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COMBINATOIRE DES IDENTITÉS SUR

LES POLYNÔMES DE MEIXNER

PAR

Dominique FOATA (∗)

RÉSUMÉ. — Une identité bilinéaire prolongeant la formule du noyau de Poisson
pour les polynômes de Meixner est obtenue par des méthodes combinatoires. Ces mêmes
méthodes fournissent aussi une extension multilinéaire de cette identité.

ABSTRACT. — A bilinear identity extending the formula of the Poisson kernel for
the Meixner polynomials is derived by means of combinatorial methods. The same
methods also provide a multilinear extention of that identity.

1. Introduction. — Les polynômes de Meixner mn(x; β, c) (n ≥ 0)
peuvent être définis par leur fonction génératrice

(1.1)
∑

n≥0

mn(x; β, c)
un

n!
=

(

1−
u

c

)x

(1− u)−x−β

(cf. Erdélyi et al. [6, vol. 2, pp. 225–226 et vol. 3, pp. 273–274] ou Chihara
[4, pp. 175-177].) Notons (a)n les factorielles montantes

(a)0 = 1 et (a)n = a(a+ 1) · · · (a+ n− 1) (n ≥ 1)

et

2F1(a1, a2; b1; x) =
∑

n≥0

(a1)n (a2)n
(b1)n

xn

n!

la série hypergéométrique usuelle. Les polynômes de Meixner ont encore
une représentation naturelle comme série 2F1. On a, en effet, (cf. [6, vol. 2,
p. 225])

mn(x; β, c) = (β)n 2F1(−n, x; β; 1− c−1) (1.2)

= (β + x)n 2F1(−n, x; 1− β − n− x; c−1).

(∗) Publié grâce à une subvention du Fonds PCAC pour l’aide et le soutien à la
recherche, Centre de Recherche de Mathématiques Appliquées, Université de Montréal,
Montréal, P.Q., Canada H3C 3J7.
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D. FOATA

Askey [1, p. 14 et 2] utilise la notationMn(x; β, c) = 2F1(−n, x; β; 1−c
−1).

Dans le présent article, seule la version mn(x; β, c) sera utilisée et les
formules seront donc transcrites dans cette seule notation. En particulier,
la formule dite du noyau de Poisson [1, p. 15 (3.40W)] s’écrit

(1.3)
∑

n≥0

un

(β)n n!
mn(x; β, c)mn(y; β, c)

=
(

1−
u

c

)x+y

(1− u)−x−y−β 2F1

(

−x,−y; β;
u(c−1 − 1)

(1− u/c)2

)

.

Le but de cet article et de sommer une série bilinéaire plus générale que
celle donnée en (1.3) en s’inspirant du modèle fourni par Erdélyi [5] pour
les polynômes de Laguerre. On obtient

(1.4)
∑

n≥0

un

n!
(β)n 2F1(−n,−x; γ; a) 2F1(−n,−y; δ; b)

= (1− u)−β
∑

r≥0

(β)r (−x)r (−y)r
(γ)r (δ)r r!

( abu

(1− u)2

)r

×2F1

(

β+r;−x+r; γ+r;−
au

1− u

)

2F1

(

β+r;−y+r; δ+r;−
bu

1− u

)

.

Lorsque β = γ = δ et a = b = 1−c−1, le premier membre de (1.4) se réduit,
moyennant (1.2), au premier membre de (1.3). Quant aux deux fonctions

2F1 du second membre, elle se réduisent, par le théorème binomial à
((1 − u/c)(1 − u)−1)x+r et ((1 − u/c)(1 − u)−1)y+r, respectivement. On
retrouve alors le second membre de (1.3). Ainsi (1.4) ⇒ (1.3).

