
MULTIBASIC EULERIAN POLYNOMIALS

BY

Dominique FOATA (∗) AND Doron ZEILBERGER (∗∗)

ABSTRACT. — Eulerian polynomials with several bases are defined. Their combi-
natorial interpretations are given as well as congruence properties modulo some ideals
generated by cyclotomic polynomials.

1. Introduction

It is well-known (see, e.g., [Ri, chap. 7]) that the identity

(1.1)
∑

n

un

n!
An(t) =

1− t
1− t exp

(
(1− t)u

) (n ≥ 0)

defines a sequence of polynomials (An(t)), called Eulerian polynomials,
whose classical combinatorial interpretation is the following : for each
permutation σ = σ(1) . . . σ(n) let desσ be the number of descents of σ,
that is, the number of i such that 1 ≤ i ≤ n − 1 and σ(i) > σ(i + 1).
Then An(t) =

∑
σ t

1+des σ (σ ∈ Sn). This shows, in particular, that each
polynomial An(t) has positive integral coefficients whose sum is n!

As usual, let

(u; q)n =
{

1, if n = 0;
(1− u)(1− uq) . . . (1− uqn−1), if n ≥ 1;

denote the q-ascending factorial and also let

(u; q)∞ =
∞∏

n=0

(1− uqn).
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Further, let [
n

i

]
q

=
(q; q)n

(q; q)i(q; q)n−i

denote the Gaussian polynomial for 0 ≤ i ≤ n. Finally, let the two q-
exponentials be given by (see [An, chap. 2])

e(u; q) =
∑
n≥0

un

(q; q)n
= (u; q)−1

∞ ;(1.2)

E(u; q) =
∑
n≥0

qn(n−1)/2 un

(q; q)n
= (−u; q)∞.(1.3)

Our purpose is to investigate the properties of a class of polynomials
(An(s; q1, . . . , ql)) (n = (n1, . . . , nl) ∈ Nl, l ≥ 1) in (l + 1) variables [in
short, An(s;q)] defined by the identity

(1.4)
∑
n

∏
j u

nj

j∏
j(qj ; qj)nj

An(s;q) =
1− s

1− s
∏

j e
(
(1− s)uj ; qj

) ,
where j goes from 1 to l. To convince ourselves that each An(s;q) is a
polynomial with integral coefficients we may rewrite (1.4) as L = (1−R)−1.
The identity L(1−R) = 1 yields the recurrence relation

(1.5) An(s;q) =
∑
i

∏
j

[
nj

ij

]
qj

Ai(s;q)s(1− s)n1−i1+···+nl−il−1,

where j goes from 1 to l and where i = (i1, . . . , il) runs over all sequences
of nonnegative integers satisfying i 6= (n1, . . . , nl) and 0 ≤ i1 ≤ n1, . . . ,
0 ≤ il ≤ nl. As A0(s;q) = 1, relation (1.5) shows by induction that
each An(s;q) is a polynomial with integral coefficients. To show that the
coefficients are indeed positive and of sum (n1 + · · · + nl)! requires more
analysis and will be a consequence of theorem 1 or theorem 2 below.

The second class of polynomials under study will be denoted by
(Bn(s;q)) (n ∈ Nk+1, k ≥ 0, q = (q1, . . . , qk)). They are defined by

(1.6)
∑
n

∏k+1
j=1 u

nj

j∏k
j=1(qj ; qj)njnk+1!

Bn(s;q)

=
1− s

1− s
∏k

j=1 e
(
(1− s)uj ; qj

)
exp

(
(1− s)uk+1

) .
Assume 0 ≤ k, k + 1 = l and let ql = 1 in (1.5). Then An(s;q) is trans-
formed into a polynomial in (k + 1) variables s, q1, . . . , qk. Furthermore,
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the Gaussian polynomial
[
nl

il

]
ql

becomes the ordinary binomial coefficient(
nl

il

)
. Hence (1.4) itself is transformed into identity (1.6). Thus

(1.7)
Bn1,...,nk+1(s; q1, . . . , qk) = An1,...,nk+1(s; q1, . . . , qk, qk+1)

∣∣∣
qk+1 = 1

.

Conversely, put uk+1 = 0 in (1.6) and let k = l. Then (1.6) yields (1.4),
so that

(1.8) An1,...,nk
(s; q1, . . . , qk) = Bn1,...,nk,0(s; q1, . . . , qk).

We emphasize the fact that An(s;q) has l indices and (l + 1) variables,
whereas Bn(s;q) has (k + 1) indices and (k + 1) variables.

When k = 0, then Bn(s, q1, . . . , qk) reduces to the usual Eulerian
polynomial An(s) defined in (1.1). When l = 1, then An(s, q1, . . . , ql)
is the q-Eulerian polynomial An(s, q) that is known to be [St] the gen-
erating polynomial for the permutation group by the bivariate statistic
(1 + number of descents, inversion number). Identity (1.6) for k = 1 was
considered by Désarménien [De] for his definition of the q-Eulerian poly-
nomials with two indices.

The theory of basic hypergeometric series is now well understood, wit-
ness the forthcoming book by Gasper and Rahman [GaRa2]. They have
also paved the way for the almost untouched forest of multi-basic hypergeo-
metric series ([Ga], [GaRa1]). Our intention here is to derive the properties
of the multibase-analog of the classical Eulerian polynomials using mainly
symmetric function techniques and combinatorial manipulations on the
inversion numbers.

We first give a combinatorial interpretation to An(s;q) and Bn(s;q).
Because of (1.7) it suffices to do it for the An(s;q)’s. Two combinatorial
interpretations will be given, the first one in terms of lignes of route of
permutations, the second one in terms of inversion numbers. The ligne of
route Ligneσ of σ = σ(1) . . . σ(n) is defined to be the set of all r such
that 1 ≤ r ≤ n− 1 and σ(r) > σ(r + 1). Hence |Ligneσ| is the number of
descents, desσ, defined above. Furthermore, the sum of all r in Ligneσ is
the classical major index, majσ, of σ.

