. Since X preserves the epimorphisms we get that X (@) is an epimorphism.

J— m
Similarly, since m # 0 we get that |P,(FE)| = ¥ (Tmfl) > n, and so we can apply the
=0

1=
proposition 3.5 of [DV19], which is a version of Lemma [5.4.15|for functors over a symmetric
monoidal category with an initial object such as R-Mod, to X and E’ = P,,(F). With
the same argument than in Remark [5.4.17]it implies that the morphism

(&) X|oa—
— (— ( Pm(E)\J)
JsPn(Pm(E))

W= o X(®F(za) >X( ® F(Zaz’))

JeP, (5m(E)) IeJ i€l IePm(E) i€l

is an epimorphism, where a; = F' ( > ai). We then consider the following diagram
iel

S X(@F(Zai)) XEp)ev >XoF<'Z ai)
IR, (Pm(m)) T iE
o xor(aiR)
KPnm(B)
©® XOF( > ai) N P XOF(ZC%')
IP (P (E)) ieul,IeJ KPom(E) ieK

It commutes since the maps are made with the morphisms o, and the identities. Then,
X(Pg) o9 is an epimorphism, and by composition it implies that the right map is an
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epimorphism. Using the same argument as in Remark [5.4.17] we see that the cokernel of
this right map is equal to

. _éXoF(ajj;)
Coker EBXOF(Zaj) - >XoF<Zaj) )

i=1 i jeE

which is cri, (X o F) ((a1,21),. .., (ag, zx) ) by Proposition [5.4.9] We conclude that cry(X o
F)((ay,x1),...,(ag,x) ) is zero for all objects (a1, x1),...,(ag, xr) of (0} Fly), so crip(Xo
F) ( ey — ) is the zero functor. Finally, by Proposition , the functor X o F' is in
Pol5"°"9(F1;, R-Mod) since k = nm + 1.

e If n=0: By the proposition 2.9 of [DV19], if X : R-Mod — R-Mod is polynomial of
degree 0, then it is a quotient of a constant functor B : R-Mod - R-Mod. Since the
precomposition F* by F is an exact functor, we get that X o F' = F*(X) is a quotient of
a constant functor Bo F' = F*(B). Then Bo F is in Poly(FI;, R-Mod) and, since it is
closed under quotient (Proposition , we get that X o F' is in Polg(FI;, R-Mod).

e If m = 0: By definition, F' € Poly(FI4, R-Mod) implies that 67(F") = Coker F((Id(_y+c) =0
for all c € C. Then F(Id._y+c) is an epimorphism and, since X preserves epimorphisms,
we get that X o F(Id(_y +c) = 6{(X o F') is an epimorphism. This implies that §7(X o F) =0
for all ce C, and so X o F'is in Poly(FI;, R-Mod).

OJ

Remark 5.4.19. The constructions of the cross effects and of the strong polynomial functors
were presented for functor F' : FI; - R-Mod but it can be extended to the case of functors
F:FI; - Afor A any abelian category. Then the previous result can be extended to F': FI; - A
and X : 4 - B, for A and B two abelian categories. Moreover, for d = 1, we recover the
proposition 3.12 from [DV19| which gives this result for functors over FIL.

Remark 5.4.20. The result of Proposition is generally false if we consider a functor
X : R-Mod - R-Mod which does not preserve epimorphisms. We gives a counterexample for
R = Z that is adapted from [DVI19, Remark 3.13]. Let F, : FI; - Ab be given on objects by
F.(n)=Zifn<rand F.(n) =Z/2Z if n > r, and on morphisms by the identity of Z or the
canonical epimorphism between Z and Z /27Z. Then F, is strong polynomial of degree 0 since
0{(Fy) = 0 for all colours ¢ € C, and X := Hom(Z/2Z,-) : Ab - Ab is a polynomial functor
of degree 1 since it is additive. However, the composition X o F, is the functor (Z/27Z)s, from
Example [5.1.7] and so it is strong polynomial of degree 7.

5.5 The pointwise tensor product

In this section we present and study the properties of the pointwise tensor product of FI4-
modules. In particular, we show that it preserves strong polynomiality using Proposition
We will see in Sectionthat this tensor product pass to the quotient category St(FI;, R-Mod).
We will then extend this result to the weak polynomial degree, when R is a field, with a more
precise bound on the degree by using a simpler argument which require the stability by subobject.
We start by defining the pointwise tensor product of two FIz-modules.

Definition 5.5.1. For F' and G two FIj-modules, their pointwise tensor product FF ® G €
FI;-Mod is given on an object n by (F ® G)(n) = F(n) ® G(n) and on a morphism
(f,9) € Flg(n,m) by (F e G)(f,9) = F(f.9) @ G(f,9)-
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Remark 5.5.2. This notion of pointwise tensor product should not be confused with the fol-
lowing construction of Sam and Snowden in [SS17]. They define a FIz-module from d FI-
modules My,..., My the FI;module N = M; ® --- ® My is defined on a set S by N(S) =
@ Mi(S1) ® - ® My(Sy), where the sum is on the decompositions S = S U---1 .Sy, and on a
morphism (f,g) € FI4(S,T) by the direct sum of the maps

é( ‘—’SiUgil(Ci))
Mi(S1) ®-- ®Md(5d) - >Ml(Slug‘l(cl))®~--®Md(Sdug‘1(cd)).

First we prove that the tensor product of vector spaces is a polynomial functor of degree 2
in the classical sense.

Lemma 5.5.3. The tensor product —® — : R-Mod x R-Mod - R-Mod s a polynomial functor
of degree 2 in the sense of Definition [5.4.1]

Proof. Since R-Mod x R-Mod is an abelian category it is in particular monoidal symmetric
category with a null object so it falls in the framework of [DV19]. Then it is enough to prove
that dx, 0 dx, 0 dx,(—® —) is the zero functor, while dx, o dx, (- ® —) is not zero, for all objects
X1 = (Ml,N1), XQ = (MQ,NQ), X3 = (M3,N3) of R-Mod x R-Mod. For U,V € R—Mod, the
space O(nr, n,) (= ® —)(U, V) is the cokernel of the map i, n,) given by

(-e-)U,V) - 1ann)(-®-)(U,V)
UV > (UeM)o(VeN)

By the definition of i(ys, n,) in [DV19] the module U ® V' is sent to U ® V', and 50 (s, n,)(— ®
-)(U,V) is equal to (U® N1)® (M, ® V)@ (M; ® N1). This decomposition is natural since the
map iy, n,) is natural. Now the space d(az, n,) © 6¢ar, ny) (= ® =) (U, V) is the cokernel of the
map

SNy (= =)(U, V) - TtNa) (Sam. vy (=@ =) )(U, V)
(UeN)e (M oV)e (M, ®N;) ~ ((U@M2)®N13@(M1®(V@N2))ee(M1®N1).

As above, this implies that
S(Ma,N2) © Oty Ny ) (= ® =) (U, V) = (M2 ® N1) @ (M7 ® Na).

Again, this is natural and it proves that d(az, n,)°0(ar,, v, ) (—=®—) is the constant functor equals to
(M2® N1)® (M1 ® N3), so it is not zero. Finally, we have that d(az, ny) (s, N5) ©I(ary, Ny ) (—® )
is zero since it is given on the object (U,V') by the cokernel of the map

SNy © San ) (= ® =) (U V) > Tar ne) (0(an.2) © O oy 1y (= @ =) )(U, V)
(MQ@Nl)@(Mltg)NQ) - (M2®N1)EB(M1®N2).

O

We can now prove that the pointwise tensor product respects strong polynomiality by using

Proposition [5.4.18

Theorem 5.5.4. For n,m € N and F,G : FI; - R-Mod, if F is in Pol5"°"(FI;,R-Mod)
and if G is in PolS"O”g(FId,R Mod), then their tensor product F ® G is in
Pols""  (FI;, R-Mod).

2max(n,m)
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Proof. We consider the functor (F,G) in Fct(FI;, R-Mod x R-Mod) and we show by in-
duction that (F,G) is polynomial of degree less than or equal to max(n,m). By hypothesis
F € Pol®™"8(F1;, R-Mod), and so we have §§(F) € Pol>""¥(FI;, R-Mod) for all ¢ € C, and
we have the same for G. This implies that &{(F,G) = (67(F),d(G)) is polynomial of de-
gree less than or equal to max(n,m) -1 = max(n - 1,m —1). By induction we get §{(F,G) €
Polffl;f}i my-1(FLg, R-Mod x R-Mod) for all ¢ € C, so (F,G) € Pol*™"¢(FI;, R-Mod). More-
over, we showed Lemma[5.5.3|that —®— is polynomial of degree 2, and the functor —® — preserves
epimorphisms since an epimorphism in R-Mod x R-Mod is a couple (f,g) of epimorphism in
R-Mod and then f ® g is also an epimorphism. Since R-Mod x R-Mod is an abelian category,
we then conclude by applying a generalization of Proposition presented in Remark

to the composition

FI, "L R-Mod x R-Mod —2= R-Mod.

O

Remark 5.5.5. In Appendix A we give a version of Theorem for the context of symmetric
monoidal category whose unit is an initial object studied in [DV19).

Remark 5.5.6. In Theorem the bound may be not the best possible. Indeed, we could
expect for F'®G : FI; — R-Mod to be strong polynomial of degree less than or equal to n+m. For
example, for d = 1 the proposition 4.1 from [Djal6| shows that a FI-module is strong polynomial
of degree less than or equal to n if and only if it is a quotient of a sum of the standard projective
functors PiFI for ¢ < n. This implies that, over FI, the tensor product F ® G is polynomial of
degree n + m if F' has degree n and G has degree m. One could try to prove a more refined
version of Proposition and use this refinement to get a better bound.



Chapter 6

The poset of stably zero functors

The notion of strong polynomial FI;-modules introduced in Chapter [5| is not fully satisfac-
tory since it lacks important properties, such as being closed under subobjects (Remark .
To solve these problems we want to define a notion of weak polynomial functors inspired by
[DV19] for FI-modules. In order to define them Djament and Vespa studied the subcategory of
Fct(FI,R-Mod) of functors whose colimit is zero called stably zero functors (Definition 2.10
and Proposition 2.13 in [DV19]) to erase them in a quotient. We do the same for FI;, but
we will see in this section that there are several subcategories that can replace the stably zero
functors in the case of FI;-modules. We first introduce the notion of globally stably zero func-
tors, then we define notions of functors that are stably zero along colours. We end the section
by explaining how these notions interact with each other in Section and how they interact
with the theory of twisted commutative algebras from Chapter [l In particular, we show that
each of these subcategories is thick so we can take the quotient of Fct(FI;, R-Mod) by any of
them and define a notion of weak polynomial functors for each of these quotients. However, we
only develop in Chapter [7] the weak polynomial functors corresponding to the global subcate-
gory SN(FI;,R-Mod) since it behaves better with the endofunctors ¢y that allow us to define
polynomial functors.

6.1 The subcategory of globally stably zero functors

We start with the study of the biggest of these subcategories which we will use in Chapter [7] to
define a notion of weak polynomial functors in the corresponding quotient of Fct(FI;, R-Mod).
It is the subcategory of globally stably zero functors denoted by SNV (FI;, R-Mod). We will
present the other subcategories of stably zero functors, along colours, in the second section.

Definition 6.1.1. The category SN (FI;, R-Mod) is the full subcategory of Fct(FI;, R-Mod)
whose objects are the globally stably zero functors, i.e. the functors F' : FI; — R-Mod such
that k(F') = F.

Proposition 6.1.2. Let FF : FI; - R-Mod be a functor, then F 1is in the subcategory
SN (F1;,R-Mod) if and only if, for every object n € FI; and every element a in F(n) there
exist k € F1g and x € FI14(0,k) such that a € ki (F)(n).

Proof. Suppose first that x(F') = F, then for all n € FI; and all a € F'(n) we have

aen(F)m)= Y Y wE(F)n).

keFI; zeFT,4(0,k)
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By Proposition 11.1.14.8) the family of subobjects (&7 (F") ) of F is filtered so there exist k € FI;
and xz € F1;(0,k) such that a € x{(F)(n). Conversely, let n be an object of Flg, if for all
a € F(n) there exist k € FI; and x € FI;(0,k) such that a € x7(F)(n), then the inclusion
ki (F)(n) c k(F)(n) implies the inclusion F(n) c x(F)(n). Since this is true for all objects
n € F1;, and since x(F') is a subfunctor of F, this implies the identity x(F') = F. O

Remark 6.1.3. Morally, the Proposition means that a FI;-module F' is globally stably
zero if for each n € N every element a € F'(n) is sent to zero by some map, of the form Id,, +z for
X € FId(O, k:)

We now give an alternative description of the subcategory SN (FI;, R-Mod) using filtered
colimits, which will allow us to prove later that SNV (FI;, R-Mod) is thick and stable by the
endofunctors ;. To do this, we define a poset structure on N using the product order, which
means that for (n, ... ,nq),(m1, ... ,mg) € N¢ we have (ny, ... ,ng) < (m1, ... ,mq) if n; <m;
for all 1 <7 <d. We then consider the category N associated with this poset which is therefore
a filtered category. We now define a functor &; : N® - FI; where the i-th component of N¢
corresponds to the i-th colour of F1,.

Definition 6.1.4. The functor £;: N - FI; sends an object (n1,...,nq) € N? to the object
ni +---+ng of FIz and a morphism (n1, ... ,ng) < (m1, ... ,mg) in N to the morphism

(Idm,(ml\nle{cl})) + oo+ (Idnd,(md\nde{cd}))

in FIz(ny +---+ng, my +---+mg), which can also be written as
mlf’(ll md—nd

(Idm+...+nd,(m1\n1 B NYe )+ + ( md\ndcd—>C ))

Then the following proposition gives a characterization of the stably zero functors as a colimit
using the pre-composition by &;.

Proposition 6.1.5. Let F be a F1;-module, then F € SN (F1;, R-Mod) if and only if

colim F'o&; =0.
Nd

Remark 6.1.6. For d = 1 we recover the propositions 2.13 and 2.14 of [DV19] for the subcategory
SN (FI,R-Mod) of FI-modules since the functor & : N —» FI is the functor ¢ from [DV19].

Proof of Proposition[6.1.5 Since the category N? is filtered, the colimit of F o0&y : N¢ - R-Mod
is a filtered colimit. Then by Proposition [I.1.6]its elements can be written as the equivalence class
of all objects a € F'o&y(ny,...,ng) quotiented by the following equivalence relation: two objects
aeFo&i(ni,...,nqg) and a’ € Fo&y(n},...,n)) are equivalent if there exists (nf,...,n}) € N¢,
and two maps f : (n1,...,n4) < (nf,...,n]]) and g: (nf,...,n}) < (nf,...,n}J) in N% such that
Fo&q(f)(a) =F o&i(g)(a"). In particular, the class of an element a € F o {y(n),...,n}) is zero
if and only if there exists an object (my,...,mq) € N® and a map f: (n1,...,nq) < (m1,...,mq)
such that Fo&;(f)(a) =0. Now we can prove the equivalence. If colim F o0&, = 0, for n € FI; and
(n1,...,nq) in N% such that £;(ni,...,nq) = ny +---+ng = n, then for every element a € F'(n)
we can consider the class of a € F o &y(ny,...,ng) in the colimit of F o &;. Since this colimit is
zero, the class of a is zero which means that there exists an object (mq,...,mg) € N% and a map
f:(ni,...,ng) < (my,...,my) in N such that Fo&y(f)(a)=0. We now pose m = mj+---+mg, as
well as k; = m;—n; for 1 <i <dand k = ky+---+kq. Forx = (k1 > {c1})+ - +(kq = {cqa}) € F14(0,k)
we can rewrite

Fot&y(f)=F((1dn,, k1 > {c1}) +--+ (Idn,, ka = {ca})) = F(Id, +2).
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Then for all a € F(n) there exist k € FI; and = € FI;(0,k) such that F(Id, +z)(a) = 0, so
a € ki (F)(n) c k(F)(n). This gives the inclusion F(n) c x(F)(n) for all objects n € FI;, and
since k(F') is a subfunctor of F', this implies the identity «(F') = F.

If F e SN(FI;,R-Mod) then x(F) = F. Let a € Fo&y(ny,...,ng) be a representative
of a class [a € Fo&y(ny,...,ng)] in the colimit of F o&;. For n=ny +---+ng, by Lemma
there exist k € FI; and = € FI;4(0,k) such that a € x{(F)(n). We then denote by k; the number
of occurrences of ¢; in x for 1 <i<d, and by f the map (n1,...,nq) < (n1+k1, ... ,ng+kq) in
N¢. We then have kq + -+ kg = k and

&a(f) = (1dpysoing s (bt — {1} )+ + (ks — {ca} )) €Flg(n,n+k).

Then there exits a permutation o € S, rearranging the colours as in x, such that (Id, +o) o
&i(f) = Idp +z. Since a € k7(F)(n), we have 0 = F(Id, +z)(a) = F(Id, +0) o (F' o &;(f))(a),
and so F o &y(f)(a) = 0 since the map Id, +o is bijective. This means that the class [a €
Fo&y(ny,...,ng)] in the colimit of F o &, is zero. O]

Using this description of SN (FI;, R-Mod) in terms of a filtered colimit we now state im-
portant properties of the stably zero functors.

Proposition 6.1.7. For F' a FI;-module, k € F1; and x € F14(0,k), we have
1) The subcategory SN (FI;, R-Mod) is thick and closed under colimits.
2) The subfunctor ki (F) of F is in SN (FI1;,R-Mod).

3) The functor k(F) is the biggest subfunctor of F in SN (FI;, R-Mod).

4) The subcategory SN (FI;,R-Mod) is stable by the endofunctor 07 .

Proof. 1) For 0 — F — G — H — 0 a short exact sequence of FI;-modules, we get an-
other short exact sequence 0 — Fo&y — Go&y — Ho&; — 0 in Fet(N? R-Mod) by pre-

composition with the functor ;. Since R-Mod is a Grothendieck category (Definition [1.3.1])
so is Fet(N?, R-Mod), which implies that the filtered colimits are exact. By definition N? is a
filtered category so we get a short exact sequence

0 —— colimF oy —— colimGo&y —— colimHo&; —— 0 .

Then, by Proposition G is in SN (FI;,R-Mod) if and only if colimG o &; = 0. This is
then equivalent to having colim F' o £; = 0 and colim H o &; = 0, which means that F' and H are
in the subcategory SN (FI1;, R-Mod) by Proposition again. Finally, SN (FI;, R-Mod) is
closed under colimits by Proposition since colimits commute together.

2) By Proposition we have an isomorphism & o K} 2 k7, so by definition we get

p(EE(F))= 2 X wlomp (F)=riorg (F) + 3 >, K] okp(F)

[eFI, yeFI4(0,0) leFIg yeFI4(0,0),y#z

~gp(F) + ). >, Ky oKy (F).
leF1g yeF14(0,0),y+x
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Since k(K[ (F')) is a subfunctor of k¥ (F), this shows that x(k(F)) = £ (F'), and so & (F) is
in SN'(FL;, R-Mod).

3) By definition, &7 (F) is a subfunctor of F' for all k¥ ¢ FI; and all = € FI4(0,k), so
their sum (F) is also a subfunctor of F' by minimality of the sum. By the point 2), each of
the k7 (F) is in the subcategory SN (FI;, R-Mod) which is closed under colimits by the point
1). This implies that x(F) is also in SN(FIz;, R-Mod). It remains to check that x(F) is
the biggest subfunctor of F' within SN (FI;, R-Mod). Let G c F be another subfunctor such
that G = k(G) and let j denote the inclusion G — F. Then we have a short exact sequence

0 — G — F — Coker(j) — 0 . By Proposition [2.6.6| the endofunctor « is left exact, so we

get a monomorphism from G = k(G) to F = k(F).

4) Let F be a functor in SN (FI;, R-Mod), by Proposition it implies that colim F'o &, = 0.
By Proposition the endofunctor d; commutes with colimits so we get that

colim 0y (F') 0 &4 = 07 (colim F o &4 ) = 05 (0) = 0.
Then 67 (F) is in the subcategory SN (FI;, R-Mod) by Proposition again. O

Remark 6.1.8. The point 3) in Proposition implies in particular that the endofunctor x
is an adjoint of the inclusion functor of SN (FI;, R-Mod) in Fct(FI;, R-Mod).

Remark 6.1.9. For d = 1, the stably zero functors in SN (FI, R-Mod) correspond exactly to the
torsion modules over the free TCA Sym((K%)™)) from Definition Then the endofunctor
K, which gives the maximal subfunctor of a FI-module in SN (FI,R-Mod), corresponds to the
local cohomology functor denoted by HY(-) in [SS16] and [NSSI8|. In particular, they studied
the properties of its right derived functors H! (=) in order to understand how Fct(FI,R-Mod)
is constructed from the two pieces SN (FI,R-Mod) and St(FI,R-Mod).

We end this section with some technical results about the SAV/(FI;, R-Mod)-closed objects
defined below, which will be used in Chapter

Definition 6.1.10 (Special case of Definition [1.3.11). A FI;module F is SN (FI;, R-Mod)-
closed if, for all H e SN'(FI;, R-Mod), both Hom(H, F') and Ext!(H, F) are zero.

Remark 6.1.11. The SN (FI;, R-Mod)-closed modules are called saturated from the point
of view of TCAs in [SS16] for d = 1, and in [SS19, Proposition 4.1 for a general d. In [SS19],
the saturation functors denoted by X, correspond to the composition S o 7w for the quotient
category by Mod 4 <. It is shown in [NSSI18| Proposition 2.7| that the right derived functors of
these functors preserve finitely generated modules and vanish after some rank.

Proposition 6.1.12. For F' a F1;-module we have

1) The subfunctor k(F') is zero if and only if the set of natural transformations Hom(H, F)
is reduced to 0 for all H € SN (FI;,R-Mod).

2) If Hom(H,F) = 0 for all H € SN(FI;,R-Mod), then Hom( H,7(F)) =0 for all k e N
and all H € SN (FI;, R-Mod).

3) If F is SN (F1;, R-Mod)-closed, then Hom( H, 67 (F') ) =0 for all k € F1;, all x ¢ F14(0, k)
and all H € SN'(FI;, R-Mod)
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Proof. 1) If for some H in SN (FI;, R-Mod) there exists a non-zero natural transformation o
in Hom(H, F'), then its image o o H is a non-zero subfunctor of F. We then have the short exact

sequence 0 — Ker(c) — H -5 0o H — 0 of FIz-modules. Applying the left exact functor
k to it we get another exact sequence:

0—— /{(Ker(a)) —— k(H) — k(oo H) .
Since H is in SN (FI;, R-Mod) we have x(H) = H and since it is closed under subobjects

(Proposition[6.1.7/1) we get that Ker(o) is also in SN (FI;, R-Mod). Then we have x(Ker(o)) =

Ker(o) and we can make the following commutative diagram with exact rows:

0 — r(Ker(o)) — w(H) — k(oo H)

| o

0 — Ker(o) >y H yooH —— 0.

By a careful application of the five lemma we see that the monomorphism k(coH) = oo H is also
an epimorphism, so an isomorphism. This means that the image oo H of ¢ is a non-zero subfunc-
tor of F' inside SN'(FI;, R-Mod) and by Proposition [6.1.7]3) it implies that x(F) is non-zero.
Conversely, by Proposition the functor % (F') is in SN (FI1;, R-Mod) for all k € FI; and all
x € FI1;(0,k). Since this subcategory is closed under colimits by Proposition it implies that
k(F) is also in SN (FI;, R-Mod). Then the inclusion j of k(F') in F'is in Hom(x(F'), F) and we
showed that x(F) is in SN (FIz, R-Mod). Then, by hypothesis we get j is zero and so k(F') = 0.

2) By Proposition W the endofunctor 7, commutes with colimits and with x] for all
l € FI; and all y € FI1;(0,1), so it commutes with k. However, according to the previous point,
the hypothesis is equivalent to x(F') = 0. We then deduce that k(7 (F)) = 7(x(F') ) = 0 and
the result follows by the previous point.

