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COMBINATOIRE DES IDENTITES SUR
LES POLYNOMES DE MEIXNER

PAR

DoMINIQUE FOATA (¥)

RESUME. — Une identité bilinéaire prolongeant la formule du noyau de Poisson
pour les polynémes de Meixner est obtenue par des méthodes combinatoires. Ces mémes
méthodes fournissent aussi une extension multilinéaire de cette identité.

ABSTRACT. — A bilinear identity extending the formula of the Poisson kernel for
the Meixner polynomials is derived by means of combinatorial methods. The same
methods also provide a multilinear extention of that identity.

1. Introduction. — Les polynémes de Meixner my,(x;3,¢) (n > 0)
peuvent étre définis par leur fonction génératrice

(1) S mati o)y = (1= 2) 0 -y

C
n>0

(¢f. Erdélyi et al. [6, vol. 2, pp. 225-226 et vol. 3, pp. 273-274] ou Chihara
[4, pp. 175-177].) Notons (a),, les factorielles montantes
(a)o=1 et (a)p,=ala+1)---(a+n—-1) (n>1)
et
ay)n (az)n
2F1(a1, as; bb x) — Z M_
n>0 ’

la série hypergéométrique usuelle. Les polynomes de Meixner ont encore
une représentation naturelle comme série o Fy. On a, en effet, (cf. [6, vol. 2,
p. 225))

My (%3 8,¢) = (B)n 2F1(—n, @381 — ¢ ) (12)
=B+ 2)noFi(—n,2;1— B —n—a;¢71).

(*) Publié grace & une subvention du Fonds PCAC pour 'aide et le soutien & la
recherche, Centre de Recherche de Mathématiques Appliquées, Université de Montréal,
Montréal, P.Q., Canada H3C 3J7.
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Askey [1, p. 14 et 2] utilise la notation M, (x; 8, ¢) = o F1(—n, x; B;1—c71).
Dans le présent article, seule la version m,(z;3,c) sera utilisée et les
formules seront donc transcrites dans cette seule notation. En particulier,
la formule dite du noyau de Poisson [1, p. 15 (3.40W)] s’écrit

n

(13) ﬁ M (5 B, ) (3 B, )

n>0 n

() (s ),

Le but de cet article et de sommer une série bilinéaire plus générale que
celle donnée en (1.3) en s’inspirant du modele fourni par Erdélyi [5] pour
les polynomes de Laguerre. On obtient

n

(1.4) Z %(5% o F1(—n, —z;73a) 2F1 (—n, —y; 05 D)

n>0
— (1 =) P B)r (=) (—y)r abu T
e 22% (7)r (0)5 1! ((1 —~ u)2>

au bu
X ok} (5-!—1“; —T+r; Y+ —m> o Fy (5+7~; —y4r; 641 — — u)

Lorsque 3 =7 =deta = b= 1—c !, le premier membre de (1.4) se réduit,
moyennant (1.2), au premier membre de (1.3). Quant aux deux fonctions
oF7 du second membre, elle se réduisent, par le théoreme binomial a
(1 —wu/c)(1 —u) 1)t et (1 —u/c)(1 —u)~1)YT" respectivement. On
retrouve alors le second membre de (1.3). Ainsi (1.4) = (1.3).

Enfin, lorsque y = 0 et a = b = 1 — ¢!, la formule (1.4) donne la
fonction génératrice suivante

n

(15) Y (“7

u(e™t —
¥)nn! (B)n min (57, ¢) = (1 — U)_B 2 F (5, —X;7; u>,
n>0 \ /™

1—u

qui implique a son tour (1.1) lorsque v = .