Enfin, lorsque y = 0 et a = b = 1 − c−1, la formule (1.4) donne la
fonction génératrice suivante

(1.5)
∑

n≥0

un

(γ)nn!
(β)nmn(x; γ, c) = (1− u)−β 2F1

(

β,−x; γ;
u(c−1 − 1)

1− u

)

,

qui implique à son tour (1.1) lorsque γ = β.
On peut enfin appliquer le modèle multilinéaire développé pour les

polynômes d’Hermite [7, 8, 12] et de Laguerre [10, 11] pour prolonger
(1.4) au cas du produit de plusieurs polynômes de Meixner. La troisième
fonction hypergéométrique d’Appell à k variables, qui s’écrit [3, p. 73]

F
(k)
3 (a1, . . . , ak; b1, . . . , bk; c; u1, . . . , uk)

=
∑

n1≥0,...,nk≥0

(a1)n1
. . . (ak)nk

(b1)n1
. . . (bk)nk

(c)n1+···+nk

un1

1

n1!
· · ·

unk

k

nk!

2



POLYNÔMES DE MEIXNER

est le principal ingrédient de la formule ainsi prolongée. Dans celle-ci (voir
(1.6) ci-dessous), les symboles

∑

(nij)

(resp.
∑

(rij)

) indiquent des sommations

sur toutes les suites (nij) (resp. (rij) (1 ≤ i < j ≤ k) de k(k − 1) entiers
positifs. Pour 1 ≤ i < j ≤ k, on pose nji = nij , rji = rij et pour
i = 1, 2, . . . , k on adopte la notation

ni⋆ =
∑

j

nij , ri⋆ =
∑

j

rij (1 ≤ j ≤ k; j 6= i).

Enfin, ai, γi, yi (1 ≤ i ≤ k) et uij , βij (1 ≤ i < j ≤ k) sont des variables,
avec de nouveau la convention uji = uij , βji = βij pour 1 ≤ i < j ≤ k.

La formule multilinéaire prolongeant (1.4) s’écrit alors

(1.6)
∑

(nij)

∏

i<j

u
nij

ij

nij!
(βij)nij

∏

i

2F1(−ni⋆,−yi; γi; ai)

=
∏

i<j

(1− uij)
−βij

∑

(rij)

∏

i<j

(βij)rij (−yi)rij (−yj)rij
rij !

( aiajuij
(1− uij)2

)rij

×
∏

i

1

(γi)ri⋆
F

(k−1)
3

(

βi1+ ri1, . . . , βik+ rik;−yi+ ri1, . . . ,−yi+ rik;

γi + ri⋆;−
aiui1
1− ui1

, . . . ,−
aiuik
1− uik

)

.

Les termes diagonaux nii, rii, uii, βii n’existent pas et les fonctions
d’Appell ci-dessus sont bien à (k−1) variables. Lorsque k = 2, on retrouve
immédiatement (1.4). On a ainsi

(1.7) (1.6) ⇒ (1.4) ⇒ (1.5) ⇒ (1.1) et (1.4) ⇒ (1.3) ⇒ (1.1).

Naturellement, l’utilisation d’une formule comme (1.6) reste subor-
donnée aux propriétés analytiques des fonctions hypergéométriques à
plusieurs variables. Le présent article mettra donc l’accent sur la façon

de démontrer ces formules et cette façon est de nature combinatoire. On
se propose ici de démontrer l’identité (1.4). Celle-ci implique, d’après (1.7),
toutes les autres formules sur les polynômes de Meixner, à l’exclusion de
(1.6). La méthode de preuve utilisée est essentiellement celle qui nous avait
permis d’obtenir combinatoirement la formule de Hille-Hardy-Erdélyi pour
les polynômes de Laguerre [11]. On se reportera donc constamment à ce
dernier mémoire ainsi qu’au second article sur les polynômes de Meixner
[9]. On fait apparaitre le premier membre de (1.4) comme la fonction
génératrice de certains triplets (σ, ϕ, ψ) ou σ est une permutation, et ϕ, ψ
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deux modèles introduits dans [9] et appelés endofonctions de Meixner (cf.
section 2). Il s’agit ensuite de calculer cette même fonction génératrice en
utilisant les propriétés géométriques de ces endofonctions et d’obtenir ainsi
le second membre de (1.4). Pour ce faire, on fait appel à des lemmes com-
binatoires de [11], rappelés en section 3 et on construit (dans la section 4)
une bijection entre les triplets (σ, ϕ, ψ) et des suites finies de modèles com-
binatoires dont la fonction génératrice est précisement le second membre
de (1.4).