3) In this case, the exact sequence from Lemma becomes short by hypothesis
since the first arrow is in Hom(x{(F), F), with &7 (F) in SN(FI;,R-Mod). We then get

the short exact sequence 0 — F — 7,(F) — 07(F) — 0, and for H € SN (FI;, R-Mod)

there is a long exact sequence associated with it and with the functor Hom(H, -):
0 — Hom(H,F) — Hom(H,7(F)) — Hom(H, ¢ (F)) — Ext'(H,F) — ... .

The first and the fourth terms are zero by hypothesis so, for all x € FI;(0,k), there is an
isomorphism Hom(H,7,(F")) ~ Hom(H, 07 (F)). Then, the result is just a consequence of the
last point. O

Finally, the precomposition by the colouring functors from Definition does not preserve
the stably zero functors as we will explain in Remark However, the following proposition
explains that it preserves the SA/-closed functors.

Proposition 6.1.13. For ce C and F a Flz-module, if F is SN (FI1;, R-Mod)-closed, then the
functor AY(F) is SN (FI,R-Mod)-closed.

Proof. Let n:1d - 81 o1 be the unit of the adjunction of m; and S;. By Proposition [1.3.12] it
is enough to prove that the morphism na«py : AL (F) —> S om o AZ(F) is an isomorphism.
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By hypothesis, the set Hom(H, F') is reduced to zero for all H € SN (FI;, R-Mod) and by
Proposition |6.1.12| we have x(F) = 0. In particular, it gives mgk(F) =0 for all k € FI; and by
Proposition [2.7.4] we have ki o AX(F) 2 A} o mzk(F) = A’ 00 =0. Then by taking the sum on
ke FI we get k( AZ(F)) =0 and finally using for FI = FI; we have

Hompet(p1R-Moa) (H, AL (F)) =0 for all H e SN'(FI,R-Mod).

But by Proposition [1.3.13], the kernel of the unit 5 is in SAV(FI,R-Mod) so the inclusion of
Ker(nax(ry) in A7 (F) is zero. This shows that the morphism 7ax(py is @ monomorphism. Now,
if N denotes its cokernel we have a short exact sequence

A% (F)

0 —— AX(F) SiomoA(F) — N —— 0.
By Lemma [1.3.14] the image of S; is SN (FI, R-Mod)-closed, and Proposition [6.1.12] again we
have £y, (S om0 A}(F)) =0 for k € FI. Then the snake lemma gives an exact sequence

0 — Kp(N) —— 00 AL(F) —— dpoS1omoAL(F) — 6(N) —— 0 .

However, there is a monomorphism kjo0d0S10m10A% (F) < di0S10m0AX(F), with SjomoAX(F)
which is SM(FI,R-Mod)-closed by Lemma [1.3.14] By Proposition the image of ky is in
SN (FI,R-Mod), so this monomorphism is zero and we have ry 08y (Siom o A%(F)) = 0. Using
this and applying the left exact functor kj to the previous exact sequence we get an isomorphism
kg 0 ki (N) 2 Ky, 0 6, 0 A% (F). Using Propositions [2.6.6]4) and we deduce for all k € FI the
identity

Kk(N) = kpokp(N) 2 riodro AL(F) 2 A o;@'ik oé,ﬁk(F).

Since F is SN (FI;, R-Mod)-closed and since the image of Iizk is in SN (FI;,R-Mod) the
inclusion of Iizk o 5,§k(F) in 5,§k (F') is the zero map by Proposition 3), implying that the
functor mik o 5gk (F) is zero. We get that ki(IN) is zero for all k£ € FI and, by taking the sum
over k € FI, we get £(IN) = 0. The Proposition [6.1.12]1) implies then that the set Hom(H, N) is
reduced to zero for all H € SN (FI,R-Mod). Since N is the cokernel of the unit n, by Proposition
it is in SN (FI,R-Mod) so we can deduce that the map Idy is zero. This proves that
N =0, so the monomorphism 7x(r) is also an epimorphism and so it is an isomorphism. O

6.2 Functors that are stably zero along colours

We now define the subcategories SN¢, .., (FIs, R-Mod) of Fet(FI;, R-Mod) of functors
that are stably zero along colours similarly to the globally stably zero functor of the previous sec-
tion. To do this we use the results already proved for functors over FI, especially those of Djament
and Vespa in [DV19], via the colouring functors A} : Fct(FI;, R-Mod) - Fct(FI,R-Mod)
from Definition We show that each of these subcategories is thick in Corollary S0
we can take the quotient of Fct(FI;, R-Mod) by each of them and define a notion of weak
polynomial functors along colours for any of these quotients.

Definition 6.2.1. Let ¢;,...,c,, € C be distinct colours, the category
Sch-l,m,cz'm (FIz;,R-Mod) is the full subcategory of Fct(FI; R-Mod) of the FI;-modules F
such that, for all colours c€ {¢;,,...,¢;,, }, we have the identity

S ki (F)=F.
keFl,
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Remark 6.2.2. Morally, it means that a FI;-module F is stably zero in the colours ¢;;,..., ¢, €
C' if for each n € N every element a € F(n) is sent to zero by some map of the form Id, +c* for
every colour ¢ in {¢;,...,¢;, }.

We can use the precomposition by the colouring functors A, from Definition to give
another description of these subcategories based on the stably zero FI-modules. Indeed, we
show that a FIjmodule is in the subcategory S/\/'Cil,__’cim (FI;,R-Mod) if and only if the
precomposition by the colouring functor is stably zero on FI for all the colours in {¢;,,...,¢;,, }-
This will allow us to use the results about stably zero FI-modules to obtain similar properties
for stably zero FI;-modules.

Proposition 6.2.3. For F a Fl;-module and ¢ € C, the functor F is in the subcategory
SN (F1;,R-Mod) if and only if the functor AX(F) is in the subcategory SN (FI, R-Mod).
Proof. By definition, the functor F is in SN .(FI;,R-Mod) if and only if the sum on k € FI,

of the functors /izk (F) is equal to F. Since every /izk (F) is a subfunctor of F, this is equivalent
the equality of R-modules

Ck
> ki (F)(n) = F(n)
keFl,
for all n € FI;. By definition of A, we have F(n) = F o A.(n) = AX(F)(n) and mzk(F)(n) =
ngk(F) oA.(n)=A%o /izk(F)(n) = ki o AY(F)(n). This allows us to rewrite the identity as
5 i (AL(F)) () = AL(F)(n).
keFT

Again, each ki(AZX(F)) is a subfunctor of AZ(F'), so this identity (which holds for all objects
n € FI) is equivalent to the equality

> ki (AL(F)) = AL(F),
keFI
which is the definition of AX(F) being in the subcategory SN (FI,R-Mod). O

Corollary 6.2.4. For F' a F1;-module and c;,,...,c;i,, € C distinct colours, the functor F is in
the subcategory SN, . .. (FLi,R-Mod) if and only if the functors AZ(F) are in the subcate-
gory SN (FI,R-Mod) for all colours c € {ci,,...,c;, }.

Proof. According to the definition of the categories SN, .., (FIzR-Mod), it follows from
Proposition applied for ce {c;,,..., ¢, }. O

An important consequence of this description of the subcategories SN, ¢, (FIz, R-Mod)
is that they are thick subcategories of Fct(FI;, R-Mod), which allows us to take the quotient
by any of them.

Corollary 6.2.5. For c¢y,...,c, € C  distinct  colours, the  subcategory
SN’c/L-l,---ycim (FIz;,R-Mod) of Fct(FI;, R-Mod) is thick.
Proof. For ¢ € {¢j,...,¢,,} and 0 — F — G — H — 0 a short exact sequence in

Fct (FI;, R-Mod), the precomposition functor A’ being exact, we get the following short exact
sequence

0 — AXNF) — AXG) — AX(H) — 0

in Fct(FI,R-Mod). Since the subcategory SN (FI,R-Mod) is thick (see Proposition
for d = 1, or [DVI9]), the functor A%(G) is in SN(FI,R-Mod) if and only if A%(F) and
AX(H) are in SN(FI,R-Mod). Using this for all the colours ¢ in {¢;,...,¢;, } we get that
SN e;,, (FI3,R-Mod) is thick by Corollary [6.2.4] O

Cig sees
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6.3 Poset of stably zero functors

In this section we explain that the subcategories of Fct(FI;, R-Mod) of stably zero functors
presented in the two previous sections give a refinement of the notion of stably zero functors
introduced in [DV19] for FI-modules. Indeed, for d = 1 there is an inclusion of the unique
subcategory of stably zero functors SN (FI, R-Mod) in Fct(FI,R-Mod), but for a general d,
these subcategories naturally form a richer poset for the inclusion.

Lemma 6.3.1. There is a poset of subcategories of Fct(FIy;, R-Mod) for the inclusion. It can
be represented as follows, where the target of each of these functor categories is R-Mod.

SNC27"'7Cd (FId) Cm=p e & SNcl (FId)
<

I N S
~ -
| ~. P |
I ~ i I
N .
| ~ - |

SNeyocy (FIg) c--mmm- Y oi Cmmmme- Y o ooyt cooy SN (FL;) < Fet (FIy).

! T SS I
: 7 S : /
I o’ N |
SNCl,"',CdA (FIg) <-» - <> Sch (FIp)
<

~ e
~. _
< -
~l 19

Proof. We prove the inclusion SN, (FI;, R-Mod) - SN (FI;, R-Mod) for a colour ¢ € C, while
the other inclusions of the poset are clear by definition. For ¢ € C and F € SN, (FI;, R-Mod)

we have .
K(F)y= Y > wp(F)= ) ki (F)+ ) > Ky (F).
keF1, 2eF1,4(0,k) keFI, keF1y 2eF14(0,k),z#ck

However, F' € SN . (FI;, R-Mod) implies that 3 /izk (F) = F and, since x(F') is a subfunctor

GFId

K(F)=F+ > > ki (F)=F.

keFIy xeF14(0,k),x#ck

of F' we have

O

We give now some examples of functors in the poset of Lemma [6.3.1] and, in particular, we
illustrate that the inclusions of these subcategories are strict.

Example 6.3.2. We illustrate that the inclusions forming the poset are strict for d = 2, but the
given counterexamples are generalizable for any FI;. For d = 2 the poset is simply the following:

SN, (FI,,R-Mod)

T

SN, e, (FIy, R-Mod) SN (FI,R-Mod) — Fct(FI,, R-Mod).

/

SN, (FI3, R-Mod)

A\

e The inclusion SN (FIy, R-Mod) < Fct(FIy, R-Mod) is strict since any constant functor
is not stably zero.
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e The inclusion SN, ¢, (FI,R-Mod) < SN, (FI,,R-Mod) is strict: if F22 : FI, -
R-Mod is the functor of Example (sending all objects to R, the maps containing the
colour ¢; to zero and the other maps to the identity), then the functor A} (FE™2) is the
sum of all atomic functors, i.e. it sends all objects to R and all non-bijective morphisms
on zero, so it is in the subcategory SNV (FI,R-Mod). This implies by Proposition
that FY'2 is in the subcategory SN, (FIo,R-Mod). However A (FE2) is a constant
functor so it is not in SN (FI,R-Mod). By Proposition it implies that FgIQ is not
in SN, (FIy,R-Mod) and even less in SN, ,(FI2, R-Mod).

e The inclusions SN, (FI;,R-Mod) - SN(FI;,R-Mod) and SN,,(FI;,R-Mod) -
SN (FIz,R-Mod) are strict: We give an example of a functor in SN (FIz, R-Mod)
which is neither in SN, (FIz,R-Mod) nor in SN, (FIy,R-Mod) using the matrices
A1, Ay € M2(R) defined by

10 0 0
Al—(o 0) and Ag—(o 1),

which verify A;As = AsA; =0, A¥ = A; and AS = Ay for any k € N*. We can then define a
FI,-module G by G(n) = R? on an object n € FI,, and on morphisms (f,g) € FIz(n,m)
by
Idg if f is bijective,
G(f,9) - Ap if the only colour that appears in g is the colour ¢y,
’ Ay if the only colour that appears in ¢ is the colour co,
0 if both ¢; and ¢y appears in g.

The functor A7 (G) sends every object of FI to R? and every non-bijective morphism to
Ay. This implies that k(A (G) )(n) is the constant functor equals to Ker(Ay1), so G is not
in the subcategory SN, (FI,R-Mod). By symmetry, it is not in SN, (FIz, R-Mod)
either, but we compute

k" (G) = ker(G(id(,) +(c1,02)) : G(-) > G(-+2) ) = Ker( G(-) % G(-+2) ) =G.

Finally, k3" (G) = G implies k(G) = G, so G is in the subcategory SN (FI, R-Mod).

Remark 6.3.3. The Example [6.3.2] shows that the inclusion of subcategories
SN (FI;,R-Mod) - SN (FI;,R-Mod) is strict for ¢ € C, so the functor 7 o AX(F) is
not zero on all functors in SN (FI;, R-Mod). This implies in particular, in contrast to the
endofunctors 7, and 7 as we will show in Proposition , that the colouring functors do not
pass to the quotient by the subcategory SN (FI;, R-Mod). Similarly, by Proposition a
FI;-module F is in the subcategory SN .(FI;, R-Mod) if and only if the FI-module A’ (F) is
in the subcategory SN (FI,R-Mod). We conclude that the precomposition by the colouring
functors does not preserve the stably zero functors.

Remark 6.3.4. In [SS12] Sam and Snowden define the quotient of the modules over a TCA
by its full subcategory of modules locally annihilated by a power of a prime ideal of the TCA.
In [SS19] they apply this construction to the modules over the TCA Sym((K?)(")) which are
equivalent to the FI;-modules over a field R = K. They first decompose the category of modules
over the TCA Sym(K?®K*) into two pieces: they define a module over this TCA to be torsion
if it is annihilated by a non-zero element of positive degree and they then define the "generic"
category Mod%™ as the quotient of the A-modules by the full subcategory of torsion functors.
They then study the rank stratification from Remark defined via the determinant ideals.
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This gives a filtration of subcategories of the modules over this TCA, which would be interesting
to compare with the poset of Lemma|6.3.1] and they decompose the category into the successive
quotients of this filtration. They then describe in [SS19] each quotient in the filtration and
explain how these pieces come together.

We end this section by showing that the precomposition by the forgetful functor O : F1; - FI
from Definition preserves the stably zero functors. More precisely, if a FI-module F is stably
zero, we show that the FI;-module O*(F) = F o O is stably zero in every possible way.

Lemma 6.3.5. Forc;,,...,c;, €C, there are inclusions of categories of functors to R-Mod:
O* (SN(FI)) c SNy, ..c,(F1g) € SN, ...c., (F1g) ¢ SN(FLy).

Proof. For F in SN (FI,R-Mod) and c € C, by definition F = k(F) = Y1 kx(F). By Propo-
sition we also have O* ok (F) = ki o O*(F) for all x € FI4(0,k) and all k € N. This implies
that
Y ok 0O (F)z2 Y 0" eri(F)=0" ¥ m(F)|=0"(F).
keF1, keF1, keF1,

We conclude that Yjepr, Iizk o O(F) = O(F) for all ¢ ¢ C, and so O*(F) is in
SN,...cq(FI;,R-Mod), the smallest subcategory in the poset. O

6.4 Globally stably zero functors and twisted commutative alge-
bras

For R = K a field, there is an equivalence of categories between the category of FIz-modules
and the category of modules over the free TCA Sym((K?)()) of Definition 4.1.15| given in
Theorem [£.2.4] The aim of this section is to study the notion of stably zero functors through
this equivalence of categories. We begin with the description of the category equivalent to the
notion of globally stably zero functors from the point of view of Sym((K%)™))-modules. We
recall that this equivalence depends on a choice of a basis B of V = Kd, and we use the same
notations as in Section .2

Proposition 6.4.1. The subcategory SN (F1;,K-Vect) of Fct(FI;, K- Vect) is equivalent to
the full subcategory of Sym(V (1)) -Mod having as objects the Sym(V))-modules (G, 1) such
that for all objects n € 3 we have the equality

Hn+k |K<ez ®G(n)
S ety

Gn)=> > Ker( G(n) LI K-e, ® G(n)

keX 2eF1,(0,k)

G(n+k) ),

where ®, is the canonical isomorphism G(n) 2 K-e; ® G(n).

Proof. We prove that the essential image of the subcategory SN (F1;,K-Vect) by the functor
'z of Theorem s proof consists of the Sym(V™!))-modules (G, 1) which satisfy the condition
of the statement. This proves the equivalence since the functor I'g is full and faithful by Theorem
For (G, ;) a Sym(V))-module, n,k € FI; and 2 € FI4(0,k) = Set(k,d), we can describe
kE(xs(G. ) (n) by

wE(xB(G, 1)) (n) = Ker ((x5(G, 1)) (idn +2) + x8(G, 1) (n) — x5(G, 1) (n+))
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Hn+k |JK ez ®G(n)
et

= Ker( G(n) % G(n) —25 Kee, @ G(n) Gn+k) ).

where the last equality is just the definition of xyg. Since xp and I's are quasi-inverse of each
other, (G, ) is in the essential image of SN (FI;,K-Vect) by I's if and only if xg(G, ) is in
SN (F1;,K-Vect) and we conclude using the definition of SN (FI, K-Vect). O

In Definition we described an action of GL(V') on FIz-modules for a fixed basis B of
V = K% where ¢ € GL(V) acts by @p-(=). For d = 1, the subcategory SN (FI,K-Vect) of
FI-Mod (see Definition is closed under the action of GL(V') since we have shown the
following description of this action in Example for ¢ € GL(V) and G € FI-Mod the
functor g - G sends n € FI; to G(n) and (f,g) € FIz(n,m) to a- (f,g) with a € K*. In the
following we show that this is not true for d > 1 by giving a counterexample. In particular, this
implies that the action of GL(V') does not pass to the quotient in an action on the quotient
category of Fct(FI,;, K-Vect) by SN(FI;, K-Vect).

Proposition 6.4.2. For d > 1, the subcategory SN (F1;, K -Vect) of Fct(F1;, K - Vect) is not
closed under the action of GL(V') given in Definition [4.3.3

Proof. We use the functor FCIII? from Example as a counterexample for d = 2 which can
be generalized for any d > 1. We recall that F "2 is defined on objects by FCI*II?(n) =K for all
n € FIy and on morphisms by

Idg if f is bijective,

FCI*IIQ(f,g) =4 Idg if the only colour that appears in g is the colour ¢y,
0 if the colour ¢y appears in g.

We showed in Example that FCIII? is in the subcategory SN (FIy, K-Vect). For ¢ ¢ GL(K?)
defined in the basis B by the matrix

Mp(p) = ((1) 1)7

by Proposition we have (¢p- FE2)(n) =K for all objects n € FI, and
(5 FE2)(f.9) = > ( [I mg’(l),g(l)) FER(f,9")
g'eFI2(0,mNf(n)) \lem~f(n)

for all morphisms (f,g) € FIz(n,m). Since FgIQ(f, g') is zero if ¢y appears in ¢’ the only non-
zero term in this sum is the one for ¢’ = (¢;)™ /(). By definition FCI‘IIZ(f7 g") is the identity in
this case, so we get

(o8- FE2)(f.9) = ( [1 ml,g(l)) FE®(f,q') = (1#{ercor 1 #H{ecoh) Tdy = Tdg
lem~f(n)

Applying this to the morphism (f,g) =Id(_y +z for k € FI; and x € FI3(0,k), we get that
x Floy _ FI, _ _
/{k(gpg-FCI ) -Ker((<p3~F61 )(Id(_) +1:)) = Ker(Id) = 0.

Finally, we have k(pp- Fr2) = ¥ kf(¢p- FE2) = 0, showing that the functor pp- Fy'? is not in
the subcategory SN (FI, K-Vect) although FF' is in SNV (FI;, K-Vect). O
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Remark 6.4.3. While for d = 1 the category of torsion modules over the TCA Sym((K!)(1))
presented in Remark corresponds to SAV(FI,R-Mod) via the equivalence of Theorem
4.2.4] Proposition implies that this is not true for d > 1. Indeed, SN (FI;, R-Mod) is not
closed under the action of GL(V'), while the category of torsion modules introduced by Sam and

Snowden is.



Chapter 7

Weak polynomial functors on F1;

For functors over a symmetric monoidal category whose unit is a null object, the polyno-
mial functors are closed under subobjects (see [Djal6]), which simplifies their study. It is
because this is not true when the unit is just initial that the weak polynomial functors
were introduced in [DVI19] to recover this kind of properties. As seen in Remark
even for d = 1, the strong polynomial FIj-modules are not closed under subobject either.
The given counterexamples are made of functors which are zero on maps after some rank,
which gives rise to unstable phenomena. To avoid this instability we delete the problematic
functors, such as the stably zero functors studied in Chapter [0 in a quotient category of
Fct(FI;,R-Mod). Then we can define polynomial objects in this quotient category and the
weak polynomial FIj;-modules as the functors whose image in the quotient is polynomial.
This way, the notion of weak polynomial FI;-modules has all the important properties we
want. This idea is inspired by the situation studied in [DV19| for FI-modules but, as seen
in Chapter[6], for FI,; there are several subcategories of stably zero functors that we can consider.

In Section we present the quotient by SN (FI;, R-Mod), the largest subcategory of
Fct(FI;, R-Mod) of stably zero functors, to get a smaller quotient category that may be the
easiest to describe. In particular, we get a characterization of the simple objects of this quotient
in Proposition [7.1.8] We then introduce and study the polynomial objects in this quotient in
Section [7.2] We also explain in Remark that in the quotient by another subcategory of
stably zero functors the polynomial objects are a bit harder to define and we lose some important
properties like the fact that the endofunctors 67 become exact when they pass to the quotient
category. In Section[7.3|we explain that the pointwise tensor product from Definition [5.5.1]passes
to the quotient by SN (FI;, R-Mod) and preserves polynomial objects. Finally, we define the
category R-Mod, whose objects are the tuples (M, o, ..., pq), where M is an object of R-Mod
and @2, ...,¢q: M — M are d—1 isomorphisms in R-Mod commuting two by two in Section[7.4]
We then show that the category of polynomial objects of degree 0 in this quotient is equivalent
to R-Mod,.

7.1 The quotient category St(FI;, R-Mod)

We showed in Proposition that the subcategory SN (FI;, R-Mod) of Fct(FI;, R-Mod)
is thick so, using the construction from Definition we can define the quotient by this
subcategory. In this section we give the definition, the basic results and some more abstract
properties of this quotient category of stable functors.
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Definition 7.1.1. The category St(FI;, R-Mod) is the quotient category

Fct(FI;, R-Mod)
St(FI;, R-Mod) =
(F1, R-Mod) /SN(FId,R-Mod)
where the quotient is described in Definition and 7g is the canonical quotient functor
7q : Fct(FI;, R-Mod) - St(FI;, R-Mod).

Remark 7.1.2. Although the objects of the quotient category St(FI;, R-Mod) are by defi-
nition the functors from FI; to R-Mod, one should think of them as abstract objects since
the morphisms in the quotient are modified by some isomorphism classes, so the objects of the
quotient category are only functors up to relations. To make this clear, we often denote by X
an object of the quotient and by F' a functor in Fct(FI;, R-Mod). We will say that a functor
F is weak polynomial if its image 74(F') in the quotient is a polynomial object, but sometimes
we use an abuse of notation and we identify F' and 7g(F').

Remark 7.1.3. For d =1 and R = K a field of characteristic zero, there is an equivalence of
categories
St(FI,R-Mod) = SN (FI,R-Mod),

if we consider only finitely generated functors. The proof is done in [SS16, Section 2.5] by
defining a FI-module K = Sym(K* ) ® Sym(K* ® K*) from the point of view of TCAs as
representations of GL(o0), which also has a structure of a FI°’-module. They then show that
the two functors Homgy(—, ) and Homgyer (-, K), (respectively post and pre) composed with
a duality, are quasi-inverse of each other. In [SS19, Section 5|, they show that the extremal
quotients Mod 4,0 and Mod 4 4 of the rank stratification of Remark are equivalent, which
generalizes this equivalence for a general d. To prove this, they show that both categories
are equivalent to the category of polynomial representations of the group GL(oo) x (K* @ K%).
However, it seems to be false that Mod 4 ; and Mody 4-; are equivalent for £ # 0,d. The full
subcategory Mod o of Mody consists, from the point of view of TCAs as representations of
GL(o0), of the modules supported at zero, i.e. which are locally annihilated by a power of
KY®K>™ c Sym(K?®K™). With the identification Sym(K?®K>) = K[z; |1 <i<d,1<j] it is
the ideal generated by the z; ; with the identification Sym(K¢@K*) Klz; ;)1 <i<d,1<j],
which seems to correspond to the subcategory SN, . .,(FI;, R-Mod) via the equivalence from
Theorem although we have no rigorous proof of this.