On peut enfin appliquer le modele multilinéaire développé pour les
polynoémes d’Hermite [7, 8, 12] et de Laguerre [10, 11] pour prolonger
(1.4) au cas du produit de plusieurs polynomes de Meixner. La troisieme
fonction hypergéométrique d’Appell & k variables, qui s’écrit [3, p. 73]

F?Ek)(alw--aakal,---,bk;C;ul,...,uk)
_ Z (a1)n1 . (ak)nk (bl)nl .. (bk)nk u?l . uZ’“
(C>n1—|—~~~—|—nk n1! ’I‘Lk'

n120,...,nk20
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est le principal ingrédient de la formule ainsi prolongée. Dans celle-ci (voir

(1.6) ci-dessous), les symboles Y (resp. ). ) indiquent des sommations
(nis) (rig)

sur toutes les suites (n;;) (resp. (i) (1 <4 < j < k) de k(k — 1) entiers

positifs. Pour 1 < ¢ < j < k, on pose nj; = n;j, rj; = ri; et pour

1 =1,2,...,k on adopte la notation

N =Y N, rie= 1y (1<j<kij#i).
J J

Enfin, a;, vi, yi (1 <i < k) et w;j, Bi; (1 <i<j <k)sont des variables,
avec de nouveau la convention wuj; = w;j, Bj; = Bi; pour 1 <i < j <k.
La formule multilinéaire prolongeant (1.4) s’écrit alors

(1'6> Z H nljj BU N H2F1 —Njx, yu%aaz>

(niz) 1<j
_H 1_Uz] 5”21_[ 6@3 7"” —Yi 7"”( yj)r”( 1@_3 '1'32) J
i< ( Uzg)
J (i) 1<J
k—1
XH ( )<5z1+7“z1,---,5¢k+7“¢k;—yz’+7“i1,---7—y7;+7“¢k;
7"1*
a;Uq Q; Uik
SRR —
1 — U1 1 — Uk

Les termes diagonaux ng, 7, Ui, (i n'existent pas et les fonctions
d’Appell ci-dessus sont bien a (k—1) variables. Lorsque k = 2, on retrouve
immédiatement (1.4). On a ainsi

(1.7)  (1.6) = (1.4) = (15) = (1.1) et (L4)= (1.3) = (L.1).

Naturellement, 'utilisation d’'une formule comme (1.6) reste subor-
donnée aux propriétés analytiques des fonctions hypergéométriques a
plusieurs variables. Le présent article mettra donc ’accent sur la facon
de démontrer ces formules et cette facon est de nature combinatoire. On
se propose ici de démontrer I'identité (1.4). Celle-ci implique, d’apres (1.7),
toutes les autres formules sur les polynomes de Meixner, a I’exclusion de
(1.6). La méthode de preuve utilisée est essentiellement celle qui nous avait
permis d’obtenir combinatoirement la formule de Hille-Hardy-Erdélyi pour
les polynomes de Laguerre [11]. On se reportera donc constamment & ce
dernier mémoire ainsi qu’au second article sur les polynoémes de Meixner
[9]. On fait apparaitre le premier membre de (1.4) comme la fonction
génératrice de certains triplets (o, ¢, 1) ou o est une permutation, et ¢, v

3
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deux modeles introduits dans [9] et appelés endofonctions de Meixner (cf.
section 2). Il s’agit ensuite de calculer cette méme fonction génératrice en
utilisant les propriétés géométriques de ces endofonctions et d’obtenir ainsi
le second membre de (1.4). Pour ce faire, on fait appel a des lemmes com-
binatoires de [11], rappelés en section 3 et on construit (dans la section 4)
une bijection entre les triplets (o, ¢, 1) et des suites finies de modeles com-
binatoires dont la fonction génératrice est précisement le second membre
de (1.4).

La démonstration de (1.6) n’est pas reproduite. Elle peut étre calquée
sur celle de la formule multilinéaire concernant les polynomes de Laguerre
[11].

2. Endofonctions de Meixner. — Comme dans [9], on appelle endo-
fonction de Meizner sur un ensemble fini S tout couple p = ((A4, B), f) ol
(A, B) est une partition ordonnée de S et f une application de S dans S
dont la restriction f4 de f a la partie A est injective et la restriction fp
a B est une permutation de B.

On identifie toute endofonction de Meixner ¢ = ((A4, B), f) avec son
graphe associé dont les sommets sont les éléments de S et dans lequel un
arc va de v & v si et seulement si f(v) = v'. On dessine en trait continu
(resp. pointillé) les arcs issus de sommets appartenant & A (resp. B).

Une endofonction de Meizner est alors une collection de cycles dont
tous les arcs sont en trait continu et de cycles en trait pointillé, dont
chaque sommet est I'extrémité d’au plus un chemin en trait continu (voir
Fig. 1).