Let n = (n1, . . . , nl) satisfy n1+· · ·+nl = n. Also let n0 = 0 and denote
by nj the partial sum nj = n1 + · · · + nj (0 ≤ j ≤ l). For j = 1, . . . , l
define the j-th n-inverse ligne of route of σ as being

Ilignej σ = {r : nj−1 + 1 ≤ r ≤ nj − 1, σ−1(r) > σ−1(r + 1)},

and the j-th n-inversion number of σ as

invj σ = #{(r, r′) : nj−1 + 1 ≤ r < r′ ≤ nj , σ
−1(r) > σ−1(r′)}.
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Also let

imajj σ =
∑
{r − nj−1 : r ∈ Ilignej σ} (j = 1, . . . , l).

When l = 1, the statistics imaj1 σ and inv1 σ are the familiar inverse major
index and inversion number of the permutation σ, respectively.

The first two results of the paper can be stated as follows.

Theorem 1. — For each n = (n1, . . . , nl) the generating polynomial
for the permutation group Sn by the (l+1)-vector (1+des, imaj1, . . . , imajl)
is equal to An(s;q). In other words, if An(s;q) is defined by identity (1.4),
then

(1.9) An(s;q) =
∑

σ

s1+des σq
imaj1 σ
1 . . . q

imajl σ
l (σ ∈ Sn).

Theorem 2. — For each n = (n1, . . . , nl) the generating polynomial
for the permutation group Sn by the (l + 1)-vector (1+des, inv1, . . . , invl)
is equal to An(s;q), i.e.,

(1.10) An(s;q) =
∑

σ

s1+des σqinv1 σ
1 . . . qinvl σ

l (σ ∈ Sn).

The proof of theorem 1, derived in section 2, makes use of symmetric
function techniques, especially the Schur function algebra. To prove the-
orem 2 it is more conventient to show that An(s;q), as defined in (1.10)
satisfies the recurrence relation (1.5). This is done in section 3, by using
an appropriate factorization of permutations.

The combination of (1.9) and (1.10) suggests that there must be a bijec-
tion of Sn onto itself that sends the vector (1+des, imaj1, . . . , imajl) onto
(1+des, inv1, . . . , invl). Such a bijection can indeed be derived (section 4).
Call it σ 7→ σ′. It has even the following stronger property.

Theorem 3. — The bijection σ 7→ σ′ satisfies :

Ligneσ = Ligneσ′ ; imajj σj = invj σ
′ (j = 1, . . . , l).

In particular, desσ = desσ′ and majσ = majσ′.
In its turn theorem 3 suggests that the polynomial

1An(s, p;q) =
∑

σ

sdes σpmaj σq
imaj1 σ
1 . . . q

imajl σ
l (σ ∈ Sn)

should also be investigated. Using the techniques developed in [DeFo2] its
generating function can be calculated in the form∑

n

∏
j u

nj

j

(s; p)n1+···+nl

∏
j(qj ; qj)nj

1An(s, p;q) =
∑

r

sr∏
j(uj ; p, qj)r+1,∞

,

where
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(uj ; p, qj)r+1,∞ =
∏

1≤i≤r+1

(ujp
i−1; qj)∞ (j = 1, . . . , l).

However the series on the right-hand side cannot be put into a form
explicit enough to deserve further study. Note that the previous generating
function for the 1An(s, p;q)’s specializes for l = 1 to an identity worked
out by Gessel [Ge1]. For p = 1 the right-hand side can be summed, as will
be shown in the proof of theorem 1 (section 2). The idea of having the
ligne of route of a permutation split into compartments is due originally
to Remmel [Re]. Further work along these lines can be found in [DeFo2].

The second goal of the paper is to work out congruence properties for
the polynomials Bn(s;q) (n ∈ Nk+1). Let (d1, . . . , dk) be a given sequence
of positive integers and for each n = (n1, . . . , nk, nk+1) let

(1.11) nj = djaj + bj , 0 ≤ bj ≤ dj − 1 (1 ≤ j ≤ k)

be the Euclidean division of nj by dj . Then define div n to be

div n = (b1, . . . , bk, nk+1 + a1 + · · ·+ ak).

Further let Φd(q) denote the d-th cyclotomic polynomial (Φ1(q) = 1 − q,
Φ2(q) = 1 + q, . . . ). We also prove the following theorem.

Theorem 4. — We have the congruences :

Bn(s;q) ≡ (1− s)(d1−1)a1+···+(dk−1)akBdiv n(s;q)
(mod (Φd1(q1), . . . ,Φdk

(qk)))

The case k = 1 is due originally to Désarménien [De] (see also [DeFo2]).

Corollary. — If all the remainders bj in (1.11) are equal to 0 or 1,
then

(1.12) Bn(s;q) ≡ (1− s)(d1−1)a1+···+(dk−1)akAa1+b1+···+ak+bk+nk+1(s)
(mod (Φd1(q1), . . . ,Φdk

(qk))) ;
(1.13) An(s;q) ≡ (1− s)(d1−1)a1+···+(dl−1)alAa1+b1+···+al+bl

(s)
(mod (Φd1(q1), . . . ,Φdk

(qk))) ;

where the polynomial Aa1+···(s) on both right-hand sides is the Eulerian
polynomial defined in (1.1).