Remark 7.1.4. In [SS16] Section 1.3] Sam and Snowden show that, for d = 1, the equivalent
categories St(FI, R-Mod) and SN (FI,R-Mod) can be described as the category of represen-
tations of an explicit quiver with relations called Partyg. The vertices of this quiver are the
partitions, there is an order relation on the partitions: p < A if A\/p is a "horizontal strip" (called
HS), which means that \; > p; > A\j41 for all i. There is an arrow in Part gg from the partition
p to the partition A if 4 < A. For three partitions A, and v such that g < A and A < v, the
composition of the two maps p < A and A < v is equal to the map p < v if u < v and is zero if
p £ v. This quiver corresponds to the simple elements (see Proposition of the category
and gives the relations between them. The proof of this result uses the functors that give the
equivalence St(FI,R-Mod) 2 SN (FI,R-Mod) for d = 1.

Lemma 7.1.5. The quotient functor mg is essentially surjective, exact, it commutes with all
filtered colimits and has a right adjoint

Sq: St(FI;, R-Mod) — Fct(FI1;, R-Mod)

called the section functor.
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Proof. By Proposition the quotient functor is always exact and essentially surjective.
Since the category R-Mod is a Grothendieck category (Definition , the functor category
Fct(FI;,R-Mod) is also one. Then Proposition implies, with Proposition [6.1.7] that
SN (FI;,R-Mod) is a localizing subcategory of Fet(FI;, R-Mod), which means exactly that
the quotient functor w4 has a right adjoint. In this case Proposition[I.3.3]implies that it commutes
with all filtered colimits. O

We now give some properties of this quotient category inspired by [DV19) section 2| which
is similar for FI-modules and St(FI,R-Mod). We begin with a proposition stating that the
endofunctors 75, and 7 pass to the quotient category St(FI;, R-Mod), while the endofunctors
Ky become all zero in the quotient.

Proposition 7.1.6. For k e FlI; and x € FI;(0,k), the endofunctors 1, and 6 of
Fct(FI;, R-Mod) induce two endofunctors 75 and (6%)5% of St(FL;, R-Mod) defined by the
relations mqo 0y = (6,”5)St omy and Ty o Ty = TkSt omy. These endofunctors are exact, they commute

to colimits, and there is a short exact sequence of endofunctors of St(FIy;, R-Mod):

PE St
0 , 1ast VR St y (08)St —— 0

Proof. For F € SN (FI;,R-Mod), by Proposition the endofunctor 75, commutes with 7

and colimits, so we have

/i(Tk(F)) = Z Z /i;C(Tk(F)) = Z Z Tk(/{f(F)) :Tk(m(F)) =71,(F).

1eFL; 2eF14(0,1) 1eF1, 2eF1,(0,0)

This means that 7 (F) is in SN (FIz; R-Mod), so the functor my o 74 is zero on all objects of
the subcategory SN (FI;, R-Mod). Moreover, both w4 and 73 are exact functors, so w4 o 7
is also exact. Then, by Proposition there exists a unique functor TkSt which satisfies
the relation mgo 7 = TkSt o mq. By Corollary we get that it is exact, and it commutes
with colimits by construction since w4 and 75, commute with colimits too (Proposition and
Lemma . Now we do the same for d7: for every short exact sequence 0 - F' - G - H - 0
in Fet(FI;, R-Mod), by applying the exact functor 7y to the exact sequence of Proposition
we get the short exact sequence

0 —— mqo 0 (F) —— mg003(G) — mgo b (H) —— 0

since we have 74 o ki, = 0 by Proposition This means that the functor mg 0 47 is exact.
Moreover, by Proposition the subcategory SN (FI;, R-Mod) is stable by the endofunctor
0%, which implies that mq o 6f is zero on the subcategory SN (FI;, R-Mod). By Proposition
m there exists a unique functor (6¢)5% which satisfies the relation 7q 0 6% = (6%)5t o my. It is
also exact and it commutes with colimits with the same arguments as for 7. Finally, applying
the exact functor 7y to the exact sequence (Il) from Lemmawe get the short exact sequence

(i)St
0 — ma(F) —29 78 (ry(F)) —— (57)St(ma(F)) — 0

since mq o ky = 0 by Proposition [6.1.7,  Using Proposition we get, for all X e
St(FI;, R-Mod), the existence of the natural short exact sequence of the statement. O
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Remark 7.1.7. In [SS16] Sam and Snowden consider the subcategory of finitely generated
torsion modules over the TCA Sym((Kl)(l)) and study the properties of the quotient category
of finitely generated Sym((K')("))-modules by this full subcategory. This quotient is equivalent
to the subcategory of St(FI, R-Mod) of finitely generated objects. In particular, they show that
the projective finitely generated modules are also injective and that the section functor sends
the injective objects of the quotient to projective objects, and that all the finitely generated
FI-modules have finite injective dimension.

The following proposition gives a condition that describes the simple objects of the quotient
category St(FI;, R-Mod). It is inspired by [SS16l, Proposition 2.2.1| which gives a similar result
for finitely generated FI-modules but expressed in terms of modules over the TCA Sym((K!)™).

Proposition 7.1.8. For F a FI;-module, the object my(F) € St(FIz;, R-Mod) is simple if
and only if, for all submodules G of F, either G is in SN (FIz;,R-Mod) or F/G is in
SN (FI;, R-Mod).

Proof. If mq(F) is simple, then for all submodules G of F', m4(G) is a subobject of m4(F), since
7q is exact. Then either m4(G) = 0, which means that G € SN (FI;, R-Mod), or 74(G) = 74(F)
which implies that 74(F/G) = 0 since 74 is exact, and thus F'/G € SN (F1;,R-Mod). Conversely,
for X a subobject of m4(F) we can apply Proposition [1.2.3]to the inclusion of X in m4(F), which
gives the existence of F',G € Fct(FI;, R-Mod) and of a monomorphism f : G - F of FI;-
modules and of isomorphisms 74(G) = X and mg(F) = mg(F), which makes a commutative
diagram. In particular, mq(F) is simple if and only if m4(F) is simple. Then we consider the
image of f which is a submodule of F: By hypothesis, either this image is in SN (FI;, R-Mod),
either the quotient by this image is in SN (FI;, R-Mod). By Lemma in the first case we
get mg(f) =0 so my(G) 2 X =0, and in the second case we get Coker(f) = 0 so mg(f) is an
epimorphism and 7q(F) = m4(G) = X. O

Remark 7.1.9. In fact, this proof works for any quotient category A/c, since it uses only the
results of Chapter [1} By Proposition to classify the simple objects of St(FI;, R-Mod) is
equivalent to classify the FI;-modules F' such that for each of its submodule G either G or F/G
is in SN (FI;, R-Mod). For d =1, Sam and Snowden used this equivalence to classify explicitly
the simple objects of the quotient category for finitely generated FI-modules in [SS16, Section
2.2]. Indeed, they showed that the simple objects of the quotient are indexed by the partitions:
the object associated to the partition A is the image by the section functor m; of the direct sum
of the simple objects of FI-Mod (see Proposition [2.4.3|for d = 1) associated with the partitions
of the form (n,\), with n > A\1. They then used this result to classify the injective objects of this
quotient.

We now use the notion of SN (FI;, R-Mod)-closed objects (Definition 6.1.10)) and the Propo-
sition [6.1.12] to show that there is a monomorphism from 6% oSy to Szo (68)5%. This will be used
in Section [7.4]in order to describe the polynomial functors of degree 0.

Proposition 7.1.10. For all k € F1; and all x € F1;(0,k) there is a natural monomorphism
6808y — Sy0 (67)5 .

Proof. Let 7 : Id - &4 o mg be the unit of the adjunction of my and Sy, then for X €
St(FI;,R-Mod), k € N and z € FI;(0, k), the object NszosS,(X) 18 In Fct(FI;,R-Mod). Since
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the co-unit of the adjunction of 74 and Sy is always an isomorphism between 750 Sy and Id, we
can consider nx the composition

N6L0S4(X)

68 08(X) 2= 'Sgomiodf 0o Sy(X) — Syo (68)5% o mg0S4(X) —— Syo0 (67)54(X),

where the first isomorphism is given by Proposition and the second by Proposition
By definition, the kernel of 77x is the same as the kernel of M52 0S4(X) and, by Proposition
it is in the subcategory SN (FI;, R-Mod) since it is the kernel of the unit of the adjunction o
g and Sg. Moreover, by Lemma the functor Sy(X) is SN (FI;, R-Mod)-closed. Then
the inclusion j of the kernel Ker(fx) within 67 0 Sy(X) is in Hom ( Ker(7x), 67 (S4(X)) ), with
Ker(7x) in SN (FI;, R-Mod) and S3(X) which is SN (FI;, R-Mod)-closed. By Proposition
We get j =0 and o 7jx is a monomorphism from 6% 0Sy(X) to Syo(6%)S(X). It is natural
since the co-unit is natural and the two isomorphisms inside 7x are also natural. O

Finally we construct an homology functor hfld(—) from the quotient -category
St(FI;, R-Mod) to the graded category R-Mod,, over R-Mod as the usual homology func-
tor H.(FI4, —) from the category Fct(FI;, R-Mod) passing to the quotient. This definition is
inspired by Propositions 2.17 and 2.18 of [DV19]. Recall that for R-Mod we use the constant
functor R to define the usual homology functor H,(FI4,-) as the functor Torf (R, -).

Proposition 7.1.11. For F' a FI -module, if the morphism ii,(F') is a split monomorphism for
all k € FI; and all x € FI14(0,k), then

1) For every functor H € SN (FI;,R-Mod) we have Ext*(H, F) = 0.

2) For every functor G € Fct(FI;, R-Mod), the morphism

* (ﬂ—d)* *
Extpeq(r1,,R-Moa) (G5 F) > Extgy(r1, R-Mod) (ma(G), ma(F))

is an isomorphism. In particular, 7q : Hom(G, F') - Hom(7y(G),7q(F) ) is an isomor-
phism.

8) If X : FI) -» R-Mod is a functor such that the morphism if,(X) is a split epimorphism for
all k € F1; and all x € F1;(0,k), then for all H € SN (F1;, R-Mod) we have Tor.(X, H) =
0.

4) Let R-Modg, be the graded category over R-Mod. The homology functor H,(FI;,-) :
Fct(FI;,R-Mod) -» R-Mod,, passes to the quotient St(FI;, R-Mod), which means that

there exists a unique functor hfld(—) : St(FI;, R-Mod) -~ R-Mod,, such that W¥lion, =
H,(FLy,-).

Proof. 1) For H a functor in SN (FI;, R-Mod), we first assume that there exist k € FI; and
x € F1;(0,k) such that 4 (H) = 0. For all natural transformations o : H - F, the naturality of
iy, implies the relation 7, (o) 0 if(H) = if(F') o 0, so the following diagram commutes:

(i),

Hom (H,F) » Hom (H,7(F))

Hom (73,(H),7x(F))
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Since we assumed that 7 (H) is zero the morphism (zi(F))* is also zero. Moreover if(F') is a
split monomorphism by hypothesis, so (zi(F ))* is also an epimorphism. Since Hom(-, F') and
Hom(—, 7 (F')) are left exact functors, their derived functors Ext*(—, F') and Ext* (-, 7 (F"))
are universal J-functors. So there exist unique morphisms (z‘,’g(F )):L Ext™ (H ,F ) —
Ext" (H, Tk(F)) extending (z"ﬁ(F))* By unicity of the extending morphisms all the morphisms
(zi(F))Z are both split monomorphisms and zero. This implies that, for all n € N, the object
Ext"(H, F) is zero proving the statement if there exist k € FI; and = € FI;(0,k) such that
it(H) =0. For H an arbitrary functor in SN (FIz, R-Mod), we still have

H=r(H)= ¥ ¥ si(H).

keFIg 2eFI,(0,k)

By definition, for all k£ € FI; and all = € FI4(0,k), the morphism (s} (H)) is zero, so from
the previous point we get Ext*(x7(H), F)) = 0. Since the functor Hom(—, F') commutes with
colimits, its derived functors also commute with colimits because they are universal §-functors.
This implies the equality

Ext*(H,F):Ext*(z > ng(H),F):Z S Ext* (k{(H),F) =0.

k‘EFId mEFId(O,k}) k}EFId .Z’EFId(O,kJ)

2) By Proposition the functor mg is full up to inner isomorphisms, so the morphism
7q : Hom(G, F) - Hom(7ny(G),m4(F')) is surjective since we use skew categories (these in-
ner isomorphisms do not count) and we prove that it is also injective. Let o : G - F be
a natural transformation such that mgy(o) is zero, by Proposition its image Im(o) is in
SN (FI;,R-Mod). Since the category Fct(FI;, R-Mod) is abelian, the morphism o splits into
joe with e : G — Im(o) an epimorphism and j : Im(o) - F a monomorphism. Then j is in
Hom(Im(c), F) and Im(o) is in SN (FI;, R-Mod). From the previous point we get j = 0, so
o = 0. This means that m4(c) = 0 implies o = 0 and (since both categories Fct(FI;, R-Mod)
and St(FI;, R-Mod) are additives) it means that 7y is injective, so bijective. Now 74 is an
exact functor, so Hom(—, F') and Hom(my(-),m4(F")) are left exact functors, and their derived
functors Ext* (-, F') and Ext*(m4(-), m4(F')) are universal d-functors. Then there exist unique
morphisms

(mq)" EXt%ct(FId,R-Mod) (G7F) - Etht(FId,R-Mod) (”d(G)ﬂTd(F))

extending my. By unicity of the extending morphisms, all the morphisms (7my)* are also
isomorphisms.

3) This is the dual statement of point 1).

4) The constant functor R : FIZP — R-Mod satisfies the hypothesis of point 3) since,
for all £ € FI; and all € FI4(0,k), the morphism i (R) = R(Id+z) = Idr is a split
monomorphism. We then deduce that, for all functors H € SN (FI;, R-Mod), we have the
equality H, (FId, H) = Torfld (R, H) =0, so the functor H,(FI,, —) is zero on the subcategory
SN (F1;,R-Mod). Moreover the functor H.(FI;, —) gives a long exact sequence for every short
exact sequence in Fct(FI;, R-Mod). We conclude with Proposition [L.3.6] (with this long exact
sequence), and we get the existence of a unique functor h¥' (=) : St(FI;, R-Mod) — R-Mod,,
such that h¥% o1y = H,(FI,, -). O



110 Chapter 7. Weak polynomial functors on Fl,

7.2 Generalities on the category Pol,(FI;, R-Mod)

In this section we introduce the weak polynomial functors over FI;, which are the FI;-modules
that become polynomial objects of St(FI;, R-Mod) when passed to the quotient. To define these
polynomial objects of St(FI;, R-Mod) we use the endofunctors (5¢)St of St(FI,, R-Mod) from
Proposition for the different colours c € C. After the definition we give the basic properties
of these objects. In particular, we show in Proposition that, unlike to strong polynomial
functors, they form a thick subcategory of the quotient St(FI;, R-Mod).

Definition 7.2.1. The full subcategories of St(FI;, R-Mod) of polynomial objects of degree
less than or equal to n, denoted by Pol,(FI;, R-Mod), are defined by induction. By con-
vention, Pol_1(FI;, R-Mod) is zero and, for n € N, an object X of St(FI;,R-Mod) is in
Pol,, (FI,;, R-Mod) if

(69)8t (X) € Pol,,_1 (FI;,R-Mod) for all ce C,

where (6$)5t is the endofunctor from Proposition A Flj;module F is a weak polyno-
mial functor of degree less than or equal to m if its projection my(F') is in the subcategory
Pol,,(FI;,R-Mod) of St(FI;, R-Mod).

Remark 7.2.2. We say that a functor over F1; is weak polynomial if its image in the quotient
category St(FI;, R-Mod) by 7, is a polynomial object. By definition of the endofunctors (6¢)5*
we get that a strong polynomial functor is weak polynomial, but the converse is not true as shown
in Example [5.1.7] This justifies the terminology introduced by Djament and Vespa in [DV19].

Remark 7.2.3. In an abuse of notation, we sometimes also denote by Pol,(FI;, R-Mod)
the full subcategory of Fct(FI;, R-Mod) of weak polynomial functors of degree less than or
equal to n, i.e. the functors F such that 7y(F') is in the subcategory Pol,(FI;, R-Mod) of
St(FI;,R-Mod). In the contrary, we sometimes call by polynomial functors the polynomial
objects of St(FI;, R-Mod), even if they are objects of the quotient category.

One may expect that the image by the section functor of a polynomial object in the quotient
category St(FI;, R-Mod) gives a strong polynomial FI;-module with the same degree, but this
is not always true as shown in the following example.

Example 7.2.4. There exist polynomial objects of degree 1 such that their image by the section
functor is not a polynomial FIz-module of degree 1. We give an example for R = Z adapted from
[DV19, Example 5.3]. Let F': FI; > Ab be the kernel of the augmentation map Z[-] — Z, where
Z is the constant functor equal to Z and Z[-] is the linearization that sends an object n to Z"
and a map (f,g) € FIz(n,m) to the injection of Z" in Z™ along f. Then we get that 6{(F') = Zy;
for all ¢ € C and by the Example the functor F' is strong polynomial of degree 2. It is weak
polynomial of degree 1 since we have 740 §{(F') = mq(Zs1) = m4(Z) which is weak polynomial of
degree 0. We then compute that £(Z[-]) =0 and x(Z[-]) = 0 so, by Proposition [6.1.12] we get
Hom(H,Z[-]) =0 and Hom(H,Z) = 0 for all H € SN (FI;, R-Mod). Similarly, since Z[-] is pro-
jective we get Exty(H,Z) =0 and we deduce from the exact sequence 0 — F — Z[-] — Z

that F' is SN (FI;, R-Mod)-closed (Definition [6.1.10). Finally, Proposition [1.3.12] gives that
F 2 Sjomy(F), and we showed that m4(F") is polynomial of degree 1 while Sgo my(F) is strong
polynomial of degree 2.

We now prove that the subcategories Pol, (FI;, R-Mod) of St(FI;, R-Mod) are thick.
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Proposition 7.2.5. For all n € N, the subcategory Pol,(FI;, R-Mod) of St(FI;, R-Mod) is
thick, closed under colimits and stable by the endofunctors (14)5% and (67)5¢ for all k € F1,; and
all x e FI14(0,k).

Proof. The first assumption is proved by induction using Proposition [7.1.6] which implies that
all endofunctors (5¢)St are exact and commute with colimits. The second assumption is true
since 7, and d7 commute with §f as endofunctors of Fct(FI;, R-Mod), and it is still true when
they pass to the quotient as endofunctors of St(FI;, R-Mod) by Proposition O]

Using only the endofunctors (65)St for ¢ € C in Definition 7.2.1:seems a bit restrictive, but the
following lemma shows that, if we use all the endofunctors (67 ) for k € FI; and x € FI14(0, k),
we get an equivalent definition.

Lemma 7.2.6. An object X of St(FI;,R-Mod) is in Pol,(FI;,R-Mod) if and only if
(68)St(X) is in Pol,_1 (FI;, R-Mod) for all k € F1; and all x € F1;(0,k).

Proof. One implication is obvious by taking & = 1 and ¢ € C = FI;(0,1), we prove the
converse. For X in Pol,(FI;,R-Mod) and ¢,é € C, we prove that for ((5&0’6))St (X) is in
Pol,-1(FI;,R-Mod). By Proposition we have the identities mg o 7 = TISt o mg and
g o0 = (5/,f)st o mg, and by Proposition we have 740 k7 = 0. Applying the exact functor
mq to the exact sequence of Proposition .7) we get the short exact sequence

0 —— (0)Story — (556’5) VStomg —— 50 (65)Stomry —— 0 .

The co-unit of the adjunction of my and Sy gives a natural isomorphism 7 : 753 0 Sy ~ Id by
Proposition [1.3.10] so applying this exact sequence to the functor Sy(X), we get the following
short exact sequence in St(FI;, R-Mod):

0 —— (69)SH(X) —— (659 )SH(X) —— 7Pt o (61)SH(X) —— 0 .

By Proposition the subcategory Pol,,_1 (FI;, R-Mod) is thick and stable by 71, so the first
and last terms of the short exact sequence are in Pol,,_1(FI;, R-Mod) by hypothesis, and so

the middle term (5;0’5) )St(X) is also in Pol,_1(FI;, R-Mod). We then proved that for any

colours ¢,¢ € C, the functor (650’6))St (X) is in Pol,,—1(FI;,R-Mod) and we conclude simi-
larly, using the exact sequence of Proposition 7) in a general version, that ((5/,35)St (X) isin
Pol,,-1 (FI;,R-Mod) for all k£ € FI; and all z € FI;(0,k) by induction. O

Remark 7.2.7. For d = 1, the weak polynomial degree corresponds to the notion of stable degree
of [CEF15|] and [CEFN14] while the local degree precise how the weak and strong degrees are
linked. It morally gives the strong polynomial degree modulo the weak polynomial degree and
controls the rank from which the representation become stable. For example, in [CMNRIS§]| they
use these notions and spectral sequences to obtain representation stability results for two families
of FI-modules.

We end this section by showing that the precomposition by the forgetful functor O : F1; - FI
from Definition passes to the quotient and respects the polynomiality.

Lemma 7.2.8. The functor O* : Fct(FI,R-Mod) - Fct(FI;, R-Mod) passes to the quotient
and induces a functor O* : St(FI, R-Mod) — St(FI;, R-Mod) defined by the relation O* oy =
mgo OF.
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Proof. By Lemma we have an inclusion O* ( SN(FI,R-Mod)) c SN(FI;, R-Mod).
This shows that the composition mg o O* is zero on the subcategory SN (FI,R-Mod) of
Fct(FI,R-Mod). Since the functor O* is exact, we can use Proposition [1.3.4] which gives
the result. O

We now show that the precomposition by the forgetful functor preserves the polynomiality
when passed to the quotient categories.

Proposition 7.2.9. For n € N and X € St(FI,R-Mod), if X is in Pol,(FI,R-Mod) then
O*(X) is in Pol,(FIz, R-Mod), where O* : St(FI, R-Mod) - St(FI;,R-Mod) is the functor
from Lemma [7.2.8

Proof. We prove the result by induction on n € N, the case n = 0 is being a special case of the
following reasoning. For X € Pol,(FI,R-Mod) and c € C, we have the isomorphism

(65)3 0 O oy = (65)3 o mg0 O =g 080 O 2o O* 0y = O om 06 =0 0 (6) oy

given by Propositions 2.7.1] [7.1.6] and [7.2.8] Since the co-unit always gives an isomorphism
from 71 0 81 to the identity by Proposition [[.3.10] we conclude that there is an isomorphism
(66)Sto 0" = 0% 0 (61)5t. Finally, since (01)5¢(X) is in Pol,_1 (FI, R-Mod), we get that (6§)5to
O*(X) =2 0*0(61)5(X) is in Pol,,_1 (FI;, R-Mod) by induction. Since this is true for all colours
c e C, it implies that O*(X) is in Pol,(FI;, R-Mod). O

Finally, we explain in the following remark that the notion of weak polynomial functors
corresponding to another quotient category of Fct(FI;, R-Mod) by stably zero functors is more
complex and have less properties than in St(FI;, R-Mod).