12
2 115

4 3l 8 11

AT N U

N

10
Fig. 1

Soit cont(p) (resp. point(y)) le nombre de cycles de ¢ en trait continu
(resp. pointillé). Le poids de ¢ = ((A, B), f) est défini par

(2.1) w(y, =&, —a; p) = 7 ) (—)Pont) (—q) P,
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Comme démontré dans [9] expression (7),2Fi(—n,—z;7;a), égale a
S (M) (=2)i(y + i)p—i(—a)® (0 < i < n), est le polyndome générateur
des endofonctions de Meixner sur [n] {1,2,...,n} par le poids
w(y, —x, —a;.). En d’autres termes, on a :

(2.2) (Nn2F1(=n, —z57;0) = Y w(v, =z, —a; ¢),

ou ¢ varie dans ’ensemble des endofonctions de Meixner sur [n]. Par
ailleurs, si cyc(o) désigne le nombre de cycles d’'une permutation o, on
pose wg (o) = ). L'identité

(2.3) (B)n =Y wp(o),

ou la sommation est sur I’ensemble des permutations o de [n], est bien
connue (cf. [13, p. 71]). Il résulte alors de (2.2) et (2.3) que 'on a

(2.4)  (B)n (V)n2Fi(—n, —z;7v;a) (0)n 2F1(—n, —y; 0;b)

= 3 walo)wly, —z, —a; ) w(s, —y, —b; ),
(U’SDW)

ot la sommation s’étend a tous les triplets (o, ¢, 1) avec o une permutation
de [n] et ¢, 1 deux endofonctions de Meixner sur [n]. Le premier membre
de (1.4) peut donc s’écrire

(2.5) ZW > wplo) wly, —x, —a; ) w(s, —y, —b;1p).

n " (o)
D’autre part, le second membre de (1.4) peut se développer
uf (5)7“ (_x)r (_y)r
2Bl D S
- ¢ = (Ve (0)rr!

> (B+r)i(=z+7)i (6 +7)i (—y+7); (—au) " (=bu)™+
(v +7); 4! G+r); ]! (1 —w)2r+iti

1,J
ou encore par le théoreme binomial appliqué a (1 — u)—QT—i—j comme
Un n .
En: 2 () O)n 2 (B)g (B)r (B+1)i (B+1); (Y7 +D)nri

q7 T? 87/1:7].

X (6 +7+ ) n—r—j (=)rri (=y)rrj (2r +i+j)s (=a)"" (=b)"",
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ou g+ 1+ s+i+j = n. Pour établir 'identité (1.4), qui dit simplement

que les deux expressions (2.5) et (2.6) sont égales, il suffit de démontrer
I'identité polynomiale

2.7) Y wslo)wly, —z, —a;p) w(d, —y, —b; 1))

(o,0,9)
n
=2 (q, i j) (B)a (B (B+7): (B+7);
X (Y +7r+)n—r—i(6+7+ ) n—r—j (=2)rt+i (=Y)r+;
X (2r +i+4)s (—a)" T (=b)"T  (q+r+s+itj=n).
3. Les sommations. — Rappelons quelques définitions et résultats

du précédent article sur les polynémes de Laguerre [11].
Soient (A, B) une partition ordonnée de [n] et h une injection de A dans
[n] = A+ B. Si cyc(h) désigne le nombre de cycles de h, on pose

(3.1) wg(h) = peye)
LEMME 3.1 (voir [11]). — Si|A| =14, |B|=j et i+ j =n, alors

> wa(h) = (B+4)i,
h

la sommation étant sur toutes les injections h de A dans A + B.