La démonstration de (1.6) n’est pas reproduite. Elle peut être calquée
sur celle de la formule multilinéaire concernant les polynômes de Laguerre
[11].

2. Endofonctions de Meixner. — Comme dans [9], on appelle endo-
fonction de Meixner sur un ensemble fini S tout couple ϕ = ((A,B), f) où
(A,B) est une partition ordonnée de S et f une application de S dans S
dont la restriction fA de f à la partie A est injective et la restriction fB
à B est une permutation de B.

On identifie toute endofonction de Meixner ϕ = ((A,B), f) avec son
graphe associé dont les sommets sont les éléments de S et dans lequel un
arc va de v à v′ si et seulement si f(v) = v′. On dessine en trait continu
(resp. pointillé) les arcs issus de sommets appartenant à A (resp. B).

Une endofonction de Meixner est alors une collection de cycles dont
tous les arcs sont en trait continu et de cycles en trait pointillé, dont
chaque sommet est l’extrémité d’au plus un chemin en trait continu (voir
Fig. 1).
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5

14 1
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❅❅■�
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9
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✛7 16
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❄

12

15

11
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Fig. 1

Soit cont(ϕ) (resp. point(ϕ)) le nombre de cycles de ϕ en trait continu
(resp. pointillé). Le poids de ϕ = ((A,B), f) est défini par

(2.1) w(γ,−x,−a;ϕ) = γcont(ϕ)(−x)point(ϕ)(−a)|B|.
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POLYNÔMES DE MEIXNER

Comme démontré dans [9] l’expression (γ)n 2F1(−n,−x; γ; a), égale à
∑

(

n
i

)

(−x)i(γ + i)n−i(−a)
i (0 ≤ i ≤ n), est le polynôme générateur

des endofonctions de Meixner sur [n] = {1, 2, . . . , n} par le poids
w(γ,−x,−a; .). En d’autres termes, on a :

(2.2) (γ)n 2F1(−n,−x; γ; a) =
∑

ϕ

w(γ,−x,−a;ϕ),

où ϕ varie dans l’ensemble des endofonctions de Meixner sur [n]. Par
ailleurs, si cyc(σ) désigne le nombre de cycles d’une permutation σ, on
pose wβ(σ) = βcyc(σ). L’identité

(2.3) (β)n =
∑

σ

wβ(σ),

où la sommation est sur l’ensemble des permutations σ de [n], est bien
connue (cf. [13, p. 71]). Il résulte alors de (2.2) et (2.3) que l’on a

(2.4) (β)n (γ)n 2F1(−n,−x; γ; a) (δ)n 2F1(−n,−y; δ; b)

=
∑

(σ,ϕ,ψ)

wβ(σ)w(γ,−x,−a;ϕ)w(δ,−y,−b;ψ),

où la sommation s’étend à tous les triplets (σ, ϕ, ψ) avec σ une permutation
de [n] et ϕ, ψ deux endofonctions de Meixner sur [n]. Le premier membre
de (1.4) peut donc s’écrire

(2.5)
∑

n

un

n! (γ)n (δ)n

∑

(σ,ϕ,ψ)

wβ(σ)w(γ,−x,−a;ϕ)w(δ,−y,−b;ψ).

D’autre part, le second membre de (1.4) peut se développer

∑

q

(β)q
uq

q!

∑

r

(β)r (−x)r (−y)r
(γ)r (δ)r r!