Remark 7.2.10. We recall that the composition 74 o d; is an exact functor because of the
exact sequence from Lemma since k3 (F) € SN(FI;,R-Mod) by Proposition
For ¢i,,...,c,, € C some colours, in order to define the polynomial objects in the quotient of
Fct(FI;, R-Mod) by its thick subcategory SN%,M,CZ.M (FI;,R-Mod), we must check that the
endofunctors 6; pass to this quotient. However, if 7 denotes the quotient functor associated
with this quotient category, the composition 7 o ¢ is not an exact functor. Indeed, in general
K (F) is not in SN, | ¢ (FI;,R-Mod): for example, if FCE;I? is the functor from Example
sending all objects to R, the maps containing the colour ¢; to zero and the others to the
identity, then we see that x{'(F') = F' is stably zero in ¢; but not in the other colours. We must
then adapt Proposition [I.3.4]as we did in Proposition [I.3.6] by replacing the short exact sequence

of an exact functor by the exact sequence 0 > Ky > Id > Tk > Of > 0

from Lemma [2.6.4 This allows us, as in Proposition [7.1.6] to define the endofunctors
(ﬁg}g)Stci1 AAAAA “m and (5]95)5"(%17““'%7” of the quotient of Fct(FI;, R-Mod) by its thick subcategory
SN e, (FI5,R-Mod) by the relations

CigyeensCi

Ste.. ” St .
7'('05; — (6115) C'Ll ..... Cim oT and 7.[.0/{.]1; — (f{i) L,Ll ..... Cim oT.

We can then define polynomial objects in this quotient as we did for St(FI;, R-Mod) using
these endofunctors (5;”5,)8%1'1 """ “m . The problem is that, during this process, we lost the fact

that the endofunctors xj become zero in the quotient. We then also lost the exactness of

the endofunctors (5?)5'““2'1"“’%1, which is fundamental to study the polynomial objects of the
quotient. For example these subcategories of polynomial objects in this quotient do not seem to

be closed under subobjects.
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7.3 The pointwise tensor product

In this section we show that the pointwise tensor product respects polynomial objects of
St(FI;, R-Mod), as for strong polynomial FI;-modules (Section but with a simpler ar-
gument. To do this we introduce a long exact sequence of vector spaces connecting the kernel
and the cokernel of the tensor product of two linear maps. We then use it to obtain a natural long
exact sequence of functors associated with the tensor product of the two maps if(F') : F' - 7,(F)
and i} (G) : G - 7(G) of Definition . Finally, we use a part of this exact sequence to prove
by induction that the tensor product preserves polynomial degree, with more precise bound than
for the strong degree. Since this argument requires the stability by subobject, it does not work
for strong degree which is why we used the arguments of Section [5.5] In this section we assume
that R =K is a field but all the statements are true if we consider only flat R-modules and mor-
phisms of R-modules with flat kernels and cokernels. We start by showing that the pointwise
tensor product from Definition m passes to the quotient St(FI;, K-Vect).

Lemma 7.3.1. The pointwise tensor product from Definition passes to the quotient of
Fct(FI,;, K- Vect) by the subcategory SN (F14,K - Vect), which gives a functor

® : St(FI;, K - Vect) x St(FI,, K - Vect) - St(F1;, K - Vect).

Proof. If F or G is in the subcategory SN (FI;,K-Vect), then so is F ® G. Indeed, we can
compute for all n € F1; that

colim (F®G)o&;(ny,...,ng)= colim Fo&y(ni,...,ng)® colim Go&y(ny,...,ng)
(nl,...,nd)eNd (n1,...,nq)eN? (n1,...,nq)eN?

since on vector spaces the tensor product commutes with colimits. By Proposition if F
is in SN (FI;,K-Vect) then the colimit of F o &y is zero, and so is the colimit of (F ® G) o &,.
Using Proposition again, this implies that F' ® G is in SN (FI, K-Vect) and it is similar
if G is in SN (F1;,K-Vect). Now the functor ® : K-Vect x K-Vect - K-Vect is exact since
every vector space is flat which implies that the pointwise tensor product ® of FIz-modules over
K is also exact. We can post-compose it with the exact functor 74 and, using Proposition [I.3.4]
two times, we get an exact tensor functor on the quotient as stated. O

We now introduce a lemma about the tensor product of linear maps, which we will use to
construct the long exact sequence of Proposition [7.3.4]

Lemma 7.3.2. Let f: X - Y and f': X' =Y’ be two linear maps between K-vector spaces, the

two exact sequences associated with their kernel and cokernel 0 — K N i> Yy B¢ —o0

and 0 — K' 5 X' Ly’ 25 0" 50 can be combined to form the following long exact

sequence associated with the tensor product f ® f':

0 KoK (Idg cbz")ela(iezaldK,)> (K ® X') ® (X ® K') (i®Id xr)-(Idx <xn")> XoX
lf@f’
0+— CoC' < (CoY)e(Yol) < Yev

“(Ide ®p')-(p®Ider) (peldy )@ (Idy ®p')

Proof. The kernel K of f is a vector subspace so we can choose a complement S such that
X = K@&S. Then the classical isomorphism X/Ker(f) = Im(f) gives an isomorphism Im(f) = S.

By definition we also have C = Coker(f) = Y/Im(f)a which means that C = Y/g and that
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Y 2 C' @ S since every short exact sequence of vector spaces splits. Then we have a new exact
sequence

Id i @0 Oeld Idec @0
K s KeS —=2 s (CaS c= 5 C » 0,

0 > K

and there is a natural equivalence between this exact sequence and the one with f from the
statement since the following diagram commutes

0 s K U s X ! % P s O s 0
0 > K i 80 >K@STMS>C@S g 00 s C > 0.

The same construction works for f’ and we can combine the two commutative diagrams (for f
and f’) with the tensor product to make the following sequence equivalent to the one of the
statement:

Vior' ®ld (K@ K')® (K ®S")
o(SeK e (S® S5’

lomdms,

(CeCHe(CeS)
Acger®lded (S C )@ (S®S')

A r @0
0 5 Kok’ —5" % (Ko K)?e(KeS)e(SeK')

0+ CoC' +——— (Ce 0?0 (CeS)a (Se ()
VC®CI@O

where Agexr : K ® K' - (K ® K')®? is the diagonal map and Viex: : (K ® K')®? - K @ K’
is the identity on the first component and minus the identity on the second one. We can check
at each term that this sequence is exact since it consists only of zero and identity maps. This
implies that the long sequence of the statement is also exact since they are equivalent. O

Remark 7.3.3. The proof of Lemma is not canonical since it depends strongly on the
choice of the complements S and S’ of K and K’ in X and X'.

To study the tensor product of polynomial functors we use the exact sequence of vector spaces
of Lemma to induce a similar exact sequence of functors associated with the endofunctors
k7 and 7.

k k

Proposition 7.3.4. Let R =K be a field, then for F,G in Fl1;-Mod = Fct(F1,, K - Vect) there
is an exact sequence of functors associated with the tensor product if,(F') ® i} (G):

0 — KI(F) ® 1Y(G) —26¥, (r(P) e G) e (Fer!(Q)) —E248e |, peq

Proof. For n e FI;, we apply Lemma to the two exact sequences of vector spaces

0 —— k2(F)(n) — F(n) — D0 o (F)(n) —— 62(F)(n) —— 0

and

(G (n
0 —— K¥(G)(n) AU

2\

G(n)

n(G)(n) — 6/(G)(n) — 0,

~
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obtained from the exact sequence (|IJ) from Lemma . It implies that, for all n € FI;, the long
sequerice of vector spaces corresponding to the one of the statement evaluated in n is exact. This
exact sequence of vector spaces is natural in n € FI; by the definitions of the endofunctors 7y,
0y, ki and of the tensor product. O

In the following result we extract a short exact sequence from the long exact sequence of
Proposition that we will use to prove the Theorem

Corollary 7.3.5. Let R = K be a field, for F,G € FIgj-Mod there is a natural short exact
sequence

0—— §(FeG) — (H(F)em(G)) @ (me(F) ® 68(G)) —— 07 (F) ® 57 (G) — 0.

Proof. By definition of the pointwise tensor product we get 7.(F ® G) = 7.(F') ® 7,(G) and
it(F®G) =i (F)®i;(G). The exact sequence from Lemma associated with the
functor F'® G can then be written as

17 (F®G)

0 —— K(FRG) — FeG
R (' ®G) ® =it (F)®it (G)

> (F) @ 7, (G) —— (FG) —— 0 .

We then get the short exact sequence of the statement by splitting the long exact sequence of
Proposition for k=1 and = =y with the following epi-mono factorization:

H(F) @ h(G) — SH(F @ G) —— (§¢(F) @ m(G)) @ (me(F) ® 67(G))

which holds since Coker (if(F) ® iz (G)) =67 (F e G). O

We finally prove that the pointwise tensor product respects polynomiality. In addition to
providing numerous examples of polynomial FI;-modules, an interesting application of this the-
orem is to give a second proof (in Theorem that the quotient of P¥! that we study in
Section is weak polynomial of degree n.

Theorem 7.3.6. For R =K be a field, X € Pol,,(F1;,K-Vect) and Y € Pol,,(FI;, K - Vect), we
have X ® Y € Poly, 4 (F1i, K - Vect).

Proof. We proceed by induction on n, for m fixed. By symmetry we also have the result for n fixed
as m varies and the two together give the result for all n,m € N. For X in Pol,,,; (FI;, K-Vect)
and Y in Pol,,(FI;,K-Vect), by Corollary we have a short exact sequence

0 —— F(FeG) — (5(F)em(G)) @ (th(F) ® 65 (G)) —— §(F) ® 65(G) —— 0.

associated with the FIz-modules F' = S§3(X) and G = §;(Y). As shown in Lemma we have
a(F) @ mg(G) = mq(F ® G), so we can apply the exact functor 74 to this short exact sequence.
Because of the isomorphisms 74 0 6} = (5%)3t oMy, Tgo Tk = TkSt omg and mg o Sy 2 Id from

Propositions [7.1.6| and [1.3.10] we get the following short exact sequence in St(FI;, R-Mod):

((6)% () ® (0)%(Y))

0= GDPXOY) = o s (x) 8 (51)3())

— (57)%(X) ® (5)%(Y) — 0

By hypothesis, (65)St(X) is in Pol,(FI4,R-Mod) for all ¢ € C. Since the subcategory
Pol,,,(FI;, R-Mod) is stable by (71)5% and (6¢)St by Proposition 7.2.5, we get by induction that
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both (65)S(X) ® (11)54(Y) and (71)5%(X) ® (6§)54(Y) are in Pol,ypm(FIg, R-Mod). Using
Proposition again, this subcategory is closed under subobjects so the short exact sequence
above implies that (65)St(X ® Y) € Pol, . (FI4, R-Mod) for all ¢ € C, showing that X ® Y ¢
Poly+m+1(FIz, R-Mod). For n = 0, since (67)5¢(X) = 0, the above short exact sequence gives
an isomorphism (5$)SY(X @ V) = (71)54(X) ® (6¢)St(Y) with (71)5¢(X) € Polo(FI;, R-Mod)
and (55)5¢(Y) € Pol,,,_1(FI4,R-Mod). We conclude this case by induction on m € N to prove
that X ® Y € Pol,, (FI;, R-Mod). 0

Remark 7.3.7. Since the method used in the proof of Theorem requires the stability by
subobject, it does not work for strong degree. This is why we used a different argument in
Section to prove that the pointwise tensor product preserves the notion of strong polynomial
FI;-modules.

7.4 Description of Poly(FI;, R-Mod)

In this section we give a description of the category Poly(FI;, R-Mod) of polynomial objects
of St(FI;,R-Mod) of degree 0. These functors are actually given by an object M of the
category R-Mod, together with d — 1 automorphisms of M which commute two by two or by
a R[z3!,... 23! ]-module. More precisely, we define R-Mod, the category whose objects are
the tuples (M, @o,...,pq), where M is an object of R-Mod and 9, ...,pq: M — M are d -1
isomorphisms in R-Mod commuting two by two and we prove the following in Theorem

Theorem. There is an equivalence of categories Poly(FI;, R-Mod) = R-Mod, given by the
functor g0 Oq, where ©g(M, pa,...,pq) is the functor that sends all objects k in FI; to M and
a morphism x = (¢j,,...,¢;,) € F15(0,k) to @j;, o0 j,, with ¢ =1d.

Since R-Mody is equivalent to the category of R[z3!,... 23! ]-modules (see Remark
we also have an equivalence between Poly(FI;, R-Mod) and R[z3',...,2%']-Mod. For d = 1
we recover a special case of [DV19, Theorem 2.26] which says that, for FI, the only objects in
Poly(FI,R-Mod) are the constant functors, and that the equivalence is given by ma o ¢, where
¢:R-Mod — Fct(FI,R-Mod) sends M € R-Mod to the constant functor M.

We prove the Theorem in two steps: first we define an abstract condition (POLO)
and we show in Proposition that the polynomial objects of degree 0 are those which satisfy
this condition. Then we show that the objects satisfying the condition (POLO) correspond to
the objects of R-Mody.

Definition 7.4.1. An object X of St(FI;, R-Mod) satisfies the condition (POLO) if, for all
k € F1; and all x € FI1;(0,%), the morphism

ix(Sa(X) ) = Sa(X) (1) +2) + Sa(X)(=) — 7 (Sa(X))(-),
is an isomorphism, where S, is the section functor of Lemma [7.1.5

Proposition 7.4.2. An object X of St(F1;,R-Mod) is in Poly(FI;, R-Mod) if and only if it
satisfies the condition (POLO) from Definition |7.4.1}

Proof. If X satisfies the condition (POLO0), then for any c¢ € C' the morphism §(S;(X)) is an
isomorphism, so its cokernel 6.(Sz(X)) is zero. Then we have

658 (X) 2 65% 0 g 0 S4(X) ~ g0 0c( Sa(X) ) 2 m4(0) =0,
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where the first equivalence is given by the co-unit nx : 740 Sy(X) 2 X of the adjunction of 7y
and Sy (Proposition and the second by Proposition This shows that 65%(X) =0
for all ce C, so X is in Poly(FIz, R-Mod). Conversely, if X is in Poly(FI;, R-Mod), we show
that for any k € FI; and any x € F1;(0,%) the morphism i%(Sq(X)) is a monomorphism and an
epimorphism in the abelian category Fct(FI;, R-Mod), i.e. an isomorphism. First, since X is
in Poly(FI;, R-Mod) by Lemma the functor (67)5%(X) is zero and so we have

51 (Sa(X)) = Sae (57)%(X) = Sa(0) = 0,

where the monomorphism is given by Proposition [7.1.10l This proves that if(Sq(X)) is an
epimorphism. Moreover, by adjunction of 7y and Sy we have, for all H € SN (FI;, R-Mod):

Hompet(r1, R-Mod) (H,Sa(X)) = Homggpr, R Mod) (7a(H ), X ) = Hom (0, X) = 0.

By Proposition [6.1.12] this implies that £(S;z(X)) = 0. Since the endofunctor x is the sum of all
the 7, the minimality of the sum implies that all x7(S¢(X)) are zero. We then have xj; = 0 and
so ¢y 15 a monomorphism. O

Remark 7.4.3. The Proposition and the definitions of strong and weak polynomial FI-
modules give the following two characterizations for the degree 0:

e A functor F' € Fct(FI;, R-Mod) is in Polgtm"g(FId, R-Mod) if and only if the morphism
iz (F') is an epimorphism for all k € FI; and all z € FI4(0,k).

e An object X € St(FI;,R-Mod) is in Poly(FI;, R-Mod) if and only if the morphism
i7(Sa(X)) is an isomorphism for all k € FI; and all x € FI4(0,k).

For d = 1, the first point is included in [DV19, Proposition 2.9] and the second in the proof of
[DV19, Proposition 2.26]. For F' € Fct(FI;, R-Mod) and X € St(FI;, R-Mod) by applying the
exact functor my to the exact sequence (|I) from Lemma by Proposition we have the
following:

e If X is in Polg(FL;, R-Mod) then Sy(X) is in Pol{” " (FI;, R-Mod),
o If F is in Pol}"*"(FI;, R-Mod) then m4(F) is in Poly(FI;, R-Mod).

Note that the first point is very specific to the degree 0, while the second one is true in general

(see Remark [7.2.2]).

We now give an explicit description of the functors satisfying the condition (POLO0),
which will be used to prove Theorem First recall that by Definition if X e
St(FI;, R-Mod) satisfies the condition (POL0), then Sy(X)(c}F) is an isomorphism for all
k € FI;. Using this, the Proposition and the category FI; given in Definition we
define a functor Hx isomorphic to Sg(X) and we give an explicit description of this functor.
This equivalence is essential for the proof of Theorem

Definition 7.4.4. For X e St(FI;, R-Mod) satisfying the condition (POLO0), the functor Hx :
FI; - R-Mod is given on an object n € FIg by Hx(n) = S3(X)(0), and on a morphism
x e F1;(0,k) = F15(0,k) by

Hx(z) = (Sa(X) (1) ) 0 Su(X) (2),

where ¢; is a fixed colour, and by the identity on FI4(k, k) = FI1;(k, k) = S.
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This functor extends to a unique functor Hx : FI; -~ R-Mod by Proposition [2.5.4] since
it sends every morphism to isomorphisms. We now explain how the functor Hx is completely
determined by its image on the morphisms ¢ € FI4(0,1) = C using the subcategory FIg of FI;
from Definition These images correspond to the d — 1 isomorphisms of modules of the
category R-Mod, as we trivialize the action of ¢;.

Proposition 7.4.5. If X € St(FI;, R-Mod) satisfies the condition (POLO), then Hy is deter-
mined by the images
-1
Hx(e)= (Sa(X) (c1) ) 0Sa(X) (€) = Sa(X)(0) = Sa(X)(0)
for ce C and by the relations Hx(c) o Hx(c') = Hx(c") o Hx(c) for ¢,c' e C.

Proof. For x € F1;(0,k) and y € F1;(0,1), by applying the functor Sg(X) to the relation (Id; +x)o
b = (¢} +1dg) o in FI; we get Sy(X) (Id;+2) 0 Sa(X) (¢)) = Sa(X) (¢} +1dy, ) 0 Sa(X) (2).
Using this, by definition of Hy, we get the identities

Hx(z) 0 Hx(y) = (Sa(X) (f) ) 0 8a(X) (2) o (Su(X) () ) 0 Sa(X) ()
= (Sa(X) () )Mo (Su(X) (dh +1dx ) 0 8a(X) (1d;+2) 0 Sa(X) (1)

(8a(X) (™) ) 0 84(X) ((y,))
= Hx((y,2)).

This proves that for any two morphisms z, y starting from 0 we have the relation Hy (x)oHx (y) =
Hx (y,x) and by induction we conclude that Hy is determined only by the imag? Hx (mf the
colour morphisms ¢ € FI;4(0,1). Finally, since S4(X)(c*) is an isomorphism for all k € FI; and
all ce C, we have S4(X) (y,z) = S4(X) (y,z) by Proposition 2.5.1] This gives for ¢,¢ € C, with
the previous relations, the identity

Hy(c) o Hy(?) = Hy((2.0)) = Hx((e.) ) = Hx (&) o Hx(c).

Finally, any family of commuting isomorphisms (HX(C)) o of Sa(X)(0) (ie. satistying the

€
identities Hx (c) o Hx(¢) = Hx(¢) o Hx(c) for c,c e C) determines a unique functor Hx : FIg —

R-Mod by the formulas above. O

Proposition 7.4.6. If X € St(FI;, R-Mod) satisfies the condition (POLO0), then Hy is deter-
mined by the images Hx (c) = ( Sa(X) (c1) )_1 0Sg(X) (¢) : Sg(X)(0) = Sy(X)(0) for ceC,
and by the relations Hx(c) o Hx (") = Hx(c") o Hx(c) for ¢,c' € C.

Proof. Tt is a consequence of Proposition and Proposition [2.5.4] which state that a FI4-
module is determined by its underlying functor over FI. O

We now prove that, for X e St(FI;, R-Mod) which satisfies the condition (POLO0), the
functor S4(X) is equivalent to the functor Hx of Definition This allows us to conclude
that the FI;-module Sy(X) is determined by its image on the colouring morphism ¢ € C', which
is the key point in the proof of the theorem.

Lemma 7.4.7. For X € St(FI;,R-Mod) satisfying the condition (POLQ) there is a natural
equivalence € : Hy 2 S4(X) given by e, = Sg(X)(c}) : Hx(n) = Sg(X)(0) - Si(X)(n) for
ne FId.
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Proof. Let u € FI;(n,n+m) be a general morphism in FI;, the identity
Hx (cf) = Hx (1) = (Sa(X) (¢1)) ™ 0 Sa(X) (¢}') =1d

gives that Hx (u) = Hy (uoc}) = ( Sa(X) (c7*™) )_1 084(X) (uoct). This implies the naturality
of e
e 0 Hx () = S4(X) (1) 0 Hy(u) = Sa(X) (o e})) = Sa(X) () 0 2.

Finally, € is a natural equivalence by definition of the condition (POLO). O

Finally, we define the category R-Mod,; which will be isomorphic to the category
Poly(FI;, R-Mod) of polynomial objects of degree 0. The equivalence is given in Theorem
412

Definition 7.4.8. The category R-Mod, has for objects the tuple (M, V2, .. .,gpd), where M
is an object of R-Mod and ¢s,...,0q : M - M are d — 1 isomorphisms in R-Mod which
commute two by two. The morphisms in R-Mody from (M, ¢a,...,¢q) to (M', ©5,...,¢))
are the morphisms f: M — M’ in R-Mod such that gp} of=foypj;forall 2<j<d, and the
composition in R-Mod, comes from R-Mod.

Remark 7.4.9. The category R-Mody is equivalent to the category R[z%!,... ,231]-Mod of
modules over the ring R[z3?, ..., le] of commutative polynomials in the d—1 variables xo, ..., 24,
all invertible. The equivalence is given by the functor that sends a R[z3,..., 23! ]-module M
to the tuple (M, @a,...,¢q), where p; is given by the action of the variable x; for 2 <i < d.

We use the subcategory F1; of FI; to define the functor ©4 which gives the equivalence of
categories in Theorem [7.4.12

Definition 7.4.10. The functor ©4 : R-Mod,; — Fct (F_Id, R—Mod) is given on an object
(M, p2,...,04) by ©q(M, pa,...,0q) (k) = M, for all k € FI;, and for = = (¢j,,...,¢5,) €
FI,;(0,k) by ©4(M, v2,...,¢4) (Cjy,---,Cj,) = @j, 00 gojk,_where 1 denotes the identity.
The image of a morphism f from (M, @, ...,¢q4) to (M', @}, ... ,¢l) by ©g is the natural trans-
formation ¢ defined by e, = f: M - M.

Remark 7.4.11. Since the images of the morphisms by ©4(M, @2, ..., pq) are all isomorphisms,
this definition is extended to obtain a functor ©4 from R-Mod, to Fct(FI;, R-Mod) using
Proposition 2.5.4]

We end this section with the theorem describing the polynomial functors of degree 0.

Theorem 7.4.12. There is an equivalence of categories Poly(FI;, R-Mod) =z R-Mod, given
by the functor myo ©, : R-Mody - St(FI;, R-Mod).

Remark 7.4.13. For d = 1, since R-Mod; = R-Mod we recover the description of
Poly(FI,R-Mod) given by Djament and Vespa in Theorem 2.26 of [DV19]:

Poly(FI, R-Mod) = R-Mod.

Proof of Theorem [7.4.12 First we prove that the essential image of w4 0 ©4 is the subcategory
Poly(F1;,R-Mod): for (M, ¢2,...,¢04) € R-Mod, and c € C, we have

058 (mg0Oa(M, ¢2,...,04)) =ma(0:(Qa(M, ¢2,...,04))) = 7a(0) =0,
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where the first equality is given by Proposition and the second comes from the fact that
O4(M, pa,...,0q) (Id+c) is an isomorphism. This shows that the image of the functor 740 Oy
is in Polp(FI;, R-Mod). Now if X is in Poly(FIz, R-Mod) it satisfies the condition (POLO)
by Proposition and, by Lemma , the functor Sy(X) is equivalent to the functor Hx
which is exactly the image of

My = (Sa(X)(0). (8a(X) (e1) " 0 Sa(X) () ..., (Sa(X) () 0 Sa(X) (ca) )

by the functor ©4 by Proposition [7.4.6] By Proposition [1.3.10|the co-unit of the adjunction of 7y
and Sy is always an isomorphism from m;08, to Id and, since my is exact, we get the isomorphism

XE?TdOSd(X)E?TdOHXgﬂ'do@d(Mx).