LEMME 3.2 (voir [11]). — Soit (I, J, R) une partition ordonnée d’un
ensemble telle que |I| =1, |J| = j, |R| = r. Alors

(3.3) > ws(0) = (B)r (B+1)i (B+1);,
6

la sommation étant étendue a l’ensemble des permutations 0 de I +J + R
satisfaisant a 0(J) N1 =0,

Soit (I, J, R, S) une partition ordonnée d’'un ensemble telle que |I| = i,
|J| = 4, |[R| = r, |S] = s. Trois sortes de chemins dont les sommets
sont pris dans I + J + R + S sont maintenant introduits, les a-chemins,
les b-chemins et les ab-chemins. Les a-chemins (resp. b-chemins) ont tous
leurs sommets dans S a l'exception de I’extremité qui est dans I (resp. J).
Un ab-chemin a aussi tous ses sommets dans S, a ’exception d'un seul,
qui appartient & R et ne se trouve pas nécessairement a l'extrémité (voir
Fig. 2).
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e ——>0— > 06— 0 e —>o0o—> 0o
S S S I S S J
a-chemin b-chemin
e ——> 00— > 00— > @ e —>o0o—> @
S S R S S S R
ab-chemins
Fig. 2

Un graphe GG dont les sommets sont les éléments de [ + J + R+ S est
dit Erdélyien sur (I, J, R, S) si ses parties connexes ne sont composées que
de a-chemins, b-chemins et ab-chemins.

LEMME 3.3 (voir [11]). — Si|I| =14, |J| = j, |R| =1, |S] = s, le
nombre de graphes Erdélyiens sur (I,J, R,S) est égal a (i + j + 21)5.

La démonstration de I'identité (2.7) consiste alors a associer de facon bi-
jective a chaque triplet (o, ¢, 1) de la sommation du premier membre, une
partition ordonnée (Q, R,S,I,J) de [n] et une suite (¢/,0,G,h,h', £, &)
ayant les propriétés suivantes :

(i) ¢’ est une permutation de Q;

(ii) 6 est une permutation de R+ I + J satisfaisant a 0(J) NI = (;
(iii) G est un graphe Erdélyien sur (I, J, R, S);
(iv) (resp. (v)) h (resp. h') est une injection de Q+R+J (resp. Q+R+1)
dans [n];

(vi) (resp. (vii)) £ (resp. £’) est une permutation de R+1I (resp. R+.J).
L’identité suivante doit, de plus, étre vérifiée

(34) wa(o)w(y, =z, —a; ) w(d, —y, —b; )
= (=) I (=0) T Twg (0w () w (Ryws () (E)w—y (€)-

Si une telle bijection est établie, on obtient bien (2.7) pour les raisons
suivantes : d’abord le multinomial (q rZij) est le nombre de partitions

ordonnées (Q, R, S, I, J) de [n] telles que |Q| = ¢, |R| =r, |S| = s, |I| = 1,
|J| = j. Ensuite, si (Q, R, S, I,J) est une telle partition, on a
Zw[g(al) = (B)q [d’apres (2.3)];
Z wg(0) = (B)r (B+71)i (B+71); [d’apres (3.3)];
0

Z 1=(G+j+2r) [d’apres le Lemme 3.4];
G

7
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; wy(h) = (Y474 Dy et

; ws(B) = 0+ 74 n_r_j [apres (3.2)];
Zﬁ:w_x(é) = (—%)r+; et

> w y(€) = ()i [dapras (2.3)].
-

Compte tenu de toutes ces expressions, on voit que la sommation du second
membre de (3.4) donne bien le second membre de (2.7). Reste donc a
établir la bijection annoncée.

4. La bijection. — Partons d’un triplet (o, ¢, 1) avec o une permu-
tation de [n] et ¢ = ((4,B), f), v = ((C, D), g) deux endofonctions de
Meixner sur [n]. Quand on superpose les graphes de ces trois configura-
tions sur un ensemble de n sommets étiquetés, on a d’abord les cycles de o
— appelons-les f-cycles — puis les chemins et cycles de p = ((A, B), f) et
de v = ((C, D), g). Les n sommets se répartissent donc en quatre classes
ANC, AnD, BNC et BN D. D’apres 'expression du poids donnée
en (2.1), on peut considérer que les sommets de B (resp. D) portent la
marque (—a) (resp. (—b)). Par commodité, on dira qu'un sommet est a-
marqué, b-marqué ou ab-marqué suivant qu’il appartient a BNC, AN D,
ou BN D. Les sommets dans A N C' sont non marqués.

Deux sommets distincts v et v’ sont dits liés si les trois propriétés
suivantes sont satisfaites :

(i) v est b-marqué et v’ est a-marqué;

(ii) v et v’ sont dans le méme S-cycle;

(iii) les sommets appartenant & ce [-cycle et situés entre v et v’ sont
tous non marqués.