In particular, if n = (2a1 + b1, . . . , 2al + bl) with b1 = 0, 1, . . . , bl = 0, 1
and q1 = · · · = ql = q, then

(1.14) An(s;q) ≡ (1− s)a1+···+alAa1+b1+···+al+bl
(s) (mod (1 + q)).
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Both theorem 4 and its corollary are proved in section 5. The case l = 1
of (1.14) was in fact conjectured by Loday [Lod] for a side calculation of
the cyclic homology of commutative algebras. It has since received several
specific proofs in [DeFo2] and [Wa]. Michelle Wachs [Wa] derived a very
ingenious involution for proving (1.14) in the case l = 1. In section 6 we
give a Wachs-style combinatorial proof of theorem 4.

2. Proof of theorem 1

In fact (1.4) with the interpretation given in (1.7) can be viewed as
a specialization of a result on the (k, l)-colored permutations derived in
[DeFo2]. To make the paper self-contained we have preferred to prove
theorem 1 from scratch using a working example. Take up again the
notations preceding theorem 1 with σ designating a permutation of
order n. For each j = 1, . . . , l let τj be the restriction of σ to the set
σ−1([nj−1 + 1,nj ]), so that:

(2.1) τj : σ−1([nj−1 + 1,nj ])→ [nj−1 + 1,nj ].

Using the Robinson-Schensted correspondence ([Kn, p. 48–72]) each bi-
jection τj is mapped onto a pair (Pj , Qj) of Young tableaux of the same
shape that we shall denote by λj . It follows from the properties of that
correspondence that the entries of Pj are the elements of the interval
[nj−1 +1,nj ] and the entries of Qj are those of the set σ−1([nj−1 +1,nj ]).
For j = 1, . . . , l let Tj be the Young tableau obtained from Pj by replacing
each entry r by r − nj−1 and let U be the product

U = Q1 ⊗ · · · ⊗Ql.

In the French way of displaying tableaux this means that U is the skew
tableau obtained by placing each Qj to the right of Qj−1 and just under
it for j = 2, . . . , l. Thus each Tj is a Young tableau of shape λj whose
entries are 1, 2, . . . , nj (j = 1, . . . , l); the entries of U are 1, 2, . . . , n and
the shape of U is the skew shape λ1 ⊗ · · · ⊗ λl. We summarize all this by
writing :

(2.2)
shapeTj = λj ; |λj | = nj ; (j = 1, . . . , l) ;
shapeU = λ1 ⊗ · · · ⊗ λl ; |λ1|+ · · ·+ |λl| = n.

For instance, let l = 2, n = (5, 4) and

σ =
(

1 2 3 4 5 6 7 8 9
8 6 4 5 2 1 9 7 3

)
; σ−1 =

(
1 2 3 4 5
6 5 9 3 4

∣∣∣∣ 6 7 8 9
2 8 1 7

)
.

Then
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τ1 =
(

3 4 5 6 9
4 5 2 1 3

)
; τ2 =

(
1 2 7 8
2 6 9 7

)
.

Under the Robinson-Schensted correspondence

τ1 7→ (P1, Q1) =

4
2 5
1 3 ,

6
5 9
3 4


; λ1 = (2, 2, 1) ;

τ2 7→ (P2, Q2) =

(
8 9
6 7 ,

2 8
1 7

)
; λ2 = (2, 2) ;

and

T1 = P1 =

4
2 5
1 3 ; T2 = P2 − n1 =

3 4
1 2 ; U =

6
5 9
3 4

2 8
1 7

.

The inverse ligne of route IligneU of U is defined as being the set of all
entries r such that (r + 1) lies in a higher row than r in U (in the French
way of displaying tableaux). Furthermore, define

imajU =
∑
{r : r ∈ IligneU} idesU = |IligneU | .

With the working example, IligneU = {1, 2, 4, 5, 7, 8}, imajU = 27 and
idesU = 6.

Lemma 2.1. — The mapping (σ,n) 7→ (λ1, . . . , λl;T1, . . . , Tl;U) is a
bijection having properties (2.2) and satisfying

(2.3)
Ilignej σj − nj−1 = IligneTj (j = 1, . . . , l) ;

Ligneσ = IligneU.

We do not prove lemma 2.1, as it was already derived in [DeFo2] in
the context of the (k, l)-colored permutations. With our working example
Iligne1 σ = {1, 3} = IligneT1 ; Iligne2 σ = {2} = IligneT2 ; Ligneσ =
{1, 2, 4, 5, 7, 8} = IligneU .

It follows from (2.3) that

(2.4) imajj σ = imajTj (j = 1, . . . , l) ; desσ = idesU.

Let s 1An(s;q) denote the right-hand side of (1.9). Then by (2.3) and
(2.4)

(2.5) 1An(s;q) =
∑
(λj)

∑
(Tj),U

sides Uqimaj T1
1 . . . qimaj Tl

l ,
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where the first sum is over the sequences (λ1, . . . , λl) of partitions satisfy-
ing |λ1| = n1, . . . , |λl| = nl, and the second over all sequences of tableaux
(T1, . . . , Tl, U) satisfying (2.2).

The next step is to express the right-hand side of (2.5) in terms of
skew Schur functions. Let Sθ(x1, x2, . . .) designate the skew Schur function
associated with the skew diagram θ ([Mac, p. 39]). The following lemma
was proved in [DeFo1].

Lemma 2.2. — If θ is a skew diagram of n elements, then

1
(s; q)n+1

∑
T

sides T qimaj T =
∑

r

srSθ(1, q, q2, . . . , qr),

where the first sum is over all standard tableaux T of shape θ.
We are using here two specializations of this lemma obtained by letting

q = 1 and s = 1, respectively :

1
(1− s)n+1

∑
T

sides T =
∑

r

trSθ(1r+1),(2.6)

1
(q; q)n

∑
T

qimaj T = Sθ(1, q, q2, . . . ),(2.7)

where Sθ(1r+1) is the skew Schur function obtained by taking an alphabet
of (r + 1) letters all equal to 1.