Finally, we show that the functor my0 Oy is full and faithful. The functor O is faithful since we
have (©4(f))o = f for any morphism f in R-Mod,. For € a natural transformation between
O©4(M, p2,...,¢04) and O4(N, 12, ...,1q), by naturality we have the relations €1 o ¢; = 1; 0 g9
and Eno((pjn 0---0g0j1) = (1/)jn 0~--0¢j1)050 forall 1<7,51,...,Jn <d with @1 =19 =1d. Using
the second relation with j; =--- = j, = 1 we get ¢, = g¢ for all n € FI;. The first relations then
give g9 o p; = 1 0eqg for all 2 < j < d. This means exactly that € = ©4(eo : M - N), so the
functor Oy is full and faithful. Moreover, the functor ©4(N s, ...,14) sends all morphisms to
isomorphisms which are split monomorphisms. Then it satisfies the hypothesis of Proposition
so the functor 7y is an isomorphism on arrows and, with the previous point, we get a
natural bijection

HomR-Modd ( (Ma P2, 790d) ) (N> o, ... 7wd) )
= Hocht(FId,R—Mod) ( @d(M’ P25 @d) ) @d(Na ¢27 o ﬂﬁd) )
Hom sy (p1, R Mod) ( 7a© ©a(M, ¢2,...,04) , a0 Oa(N, s, ..., 0q) ).

12

IR

This shows that the functor mg o ©4 is full and faithful and that its essential image is
Poly(FI;, R-Mod). O



Chapter 8

Weak polynomial quotients of the
projective standard functors

By Proposition the standard projective generators PYld from Definition , which
form a very important family of FIz-modules, are not polynomial for d > 1. Since the fact
that they are polynomial for d = 1 simplifies the study of polynomial FI-modules, we give
different examples of quotients of the functors P¥l¢ which are (weak) polynomial. In addition
to give some concrete examples, these quotients may give us a better approach of what the
polynomial functors on FI; look like. The first examples are a family of quotients of the
functor P[F Id, obtained in Section by filtering its generators by the number of occurrences
of the colours, which are weak polynomial of degree 0. We also show that the image of
these quotients in St(FI; R-Mod) is equal to the image of a constant functor. Then these
functors correspond, through the equivalence of categories given in Theorem giving the
description of Poly(FI;, R-Mod), to the object (R,Id,...,Id) of R-Mody or to the trivial
R[z3!,..., 2% J-module.

In Section We show that the quotient of the functor PF1¢ by the subfunctor corresponding
to the action of the symmetric groups by post-composition is weak polynomial of degree 0.
However, we explain that it is not easy to find the corresponding object of R-Mod, through
the equivalence of categories giving the description of Poly(FI;, R-Mod) since the passage to
the quotient category is not explicit. In Section we give a quotient of PY¥ e which is weak
polynomial of degree n, obtained as the quotient by the action of the symmetric groups on the
colour choices. To prove this we use a formula from Proposition [8.3.8| which links this quotient of
PFla with PF and the functor POc ¢ over the category Cq, introduced in Definition whose
objects are the integers and whose morphisms from n to m are the unordered choice of m —n
colours in C. Finally, in Section we construct a quotient of P¥14 that is weak polynomial of
degree i for any i € N using the above formula and similar quotients of PT]; I

8.1 Weak polynomial quotients of POF L

In this section we give examples of quotients of the functor POF L4 which are weak polynomial

of degree 0 by filtering its generators by the occurrences of the colours. We begin with a first
. FI, . e . .

example where we quotient F, " by identifying all its generators.

Definition 8.1.1. For n € F1;, the submodule Go(n) of POFId (n) is given by
Go(n) =(a-ct|aeFIy(0,n))
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that is the submodule generated by the elements a — ¢} for a € FI;(0,n).
Lemma 8.1.2. The submodules Go(n) of P(Fld (n) define a subfunctor Gy of PUFId,

Proof. For (f,g) € FI;(n,m) and a - ¢} a generator of Go(n) we have

POFId(fvg) (Oé—C;L)Z(f,g)OOZ—(f,g)OC?.

We then deduce from the equality (f,g)oa—(f,g)oc! = ((f,g)ca—-c")-((f,g)oc]—c]") that
Pg':ld(f,g) (a—c}) is in Go(m). This shows that POFId(f,g) (Go(n)) is a submodule of Go(m)
and so Gg define a subfunctor of Pg? L, O

We show that this quotient of POF Td jg strong polynomial of degree 0 as it is a constant functor.

Proposition 8.1.3. The quotient P(Fld/GO is the constant functor equal to R and, in particular
it is in Pol}""™(F1,;, R-Mod).

Proof. For n € Fly, the quotient POFId/GO (n) is the module generated by the class ¢ of cf, so
it is isomorphic to R. For (f,g) € FI;(n,m) we have P§Id/GO (f,9) (¢}) = (f,g)oc}, but in
the quotient we have (f,g) o ¢} = ¢[*. This shows that Pgld/go (f,g) sends the basis element

of Pgld/go (n) to the basis element of POFId/GO (m) and so it is the identity of R. Finally, a
constant functor is in Pol}*"¢(FI;, R-Mod) by Example [5.1.7] O

We now generalize this example by identifying only the morphisms with at least ¢ occurrences
of ¢; and we show that it gives weak polynomial quotients of PSr T We first recall that a morphism
o in FI4(0,n) corresponds to a choice of n colours in C(® = {¢1,...,¢4}. In the following, we
then denote by 7% () the number of occurrences of ¢ in «a, for 1 <k < d.

Definition 8.1.4. For i € N and n € FI;, the submodule G;(n) of POFId (n) is given by
Gi(n) =(a-c|aeFI;(0,n), 1(a) >1)
that is the submodule generated by the elements a — ¢, for a € FI;(0,n) such that v (a) > 3.
Lemma 8.1.5. The submodules G;(n) of Pgﬂd(n) define a subfunctor G; of POFId.
Proof. 1t is similar to the proof of Lemma 8.1.2 O

We show now that the quotient of PSF La by its subfunctor G; is weak polynomial for all ¢ € N.

Proposition 8.1.6. Forie N, the quotient P(Fld/Gi s weak polynomaial of degree 0, which means
that 74(Py | :,) € Polo(F1;, R-Mod).

Proof. For n € F1;, we have by definition

FI, _R [aeFId(O,n)]
By /Gi(n)_ /(a—cﬂaeFId(O,n),’yl(a)zi).

This quotient module is generated by the class @ of ¢f and by the classes @ for o € FI;(0,n)
such that v1(«) < i. For ¢ € C, the module 5f(POFId/Gi) (n) is the cokernel of the morphism
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P(FI‘Z/GI. (Id,, +¢). This morphism is obtained as R[(Id,, +c).] passing to the quotient by Gj.

Since (Id,, +c). sends ¢} to (c},c) = ¢?*!, this gives for n > i the formula

f(POFId/Gi) (n) =(@|aeFLy(0,n+1), v1(a) <i, and a # (B, c) with 8 € FI;(0,n)).

For (f,g) € Flz(n,m), the map 5f(P§Id/Gi) (f,g) is obtained as the morphism R[(f,g)*]
passing to the quotient of POFId by G;, then to the cokernel 5;(P51d/gi). In particular, for
neFIy and (f,g) = (Id, +c}) e FIz(n,n + i) this gives that

.l ¢, pFI ¢, pFI i

i (05(R 6)) = (R G) (i +h) = 0.

Then Iifll 0 5f(P§Id/Gi) is equal to 5f(POFId/GZ.) since it is the kernel of this map, and so
(5{(POFId/Gi) is in SN, (F1;, R-Mod) by Definition [6.2.1} Using Proposition |7.1.6| we get that
7a(Po "/ G.) € Poly(FI,, R-Mod). 0

These examples are part of a family of weak polynomial quotients of Pg? L4 obtained by filtering
its generators by the number of occurrences of the different colours. Indeed, for d integers
ki,...,kq € N we can define a family of subfunctors indexed by the subsets I of A = {1,...,d}.
After introducing some notation, we define these subfunctors of Pg? Id, denoted by Gr ;.. k-

Definition 8.1.7. For ky,...,k; € Nand I a subset of A = {1,...,d}, the morphism « € FI;(0, k)
satisfies the condition (Prg, . k) if vi(a) > k; for all i € I, or if there exists j € {c1,...,cq} N T
such that vj(a) > kj, where v;(a) denotes the number of occurrences of ¢; in .

Definition 8.1.8. For kq,...,kq € N, n € FI; and a subset I c A, the submodule G,
FI, ..
of Py ¥(n) is given by

..... ka (1)

Grhy,..ky(n) = (a - X |a € F14(0,n) that satisfies the condition (P[’klpnjkd))

that is the submodule generated by the elements o — X, for o € FI;(0,n) satisfying the condi-
tion (Prg,.. k,) from Definition and X € FI;(0,n) is a given morphism in satisfying the
condition (Pr ... ky)-

Lemma 8.1.9. The submodules Gry, .. r,(n) of POFId(n) define a subfunctor G, .k, of POFI"’.

Proof. This is similar to the proof of Lemma For any morphism (f,g) € FIz(n,m)
the morphism P(Fld(f,g) is the linearization of the post-composition by (f,g) which can
only add more colour and increase ;. So for any n € N we have an inclusion of modules

PEY(f,9) (GCrpy.ky(n)) in Gy kg (m). O

111111111

Remark 8.1.10. The subfunctor G; given in Definition is a particular case of Definition
In fact, we have G 40...0 = G;.

In general, the cases I = @ and I = A are easy to describe. Indeed, for n € N, we have
Gy, ky(n) =(a—X|aeFIL;(0,n), 3j € AN I such that v;() > k;) = G, vevi, (n),
and
Gagky.. k() =(a-X|aeFI;(0,n), Vie Avyi(a) > k;) = Ggypenky (n).

We prove in Proposition [8.1.15|that the quotient of POFI"’ by the subfunctor G, . 1, is weak
polynomial of degree 0. To do this, we define a similar family of subfunctors Fry, ., of P(F La

and we show that the quotient by these subfunctors are stably zero. Then, we show in Lemma
8.1.14{ that the quotient of Pg‘?l’i by Grk,,..k, is constant modulo this stably zero quotient.
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Definition 8.1.11. For kq,...,kg € N, n € FI; and a subset I c A, the submodule Fyy, ., (n)
FI, o
of Py "4(n) is given by

Fri,. kg, (n)= (a € F1;(0,n) |« that satisfies the condition (PI,k1,...,kd)>

that is the submodule generated by the elements a € F1;(0,n) satisfying the condition (Pr, . k,)
from Definition

Lemma 8.1.12. The submodules F j, . r,(n) ofPOFId(n) define a subfunctor Fr, .k, of POFId.

d

Proof. 1t is similar to the proof of Lemma 8.1.9 O
The cases I =@ and I = A are easy to describe. Indeed, for n € N, we have
Fopy,hy(n) =(aeF1;(0,n)|3j € AN I such that vj(a) > kj) = Fiy vk, (1),

and
ky(n) =R [ae F1;(0,n)|Vie Ayi(a) > ki] = Fiynenky ().

All the subfunctors Fyy, . 1, behave in a similar way so we can consider them all at once,
independently of the subset I ¢ A and of the d-tuple (k1,...,kq). Indeed, in all cases the quotient
of POF La by one of these subfunctors is stably zero as explained in the following proposition.

Proposition 8.1.13. For ki,...,kq € N and I c A, the quotient of P(Fld by its subfunctor
Frgy ...k, @5 in the subcategory SN (F1;,R-Mod) of Fct(F1;, R-Mod). In particular, we have

Td (POFId/FI,kl,...,kd) =0.

Proof. By definition, the functor POFId/FI . is given on an object n € FI; by the quotient
of R [ € F1;(0,n)] by its submodule F7,  x, (n) from Definition |8.1.11] which gives

POFId/FMMkd (n) = (@ € FI4(0,n)|3i € I such that v;(«) < k;, and Vje AN, vj(a) <kj).

. FI . S
However, the morphism £y d/F[ . (Id¢-y + (c’fl, . ,csd)) is zero since it is given by the

map Pgld (Idy+ (..., csd) ), which is the linearization of the map (Id(_ + (..., csd) )« s
passing to the quotient. The functor

k k
(0117...,Cdd) FId
Ry oty (PO /F17k1w~7kd)

being the kernel of this morphism, it is equal to Pg’? Ta / Fl by itself, showing that the quotient
of PYM by Fyp, .k, is in SN (FI;, R-Mod). | 0

The quotients of Pgﬂd by Gk, .k, and by Frp,  r, are linked in a short exact sequence by
a constant functor as explained in the following.

Lemma 8.1.14. For ki,...,kqg € N and I c A, there is a short exact sequence in
Fct(FI;, R-Mod):

FI, FI,
0 >R > 0 Gry ok » B /Ff,kl,...,kd > 0.



Chapter 8. Weak polynomial quotients of the projective standard functors 125

o I . . . .
Proof. By definition, the functor P(F d/G[ ky.ky 1S glVerL on an object n € FI; by the quotient

of R [a € F1;(0,7n)] by its submodule Gy, ., (n) from Definition which gives
P(fld/GI " (n) = ({X}u{a|3iel such that ;(a) <k;, and Vje AN, 7v;(a) <kj}).

Then, the quotient of POFId (n) by Gr ...k, (1) is generated by the class X of the fixed morphism
X, and by the classes @ corresponding to the generators of the quotient POFId/FI s (n)

given in the proof of Proposition [8.1.13 Moreover, both P§Id/G1 Ky ko and POFId/FI s

send a morphism ¢ in FI; to the morphism induced by the post-composition by ¢ passing to the
quotient. In particular, POFId/GI . kd(d)) sends the class X to itself and so the submodules (Y)

generated by the class of the fixed morphism X of PFId/Gl fpo kd(n) give a constant subfunctor

of P 'l / Gl . Then the quotient of P / Gy k1 by this constant subfunctor evaluated

k
which gives the short exact

FI,
/Gl,kl,...,kd and

act on morphism by the post-composition passing to the quotient. O

on n € FlI; is generated by the same elements as P /FI Fro kg’

sequence of the statement on an object n € FI;. It is natural since both F

FI
P d
0 /Ff,kl,...,kd

Finally, we show that the quotient of POFId by its subfunctor Gy, .., is weak polynomial of
degree 0. To do this, we use the short exact sequence of Lemma[8.1.14] and Proposition [8.1.13

Proposition 8.1.15. Forky,...,kge N and I c {c1,...,cq}, the quotient of POFId by its subfunc-

tor Grp,,.. k. 95 weak polynomial of degree 0. In other words, we have ﬂd(POFId/GI ky kd) €
Poly(FI;, R-Mod).

Proof. By Lemma [8.1.14] there is a short exact sequence

pFlLy pFlLi

0 —R — /Gl,kl,...,kd — /Fl,kl,...,kd — 0,
and by Proposition [8.1.13| the last term is in the subcategory SN (FI;,R-Mod) of

Fct(FI;,R-Mod). Since the quotient functor mg is exact, we get an isomorphism m4(R)
FI FI
7a( L0 "Gy i, )- Then for c € C, we have (57)% °7Td(P0 d/Gl,kl,...,kd) 2 (67)5* o ma(R) 2

g 0 0{(R) = 0. Since this is true for all ¢ € C, this shows that Wd(P()FId/GI . kd) is in
Poly(FL, R-Mod). O

Remark 8.1.16. As explained above, the short exact sequence of Lemma 4] shows that
this quotient is equal to a constant functor modulo the stably zero functor P / Frbyoik . This
implies that its image in the quotient is equal to mz(R) and so it corresponds through the
equivalence of categories given in Theorem to the object (R,Id,...,Id) of R-Mody, or to
the trivial R[z3', ..., 25! -module.

We proved that the quotient of PFId by the subfunctor Grp,, . x, is weak polynomial of
degree 0 for any ki,...,kgeNand I c A and that the quotient by the subfunctor Fry, . 1, is
stably zero. In the end of this section we look at the strong polynomiality of these quotients.
In Proposition we show that, for I = @ and ki,...,kg € N*| they are strong polynomial
because they are constant after some rank. But we explain in Proposition that, when
|| > 1, they are not strong polynomial based on the case I = A.
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Lemma 8.1.17. For I = A, 1<i<d and the functor Fyn.nky = Fak,,. k, of Definition|8.1.11

we have the relation

55 (70 Fnenta) = D 0/,

el 1A= AEjAAkg

where k~j=kj—1 ifkj>1, and 0 if k; = 0.
Proof. For n e Fl;, by definition 47’ (P(Fld/pkl/\_%kd)(n) is the cokernel of the map

FI
Py d/Fk1A~~~Akd (Id,, +¢;). We can compute

e; { pFI N
) (Po d/Fk,‘l/\n'/\kd) (n) 2{aeFI;(0,n+1)|a+ (5,c;),Ir € A such that v, («) < k)
(a=(B,0)| B e FI4(0,n), ¢ # ¢;, Ir € A such that v, () < k)

112

d
§B (B eFILy(0,n)|v;(B) <kj—1or3IreANj w(B)<kr)
j=1,j#i

1R

This shows that 47! (P(FId/Fkl/\.../\kd) (n) is isomorphic to

d d
FI
D (BeFLO)Ir e A (B) <k)z @ B [Fy,.00 1),
Jj=1,g#t Jj=l,g#t

with k] =k, —1if r = j and k. = k, else, proving the relation when ki,..., kg > 1. This relation
. . . ci ( pFla pFL
is natural in n € N since oth 0] ( 0 /Fkl/\---/\kd) and Iy /FklA---Aléj/\---Akd

the post-composition passing to the quotient. The other cases are done in a similar way. O

act on morphisms by

We now use this lemma to prove that the quotient of ng La by the subfunctors Fy, . 1, and
Gk, k, are not strong polynomial when |I| > 1.

Proposition 8.1.18. For ky,...,kq € N all non-zero, n € FI; and a subset I c A, the quotients
of POFId by Frpy,..k, ond Grp, . i, are not strong polynomial when the cardinality of I is greater
than or equal to 1.

d d

Proof. For I = A, by Lemma [8.1.17 we have the relation for all n € FI; and all ¢; € C:

d
05 (B0 Fioponey) (M2 B Fo[F,

j=1j#i

(n),

1/\~~~/\1ch AAkg

with kNj =kj—-1if k; > 1, and 0 if k; = 0. These relations combined prove that the iterated
functors (45')" (Pgld/pkw“/\kd) (n) for i € N are never zero, and so Pfld/pkwmkd is not strong

polynomial. Using the short exact sequence from Lemma [8.1.14] it implies that POFId/Gk Ak
is not strong polynomial since these categories are closed under quotients by Proposition
This gives the result when I = A, the general case is proved in a similar way because the parts
associated with the colours in I take over from the parts associated with the colours in A\ I and
they prevent the quotient to be strong polynomial. O

While these quotients are not strong polynomial when || > 1, the cases I = & give polynomial
quotients of POF T4 when all the integers ki, ..., kg are non-zero as explained in the following.
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Proposition 8.1.19. For kq,..., kg € N*, the quotients of POFId by the subfunctors Fy,y..vk, and
Gl v.-vk, are strong polynomial of degree ki +---+ kq — d.

Proof. For n € Fly, the quotient of Pgﬂd(n) by Fi,v..vk,(n) is generated by the morphisms
a € FI;(0,n) such that v;(a) < k; for all 1 <4 <d. Since the integers ki, ..., k4 are non-zero, it

implies that Pg?ld/Fk’l\/-“Vk:d (n) is zero for n > ki +---+kg—d. Using Lemmal|5.1.5|we conclude that

Pgld/pklv".vkd is strong polynomial of degree less than or equal to k1 +--- + kg — d. Finally, the

. . FI . .
short exact sequence from Lemma [8.1.14 implies that F d/leAmAkd is also strong polynomial
of degree k1 +--- + kg — d since this category is closed under extension by Proposition and
since the constant functor R is strong polynomial of degree 0. O

8.2 The quotient of Pr% by the action of symmetric groups

In this section we define the quotient of the functor P,]E L4 by the subfunctor, called F}, in Definition
R.2.1] which corresponds to the action of the symmetric groups by post-composition. We show

in Theorem [8.2.11| that this quotient of P is weak polynomial of degree 0. We also show in
Proposition that this quotient of P,f‘ld is isomorphic to Poc‘i over the category Cq, introduced

in Definition whose objects are the integers and whose morphisms from n to m are the
unordered choice of m —n colours in C'. In a second time, we try to find a nice representative of
the class of this quotient in the quotient category St(FI;, R-Mod) for n = 0. The objective is to

. FI . . . .
describe the class of Fy ¢ / F, in terms of the category R-Mody via the equivalence of categories
given in Theorem [7.4.12|but this is not always possible since the passage to the quotient category
is not an explicit construction.

Definition 8.2.1. For m ¢ FI;, we denote by F,,(m) the submodule of P¥%¢(m) given by

Fao(m) = (oo (f,9) = (f,9)|(f,9) € Fla(n,m), o € Spm) .

that is the submodule generated by the elements oo (f,g) - (f,9), for (f,g) € FI;(n,m) and
o €Sh.

Lemma 8.2.2. The submodules F,,(m) of P¥Y(m) define a subfunctor F,, of P¥l.

Proof. For (f,§) € FI;(m,1) and oo (f,g) - (f,g) a generator of F,(m), we compute
Pr]jld(f7g) (UO (f?g) - (f?g)) = (fvg)* (UO (f?g) - (fag)) = (f?g) ©0ogo (f?g) - (fvg) © (fag)

Then there exists 7 € S; (we can take ¢ which acts as o on Im(f) = m and is the identity on
INIm(f)) such that 6o (f,g)o(f,9) =(f,g) oo o(f,g). Therefore we have

Py (f,9) (00 (f.9) = (f,9)) =5 o ((f,9) o (f.9)) = (f.3) o (f.9) € Fu(l).

We then proved on the generators of F,(m) that we have the inclusion of submodules
Prt(f,9) (Fa(m)) ¢ Fu(D). O

For a n-tuple (¢;,,...,¢;, ) of colours we denote by (¢;,, ..., ¢, ) the class of this n-tuple under
the action of the symmetric group S,, permuting the positions in the n-tuple. For each class we
can choose a representative n-tuple (c;,,...,¢c;,) of the class (¢;,,...,¢;,) such that the colours
are in the natural order, 7.e. such that 1 < j; <--- < j, < d. Using this notation we can give a
description of the quotient P La / F,, in the following proposition.
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Proposition 8.2.3. The quotient functor Pfld/pn sends an object m € F1; to the free R-module

generated by the class of (m—n)-tuples (¢;,, ..., ¢, ) under the action of symmetric group Spy,—p,.
In other words, we have

FI Y . .
PR, (m);R[(cil,...,cimfn)ﬂSzlﬁmélm_néd].

Moreover, it sends a map (f,§) € FIg(m,1) to the morphism of R-modules R [( Id,, +§)*] that

sends a basis element (ciy,...,ci,, ) to the element basis (¢iyy...,¢Ci, 1 G)-

Remark 8.2.4. In this proposition we could choose a representative of the class (¢;,,...,¢,,9)
where the colours are in the natural order to make it more consistent, but it would need more
notations for no more information. We give here an example to make it clearer: for d =5, n =1,

m =3 and [ =5 the map ( (0 —> 2) +1Ids, (c3,c2) ) € FI4(3,5) sends the basis element (co,c4) of
P1FI5/F1 (3) to the element (co,cy, c3,c2) = (c2,¢2,¢3,¢4) of Pllq‘l“r’/F1 (5).

Proof of Proposition[8.2.3 For m € FI;, by definition of F,, we have

pFlLy m) = R [(f.g) € FI4(n,m)]
n [, (m) [100(.) - o) € FLatrsm)sor € Sm).