∑

i,j

(β + r)i (−x+ r)i
(γ + r)i i!

(δ + r)i (−y + r)j
(δ + r)j j!

(−au)r+i(−bu)r+j

(1− u)2r+i+j
,

ou encore par le théorème binomial appliqué à (1− u)−2r−i−j comme

∑

n

un

n! (γ)n (δ)n

∑

(

n

q, r, s, i, j

)

(β)q (β)r (β+ r)i (β+ r)j (γ+ r+ i)n−r−i

× (δ + r + j)n−r−j (−x)r+i (−y)r+j (2r + i+ j)s (−a)
r+i (−b)r+j ,
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où q + r + s + i + j = n. Pour établir l’identité (1.4), qui dit simplement
que les deux expressions (2.5) et (2.6) sont égales, il suffit de démontrer
l’identité polynômiale

(2.7)
∑

(σ,ϕ,ψ)

wβ(σ)w(γ,−x,−a;ϕ)w(δ,−y,−b;ψ)

=
∑

(

n

q, r, s, i, j

)

(β)q (β)r (β + r)i (β + r)j

× (γ + r + i)n−r−i(δ + r + j)n−r−j (−x)r+i (−y)r+j

× (2r+ i+ j)s (−a)
r+i (−b)r+j (q+ r+ s+ i+ j = n).

3. Les sommations. — Rappelons quelques définitions et résultats
du précédent article sur les polynômes de Laguerre [11].

Soient (A,B) une partition ordonnée de [n] et h une injection de A dans
[n] = A+B. Si cyc(h) désigne le nombre de cycles de h, on pose

(3.1) wβ(h) = βcyc(h)

Lemme 3.1 (voir [11]). — Si |A| = i, |B| = j et i+ j = n, alors

∑

h

wβ(h) = (β + j)i,

la sommation étant sur toutes les injections h de A dans A+B.

Lemme 3.2 (voir [11]). — Soit (I, J, R) une partition ordonnée d’un

ensemble telle que |I| = i, |J | = j, |R| = r. Alors

(3.3)
∑

θ

wβ(θ) = (β)r (β + r)i (β + r)j,

la sommation étant étendue à l’ensemble des permutations θ de I + J +R
satisfaisant à θ(J) ∩ I = ∅.

Soit (I, J, R, S) une partition ordonnée d’un ensemble telle que |I| = i,
|J | = j, |R| = r, |S| = s. Trois sortes de chemins dont les sommets
sont pris dans I + J + R + S sont maintenant introduits, les a-chemins,
les b-chemins et les ab-chemins. Les a-chemins (resp. b-chemins) ont tous
leurs sommets dans S à l’exception de l’extremité qui est dans I (resp. J).
Un ab-chemin a aussi tous ses sommets dans S, à l’exception d’un seul,
qui appartient à R et ne se trouve pas nécessairement à l’extrémité (voir
Fig. 2).
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✲ ✲ ✲• • • •

S S S I
a-chemin

✲ ✲• • •

S S J
b-chemin

✲ ✲ ✲• • • •

S S R S
ab-chemins

✲ ✲• • •

S S R

Fig. 2

Un graphe G dont les sommets sont les éléments de I + J +R + S est
dit Erdélyien sur (I, J, R, S) si ses parties connexes ne sont composées que
de a-chemins, b-chemins et ab-chemins.

Lemme 3.3 (voir [11]). — Si |I| = i, |J | = j, |R| = r, |S| = s, le
nombre de graphes Erdélyiens sur (I, J, R, S) est égal à (i+ j + 2r)s.