By (2.5), (2.6) and (2.7) we have :

1An(s,q)
(1− s)n

∏
j(qj ; qj)nj

=
1

(1− s)n
∏

j(qj ; qj)nj

∑
(λj),(Tj),U

sides U
∏
j

q
imaj Tj

j

=
∑
(λj)

∑
r

srSλ1⊗···⊗λl
(1r+1)

∏
j

Sλj
(1, qj , q2j , . . . )

=
∑
(λj)

∑
r

sr
∏
j

Sλj
(1r+1)Sλj

(1, qj , q2j , . . . ),

as U is of shape λ1⊗· · ·⊗λl. In the last step we have used the fondamental
multiplicative property of the Schur functions : Sλ⊗µ(x) = Sλ(x)Sµ(x).
Now the Cauchy identity for Schur functions

∑
λ

u|λ|Sλ(x)Sλ(y) =
∏
i,j

1
(1− uxiyj)

yields
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MULTIBASIC EULERIAN POLYNOMIALS∑
λj

u
|λj |
j Sλj

(1r+1)Sλj
(1, qj , q2j , . . . ) =

∏
d≥1

1
(1− ujq

d−1
j )r+1

=
1

(uj ; qj)∞
r+1 .

As |λj | = nj (j = 1, . . . , l), we may write

∑
n

∏
j u

nj

j

(1− s)n
∏

j(qj ; qj)nj

1An(s,q)

=
∑
n

∏
j

u
nj

j

∑
(λj)

∑
r

sr
∏
j

Sλj
(1r+1)Sλj

(1, qj , q2j , . . . )

=
∑

r

sr
∑
(λj)

∏
j

u
|λj |
j Sλj (1

r+1)Sλj (1, qj , q
2
j , . . . )

=
∑

r

sr
∏
j

∑
λj

u
|λj |
j Sλj (1

r+1)Sλj (1, qj , q
2
j , . . . )

=
∑

r

∏
j

sr

(uj ; qj)∞
r+1 =

1
−s+

∏
j(uj ; qj)∞

.

Next replace each uj by uj/(1− s). This yields

∑
n

∏
j u

nj

j∏
j(qj ; qj)nj

1An(s,q) =
1− s

−s+
∏

j((1− s)uj ; qj)∞

=
1− s

−s+
∏

j E
(
(s− 1)uj ; qj

) ,
using the notation of the second q-exponential introduced in (1.3).

The generating function for the polynomials An(s,q) involves the first
q-exponential, as shown in the next calculation

1 +
∑
n 6=0

∏
j u

nj

j∏
j(qj ; qj)nj

An(s,q) = s
1− s

−s+
∏

j E
(
(s− 1)uj ; qj

) − s+ 1

=
1− s

1− s
∏

j e
(
(1− s)uj ; qj

) ,
since E(u; q)e(−u; q) = 1. This proves theorem 1.
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3. Proof of theorem 2

Call Ainv
n (s;q) the right-hand side of (1.10), namely the generating

function for Sn by the vector (1 + des, inv1, . . . , invl). We will prove that
Ainv

n (s;q) satisfies recurrence (1.5), i.e., the equation obtained from (1.5)
by replacing An andAi by Ainv

n andAinv
i , respectively. Since A0 = Ainv

0 = 1
by convention, the result will follow by induction.

Consider the set Tn of all “commaed” permutations that consist of a
permutation in Sn together with a comma inserted in such a way that
the sequence after the comma is increasing. For example, 4 7 1 3, 2 5 6;
4 7 1 3 2, 5 6; 4 7 1 3 2 5, 6; are all members of Tn, but 4 7, 1 3 2 5 6 is not.

To each member (σ1, σ2) (i.e., σ2 is increasing and non-empty and
σ := σ1σ2 is a regular permutation of Sn) of Tn associate the weight

weight(σ1, σ2) = s1+des σ1s(1− s)length σ2−1
∏
j

q
invj σ
j .

Next to each σ in Sn associate the set C(σ) of all commaed permuta-
tions obtained from σ by inserting a comma right before one of the entries
that belong to the maximal terminal increasing right factor of σ.

For example, σ = 47 1 3 2 5 6 gives rise to the following set

C(σ) = {4 7 1 3, 2 5 6 ; 4 7 1 3 2, 5 6 ; 4 7 1 3 2 5, 6 }.

We claim that this mapping C is weight preserving, i.e.,

s1+des σ
∏
j

q
invj σ
j =

∑
τ∈C(σ)

weight τ.

Indeed the
∏

j q
invj σ
j factor is the same at both sides. The s-contribution

is as follows, letting r be the length of the maximal increasing right factor
of σ :

weight(σ(1) . . . σ(n− r))[s(1− s)r−1 + s2(1− s)r−2 + · · ·+ s2(1− s)0]
= weight(σ(1) . . . σ(n− r))s = weight(σ(1) . . . σ(n)) = weight(σ).

Thus the sum of the weights of all the elements of Sn (i.e., Ainv
n (s;q)) is

the same as the sum of all the weights of the elements of Tn. Let’s compute
the latter, noting that invj σ is also equal to :

invj σ = #{(r, r′) : 1 ≤ r < r′ ≤ n, nj ≥ σ(r) > σ(r′) ≥ nj−1 + 1 }.

Consider the subset of Tn consisting of all elements such that the comma
comes right after i1 members of the first class, . . . , il members of the l-
th class. Let h1 = n1 − i1, . . . , hl = nl − il and assume that after the

10
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comma we have the fixed increasing factor a(1)
1 . . . a

(1)
h1
. . . a

(l)
1 . . . a

(l)
hl

, with

nj−1 + 1 ≤ a
(j)
1 < · · · < a

(j)
hj
≤ nl for j = 1, . . . , l. The total weight of the

above factor is easily seen to be

Ainv
i (s;q) s(1− s)n1−i1+n2−i2+···+nl−il−1

×
∏
j

q
(nj−a

(j)
hj

)+(nj−a
(j)
hj−1−1)+···+(nj−a

(j)
j
−(hj−1))

j .