The action of S, permutes both the injection f and the colours g, so we can choose for each class
in the quotient a representative with the injection being the inclusion of the first n elements in
m, and with the colours in the natural order. This gives the isomorphisms

Id,, +(0->m- —_— , ,
Pfld/pn(m); <( e Cantl ,(cil,...,cim_n))llSzlé--'ézm_nsd>

Since these elements are free, it gives an isomorphism of modules
PFLi / N P EE— . .
n CJE, (m)= R (CiyyennsCippy ) [1€01 <o S < d.

For a map (f,§) € FI;(m,1), the morphism P,];Id/Fn (f,§) is induced by PFY(f . §) = R[(f,7)+]
passing to the quotient. Since we take the quotient by the action of 5;, the injection f can be
supposed to be the inclusion of the m first elements. Then Pfld/pn (f,g) is the morphism of

R-modules adding the colours of § on each basis element. O

The description of the quotient of P¥Y by F;, of Proposition suggests defining a category
Cq4 corresponding to this functor. More precisely, after giving the definition of this category, we
show in Proposition that the quotient prla / F,, 1s isomorphic to the functor Pgd.

Definition 8.2.5. The category C4 has for objects the integers and its morphisms from n to m
are the class of the (m —n)-tuples (¢i,,...,ci,_,) of colours in C(9) quotiented by the action of
the symmetric group S,,—,. In other words, we have

Co(n.m) ={ {cl,...,cd}x(m_")/sm_n: {(cil,...,cimfn)|1 <1 s--~sinsd} %fmzn
%) if m<n.

The composition is given by the concatenation of two representatives of each class:

(Cj17 et 7Cjk—m) ° (ci17 Tt Ci'm—n) = (Cj17 et 7cjk—7rb7cil7 Tt Ci'm—n)'
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Remark 8.2.6. As in Remark in the definition of the composition we could choose a
representative of the class of (¢j,,...,¢j, ,.+Cits---,Cin,_,,) Where the colours are in the natural
order to make it more consistent, but it would need more notations for no more information.
We give here an example to make it clearer: For d = 5, n =1, m = 3 and k = 5 we have

(02765) © (01503) = (02,05,61703) = (015027C3>65)~

There is a natural functor between FI; and C; which we define in the following.

Definition 8.2.7. The functor Q2 : FI; — C4 sends an object n of FI; to n in Cgq, and a morphism
(f,g9) € F1;(n,m) to the morphism g = (¢jy,...,¢i, ) € Ca(n,m), where g is the class of the
colour choice g = (¢, ..., ¢, ) in the quotient by Sy,—p.

Remark 8.2.8. The functor 2: FI; — C; is essentially surjective, full but not faithful for d > 1
since Q(c1,c2) = (c1,c2) = Q(ca,¢1).

Proposition 8.2.9. For all n € N, there is a natural isomorphism in Fct(FI;, R-Mod):
P};Id/Fn ~ Plio Q).

Proof. For m € F1;, by definition of C; and by Proposition we have an isomorphism of
R-modules

P:‘Id/pn (m) ':“R[(cil,...,cimfn)ﬂ <1 S---Sim_ngd] = R [Cq(n,m)] = P 0 Q(m).

For a morphism (f,§) € FIz(m,1), we have by Proposition that Pfld/pn (f,§) sends
the basis element (c¢;,,...,¢,) to (¢iy,...,ci,,q). However, we also have by definition, that
P%aoQ(f,3) = P%((g))sends (ci,...,ci,) to (§)o(ciys---s¢i,) = (Ciys---1¢i,,g). Thisimplies
that the diagram

Pfld/Fn (m) —=— P 0oQ(m)
PEY 5, (7| lpﬁdoﬂ (79)=F ()
Pl g (1) —5— PSioQ(l)

is commutative, showing that the isomorphism Pf Ta / F, 2Cq 0 is natural. O

Using the explicit description of the quotient P, Fla / F,, from Proposition we compute its
image by the endofunctor 47, for c € C, in the following lemma. We then use this computation
to prove in Theorem [8.2.11| that the quotient of P};Id by F,, is weak polynomial of degree 0.

Lemma 8.2.10. For c € C, the functor 0] (Pfld/pn) sends an object m € Fly to the free R-

module generated by the class of the (m —n + 1)-tuples (¢ciy,...,ci,, . .,) under the action of
symmetric group that does not contain the colour c. In other words, we have

FI . . .
o7 (P” d/Fn) (m)=R [(CiN e s Cimps Cirg 1) | G, € @\ {ch 1<y < Simop Simons1 < d] ’

Moreover, this functor sends a map (~,g) € FI ;(m,l) to zero if ¢ appears in g, and to the
morphism of R-modules R [( Id, 41 +§)*] if ¢ does not appear in g.
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Proof. For m € F1, by definition § (Pfld/pn) (m) is the cokernel of the map Pfl‘i/Fn (Id,, +¢).
By construction, this morphism is given by the map R[(Id,,+c).] : R[FIi(n,m)] —
R[FI; (n,m+1)] passing to the quotient. Using the explicit description of the quotient Pfld/pn

from Proposition [8.2.3) we get that the morphism prla / F,, (Idp +c) sends a basis element

(CiyseorCip ) 80 (CiyyenesCinsC€) = (CiyyeevyCliyCyChvly- -+ Cipy ). Then the image of the mor-
phism PFla / F,, (Idy, +c) is generated by all the (m —n)-tuples of unordered colours where c
appears. We then deduce that its cokernel is

FI : : .
6§ (Pn d/Fn) (m)=R [(cil, o3 Cipns Ciynin ) | G € CDN{e}, 1<iy < i Slimens < d] :

For (f,g) e FI;(m,l), the map of (Pgld/pn) (f,g) is induced by the morphism
T (Pfld/Fn) (f.9) = Psld/Fn ((f,3) +1d; ) passing to the cokernel. However, by Proposi-
tion this last morphism is the linearization of the map (Id,+1 +§)*, so its image is in the

image of P Ia / F,, (Id, +c) if and only if the colour c appears in g. When passing to the cokernel,
this gives that 0 (Pfld/pn) (f,§)is0ifcegand R [( Id, 41 +§)*] else. O

Theorem 8.2.11. For all n € N, the quotient functor PEId/Fn is weak polynomial of degree 0,
1.e. we have:
T (PnF la Fn) e Poly(FI;, R-Mod).

Proof. For ¢ € C and m € Fl;, by Lemma [8.2.10| the morphism 6f(P£Id/Fn)(Idm +c) is zero.
Since nfﬁf(ﬂfld/pn) (m) is the kernel of this map it is equal to 5‘13(P51’1/Fn) (m). This equality
is natural in m € FI; since £§ o 5{(Pfld/Fn) is a subfunctor of 5{(Pfld/pn), proving that the
functor 5f(P,fId/Fn) is in SN .(FI;, R-Mod). We conclude using Proposition m because, for
all ce C, we have
()5 oma (P [F,) = 7a0 05 (Ba [ F,) =0.
O

Example 8.2.12. We make this quotient explicit for n = 0 and d = 2. First we recall that
for n € FI;, we have POFI‘i(n) = R [FI;(0,n)] = R [C"], so a basis morphism « ¢ P(f‘ld(n)
corresponds to a choice of n colours in C. Then the post-composition in FI; by S,, = FI;(n,n)
corresponds to the action of the symmetric group S,, on P§ Id(n) permuting the colours of the
generators. Since the subfunctor Fy of POF > correspond to this action, this gives for d = 2 and
n € FI, the following description:

FI T~ . .
Py gy ()2 R [ (ciy,- i) [1<in <o <in < 2]

Moreover, the quotient P(FIQ/FO sends a morphism (f,g) € FIa(n,m) to the linearization of
the map (Id, +¢). passing to the quotient. In particular this quotient functor sends a bijective
morphism o € FIs(n,n) =S, to the identity and the image of a morphism (f,g) € FIy(n,m) is
determined only by the colour choice g. We then have an explicit description of the quotient of
P(F I by Fy as the following diagram. Note that each arrow in the category FIs in this diagram
actually represents many arrows that we can construct by composition with the action of the
symmetric groups. This diagram also represent the functor PSQ since POC2 o) = PS? T2 / F, by

Proposition
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pFIz
FI, _ "R R Mod

0 — R[Idy]
c1 )Cz (Idg +c1)» i \\\\\\(Edo rez)x

v v N

I R[e] --—o - R[]

S~o S~o Id *

c1 )cz (Idq +c1)*i RN i \\E\ 1+e2)

g v T v e

2 — Rl(ci,c1)] --e-- R[(c1,c2)] --9-- R[(c2,¢2)]

! S~o ! S~o ! S~ (Idz +e2)«

c1| |e2 (Id2 +c1) | S~ i S~ i S~

3 v ~A ~ ~A ~ ~A

33— R[(c1,c1,c1)] @ R[(c1,c1,c2)] - R[(c1,¢2,¢2)] -@- R[(c2,c2,c2)]

Cc1 )CQ
~

O

~ ~
~
~
~
~
~
~
~
~
~

~ ~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~

~
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~

| | | |

I I I I

| | | |

~ ~4 v ~4 v ~4 v NS
Remark 8.2.13. We proved in Theorem [8.2.11] that the quotient of P¥!¢ by its subfunctor F,
of Definition corresponding to the action of the symmetric groups, is weak polynomial of
degree 0. We would like to use Theorem [7.4.12|to describe this quotient in terms of the category
R-Mod,, but to do that we need to find a representative of the class my (Pfld/pn) which is
constant on the objects and which sends arrows from 0 to 1 to commutative isomorphisms.
However, this is generally difficult to do since passing to the quotient category St(FI;, R-Mod)

is not very explicit.

In the end of this section we give ideas on how to find a nice representative of the class
T4 (P,]L?Id/pn) as explained in Remark [8.2.13|for n = 0. Recall that the quotient P(Fld/po sends
an object n to the free R-module generated by the class (¢;,...,¢;, ) of the n-tuples of colours

quotiented by the action of S,, permuting the colours. For each class we can choose a repre-
sentative n-tuple (¢j,...,¢;, ) such that the colours are in the natural order, i.e. such that

1<4; <+ <ip, <d. We start by defining a filtration of subfunctors of the quotient POF Ta / F

according to the number of occurrences of the colour ¢;. We show in Proposition [8.2.18] that
each of these subfunctors gives a proper subfunctor of P(F Ta / F,, however they are not strictly

smaller since they are isomorphic to B &? ¢ / F itself with a shift, as shown in Proposition [8.2.19

Definition 8.2.14. For k € N and n € F1;, the submodules Li(n) of P(fld/po (n) are generated
by the class of the n-tuple (¢;,,...,¢;, ) in the quotient by the action of the symmetric group S,
in which the colour ¢y appears at least k times.

Lemma 8.2.15. The submodules Li(n) of POFId/FO (n) define a family a subfunctors
FI,
vocLpyicLlyc---clycLycLy=FE /FO‘
Proof. For (f,g9) € FI;(n,m), the morphism POFId/FO (f,g) is the linearization of the post-

composition by (f,g) passing to the quotient by Fy. This morphism can only add more colour
in the n-tuples of colours and then only increase the number of occurrences of ¢;. When passing
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. . FI .
to the quotient, this shows that all these subfunctors of Iy / F, are well defined since we have

the inclusion of R-modules POF T / Fy (f,9) (Lg(n)) ¢ Li(m). The inclusions follow directly from
the definition of Ly. O

Remark 8.2.16. Recall that the quotient of Pg Ta by its subfunctor G; from Definition
is given on an object n € FI; by the free R-module generated by the class c_71L of ¢ and by the

classes @ for o € FI;(0,n) such that v;(«) <. Then the quotient of Pfld/gi by the action of the

symmetric groups by post-composition is equivalent to the quotient of Fy ™ / F, by its subfunctor

L; from Definition [8.2.14]

Remark 8.2.17. We chose to define L as the subfunctor where ¢; appears at least k times for
simplicity but this is arbitrary. Instead, we could consider any mix of colour and define Ly, .
the subfunctor generated by the classes of the n-tuple of colour choices in the quotient by the
symmetric group in which ¢; appears at least k; times, co at least ko times, ... and cg appears
at least kg times. In fact, it appears that every non-zero subfunctor H of P(}: Ta / F, is a sum of
subfunctors similar to Ly, , of POFId. Indeed, there is a minimal n € N* such that H(n) # 0.
For = non-zero in H(n), H contains a subfunctor similar to Ly, j, starting at z: it is the
subfunctor generated by the classes containing x and in addition at least ki times c¢1, ... , at
least k4 times c4. Either H is equal to this subfunctor, either it is greater and we can restart the
reasoning with the quotient. The process stops in a finite number of steps because each time the
number of possible occurrences of the different colours decrease. Then, the subfunctors Ly, .
generate all the subfunctors of P(F Ta / F,- However studying all of them is similar to studying
only L, but with more complex notations, so we write the details for L using only ¢; for more
clarity.

We show that the image in St(FI;, R-Mod) of each of the subfunctors Ly of P(}?Id/FO gives

: FI .
a representative of the class of Fy / F itself.

Proposition 8.2.18. For k e N, there is a natural isomorphism my(Ly) 2 74 (P(FId/FO).

Proof. For k € N, let Kj denote the quotient of (PUFId/FO) by its subfunctor Li. By defini-

tion the functor ml(fl)k ( K ) is the kernel of the map Ky (Id(_) +(cl)k) obtained as the mor-
phism P(?Id/FO (Id(- +(c1)*) passing to the quotient by L;. By Proposition [8.2.3] this last

L . — FI
morphism is the map that sends a basis element (c;,...,c;, ) of d/FO (n) to the element

((c1)k,cipy-0ycq,) of PUFId/FO (n+k), which is in L(n + k) since the colour ¢; appears at least
k times. This shows that the image of the map POFId/FO (Id(_) +(cl)k ) is in the subfunctor L.
When passing to the quotient, it implies that the map Kj (Id(_) +(cp)F ) is zero. We then have

/s](:l)k(Kk) = K}, and so K}, is in SN, (FI;,R-Mod). By definition, we have a short exact

sequence 0 — L — P(FId/FO — K — 0 in Fet(FI;, R-Mod) and, since the functor my

is exact, we get the wanted natural isomorphism. O

This gives us a family of representatives of the class 7y (P(F L / FO), but neither of them is
constant on the objects. More than that, we show that each of these subfunctors Ly is in fact
isomorphic to a shift of P(F Ta / F, himself.

Proposition 8.2.19. For all k € N, there is a natural isomorphism 1, (Lj) 2 P(Fld/FO.
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Proof. For n € FI;, by definition the R-module Lg(n + k) is generated by the classes
(Ciyye -y Cinsk) With 1 <4y < -+ <ipyp < d such that ¢; appears at least k times. Then we have
i1 =---=1 =1, s0 Ly(n+k) is equivalent to the module generated by the classes (¢;,,,,- -, Ci.,,)

with 1 < igyq < --- < ipyp < d. This corresponds to the generators of the module P(f‘ld/FO (n),
so we have the equivalence of R-modules POFId/FO (n) 2 Ly(n+k) =1 (L) (n). Since L, is a

subfunctor of POFId/FO we have, for any morphism (f,g) € FI;(n,m), the identity

(L) (f,9) = L ((f,9) +1dy ) = Po [ 1, ((f, 9) +1dy,).

By Proposition this last morphism is induced by R [ ( 1d,, +g + Idy, )* ] passing to the quo-
tient. In these identities the term "Idg" corresponds to the k occurrences of c; that disap-

pear in the equivalence of modules POFId/FO (n) 2 7, (Lx) (n) above. This shows the natu-
rality of this equivalence since the morphism 74 (Ly)(f,g) corresponds then to the morphism

R[(Idn"'g)*]:POFId/F()(fvg)' O

Remark 8.2.20. We can prove in the same way that there is a natural isomorphism
FI . FI . .

They 4oty (Lkl,...,kd) ~ Py d/FO, where Ly, j, is the subfunctor of F d/FO described in Re-

mark [8.2.17] where ¢; appears at least k; times, ... and ¢4 appears at least k; times.

8.3 The quotient of Pr' by the action of symmetric groups on
colours
In this section we define the quotient of the functor PF¥le by the subfunctor, called H, in Defi-

nition [8.3.2] corresponding to the action of the symmetric groups on the colour choices, and we
prove in two different ways that:

Theorem. For all n € N, the quotient Pfld/Hn is weak polynomial of degree n, i.e. we have
7a(Pr "/ H,,) € Pol,(Fly, R-Mod).

First, we prove this theorem if R =K is a field in Theorem [8.3.11] using the decomposition
P, = (O°F) © Ff'((-)-n) o,

from Proposition [8.3.§] since the pointwise tensor product respects the polynomial degree. In
a second time we prove the theorem in the general case in Theorem [8.3.14] using the direct
computation

(65)%% o 7 (Pfld/Hn) =Ty (Pg}f/Hn_l)@n-

from Proposition [8.3.13] In both cases there is a non-trivial stably zero functor that prevents
this quotient from being strong polynomial.

Remark 8.3.1. For (f,g) € FI;(n,m) the map g = (¢;y,. .., ¢,,_,) corresponds to a choice of
m —n colours in C. There is an action of the symmetric group S,,—, on these colour choices by

permutation, which gives an action on Pfld (m). For a m —n-tuple (¢;,,...,¢,, ) of colours we
denote by (¢iy,...,¢,, ) the class of this m — n-tuple under this action and, for each class, we
can choose a representative m —n-tuple (¢j,,...,¢j,,_,) such that the colours are in the natural

order, 4.e. such that 1 < j; <+ < jpppn < d.

We start with the definition of the subfunctor H,, of P¥!¢ using an action of S,,_,, on P¥%(m).
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Definition 8.3.2. For m € FI, the submodule H,(m) of P¥la(m) is given by

Hn(m) :<(f70’g) - (fag)|(f7.g) eFId(nvm)a o€ Sm—n)

that is the submodule generated by the elements (f,o-g) - (f,9), for (f,g) € FIz(n,m) and
o € S, acting on the colours as described in Remark

Lemma 8.3.3. The submodules H,(m) of P¥(m) define a subfunctor H,, of P¥l.

P’I"OOf. For (f)g) € FId(mJ)ﬂ we have P’r]L?Id(f7§) ((fvag)_(fag)) = (f>§)o(fa09)_(f7§)o(f>g)
Then there exists & € S;_,, (we can take & which acts as o on Im(f) ~ Im(f o f) 2 m —n, and is
the identity on I —Im(f) 21 —-m) such that &- ((f,§) o (f,9)) = (f,§) o (f,o-g). We then get

P(f.9) ((fo-9) = (f,9)) =5 ((F.9) o (f,9)) = (f.9) o (f.9) € Ha()

showing, on the generators (f,o-g) - (f,g) of Hy(m), that we have the inclusion of R-modules
Py (f,9) (Ha(m)) c Hy(D). O

Remark 8.3.4. For d = 1 the subfunctor H, of Pfll is zero since the symmetric groups acts
on the unique colour choice and so o - (f,g) = (f,g) for all (f,g) € FI;(n,m) and o € S,,. In
particular, Theorem for d = 1 tells that PFT is weak polynomial of degree less than or
equal to n. In fact, it is even strong polynomial of degree n as explained in Remark

We first give a concrete description of the quotient PE Ta / H,, that we will use in both proofs

of Theorems [R.3.11] and [R.3.14]

Proposition 8.3.5. The quotient functor PEIC‘/H” sends an object m € Fl to the free R-module

generated by the pairs (f, (¢iy,...,¢i,,_,) ), where f:n < m is an injection and (ciy,...,ci,, )
is a class of a (m —n)-tuple of colours under the action of the symmetric group Sy,—n. In other
words, there is an isomorphism of R-modules

B g, (m) 2 R[(f, (i) ) | £ € FL(nm), 1<y <o g < ).

Moreover, for (f‘,g) a morphism in FI1;(m,l), the image of (f,3) € FI;(m,1) by P};Id/Hn 18
the morphism of R-modules R [(f,g)*] that sends a basis element (f, (¢iy,...,¢i,,_,)) to the
element (fo f, (¢iys--- ci_..4)).

Remark 8.3.6. As in Remark in this proposition we could choose a representative of the
class (¢, ..., ¢, ,g) where the colours are in the natural order to make it more consistent but it
would need more notations for no more information.

Proof of Proposition[8.5.5 By definition, for m € FI; we have

PFId m) = R [(fag) € FId(nvm)]
w [ () /((f7 o-9) = (f[,9I(f.9) e Fla(n,m),0 € Spn).

Then the action of S,,_, permutes the colours of g so we can choose for each class in the
quotient a representative with the colours in the natural order as explained in Remark
This gives the formula for Pfld/Hn (m) since these elements are free. For (f,g) € F1;(m,l), the

morphism PfId/Hn (f,§) is induced by PFla(f. g) = R[(f,§)+] passing to the quotient, which
acts on the first component of (f, (¢;,,...,¢i,)) by post-composition by f and on the second
component, since we take the quotient by the action of S;_,,,, it adds the colours of g to the class

(Ci17 ) Cirn—n)' D
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We now introduce a negative shift on the category C4 from Definition that we will use in
the following. Recall that this category has for objects the integers and for morphisms from n to
m the unordered choices of m —n colours in C, and that there is a natural functor Q) : FI; — Cy.

Definition 8.3.7. For F': C; -~ R-Mod and n € N, the shifted functor F( (-)- n) is given on
objects by
0 ifm<n

F((—)—n)(m) :{ F(m-n) ifm2>n,
and on morphisms by F/((-)-n) = F(-) using the natural bijection Cq(m,m’) = Cg(m-n,m’-n).

The first consequence of the description of the quotient Pf Ta / H,, in Proposition m is that

we can express it as a tensor product of PF I by POC 4 ghifted using the shift from Definition
This explains how the injections and the colours are mixed to form the functor Pf L yup
to the action of the symmetric groups on the colour choices. This relation will allow us to prove
in Theorem that PF / H,, 1s weak polynomial of degree n using the fact that pointwise
tensor product preserves the polynomial degree (see Theorem .

Proposition 8.3.8. For all n € N, there is a natural isomorphism

Pyt g 2 (0*PFY) @ BS((-)-n)oQ,

112

which can equivalently be written as T, (P,fld/Hn ) Tn ( O*PEI ) ® POFId/HO.

Remark 8.3.9. Tor d = 1, the subfunctor H,, of P¥1 is zero as explained in Remark Using
this, we can rewrite the formula of Proposition into a more homogeneous one:

P g, = 07 (P g, ) @ By ((-)-n) 0.

Proof of Proposition[8.3.8 For m € F1,;, using the description of Pfld/Hn (m) from Proposition
for = 0 we see that the elements T := (¢;,,...,¢,) with 1 <y <--- <y, < d form a set of

generators of POFId/HO (m) that we denote by G,,. Using the general isomorphism R[A x B] =
R[A] ® R[B], for any two sets A and B, we can reformulate the isomorphism of Proposition
8.5.0] as:

P g (m)2R[(f,7) | f € FI(n,m), T€ Gpn] 2 R[ FI(n,m) | @ R [T € G ].
We then have an isomorphism of modules

PP/ (m) = PP (m) ® Py "/, (m—-n)

112

(O*PFY) (m) ® PS*((=) -n) o Q(m) .

This isomorphism is natural in m € FIg since, for (f,§) € FIg(m,1) the map P,FId/Hn (f,§) sends
a basis element (f, (¢i,,...,¢i,_, ) ) to the element ( fof, (¢iy,...,ci,_.,G) ) by Propositionm
On the first component of these morphisms P,F La / H, ( 1, g) sends f to fo f which corresponds to
O* (P (f,3) (f) = PFY(f) (f) = f o f, while on the second component it sends (¢i,,...,ci,_,)
to (Ciyy---s¢i,, ,»G) which is exactly the definition of Pgd ((-)-n)o Q(f,q) = Pgd(g). This
shows the naturality since the isomorphism is given by the separation of the first and the second
components. O

The formula of Proposition for n = 0 implies that the quotient p¥la / H,, is weak poly-
nomial of degree 0 as explained in the following:
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Corollary 8.3.10. There are natural isomorphisms of F1z-modules

FI c FI
B d/Ho = PjtoQ = Iy d/Fov

where Fy and Hy are the subfunctors of POFId from Definitions |8.2.1| and |832| In particular,
these functors are weak polynomial of degree 0.