La démonstration de l’identité (2.7) consiste alors à associer de façon bi-
jective à chaque triplet (σ, ϕ, ψ) de la sommation du premier membre, une
partition ordonnée (Q,R, S, I, J) de [n] et une suite (σ′, θ, G, h, h′, ξ, ξ′)
ayant les propriétés suivantes :

(i) σ′ est une permutation de Q ;
(ii) θ est une permutation de R + I + J satisfaisant à θ(J) ∩ I = ∅ ;
(iii) G est un graphe Erdélyien sur (I, J, R, S) ;
(iv) (resp. (v)) h (resp. h′) est une injection deQ+R+J (resp.Q+R+I)

dans [n] ;
(vi) (resp. (vii)) ξ (resp. ξ′) est une permutation de R+I (resp. R+J).

L’identité suivante doit, de plus, être vérifiée

(3.4) wβ(σ)w(γ,−x,−a;ϕ)w(δ,−y,−b;ψ)

= (−a)|R+I|(−b)|R+J|wβ(σ
′)wβ(θ)wγ(h)wδ(h

′)w−x(ξ)w−y(ξ
′).

Si une telle bijection est établie, on obtient bien (2.7) pour les raisons
suivantes : d’abord le multinomial

(

n
q,r,s,i,j

)

est le nombre de partitions

ordonnées (Q,R, S, I, J) de [n] telles que |Q| = q, |R| = r, |S| = s, |I| = i,
|J | = j. Ensuite, si (Q,R, S, I, J) est une telle partition, on a

∑

σ′

wβ(σ
′) = (β)q [d’après (2.3)] ;

∑

θ

wβ(θ) = (β)r (β + r)i (β + r)j [d’après (3.3)] ;

∑

G

1 = (i+ j + 2r)s [d’après le Lemme 3.4] ;
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∑

h

wγ(h) = (γ + r + i)n−r−i et

∑

h′

wδ(h
′) = (δ + r + j)n−r−j [d’après (3.2)] ;

∑

ξ

w−x(ξ) = (−x)r+i et

∑

ξ′

w−y(ξ
′) = (−y)r+j [d’après (2.3)].

Compte tenu de toutes ces expressions, on voit que la sommation du second
membre de (3.4) donne bien le second membre de (2.7). Reste donc à
établir la bijection annoncée.

4. La bijection. — Partons d’un triplet (σ, ϕ, ψ) avec σ une permu-
tation de [n] et ϕ = ((A,B), f), ψ = ((C,D), g) deux endofonctions de
Meixner sur [n]. Quand on superpose les graphes de ces trois configura-
tions sur un ensemble de n sommets étiquetés, on a d’abord les cycles de σ
— appelons-les β-cycles — puis les chemins et cycles de ϕ = ((A,B), f) et
de ψ = ((C,D), g). Les n sommets se répartissent donc en quatre classes
A ∩ C, A ∩ D, B ∩ C et B ∩ D. D’apres l’expression du poids donnée
en (2.1), on peut considérer que les sommets de B (resp. D) portent la
marque (−a) (resp. (−b)). Par commodité, on dira qu’un sommet est a-
marqué, b-marqué ou ab-marqué suivant qu’il appartient a B ∩ C, A ∩D,
ou B ∩D. Les sommets dans A ∩ C sont non marqués.

Deux sommets distincts v et v′ sont dits liés si les trois propriétés
suivantes sont satisfaites :

(i) v est b-marqué et v′ est a-marqué ;
(ii) v et v′ sont dans le même β-cycle ;
(iii) les sommets appartenant à ce β-cycle et situés entre v et v′ sont

tous non marqués.
La partition ordonnée (Q,R, S, I, J) associée à (σ, ϕ, ψ) est ainsi

définie : si les sommets d’un même β-cycle sont tous non marqués, tous
ces sommets sont rangés dans la classe Q. Si un sommet est, ou bien ab-
marqué, ou bien b-marqué et lié, il est mis dans R. Si un sommet est
a-marqué (resp. b-marqué) et non lié, il va dans I (resp. J). Enfin, S se
compose de tous les sommets restants. Notons que S englobe aussi les
sommets a-marqués et liés.