Now for a fixed i = (i1, i2, . . . , il) we have that the sum runs independently
with respect to each of the exponents of the qj ’s. It is easy to see that inside
the exponent of qj (j = 1, . . . , l) we have a typical partition of n with
largest part at most equal to nj − hj (= ij) and number of parts at most
equal to hj . The generating function of which is well known to be the q-
binomial

[
nj

ij

]
qj

to base qj . Since the sums over each qj run independently,

the total weight of members of Tn such that right before the comma come
i1 members of the first class, . . . , il members of the l-th class (regardless
of what comes after) is∏

j

[
nj

ij

]
qj

Ainv
i (s;q)s(1− s)n1−i1+···+nl−il−1.

Summing over all conceivable i 6= n establishes (1.5).
The technique used here was inspired by some methods developed in

[Ge2] and [Ze].

4. Inversion numbers

The proof of theorem 3 relies upon the properties of the so-called second
fundamental transformation ([Lot, chap. 10]), we shall designate by φ. Let
w = x1 . . . xm be a word whose letters belong to N and let x be an integer.
If the last letter of w is greater (resp. smaller than or equal to) x, the word
w admits a unique factorization (w1y1, . . . , wpyp), called its x-factorization
having the following properties :

(i) each yi (i = 1, . . . , p) satisfies yi > x (resp. yi ≤ x);
(ii) each word wi (i = 1, . . . , p) is either empty, or has all its letters

smaller than or equal to (resp. greater than) x.
Define γx(w) = y1w1 . . . ypwp. (Note that w = w1y1 . . . wpyp.) The

transformation φ is defined by induction as follows : φ(w) = w, if w is
of length one; if w has a length at least equal to 2, write w = vx with x
being the last letter of w, and define :

φ(vx) = γx

(
φ(v)

)
x.

11
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Let W be the rearrangement class of some word w0. It was proved in [Fo]
that φ is a bijection of W onto itself having the property that

(4.1) majw = inv φ(w),

for every w ∈W .
A further property of φ was stated and proved in [FoSch] for the

rearrangement classes W containing only words without repetitions, say,
subwords of permutations. If w is such a word, its inverse ligne of route
Ilignew may be defined as being the set of all k such that k and (k + 1)
are letters of w and (k + 1) is to the left of k in w. In particular, if w is a
permutation of 1, 2, . . . , n, then Ilignew is simply the ligne of route of the
inverse permutation w−1. Thus when the rearrangement class W contains
only subwords of permutations, it was shown in [FoSch] that

(4.2) Ilignew = Iligneφ(w).

Recently, Björner and Wachs [BjWa] have extended the properties of
the second fundamental transformation to a larger set of combinatorial
objects, and found several characterizations for sets that satisfied (4.2).
Our purpose presently is to include φ in the construction of a bijection
that will serve to prove theorem 3.

If σ = σ(1) . . . σ(n) is a permutation and if n = (n1, . . . , nl) is a
sequence of integers of sum n, let

σj = σ(nj−1 + 1)σ(nj−1 + 2) . . . σ(nj + 1)

for j = 1, . . . , l. If Θ is any transformation on Sn, we will write :

(Θσ)j = Θσ(nj−1 + 1)Θσ(nj−1 + 2) . . . Θσ(nj + 1).

In particular, if we apply the second fundamental transformation φ to each
σj and form the juxtaposition product

(4.3) ψ(σ) = φ(σ1) . . . φ(σl),

we define a new transformation on Sn. Furthermore, φ(σj) = (ψσ)j using
the previous notations.

Proposition 4.1. — The sequence n being given, the mapping ψ is
a bijection of Sn onto itself satisfying :

(4.4) majσj = inv(ψσ)j (j = 1, . . . , l) ;
(4.5) Iligneσ = Iligneψ(σ).

12
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Proof. — Relation (4.4) is just (4.1) rewritten for the factors σj . Now
by (4.2) we have Iligneσj = Iligneφ(σj). This takes care of all the pairs
(k, k + 1) contained in a single factor σj , and therefore in a factor φ(σj).
Next, if 1 ≤ i < j ≤ l and (k+ 1) is a letter of σi, while k is a letter of σj ,
then (k + 1) will be to the left of k both in σ and ψ(σ).

Let iσ = σ−1 and form the sequence :

σ 7→ iσ 7→ ψ iσ 7→ iψ iσ,

By (4.5)
(4.6) Ligneσ = Iligne iσ = Iligneψ iσ = Ligne iψ iσ.

Furthermore, by (4.4)
(4.7) maj(iσ)j = inv(ψ iσ)j (j = 1, . . . , l).

Define
σ′ := iψ iσ.

Then σ 7→ σ′ is a bijection satisfying Ligneσ = Ligneσ′ by (4.6).
Furthermore,

imajj σj = maj(iσ)j = inv(ψ iσ)j = inv(σ′−1)j = invj σ
′.

This completes the proof of theorem 3.

5. The Désarménien Verfahren

Let x = (x1, x2, . . . ) be an infinite sequence of variables and for each
r = 1, 2, . . . denote by hr(x) the homogeneous symmetric function in the
xj ’s and by pr(x) the power sum

∑
j x

r
j . By convention, h0(x) = 1. The

generating function H(u;x) =
∑

r≥0 u
rhr(x) can be evaluated in different

forms :

(5.1) H(u;x) =
∏
j≥1

(1− uxj)−1 = exp
∑
r≥1

ur pr(x)
r

.