La partition ordonnée (Q,R,S,I,J) associée a (o,¢,1) est ainsi
définie : si les sommets d’'un méme [-cycle sont tous non marqués, tous
ces sommets sont rangés dans la classe ). Si un sommet est, ou bien ab-
marqué, ou bien b-marqué et lié, il est mis dans R. Si un sommet est
a-marqué (resp. b-marqué) et non lié, il va dans I (resp. J). Enfin, S se
compose de tous les sommets restants. Notons que S englobe aussi les
sommets a-marqués et liés.

Si R’ désigne I'ensemble de toutes les extrémités des ab-chemins, on a

(4.1) B=R+I e D=R+/J,
d’ou
(4.2) A=\ (R +I) e C=n]\(R+.J).
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Dans la figure 3, on a représenté les S-cycles d'un triplet o, p, ) avec
les sommets marqués a, b, ou ab. Les sommets non marqués apparaissent
comme de simples points. L’appartenance de chaque sommet a un bloc de
la partition (@, R, S,I,J) est indiquée par la lettre correspondante. Les
fleches en pointillé sont les arcs ayant pour origine les sommets qui sont,

ou bien ab-marqués, ou bien a-marqués, ou encore b-marqués mais non
liés.

S R I J S R Q Q
e —— ab——+a b——+» e —qb o— o
A | |
' ] ]
| \ \
be—— g<——2eo o<« h<«——oeo oe<—— o
J I S S S J Q Q

S J S R S

o—— e —— b——aq

A | A |

| | | |

| |

b<~— o ab<+—— e <«——g

J S R S I

Fig. 3

Effacons les fleches en pointillé du graphe de la figure 3. On obtient,
d’une part, une collection de cycles dont tous les sommets sont dans @)
— donc une permutation o’ de Q — d’autre part, une collection de a-
chemins, b-chemins et ab-chemins, au sens de la section 3, formant un
graphe Erdélyien G sur (I, J, R, S). De plus, comme chaque a-chemin (resp.
b-chemin, resp. ab-chemin) contient exactement un sommet dans I (resp.
J, resp. R), les arcs en pointillé sont la représentation graphique d’une
permutation 8 de I+ J+ R. Enfin, comme il n’y a pas de fleche en pointillé
issue de sommet b-marqué et lié, la permutation 6 satisfait a 0(J) NI = 0.

Evidemment cyc(o) = cyc(o’) 4 cye(6), d’on

(4.3) wg(y) = wg (o )ws(6).

Les trois premiers éléments de la suite (¢’,0, G, h,h', &, &) ont été définis.
Les quatre derniers h, h', &, & sont simplement h = f4, b’ = g¢, € = [B,
¢ = gp, cest-a-dire respectivement, les restrictions de f a A, de g a C,
de f a B et de g a D. D’apres (4.2) et la définition des endofonctions de
Meixner, h (resp. h’) est une injection de [n]\ (R'+1) (resp. [n]\ (R+J))
dans [n]. D’apres (4.1) et toujours cette définition, & (resp. £’) est une

9
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permutation de R’ + I (resp. R+ J). De plus, d’apres (2.1), (3.1), (4.1) et
(4.2), et compte tenu de |R'| = |R|, on a

(4.4) w(y, —x, —a; ) = ) (—g)Pomt) (—q)lPl
_ ,ycyc(h)(_x>cyC(£)(_a)|R’+I|

wn (h)w_ (§)(—a) ]

et de méme

(4.5) w(8, =y, —b; ) = ws(h)w_y (&) (=b) F+1.

Prenant en compte (4.3),(4.4) et (4.5), on obtient bien (3.4).

Réciproquement, si I'on part d’une partition ordonnée (Q, R, S, I, J)
de [n] et d’une suite (¢/,0,G, h,h', £, &) ayant les propriétés (i)-(vii) de
la section 3, il est immédiat de reconstruire le triplet (o, p,1). Les trois
éléments o', 0, G fournissent la permutation o et les couples (h, §) et (A, )
les endofonctions de Meixner ¢ et 1 respectivement.
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