Si R′ désigne l’ensemble de toutes les extrémités des ab-chemins, on a

B = R′ + I et D = R+ J,(4.1)

d’où

A = [n] \ (R′ + I) et C = [n] \ (R+ J).(4.2)

8



POLYNÔMES DE MEIXNER

Dans la figure 3, on a représenté les β-cycles d’un triplet σ, ϕ, ψ) avec
les sommets marqués a, b, ou ab. Les sommets non marqués apparaissent
comme de simples points. L’appartenance de chaque sommet à un bloc de
la partition (Q,R, S, I, J) est indiquée par la lettre correspondante. Les
flèches en pointillé sont les arcs ayant pour origine les sommets qui sont,
ou bien ab-marqués, ou bien a-marqués, ou encore b-marqués mais non
liés.

✲ ✲•
S

ab
R

a
I

❄
•

S

✛a
I

✛b
J

✻

✲ ✲b
J

•
S

ab
R

❄
•

J

✛b
S

✛•

S

✻

✲

❄

•
Q

•
Q

✛ •

Q

•

Q

✻

✲

❄

•
S

b
J

✛ •

S

b

J

✻

✲ ✲•
S

b
R

a
S

❄
a

I

✛•

S

✛ab

R

✻

Fig. 3

Effaçons les flèches en pointillé du graphe de la figure 3. On obtient,
d’une part, une collection de cycles dont tous les sommets sont dans Q
— donc une permutation σ′ de Q — d’autre part, une collection de a-
chemins, b-chemins et ab-chemins, au sens de la section 3, formant un
graphe ErdélyienG sur (I, J, R, S). De plus, comme chaque a-chemin (resp.
b-chemin, resp. ab-chemin) contient exactement un sommet dans I (resp.
J , resp. R), les arcs en pointillé sont la représentation graphique d’une
permutation θ de I+J+R. Enfin, comme il n’y a pas de flèche en pointillé
issue de sommet b-marqué et lié, la permutation θ satisfait à θ(J)∩ I = ∅.

Évidemment cyc(σ) = cyc(σ′) + cyc(θ), d’où

(4.3) wβ(γ) = wβ(σ
′)wβ(θ).

Les trois premiers éléments de la suite (σ′, θ, G, h, h′, ξ, ξ′) ont été définis.
Les quatre derniers h, h′, ξ, ξ′ sont simplement h = fA, h

′ = gC , ξ = fB,
ξ′ = gD, c’est-à-dire respectivement, les restrictions de f à A, de g à C,
de f à B et de g à D. D’apres (4.2) et la définition des endofonctions de
Meixner, h (resp. h′) est une injection de [n]\ (R′+ I) (resp. [n]\ (R+J))
dans [n]. D’après (4.1) et toujours cette définition, ξ (resp. ξ′) est une
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permutation de R′ + I (resp. R+ J). De plus, d’après (2.1), (3.1), (4.1) et
(4.2), et compte tenu de |R′| = |R|, on a

w(γ,−x,−a;ϕ) = γcont(ϕ)(−x)point(ϕ)(−a)|B|(4.4)

= γcyc(h)(−x)cyc(ξ)(−a)|R
′+I|

= wγ(h)w−x(ξ)(−a)
|R+I|

et de même

w(δ,−y,−b;ψ) = wδ(h
′)w−y(ξ

′)(−b)|R+J|.(4.5)

Prenant en compte (4.3),(4.4) et (4.5), on obtient bien (3.4).
Réciproquement, si l’on part d’une partition ordonnée (Q,R, S, I, J)

de [n] et d’une suite (σ′, θ, G, h, h′, ξ, ξ′) ayant les propriétés (i)-(vii) de
la section 3, il est immédiat de reconstruire le triplet (σ, ϕ, ψ). Les trois
éléments σ′, θ, G fournissent la permutation σ et les couples (h, ξ) et (h′, ξ′)
les endofonctions de Meixner ϕ et ψ respectivement.
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