(See, e.g., [Mac, p. 14 and 17].)
Recall that a partition of an integer n can be expressed as a non-

increasing sequence λ = (λ1, λ2, . . . ) (λ1 ≥ λ2 ≥ · · · ), or as a word
λ = 1m12m2 . . . (the multiplicative notation) with the meaning that λ
has m1 parts λi equal to 1, m2 parts λi equal to 2, etc. . . As usual, to
each partition λ we attach the constant

zλ = 1m12m2 . . .m1!m2! . . .

13
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and the power symmetric function

pλ(x) = pλ1(x)pλ2)(x) . . .

Also |λ| = n means that λ is a partition of n and the notation l(λ) stands
for the number of parts of λ.

Désarménien [De] introduced the polynomials

(5.2) Tλ(q) =
(q; q)n∏

j(1− qj)mj
,

where λ = 1m12m2 . . . is a partition of n. He noticed that Tλ(q) is a
polynomial of degree n(n− 1)/2 and can also be expressed as :

(5.3) Tλ(q) = (q; q)n pλ(1, q, q2, . . .).

Furthermore, he proved the following congruence property.

Lemma 5.1. — Let n = da+ b, 0 ≤ b ≤ d− 1 and λ = 1m12m2 . . . be
a partition of n. Then the following congruences hold :

(i) if md 6= a, then Tλ(q) ≡ 0 (mod Φd(q)).
(ii) if md = a, let µ = λ\da be the partition obtained from λ by deleting

the md parts equal to d. Then

Tλ ≡ daa!Tµ(q) (mod Φd(q)).

Now let (ci) (i = 0, 1, . . . ) be a sequence of elements belonging to some
given ring. The relation

(5.4)
∑
i≥0

Ci
ui

i!
=

∑
i≥0

ci(eu − 1)i

defines a sequence (Ci) in a unique manner.
Désarménien considered the expansion∑

m≥0, n≥0

Cn,m(x)un v
m

m!
=

∑
i≥0

ci
(
H(u;x)ev − 1

)i

and showed that Cn,m(x) can be expressed in terms of the symmetric
finctions (pλ(x)) as

Cn,m(x) =
∑

λ

Cm+l(λ)
pλ(x)
zλ

(|λ| = n).

14
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Then he defined the polynomials

Km,n(q) = (q; q)n Cm,n(1, q, q2, . . .),

and using lemma 5.1 proved the congruence

Km,da+b(q) ≡ Km+a,b(q) (mod Φd(q)).

Finally, he applied the latter congruence to his q-Eulerian polynomials
with two indices to obtain theorem 4 for k = 1.

The program for an arbitray k and consequently for the multiba-
sic Eulerian polynomials will closely follow the foregoing pattern. This
time we have to introduce l sequences of variables xj = (xj

1, x
j
2, . . . )

(1 ≤ j ≤ l), and relation (5.4) being given we expand the expression∑
i≥0 ci

(∏
j H(uj ;xj)− 1

)i, as a power series in the uj ’s. This is done as
follows.

Proposition 5.2. — If

(5.5)
∑
n

l∏
j=1

u
nj

j Cn =
∑
i≥0

ci

( l∏
j=1

H(uj ;xj)− 1
)i

,

then

(5.6) Cn =
∑

λ1,...,λl

Cl(λ1)+···+l(λl)

l∏
j=1

pλj (xj)
zλj

,

the sum being over all partitions satisfying
∣∣λ1

∣∣ = n1, . . . ,
∣∣λl

∣∣ = nl.
The proof has been made in [DeFo2] in the case l = 2 and H(u2;x2) =

eu2 . The proof for an arbitrary l is quite similar and will therefore be left
out.

Let 0 ≤ k and k + 1 = l and suppose that H(ul;xl) is equal to eul .
From (5.1) it follows that p1(xl) = 1 and pr(xl) = 0 for r ≥ 2. Hence, if∣∣λl

∣∣ = nl, we have

(5.7)
pλl(xl)
zλl

=
{

0, if λl 6= (1nl);
1/nl!, if λl = (1nl).

Hence (5.6) takes the form

(5.8) Cn =
∑

λ1,...,λk

Cl(λ1)+···+l(λk)+nk+1

k∏
j=1

pλj (xj)
zλj

1
nk+1!

,

15
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where
∣∣λ1

∣∣ = n1, . . . ,
∣∣λk

∣∣ = nk, and (5.5) the form

(5.9)
∑
n

k+1∏
j=1

u
nj

j Cn =
∑
i≥0

ci

( k∏
j=1

H(uj ;xj)euk+1 − 1
)i

.

For j = 1, . . . , k and r = 1, 2, . . . replace each xj
r by qr−1

j in (5.8) and (5.9).
This substitution being made, define

Kn(q1, . . . , qk) =
k∏

j=1

(qj ; qj)nj
nk+1! Cn

∣∣∣
xj

r ← qr−1
j

.

By (5.3) and (5.8) we obtain

(5.10) Kn(q1, . . . , qk) =
∑

|λ1|=n1,...,|λk|=nk

Cl(λ1)+···+l(λk)+nk+1

k∏
j=1

Tλj (qj)
zλj

.

On the other hand, by (1.2) and (5.1)

H(uj ;xj)
∣∣∣
xj

r ← qr−1
j

=
∏
r≥1

(1− ujq
r−1
j )−1 = e(uj ; qj).

Hence (5.9) becomes
(5.11)∑

n

∏l+1
j=1 u

nj

j∏k
j=1(qj ; qj)nj

nk+1!
Kn(q1, . . . , qk) =

∑
i≥0

( k∏
j=1

e(uj ; qj)euk+1 − 1
)i

.