Proof. For d = 1, the functor P(FI is a constant functor, and so is O* (PF!) by Proposition
Then the formula of Proposition [8.3.8] applied for n = 0 gives the first equivalence since
M®'®F is equivalent to F' for any FIj-module F' and any constant FI;-module M*. The second
equivalence is given by Proposition and the quotient of Pg? La by Fp is weak polynomial of

degree 0 by Theorem [8.2.11] O

Finally, the relation from Proposition allows us to prove that the quotient PE La / H, 18
weak polynomial of degree n using the fact that tensor product preserve polynomiality if R = K
is a field.

Theorem 8.3.11. If R =K is a field, for all n € N the quotient Pfld/Hn 1s weak polynomial of
degree less than or equal to n, i.e. we have T4 (PTIL?Id/Hn) € Pol, (FI;, R-Mod).

Proof. The functor PF1 is weak polynomial of degree n_on FI by Lemma for d = 1, and
the functor O preserves polynomiality by Proposition The FI;module POc 10 () is weak

polynomial of degree 0 by Corollary [8.3.10l Then the FI;-module Pocd( (-)—-n ) oQ is also
weak polynomial of degree 0 since it is the same functor but shifted by n and the weak poly-
nomiality concerns the stable behavior. We then have my (O*Pf I) € Pol,(FI;,K-Vect) and

TFd(Pgd((—) -n) o Q) € Poly(FI;, K-Vect). Finally, since R = K is a field, we conclude that
Ty (PnF T/ Hn) € Pol,, (FI;, R-Mod) by Proposition [8.3.8{ and Theorem [7.3.6| O

A second consequence of the description of the quotient of PT]; L4 by the subfunctor H,, from
Proposition is that we can compute explicitly the functor 6{(P,FI‘1/Hn). In particular, we
describe it with a short exact sequence in Lemma[8.3.12] and we give a description of its image in
the quotient category St(FI;, R-Mod) in Proposition The following proposition is very
similar to the calculation of (5"’(PnF 14) in Proposition owever, the second component of
the direct sum in Proposition @, which prevents Py la from being polynomial, vanishes here

since we take the quotient by the action of the symmetric groups on the colours.

Lemma 8.3.12. For ce C, the submodules

I(m) ::R[(f’:n9m+1, (cil,...,cim+1_n))|1gi1 g--.gim+1_n£d,m+1eIm(f’)]

of 5f(PfId/Hn) (m), for m € Fl, define a subfunctor I of 5f(P,fId/Hn), which fits into the
following short exact sequence whose last term is in SN .(FIz, R-Mod):

ROEFSm),

0 —— T —— 5§(P51d/Hn) - ;

Proof. We write the proof for ¢ = ¢1, the other cases are obtained by symmetry. By Proposition
8.3.50 the module Pfld/Hn (m) is generated by the pairs ( f, (¢iy,...,¢i,, ) ), where f:n—>m

is an injection and (¢, ..., ¢, , ) is a class of a (m —n)-tuple of colours under the action of the
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symmetric group Sp,—n. For ¢y, the injection m < m + 1 of m on the first m elements of m + 1,
by definition the functor 67 (Pfld/Hn) is the cokernel of the morphism Pfld/]{n (Id,, +c1)
which sends a basis element ( f, (¢iy,...,¢i,,,)) to the element (i 0 f, (€1,¢iy,--5¢Ci )
by Proposition [8.3.5l This implies that its cokernel is generated by the elements (f : n —
m+1, (¢iyy---,¢i, .., )) such that m +1 is in Im(f") or that ¢; does not appear, which gives
the isomorphism of R-modules

o7t (Pfld/Hn)(m);R[(f':n'—wrwl, (c,-l,...,cimﬂfn)) |m+1eIm(f") or ¢;, GC\{Cl}].

For (f,g) e FI;(m,l), by Proposition [8.3.5] the map Tl(PfId/Hn) (f,g) =
P g, ((F,9)+1d1) sends (f, (ciyrooorCininn)) to ((F4Td1)o f, (ipseres Cinrrnrd) )
The image by 5?(1351"’/}]71) of (f,§) is induced by this map passing to the quotient, which im-
plies that 51:1(]3514/]{”) (f,3) sends the basis elements (f’ mom+1, (cil,...,cim+1_n))
of (5?(135161/}[”) (m) (with either m + 1 € Im(f’) or ¢; that does not appear) to
((f+Id)of :n <> 1+1, (¢, 1Ciprn»g))- In particular, if m +1 € Im(f’) then
I+1 e Im((f+1Id;)o f). Then the submodules I(m) of 6;1(Pff‘1d/Hn) (m) are stable by
the morphisms 5;1(P£Id/Hn) (f,g) for all (f,§) € FIg(m,l) so they define a subfunctor
Ic 651(P51d/Hn). The quotient of 551(PT];IE‘/Hn) by this subfunctor I is then generated by
the elements (f' :n > m+1, (¢y,... )) such that m +1 ¢ Im(f") and ¢; does not

appear. The map 6;1(135 La / Hn) (Id,, +¢1) become zero when passed to the quotient by I since

’ C’L'm+ 1-n

it sends such elements to (Lm+1 offinom+2, (c1,Cy, - sCipy ) ), proving that the quotient
of 07 PFId/H ) by I is in SN, (FI;, R-Mod). O

We can now use this short exact sequence to give a formula for (§¢)5t of ra(Pr T / H,,) similar
to the calculation of 6{(P¥) in Proposition

Proposition 8.3.13. For all colours c € C, there is a natural isomorphism

D oma (P 11,) 2 ma (Pt 1)

Proof. Applying the exact functor w4 to the short exact sequence of Lemma[8.3.12] by Proposition
we get the natural isomorphisms

(65 oma (Pr /1) = mao i (Pa /1) = ma(l)

since the last term of the short exact sequence is in SN (FI;, R-Mod). We conclude by show-
@
ing that there is a natural isomorphism I = (PFId/H ) n. Indeed, we have the following

isomorphisms
I(m) =R[(f’:nf—>m+1, (cil,...,cim+1_n))|1§i1 <o <pg1on < d, m+1eIm(f')]
> [(f":@—{i} > m, (Cip--wcim,(n,l))) |1<i) < <lmaion Sd]@n
= (Pt /m,.,) " (m-1),
where the first is obtained by removing the injection of i = (f)'(m + 1) e

n = {l,...,n} in m + 1 and where the direct sum on n comes from the choice
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of ¢ in n.  This isomorphism is natural since we showed in Lemma [8.3.12] that
6{(13514/]-[”) (f,g) sends the basis element (f', (¢iys---,¢ip,y)) of 85(Py rl/Hn) (m)

to ((f+1d1)of':n=>m+1=>l+1, (cil,...,cimlfn,g)) because it comes {rom
Tl(P,]fId/Hn) (f.9) = Pgld/Hn((f,g) +Id;). This description also works for the image
I(f,9) since I is a subfunctor of 5f(P£Id/Hn). Finally, since the pre-image of m+1 by f’ is the

same as the pre-image of [ + 1 by (f+ Idy) o f’, this gives the naturality of the decomposition
into the direct sum. O

We then use the computation from Proposition [8.3.13|to prove that the quotient of Pfld by
the subfunctor H,, is weak polynomial of degree n for any ring R, generalizing Theorem [3.3.11

Theorem 8.3.14. For all n € N, the quotient Pfld/Hn is weak polynomial of degree less than
or equal to n, i.e. we have wg (Pfld/Hn) € Pol,(FI;,R-Mod).

Proof. We proceed by induction on n € N using Proposition [8.3.13] and, for n = 0, Corollary
8.3.10| which shows that the quotient of POFI”‘ by Hj is weak polynomial of degree 0. O

Remark 8.3.15. In both proofs that the quotient of P¥I by the subfunctor H, is weak poly-
nomial, there is a non-trivial stably zero functor that appears, which prevents prla / H,, to be
strong polynomial: in the first proof (Theorem [8.3.11)) we use Corollary which says that
Pgd o {2 is weak polynomial of degree () based on Theorem [8.2.11| because Pgd o)~ P(Fld/po_
But this functor is not strong polynomial since the proof of Theorem use heavily the
fact that the functor 5f(PnFI“/Fn) is in SN (FI;, R-Mod) and so that it vanishes in the quo-
tient. In the second proof (Theorem we use the short exact sequence of Lemma

which gives an isomorphism in the quotient category St(FI;, R-Mod) since the last term is in
SN (FI1;,R-Mod).

8.4 Weak polynomial quotients of Pf' of arbitrary degrees

We explained in Remark that the functor PF! is strong polynomial of degree n over FI.
In this section we present a quotient of P¥! that is weak polynomial of degree i for each i € N,
and we explain why this quotient is not strong polynomial of degree less than n. We then use
it and the formula from Proposition to describe a corresponding quotient of P¥I¢ that is
weak polynomial of degree ¢ for each i € N.

Definition 8.4.1. For n,i € N, the functor Q' : FI - R-Mod is given by

i FI kesaz jkeFélB(k,n) i FI
Q, =Im| P; > @ (&) Py ,
k<i jreFI(k,n)

where j; is the precomposition by the injection jj, € FI(k,n).

We explain in the following that @, is a weak polynomial quotient of P¥! of degree i and
that it is not strong polynomial of degree less than n.

Proposition 8.4.2. For n,i e N, the quotient Q! of P¥! is strong polynomial of degree n, but
notn—1.
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Proof. The functor @, is a quotient of PFT since it is the image of a natural transformation
starting from P,F I and the FI-module Pﬂf‘ I is strong polynomial of degree n by Proposition
5.2.1| for d = 1. Since the strong polynomial functors are closed under quotient by Proposition
5.1.3| we conclude that QY is strong polynomial of degree less than or equal to n. However,
for m < n we have P¥(m) = 0, and so Q% (m) = 0 since Q?,(m) is the image of the morphism
PFY(m) —» @ PFY(m). Then Q,(m) = 0 for m < n and, using Lemma we conclude that

¢ is not strong polynomial of degree n — 1. O

Proposition 8.4.3. For n,ieN, the quotient Q°, of PTI;I 1s weak polynomial of degree less than
or equal to 1.

Proof. The Proposition implies, for d = 1, that the FI-module P,f I is weak polynomial
of degree k. Then the sum @Dp; (PEI YO FL(kn) ig weak polynomial of degree i and Q! is by
definition a subfunctor of this sum. We conclude using the fact that the weak polynomial functors
are closed under subobjects by Proposition [7.2.5] O

Remark 8.4.4. Tt is reasonable to believe that Q! is the largest quotient of PF! in
Pol;(FI,R-Mod), even if it is not proven yet.

We now use this quotient of PFT to get a quotient of PF1 that is weak polynomial of degree
i for any ¢ € N using the formula

P, = (O°P) @ Bt ((-)=n) o0 51)
from Proposition [8.3.8

Proposition 8.4.5. For n,i €N, the formula ((’)*Q% ) ® Pocd ( (—)—n) o defines a F1z-module
which is a quotient of P,FId and is weak polynomial of degree less than or equal to i.

Proof. By Proposition the quotient of P¥l¢ by its subfunctor H,, from Definition is
described by the formula QD above. The FI;-module Pg 40€) is weak polynomial of degree 0 by
Corollary Then the FI;-module Pgd( (=)—-n ) ofis also weak polynomial of degree 0 since
it is the same functor but shifted by n and the weak polynomiality concerns the stable behavior.
However, in Proposition we showed that Q! is a quotient of P¥T which is weak polynomial
of degree less than or equal to 4. Since the functor O is exact and preserves the polynomiality by
Proposition we get that O* Q' is a quotient of O* P¥! in Pol;(FI,R-Mod). As the point-
wise tensor product respects epimorphisms, we get that ( o*Q., ) ® Pocd ( (-) —n) o{? is a quotient
of Pf Ta / H,,» 0 a quotient of P¥li_ Finally, by Proposition @L the pointwise tensor product

preserves the polynomiality so we conclude that this quotient of PY is in Pol;(FI, R-Mod). [
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Functors on the categories Cospan(F1)

In order to study the polynomial functors over a symmetric monoidal category whose unit is
an initial object like FI, Djament and Vespa introduce in [DV19, [Djal6| the construction M —
M which turns the category M whose unit is an initial object into the category M whose
unit is a null object. This construction is a variation of a construction of Quillen in K-theory,
and it morally adds morphisms from the objects of the category to the unit, while preserving
the morphisms from the unit to the objects. Since this construction preserves the polynomial
properties, it allows us to turn the study of polynomial functors over a category whose unit is an
initial object into the study of polynomial functors over a category whose unit is a null object,
as shown in [DV19, Theorem 4.8|. The advantage is that the functors on those categories with a
null object are better known. In particular, for FI-modules, Djament and Vespa show in [DV19]
Proposition 5.9] the following equivalences of categories

Pol,, (FI)/PO1 . Pol,, ( Cospan(FI)) > Fet (£,), (9.1)

no1 (FI) ~ /Poln_l ( Cospan(FI))

where X, is the category associated with the symmetric group and Cospan(FI) is equivalent
to FI. This result combines two equivalences of categories: the first describes the quotient
of polynomial functors over FI as the same quotient of polynomial functors over the inter-
mediate category Cospan(FI). The second equivalence describes the quotient of polynomial
functors over Cospan(FI) using a variation of a Dold-Kan type theorem of Pirashvili from
[CEEF15| which gives an equivalence of categories between the functors over the category FI# of
finite sets and partial injections, and the functors over X the category of finite sets and bijections.

In this chapter we show that this approach cannot be directly generalized to describe the
polynomial functors over FI;. Indeed, after introducing a generalization of the construction
Cospan for FI; and after defining polynomial Cospan(FI;)-modules, we show that the
polynomial functors of degree 0 over Cospan(FI;) are the constant functors. Together with
Theorem , this shows that the first equivalence in already fails for n = 0. More
precisely, in Section we introduce the category Cospan(FI;) and we study its properties. In
particular, the morphisms in Cospan(FI;) are given by some equivalence classes of diagrams
and we show that each class admits a minimal representative. This implies that the morphisms
in Cospan(FI;) from 0 to 1 and from 1 to 0 are isomorphic to FI;(0,1). In Section we
introduce a combinatorial category FI;# that is equivalent to Cospan(FI,;): it is the category
of finite sets and of partial injections coupled with a choice of colours on the complement at the
source and the target. Finally, in the following sections we define the polynomial functors over
Cospan(F1,), we give their basic properties and we describe the ones of degree 0.
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9.1 The categories Cospan(F1,)

In this section we present a generalization of the construction Cospan for the categories Fly
and we give the main properties of the category Cospan(FI;). This construction can be found
for other categories in [Ves07] and is equivalent to the construction ~: Monj,; — Monyy from
[DV19, [Djal6)]. The idea is to start with FI;, which has only increasing morphisms (i.e. from
n to m when n < m), and to add decreasing morphisms to it. For example, FI is a monoidal
category with an initial object and the construction Cospan turns it into Cospan(FI), a monoidal
category with a null object. The following definition extends the one from the category FI to
the category Fl:

Definition 9.1.1. The category Cospan(FI;) has the same objects as FI;. The morphisms in
Cospan(F1;) from n € FI; to m € FI; are the classes of diagrams of the form

m+0
(D) = lldm +a |

nT>m+l<:

with k € FI;, a € F1;4(0,k) and f € FI;(n,m + k) in the quotient by the equivalence relation
generated by:

i) All diagrams from 0 to 0 are in relation,

ii) Two diagrams

m+0 m+0
(D) = lldm +a and (D') = lldm +o!
n T> m+k n T> m+ k'

from n to m are in relation if there exists ¢ € FI;(k, k") such that (Id,, +¢) o f = f’ and
(Id,, +¢) o (Idy, +0) = .

The class of the diagram (D) in the quotient is denoted by [D]. The composition in Cospan(F1I;)
is given by the relation

7+ 0 m+0 1+0+0
lId,,L +8 o lldm +a = lIdi +B+a |
m —— 1 +1 n—— m+k n——m+k ——1i+1l+k
g f f g+Idk

where we choose a representative diagram of each class.

Remark 9.1.2. A diagram (D) consists of an object k € FI; and two morphisms « € FI;(0, k)
and f € FI;(n,m+k). The morphism « starts from zero, so it corresponds to a colour choice on
the object k, and the morphism f = (g,3) € FI;(n,m+ k) consists of an injection g and a colour
choice 8 on the complement of the image. This emphasizes that a morphism in Cospan(FIy) is
morally composed of an injection g and colour choices on two sets a and §, which interact with
each other.
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Remark 9.1.3. The two diagrams [D] and [D’] of Definition from n to m are in relation
(along the point ii) if there exists ¢ € FI;(k, k) such that the following diagram is commutative:

m+0

Id,, +a
y Id !
n——m+ k Idm +¢ m ta

fl

The composition in Cospan(FI;) corresponds to the natural way to complete the diagram that
links the two diagrams:
1+0
lldqj +8
m+0=m —>— i+l
lldm +a i Id; 1 +a

~

Lemma 9.1.4. The composition in the category Cospan(F1y) does not depend on the chosen
representative. The category Cospan(F1y) is a symmetric monoidal category.

Proof. For two representatives (D) and (D') of a morphism [D] € Cospan(FI;)(4,m) and two
representatives (D) and (D’) of a morphism [D] € Cospan(FIL;)(m,n) connected by the com-
mutative diagrams

1+0 m+0
1d; +8 Idm+oz/
m ;} 1+ % J/Idi +8’ and n ;) m+k w J/Idm +a
\M i+l K/ m+ k'
q 1!
the commutative diagram
1+0
1d; +5l Id; +48’
i+ Td; +4)
IdL + Idl +a
+Id .
n—>m+k Ik i+ l+k i+l
Id; +1/)+ap
J/Idi +1d; +o/
Id +p

m+k:' T) i+l + K
k/

shows that the two composition diagrams are related and so their class is the same. For two
different representatives (D) and (D') of a morphism [D] from 0 to 0, the two compositions
[D]o[D] and [D']o[D] give the same result due to the structure of monoidal category. Finally,
the structure of symmetric monoidal category directly comes from FI,. O
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Remark 9.1.5. For d = 1, the category Cospan(FI;) is equivalent to the category FI of
[DV19, Section 4| whose objects are the ones of FI and whose morphisms between n and m
are the elements of the filtered colimit of the sets FI(n,m + a) for a € FI. The equivalence
is given by the functor that sends an object k in FI to k in Cospan(FI;) and a morphism
[f]e c&lﬁn Homgy(n,m + a) to the class of diagrams

m
[D] = lldm +c@

nT>m+a

by choosing a representative f :n — m+ a of the class [f] in the filtered colimit. The value of
the functor on a morphism does not depend on the chosen representative by Proposition [I.1.6]
This functor is essentially surjective, full and faithful since the equivalence relations defining
the morphisms in Cospan(FI) correspond exactly to the filtered colimit relations defining the
morphisms in FI by Proposition @ again.

We now prove that for every morphism [D] in Cospan(F1;) we can choose a minimal repre-
sentative diagram (D) of the class [D]. This important property will be used in the following
and gives a description of the morphisms from 0 to m and from n to 0 in Cospan(FIy).

Proposition 9.1.6. For each morphism [D] in Cospan(F1;)(n,m), there exists 0 < z < n,
B eFI4(0,2) and g € FIz(n,m+ z) such that the diagram (D") defined by these three elements is
a minimal representative of the class [D] (in the sense that z <k for every k € F1; associated to
a representative (D) of the class [D]).

Proof. Let z be the subobject Im(f)nk of k and o be an isomorphism between k and z+ (k\ 2),
the following diagram commutes:

m+0
Id,, +o
f Id
p————— i m +(c0a)

m+z+ (k~z).
(Idm +o)of

Since the image of f is in m + z, we can define some morphisms g € FIz(n,m+ z), h € FI;(0,k~
z), B € FI4(0,2) and v € F1;(0,k \ z) by the relations (Id,,, +0) o f = g+ h and Id,, +(c o ) =
(Id,, +8) + 7. Since f is an injection we get 0 < z < n. By definition, we have the following
equality

m+0 m+0
[D] = lldm +a | T Idm +(Uooz)l

7 " ey M N2

Since there is only one equivalence class in Cospan(FI;)(0,0), so we have

m+0 0 m+0
[D]= lldm N lv = lldm B~ [D'].

nT>m+z OT>k\z nT>m+z
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Finally, the diagram (D’) is minimal since g restricted to g~'(z) — z is surjective, i.e. bijective.
O

Then, the Proposition gives, in particular, the following description of the morphisms
starting and ending at 0 in Cospan(FI,):

Definition 9.1.7. For n € N and x € FI;(0,n), we denote by z € Cospan(FI1;) (0,n) and by
% € Cospan(FIy) (0,n) the morphisms given by the classes

n 0
x= lldn and I = lz

Proposition 9.1.8. For n,m € N, with the notations of Definition the set
Cospan(F1;) (0,m) is the disjoint union of the equivalence classes x for x € F1;(0,m). Similarly,
the set Cospan(FI;) (n,0) is the disjoint union of the equivalence classes & for x € FI14(0,n).
Moreover, for x € F1;(0,n) the composition T o x is the identity.

Proof. For [D] € Cospan(F1,;) (0,m), the Proposition for n =0 gives z =0, so 5 =1dg and
there exists a minimal representative of [ D] associated with some x € FI4(0,m) as in Definition
9.1.70 Two such diagrams are never related so we get the description of Cospan(F1,;) (0,m). For
[D] € Cospan(F1,;) (n,0) the Proposition for m = 0 gives a minimal representative of [D]
associated with 0 < z <n, 5 € FI;(0,z) and g € FI;(n, z). Since the set FI (n,z) is empty for
z<n weget z=n and g is in FIz(n,n) =S, so it is bijective. We then have the commutative
diagram

d W 0+0
n—2, 5 0+n=0+z g lldwgloﬂ
\> n
Idn
Then we get the equalities
0+0
Cospan(F1;) (n,0) = U U lldo +8
BEFId(O,TL) gESn

0
= U U -1
BeFI1,;(0,n) g€Sn g~ B
| n —>Idn n
0
= I_I x |
xeFId(O,n)
n——rn
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where the last equality is obtained by checking that two diagrams associated with different
x € FI;(0,n) are not related. Finally, for n € N and z € FI;(0,n), the composition Z oz is a
morphism from 0 to 0 and therefore the identity. O

The Proposition implies that both Cospan(FI;) (0,n) and Cospan(FI;) (n,0) are in
bijection with FI;(0,n). This emphasizes that the category Cospan(F1,) is essentially obtained
by keeping the morphisms from 0 to n of FI; and adding new morphisms from n to 0 corre-
sponding to them. This remark also shows that 0 is a null object in Cospan(F1;) for d = 1, as
explained in [DV19], but this is not true for d > 1.

Remark 9.1.9. As a special case of Proposition using the notations of Definition
Cospan(F1;) (0,1) is the disjoint union of the equivalence classes ¢ for ¢ € C and
Cospan(F1,) (1,0) is the disjoint union of the equivalence classes ¢ for ¢ € C. In summary,
both Cospan(FI;) (0,1) and Cospan(FI;) (1,0) are in bijection with FI;(0,1) = C' and, for
¢ € C, we have two morphisms ¢ € Cospan(FI;) (0,1) and ¢ € Cospan(FI;) (1,0) such that the
composition ¢o ¢ is the identity.

In the end of this section, we study the inclusion functor 1 of F1; in Cospan(FI;) and describe
an adjoint of this functor, generalizing Proposition 4.7 in [DV19]. This adjunction connects the
functors on FI; and those on Cospan(F1,;) and, in particular, it allows us to create polynomial
FI;modules from polynomial Cospan(FI;)-modules.

Definition 9.1.10. The inclusion functor n: FI; — Cospan(F1;) is given on objects by n(n) =n
and on a morphism f € FI;(n,m) by the class f from Definition [9.1.7]

We describe the adjoint of this functor using the theory of Kan extensions, but first we
introduce the slice category (n | n):

Definition 9.1.11. For n in Cospan(F1,), the slice category (n | n) has for objects the pairs
(t,), where t € Cospan(FI;) and ¢ € Cospan(FI;) (t, n), and for morphisms from (¢,¢) to
(t',¢") the maps f : ¢t — ¢’ in Cospan(FI;) such that ¢’ o f = ¢. The forgetful functor from
(nln) to F1; is denoted by ¢y,.