Remark. — In the notations of lemma 5.1, case (ii) (md = a) we have
l(λ) = l(µ) + a and zλ = zµd

aa! Hence

(5.12)
Tλ(q)
zλ

≡ Tµ(q)
zµ

(mod Φd(q)).

Now let (d1, . . . , dk) be given and let nj = djaj+bj (0 ≤ bj ≤ dj−1; 1 ≤
j ≤ k). When Kn is taken mod (Φd1(q1), . . . ,Φdk

(qk)), formula (5.10)
becomes in view of lemma 5.1 and (5.12) :

Kn(q) =
∑

|µ1|=b1,...,|µk|=bk

Cl(µ1)+a1+···+l(µk)+ak+nk+1

k∏
j=1

Tµj (qj)
zµj

.
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But by (5.10) the right-hand side of the previous congruence is also equal
to Kdiv n(q) with

div n = (b1, . . . , bk, nk+1 + a1 + · · ·+ ak).

Hence

(5.13) Kn(q) ≡ Kdiv n(q) (mod (Φd1(q1), . . . ,Φdk
(qk))).

To apply the foregoing congruence results to the multibasic Eulerian
polynomials we note that (1.6) can be rewritten as

∑
n

∏k+1
j=1 u

nj

j∏k
j=1(qj ; qj)nj nk+1!

Bn(s;q)
(1− s)n1+···+nk+1

=
∑
i≥0

( s

1− s

)i( k∏
j=1

e(uj ; qj)euk+1 − 1
)i

.

Comparing the latter identity with (5.11) we see that we can apply (5.13)
to Kn(q) = Bn(s;q)/(1− s)n1+···+nk+1 , which are polynomials in the qj ’s
with coefficients in the field Q(s). This gives immediately theorem 4.

Consider a polynomial Bn(s;q) (n ∈ Nk+1) and suppose that the first
k components of n are equal to 0 or 1. It then follows from (1.7) and the-
orem 1 that there is no variable qj occurring in the expression of Bn(s;q).
Therefore, this polynomial reduces to the ordinary Eulerian polynomial
An1+···+nk+1(s) defined in (1.1). The corollary is then a consequence of
this observation and theorem 4.

6. A Wachs-style proof of Theorem 4

We will give a Wachs-style proof of theorem 2 of [DeFo2]., i.e. the
one-colored case of theorem 4. The same argument then goes to prove
theorem 4 itself. We use the combinatorial interpretation of theorem 2.

We have to prove that if ω = primitive d-th root of unity, then

(6.1) Bda+b,m(s;ω) = (1− s)(d−1)aBb,m+a(s;ω).

Let us first prove the case a = 1, b = 0, m = 0, i.e., that Bd,0(s;ω) =
(1 − s)d−1B0,1(s;ω) = (1 − s)d−1A1(s) = (1 − s)d−1s. This follows from
recurrence (1.5) with one color, and the fact that[

d

i

]
q

=
(1− qd)(1− qd−1) . . . (1− qd−i+1)

(1− qi) . . . (1− q)
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vanishes when q = ω and 1 ≤ i < d. Thus by plugging in q = ω in (1.5)
there is only one surviving term, i = 0. We summarize this result as :

(6.2)
∑
Sd+0

weightσ = (1− s)d−1s.

Now let us prove (6.1) in general. We may write

(6.3) Bda+b,m(s; q) =
∑

S(da+b)+m

weightπ =
∑

π

s1+des πqinv1 π,

with π running over S(da+b)+m, so that only the elements 1, 2, . . . , da+ b
are taken into account for the calculation of the exponent of q. Group
those (da+ b) colored elements into families of consecutive d elements :

V1 := {1, . . . , d} ; V2 := {d+ 1, . . . , 2d} ; . . . Va := {(a− 1)d+ 1, . . . , ad} ;
plus a set of “bachelors”

W := {ad+ 1, . . . , ad+ b}.

It is possible to view a permutation as a “seating” in a one-row auditorium.
From now on “seating” and “permutation” will be used interchangeably.
A happy seating is one in which no family had to split, i.e., every family
sits in d consecutive chairs. An unhappy seating is one in which at least
one of the d families had to split. We claim

(i) The sum of all the weights of the happy seatings is

(1− s)(d−1)aBb,m+a(s;ω).

(ii) The sum of the weights of all the unhappy seatings is zero.

Proof of (i). — Each happy seating can be characterized by a sequence
π = (σ, π1, . . . , πa), where σ belongs to S(b)+(m+a) and indicates how the b
bachelors, the m uncolored elements and the a family-blocks are displayed
on the one-row seating and where π1, . . . , πa are permutations that arrange
the seatings within each family. We have

desπ = desσ + desπ1 + · · ·+ desπa,

since the total number of descents is the sum of the inter-family and
intra-family descents. We also have that the number of inversions of π
(that count, i.e., the inversions between the da + b elements themselves,
disregarding relationships with the m elements that “don’t count”) equals
d2 times the number of inversions in σ between the a family blocks, plus
d times the number of inversions that result between the b bachelors and
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the a family blocks. To these we have to add, of course, the “intra-family”
inversions, i.e., inv π1+· · ·+inv πa, and finally we have to add the inversions
between the b bachelors. Moding out by d the contributions from the first
two kinds of inversions vanish and we have (recall q = ω, ω a primitive
d-th root of unity)

weightπ = s1+des σqinv1 σsdes π1qinv π1 . . . sdes πaqinv πa ,

so that
sa weightπ = weightσweightπ1 . . .weightπa.

Thus ∑
π happy

weightπ = s−a
∑

Sb+(m+a)

weightσ
∑
Sd

weightπ1 . . .
∑
Sd

weightπa

= Bb,m+a(s;ω)(1− s)(d−1)a,

by (6.2) and (6.3).
Proof of (ii). — For any set X = {x1 < x2 < · · · < xL} and any

permutation ρ = xi1xi2 . . . xiL
of X we denote by red ρ the permutation

of 1, 2, . . . , L, called the reduction of ρ, defined by red ρ = i1i2 . . . iL.
Michelle Wachs (d = 2) killed bad guys in pairs. We would have to

exterminate them in bunches. Let r (1 ≤ r ≤ a) be the smallest unhappy
family (i.e., r is the smallest integer for which Vr is an unhappy family). Let
the connected components of the seats occupied by the Vr-family members
have lengths α1, . . . , αc. Obviously c ≥ 2 and α1 + α2 + · · ·+ αc = d.

Consider all permutations that give rise to the same unhappy r, same
component sizes α1, . . . , αc, whose last connected component reduces to
the same permutation p ∈ Sαc and in which all the non-Vr objects stay
the same. In other words, once the show has begun, only the Vr-family
members can move seats between themselves, but they must observe the
same “pattern” in the last component. We will now show that the sum of
all the weights of the seatings that are related in such a way is zero.

The descents and inversions with “the outside world” remains fixed, as
do the descents and inversions within “the outside world”. All the changes
are the descents and inversions due to the placements of the Vr-family
members themselves. Furthermore, even the descents and inversions due
to the inhabitants of the last component among themselves remain fixed,
since only the relative sizes matter. In addition the sum of the contribu-
tions to the weights from the relative placements of the members of the
Vr-family within the first c−1 components remain the same, regardless the
occupants of the last component. (Only relative size matters.) The only
things that do change are the inversions caused by the interaction between
the Vr-members that occupy the last component and the rest of their fam-
ily. If the set of occupants of the last component is (let αc = L) (x1, . . . , xL)
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(x1 < x2 < · · · < xL), then the number of inversions contributed by these
interactions is (d−xL)+(d−1−xL−1)+ · · ·+(d− (L−1)−x1), where xi

are the reduced labels in the Vr-family : xi := xi − rd. What we get is a
typical partition with ≤ L parts and largest part ≤ d−L, whose generating
function (see [An, chap. 3]) is (1− qd) . . . (1− qd−L+1)/(1− q) . . . (1− qL),
and therefore vanishes when q = ω. Since all the unhappy seatings can be
partitioned into these sets, they all die.

Note. — The same argument exactly goes over to prove theorem 4 of
the present paper. We partition each color into the appropriate number
of families and “bachelors”, and in order to kill the unhappy seatings, we
choose the lowest color that has an unhappy family, and within this color,
the lowest unhappy family.
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Tables of An1,n2,n3(s; q1, q2, q3)

for 6 ≥ n1 ≥ n2 ≥ n3 ≥ 0

A table of the polynomials An1,n2,n3(s; q1, q2, q3) such that n2 = 0, 1
and n3 = 0, 1 and n1 ≤ 6 has already been published by Désarménien
[De]. Write Ad

m,n for the notations adopted in [De] and keep An1,n2,n3

for ours. We have the correspondence An1,n2,n3 = Ad
n2+n3,n1

, whenever
0 ≤ n2, n3 ≤ 1. We then just list A2,2,0, A3,2,0, A2,2,1, A4,2,0, A3,3,0,
A3,2,1, A2,2,2 that have not appeared before. Only the last one actually
involves the four variables s, q1, q2, q3.

For example, the (2, 2, 0)-table is to be read : A2,2,2(s; q1, q2, q3) =
s+ s2(3 + 3q1 + 3q2 + q1q2) + s3(1 + 3q1 + 3q2 + 4q1q2) + s4.

(2, 2, 0)

1 q1 q2 q1q2

s 1

s2 4 3 3 1

s3 1 3 3 4

s4 1

(3, 2, 0)

1 q1 q2 q2
1 q1q2 q3

1 q2
1q2 q3

1q2

s 1

s2 6 6 4 6 2 2

s3 3 12 6 12 12 6 12 3

s4 2 2 6 4 6 6

s5 1

(2, 2, 1)

1 q1 q2 q1q2

s 1

s2 12 6 6 2

s3 15 18 18 15

s4 2 6 6 12

s5 1

(4, 2, 0)

1 q1 q2 q2
1 q1q2 q3

1 q2
1q2 q4

1 q3
1q2 q5

1 q4
1q2 q6

1 q5
1q2 q6

1q2

s 1

s2 8 9 5 12 3 9 4 3 3 1

s3 6 27 10 42 24 45 35 33 33 18 20 9

s4 9 20 18 33 33 35 45 24 42 10 27 6

s5 1 3 3 4 9 3 12 5 9 8

s6 1

(3, 3, 0)

1 q1 q2 q2
1 q1q2 q2

2 q3
1 q2

1q2 q1q2
2 q3

2 q3
1q2 q2

1q2
2 q1q3

2 q3
1q2

2 q2
1q3

2 q3
1q3

2

s 1

s2 9 8 8 8 4 8 4 4 4

s3 9 24 24 24 36 24 10 36 36 10 8 36 8 8 8 1

s4 1 8 8 8 36 8 10 36 36 10 24 36 24 24 24 9

s5 4 4 4 8 4 8 8 8 9

s6 1
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(3, 2, 1)

1 q1 q2 q2
1 q1q2 q3

1 q2
1q2 q3

1q2

s 1

s2 17 12 8 12 4 4

s3 33 60 34 60 44 18 44 9

s4 9 44 18 44 60 34 60 33

s5 4 4 12 8 12 17

s6 1

(2, 2, 2)

1 q1 q2 q3 q1q2 q1q3 q2q3 q1q2q3

s 1

s2 20 9 9 9 4 3 3 1

s3 48 45 45 45 33 33 33 20

s4 20 33 33 33 45 45 45 48

s5 1 3 3 3 9 9 9 20

s6 1
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