Proposition 9.1.12. The precomposition functor
n* : Fct( Cospan(F1;), R-Mod) — Fct(F1;, R-Mod)

has a left adjoint o which is given on the objects by a(F') (n) = colim (F o) (t,¢).
(t.8)e(nin)

Proof. Since R-Mod is cocomplete, the general theory of Kan extensions (see [MLI8| P.236])

gives the existence of a left adjoint to the precomposition functor n*. It is the functor « =

Lan,, (-), given on a functor F' : FI; - R-Mod by the functor «(F') = Lan,, (F') : Cospan(FI;) —

R-Mod, described on objects by the formula of the statement, and its image on morphisms is

obtained by the universal properties of colimits. O

9.2 Equivalence between Cospan(F1;) and FI,;#

In this section we introduce the combinatorial category FI;# and we prove that it is isomorphic
to Cospan(FI;). For example, when d = 1 we recover the isomorphism FI = FI# of [DVI9],
Example 4.2] or [Will9], where FI# is the category of partial injections of finite sets from
[CEF15| and [Will8a].
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Definition 9.2.1. The category Fl;# has the same objects as FI; and the morphisms in
FI;+# from n to m are the pairs (f,a) where f is a partially defined morphism in FI; - s.e. a
morphism f € FI;(I,m) for | a subobject of n in FI; - and a € FI;(0,n \[) is a colour choice.
The composition is given by the relation

(l%m,O%n\l)O(kLn,OLi\k):

B+(im(g))
9

( ) S 1L m o i k4 Tm () G k) + (ks g (1) =i~ gL (0) )

where § is g restricted to k \ g71(I) and co-restricted to its image within n \ I, so that it is an
isomorphism of &k~ g~1(1).

Remark 9.2.2. As in Remark [9.1.2] a morphism (f,«) in FI;#(n,m) morally consists of an
injection and two colour choices, one on the complement at the source and one on the complement
at the target, which interact with each other. Indeed, the morphism f = (g,8) € FI;(I,m) is
itself a pair formed by an injection g from [ into m and a colour choice # on the complement of
the image of g in m.

We now define two functors between Cospan(FI;) and FI;#, and we prove in Theorem
that they are inverse to each other.

Definition 9.2.3. The functor T : Cospan(F1;) — FI;# is given on objects by I'(n) = n and
on morphisms by

m+0 _
@ m n -1
r lldm v ( Fmy Dm0~ gy ak L s i (m) )

nT>m+k

where f is f restricted to n f~1(m) and co-restricted to Im(f) Nk so it is an isomorphism.

Definition 9.2.4. The functor x : FI;# — Cospan(F1,) is given on objects by x(n) =n and
on morphisms by

m+0
X(l%m,OLn\l): J/Idm"'ﬁ

n:l+(n\l) Wm+(n\l)

Lemma 9.2.5. The functors I : Cospan(F1;) - FI;# and x : FI;# — Cospan(F1;) are well
defined.

Proof. By definition of the composition in Cospan(F1;) and FI;#, both I" and x respect com-
position and identities. The definition of I" does not depend on the choice of a representative (D)
of the class [D]: indeed, for two representatives (D) and (D’) of the morphism [D] connected
by the commutative diagram

m+0

1d,, +a
n — f > m + k Idm + J/Idm +ao!

g
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as in the proof of Proposition we can choose k and k' minimal such that Im(f) nk = k
and Im(g) n k" = k. The minimality for both k and k' implies that ¢ is bijective. Then the
equality g = (Id,, +¢) o f implies that f~'(m) = g'(m) and that the restrictions of f and g to
this subobject are the same. This relation also implies that § = ¢ o f, and together with the
relation o’ = o o it gives the relations ™' o/ = (po f) logoa=floplopoa=floa
which shows that I'([D]) =T'([D’]). O

Remark 9.2.6. If we choose k minimal as in Proposition [9.1.6] then Im(f) nk = k and the
injective morphism f restricted to n N f~'(m) gives an isomorphism n \ f7'(m) ~ k. This
isomorphism can be used to rewrite the image of the functor I' on morphisms as follows:

m+0 ;
r lldm+a =(f1(m)—>m,0 “— k

’I’LT>7TL+IC

y nN fH(m)

Pl 1 () ™" )

In the end of the section we always choose such a minimal k£ and we use the alternative
definition of I" given in Remark to simplify the notations.

Remark 9.2.7. We can assume that f restricted to n~ f~1(m) is the identity by the following
commutative diagram:

m+0

e
f

f_l(m) + (n N f_l(m)) —— m+k Idm +((f|n\f—1(m))71006) .

Id., +(f|n\ffl(m))\} .
f+1dn\f_1(m) me (n A f (m))

This explains why the inverse image of f, restricted to n ~ f~!(m), appears in the definition of
the functor I', and illustrates the equivalence below. Indeed, this representative diagram of the
class isolates the colour choice on the complement at the source n\ f~1(m) and the colour choice
on the complement m \ f(n) nm at the target, which corresponds to a morphism in FI;#.

Theorem 9.2.8. The functors T' : Cospan(F1;) - F1;# and x : FI;# — Cospan(F1;) from
Definitions [9.2.5 and [9.2.4] are inverse of each other. They give an isomorphism of categories

Cospan(F1,;) = FI;#.

Proof. By definition both compositions of I' and x are the identity on objects, we prove that
this is also the case for morphisms. For (¢g:1 - m, 8:0 - n 1) a morphism in FI;#(n,m) we
have:

m+0
Fox<(li>m,0i>n\l))=lﬂ lldmw

n:l+(n\l) m} m+(n\l)
Then, the image by I' of this class is

-1
(g+Id)‘n\ g+ —(m 05
(g+Id)‘1(m)Mm,0( (101w > n\l :(li>m,0i>n\l),
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showing the identity I" o x = Id on morphisms. For [D] a morphism in Cospan(FI;)(n,m), we
use the definitions to get

m+0
xoT([D]) =xoT lmw
nT> m+k

f‘f*l(m) (f‘n\f—1<m))_1°a

X(fl(m)—>m,0 >k=n\f1(m))

m+0

- o +((fle g1 (my) "F002)

fHm) + (n~ f7H(m)) »m+(n f7H(m))

Fl5=1 my 1 =1 (o)

We denote by [D’] this last class of diagrams. Then, since f induces an isomorphism n~ f~1(m) 2
k, we can make the following commutative diagram:

Ldm +((flye =1 (my) " 000) m+0
f| ~1(m +Idn\ “1(m
n=ft(m)+(n~ f(m)) ) I (n~ f71(m)) Idy, +a -
Idm, +f|n\f% m+k,

f=f|f—1(m)+f|n\f—1(m)

which shows that the class [D'] is the same as the initial class [D], implying that yoT'=1d. O

9.3 Polynomial Cospan(FI1,;)-modules

In this section we study the polynomial functors from the category Cospan(F1I;) to the category
R-Mod, called Cospan(FI,;)-modules, as we did for FI;-modules in the previous chapters. We
start by defining the endofunctors 7, 67 and % on Fct(Cospan(FI;), R-Mod) as we did for
Fct(FI;,R-Mod) in Section and we define the polynomial functors on Cospan(FI;) using
them, as for polynomial FIz-modules in Section 5.I] One important difference is that all the
endofunctors xf are zero for Cospan(FI;)-modules, as we have shown in Proposition W, which
simplifies the study of these functors. For example, it implies that the subcategories of stably
zero functors over Cospan(F1;) are zero so there is only one notion of polynomial Cospan(F1I;)-
modules.

Definition 9.3.1. For k € Cospan(F1;), the endofunctor 1, of Fct( Cospan(FI;), R-Mod)
is given on a functor F' : Cospan(FI;) - R-Mod by 7(F) = F(- + k) and on a natu-
ral transformation o : F' — F' by 7(0) = o(_4x). For x € Cospan(FI;)(0,k), the nat-
ural transformation iy : Id — 7, is given on a functor F' : Cospan(FI;) - R-Mod by
iT(F)=F( Id(,)+x) : F(-) — F(-+k).
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Remark 9.3.2. The transformation i} is natural: for any functor F' : Cospan(FI;) - R-Mod
and any morphism [D] in Cospan(FI;)(n,m), using the monoidal structure of Cospan(FI;)
and Proposition we have

7(F)([D]) o F(1d,, +x)

m+k m+k
= F lldm-#k +a = F lIdec +to
n (Idm, +z+1dy)o f m+k+l n(f+1dk)o(Idn +z)m +h+l

= F(Id,, +z) o F([D]).

We then define the endofunctors 07 and s as we did in Definition for FIz-modules.
However, we immediately show that the endofunctors 7 are all zero over Cospan(FI1y).

Definition 9.3.3. For k € Cospan(FI;) and = € Cospan(F1;)(0,k), the endofunctor ki of
Fct( Cospan(FI;), R-Mod ) is the kernel of the natural transformation 7%, and 6}, is its cokernel.

Proposition 9.3.4. For all k € Cospan(F1;) and all x € Cospan(F1;)(0,k), the endofunctor kf,
18 2eTo.

Proof. By Proposition there exists a morphism & in Cospan(FI;)(k,0) such that Zox =
Idg. Then, for all functors F' : Cospan(Fl;) - R-Mod we have the relation F'(Id_)+%) o
F(Id_y+z) = F(Id(_y+(Z o)) = [dp). This implies that the morphism 7} (F') = F((Id._y +x)
is a monomorphism, so its kernel % (F) is zero. Since this is natural it shows that «f is zero as
an endofunctor. O

Remark 9.3.5. For k € Cospan(FI;) and z € Cospan(F1;)(0,k) there exists a short exact

,L'.’I)
sequence 0 > K y Id —2 1, > O >0 .

We now show that the basic properties of these endofunctors that we proved for FI;-modules
remain true for Cospan(FI;)-modules. Some of them even become empty since all the endofunc-
tors xj, are zero by Proposition [9.3.4]

Proposition 9.3.6. For k,l € Cospan(F1;) and x € Cospan(F1;)(0,k), y € Cospan(F1,;)(0,1),
we have

0) The endofunctor 6 is exact,

1) The endofunctors 1, and 7, commute up to a natural isomorphism. They also commute
with limits and colimits.

2) The endofunctors &f and 5;’ commute up to a natural isomorphism. They also commute
with colimils.

3) The endofunctors 7, and 6} commute up to a natural isomorphism.

4) There is a natural short exact sequence 0 — 5? — 5]95:;/ — 1 ody — 0.

Proof. The proof is the same as the proof of Proposition [2.6.6] The only differences are that
the exact sequence of points 0) and 4) becomes short since xf is zero, which implies that all
endofunctors ¢; are exact and not just right exact. O
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Remark 9.3.7. Since all the endofunctors 7 of Fct(Cospan(FI;), R-Mod) are zero
by Proposition the analogues for Cospan(FI;) of the categories SN (FIz;, R-Mod)
and Sj\/’cil,m,cim (FI;,R-Mod) of Definitions |6.1.1| and |6.2.1| are reduced to zero. Then
any corresponding quotient category by one of these subcategories is isomorphic to
Fct(Cospan(FI;), R-Mod) and thus the different notions of weak and strong polynomial func-
tors that we could define for Cospan(FI;)-modules coincide. Therefore, in the following section
we present only one notion of polynomial functors over Cospan(FI1,).

Finally, we define the polynomial functors on Cospan(F1;), as we did for functors on FI,; in
Section using the endofunctors 6§ for c e C.

Definition 9.3.8. For n € N; the full subcategories of Fct(Cospan(FI1;), R-Mod) of polynomial
functors of degree less than or equal to n, denoted by Pol,, (Cospan(FI;), R-Mod), are defined
by induction. A Cospan(FI;)-module F' is in Pol,,(Cospan(FI;), R-Mod) if, for all ¢ € C, we
have 65 (F) € Pol,,_1(Cospan(FI;), R-Mod), where 6§ is the endofunctor of Definition [9.3.3] By
convention Pol_;(Cospan(FI;),R-Mod) is zero.

Remark 9.3.9. For d = 1, since C' = {c¢} we recover the definition of polynomial functors
over the symmetric monoidal category Cospan(FI) with a null object of [DV19] using only one
endofunctor d; = 47.

We end this section with the first properties of the polynomial functor over Cospan(FIy).
In particular, we show that this definition using only the endofunctors 07 for ¢ € C' a colour
is equivalent to the similar definition using all endofunctors ¢ for k € Cospan(FI;) and x €

Cospan(F1;(0,k)).

Proposition 9.3.10. For all n € N, the subcategory Pol,(Cospan(FI;), R-Mod) is thick,
closed under colimits and stable by the endofunctors 1, and 03, for k e Cospan(FI;) and
x € Cospan(FI,)(0, k).

Proof. The first assumption is proved by induction using Proposition which implies that
all endofunctors 07 are exact. The second assumption is true since 73 and J; commute with 67
as endofunctors by Proposition [0.3.6] again. O

Lemma 9.3.11. A functor F : Cospan(FI;) - R-Mod is in Pol,(Cospan(FI;), R-Mod) if
and only if the functor 6f (F') is in Pol,_1(Cospan(FI;), R-Mod) for all k € Cospan(F1;) and
all x € Cospan(FI,)(0,k).

Proof. One implication is clear, the other is proved by induction using the short ex-
act sequence 0 — 6 — 6,7 — m 067 — 0 from Proposition [9.3.6) and the fact that
Pol,, (Cospan(F1;), R-Mod) is thick and stable by the endofunctors 7, by Proposition(9.3.10 O

9.4 Description of Poly(Cospan(F1;), R-Mod)

We show that the polynomial functors of degree 0 over Cospan(F1I;) are the constant functors,
which gives an equivalence of categories between Polg( Cospan(FI;),R-Mod ) and R-Mod.
We start by adapting the Section for Cospan(F1;), which says that a functor on FI; is
determined by the image of the morphisms starting from 0, if these images are isomorphisms.
We show that the same is true for functors over Cospan(FI1,;) if we keep only the morphisms
starting from 0 corresponding to clf for k € N. We then use the subcategory Cospan(FI;) of
Cospan(FI,;) with only these morphisms to describe the polynomial Cospan(FI;)-modules of
degree 0.
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Definition 9.4.1. The subcategory Cospan(FI;) of Cospan(FI;) has the same objects as
Cospan(F1,;) and the morphisms in Cospan(FI;) are the morphisms starting from 0 of the form
¢} in Cospan(F1,), for k € Fly, corresponding to cf € FI4(0,k) via the bijection of Proposition
9.1.5

We now show that the functors over Cospan(F1I;) sending the morphisms clf to isomorphisms
correspond to the functors over Cospan(FI,).

Lemma 9.4.2. A functor F : Cospan(FI;) — R-Mod induces a unique functor F :
Cospan(FI;) - R-Mod. Moreover, if F(cF) is an isomorphism for all k € Cospan(F1y), then
for all x € Cospan(F1,)(0,k) we have F(x) = F(c¥) and, for u € Cospan(FIy)(n,m), the mor-
phism F(u) is obtained from F by the formula:
F(u) = F(uoc}) o (F(c})) ™ = F(cl") o (E(ch))

Proof. For x € Cospan(F1;)(0,k), let & be the morphism in Cospan(F1;)(k,0) corresponding to
x by Proposition then we have Z o2 = Idg. Since Z o c¥ is in Cospan(FI,)(0,0) we also get
by definition # o ¢ = Idg. Applying F to these relations, since F(c}) is an isomorphism, we get
F(#)oF(ch) = F(iock) = F(Idy). This gives F(&) = (F(ck))™". We then get (F(cF)) ™ oF(x) =
F(zox)=1dpq) and so F(x) = F(c¥). The rest of the proof is similar to the proof of Lemma
using that wo ¢} is in Cospan(FI;)(0,m) and that F(uocl) = F(c[") = F(cf") because of
the relation F'(z) = F(c}'). O

Corollary 9.4.3. For F : Cospan(FI;) — R-Mod, if the image of all morphisms in
Cospan(F1;) by F is an isomorphism, then this functor can be extended to a unique functor
F from Cospan(F1;) to R-Mod.

Proof. By hypothesis, F(cV) is an isomorphism for all k € Cospan(FI,;), so we can define a
functor F' : Cospan(FI;) - R-Mod by the formula of Lemma This lemma also proves
that F'is the unique extension of F. O

Under the hypothesis that a Cospan(FI;)-module sends a morphism c* to an isomorphism,
we show that the actions of the symmetric groups on this functor are trivial.

Proposition 9.4.4. For F : Cospan(F1;) - R-Mod, if there exist k € Cospan(FI;) and c€ C
such that F(c*) is an isomorphism, then for all permutations o € Sy, = Cospan(FIy)(k, k), the
morphism F (o) is the identity.

Proof. 1t is similar to the proof of Proposition using the Lemma [9.4.2] OJ

We finally prove that the polynomial functors of degree 0 over Cospan(FI;) are the constant
functors using the category Cospan(FI;). We start by giving a concrete condition for functors
over Cospan(FI1,;) to be polynomial of degree 0.

Lemma 9.4.5. A functor F : Cospan(FI;) - R-Mod is polynomial of degree 0 if and only if
the natural transformation if,(F) : F — 1,(F') is an equivalence for all k € Cospan(F1;) and all
x € Cospan(FI;)(0, k).

Proof. By Proposition [9.3.11] F' is in Polp(Cospan(FI;), R-Mod) if and only if the cokernel
6¥(F) of each morphism i{(F) is zero, and by Proposition its kernel k7 (F') is always
Zero. Ul



152 Chapter 9. Functors on the categories Cospan(FI1,)

We now define, for each functor F' € Poly(Cospan(FI;), R-Mod), an associated functor
Hp : Cospan(FI;) — R-Mod and we show that this functor Hp is constant and isomorphic

to F. By Corollary we can define Hp on the subcategory Cospan(FI;) and extend it

to a functor over Cospan(FI;) if the morphisms c’f are sent to isomorphisms. Moreover, if

k
F € Poly(Cospan(FI,;),R-Mod) the morphism 4,' (F)(0) = F(c}) : F(0) — F(k) = 7,(F)(0) is
an isomorphism by Lemma which allows us to give the following definition of Hp:

Definition 9.4.6. For I' € Poly(Cospan(FI;), R-Mod), the functor Hp : Cospan(FI;) —
R-Mod is given on objects by Hp(n) = F(0), for n € Cospan(FI;), and on morphisms by

Hp(c}) = (F(ch) )_1 o F(ck) = Idp(gy for k € Cospan(FI,).

Remark 9.4.7. We then consider the functor Hp : Cospan(FI;) — R-Mod, which is the one
extending Hp by Corollary This definition is similar to Definition for functors on Fl,
but, for Cospan(FI;), Hr is equal to the constant functor F(0)** : Cospan(FI;) - R-Mod.

Lemma 9.4.8. For F € Polg(Cospan(FI;), R-Mod), there is a natural equivalence ¢ : F/(0)° =
Hp 2 F given by e, = F(c}') : Hp(n) = F(0) - F(n).

Proof. The equality F(0)*" = Hp follows from Corollary and from the definition of Hp.

For u € Cospan(FI;)(n,m), as F is in Polp(Cospan(FI;), R-Mod), the morphism zzlf(F) =
F(Id -y +c) is an isomorphism for all k € Cospan(FI;) by Proposition . Then by Lemma
[9.4.2 we have F(uoc}) = F(c[") since ¢{" and wo ¢ are in Cospan(FI;)(0,m). This implies the
relations

emo Hp(u) =gy =F(c]")=F(uocl) =F(u)o F(c}') = F(u) o ey,

k
which shows that ¢ is natural. Tt is an isomorphism by the Lemma [9.4.5since F(c}) = z'zl (F)(0)
is an isomorphism. O

Finally, we can prove that the polynomial functors of degree 0 over Cospan(FI;) are the
constant functors using the Lemma [9.4.8]

Theorem 9.4.9. There is an equivalence of categories
Polp( Cospan(F1;),R-Mod ) ~ R-Mod

given by the functor ¢ : R-Mod — Fct(Cospan(FI;), R-Mod) which sends a module M ¢
R-Mod to the constant functor M " and a morphism f € R-Mod(M, N) to the constant natural
transformation equal to f.

Proof. By Lemma if F'is in Polp(Cospan(FI;),R-Mod) then F' is equivalent to the
constant functor F(0)**. Conversely, for all M ¢ R-Mod, the constant functor M' is in
Poly(Cospan(F1;),R-Mod) since i} (M®") = Idjet is a natural equivalence. This proves that
the essential image of the functor ¢ is Polg(Cospan(FI1;), R-Mod). This functor is by definition
faithful, and it is full since a natural transformation between two constant functors M and
N % is obtained by a morphism in R-Mod (M, N). O



Appendix A: The pointwise tensor
product on Mon;,;

This appendix is a complement of [DV19]. In this context M denotes a small symmetric monoidal
category whose unit is an initial object and Moniy; denotes the category of these small categories.
We prove that the pointwise tensor product of two strong polynomial functors over M is strong
polynomial. Djament and Vespa defined a notion of strong polynomial functors over these
categories which is similar to the definition over FI;. We then use the Proposition 3.12 from
[DV19], which corresponds to Proposition but for M € Mony,i, to prove the following
result analogous to Theorem [5.5.4;

Theorem. For n,m € N and F,G : M - R-Mod, if F is in Pol¥"*"(M,R-Mod) and
if G is in Pol’™"9(M,R-Mod), then their tensor product F ® G : M - R-Mod is in
Pols"°"  (M,R-Mod).

2max(n,m)

Proof. We consider the functor (F,G) in Fct(M,R-Mod x R-Mod). We start by proving by
induction on k € N that 6% (F,G) = (85%(F), 55%(G) ), where 65* is the composition of &; by itself
k times. For k = 0 it is by definition, and by induction we have 65**1(F,G) = §;(85%(F,G)) =
51(0SK(F),05%(G)) ). Then, for a e M, 61(65%(F),85%(G) ) (a) is the cokernel of the map

(FE(F).055(G) ) @) = n( &) 65(E) )(a)
(555(F)(@),6%(G)(@)) = (&*(F)(a+1),6(G)(a+1)).

This shows the identity 5;**1(F,G) = (65F1(F), 6551 (G)) on the objects a € M and we can
check that it is natural. Then, by hypothesis F' € Pol5"°"8( M, R-Mod) so 6;"*!(F) = 0, which

omax(n,m)+1

implies that d; (F') =0 and we have the same for G. This gives
omax(n,m)+1 omax(n,m)+1 omax(n,m)+1
oy (G = (87 (), 67T (6 ) = (0,0),

showing that (F,G) is polynomial of degree less than or equal to max(n,m). We conclude by
applying the Proposition 3.12 from [DV19] to the composition

M E9 B Modx R-Mod —2= R-Mod .

Indeed, we showed in Lemma that — ® — is polynomial of degree 2, and we proved that
(F,G) is polynomial of degree less than or equal to max(n,m). The functor — ® — preserves
epimorphisms since an epimorphism in R-Mod x R-Mod is a couple (f,g) of epimorphism in
R-Mod and then f ® g is also an epimorphism. O

Remark 9.4.10. In this theorem the bound may not be the best possible. Indeed, we could
expect for F'® G : M — R-Mod to be strong polynomial of degree less than or equal to n +m.
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For example, for M = FI, the Proposition 4.1 from [Djal6] shows that a FI-module is strong
polynomial of degree less than or equal to n if and only if it is a quotient of a sum of the standard
projective functors PiFI for ¢ < n. This allows us to prove that, over FI the tensor product F® G
is polynomial of degree n +m if F' has degree n and G has degree m. Similarly, for functors over
a symmetric monoidal category where the unit is a null object, this theorem is true with the
optimal bound since we have deg(F ® G) < deg(F) + deg(G). The proof of this result is given
in [Ves19 Proposition 2.9] with a direct use of the cross effects. One could try to prove a more
refined version of the proposition 3.12 from [DV19| and use this refinement in the proof to get a
better bound.
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