MULTIBASIC EULERIAN POLYNOMIALS
BY

DomINIQUE FOATA (*) anp DoroN ZEILBERGER (**)

ABSTRACT. — FEulerian polynomials with several bases are defined. Their combi-
natorial interpretations are given as well as congruence properties modulo some ideals
generated by cyclotomic polynomials.

1. Introduction

It is well-known (see, e.g., [Ri, chap. 7]) that the identity

" 1—-t
1.1) Yoa,0) = n>0
( ; n! 1 —texp((1—t)u) ( )
defines a sequence of polynomials (A, (t)), called Eulerian polynomials,
whose classical combinatorial interpretation is the following : for each
permutation o = o(1)...0(n) let deso be the number of descents of o,
that is, the number of ¢ such that 1 < i < n —1 and o(i) > o(i + 1).
Then A, (t) = Y t'14% (5 € §,). This shows, in particular, that each
polynomial A,,(t) has positive integral coefficients whose sum is n!
As usual, let

‘ 1, it n =0;
(ua Q)n = (1 _u)(l —uq),,.(l —uqn_l), ifn>1;

denote the g-ascending factorial and also let

oo

(4 q)oo = [ (1 = ug™).

n=0
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Further, let

m _ (@9
il, (©0i(gDn—
denote the Gaussian polynomial for 0 < ¢ < n. Finally, let the two g-

exponentials be given by (see [An, chap. 2|)

n

(1.2) e(uiq) = Y ——— = (u;q)
1 n%% (¢ On ?
(1.3 Bluig) = 3" ¢~ (cuig)
1 nzzoq (¢ On 7

Our purpose is to investigate the properties of a class of polynomials
(An(s;qi, .., q) (m = (ng,...,n) € NL T > 1) in (I + 1) variables [in
short, A,(s;q)] defined by the identity

j

Y q) = L=
(1.4) ZﬁAn(s,q) n 1_51_[].6((1—3)%;%')’

where j goes from 1 to [. To convince ourselves that each A,(s;q) is a
polynomial with integral coefficients we may rewrite (1.4) as L = (1—R) L.
The identity L(1 — R) = 1 yields the recurrence relation

(1.5) An(s;q) = ZH [TZJJ] .Ai(s;q)s(l _g)ymibetu—i—l

where j goes from 1 to [ and where i = (i1, ...,%;) runs over all sequences
of nonnegative integers satisfying i # (n1,...,n;) and 0 < i3 < nq, ...,
0 < i < ng. As Ap(s;q) = 1, relation (1.5) shows by induction that
each A,(s;q) is a polynomial with integral coefficients. To show that the
coefficients are indeed positive and of sum (ny + - - - + n;)! requires more
analysis and will be a consequence of theorem 1 or theorem 2 below.
The second class of polynomials under study will be denoted by
(Ba(s;q)) (me N¥1 k>0, q=(q,...,q)). They are defined by

[T
(1.6) — Bn(s;q)
; H?:l(qj;Qj)njnk—Fl!
- 1-s
1—sTT5_ye((1— s)ujsq5) exp((1— s)upsr)

Assume 0 < k, k+ 1 =1 and let ¢ = 1 in (1.5). Then Ay (s;q) is trans-
formed into a polynomial in (k + 1) variables s, qi,...,qk. Furthermore,
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the Gaussian polynomial [Z.ﬂ . becomes the ordinary binomial coefficient
l

(Zl). Hence (1.4) itself is transformed into identity (1.6). Thus
(1.7)

Bnl,...,nk+1(S;QI7--~>Qk:) - Anl,...,nk+1(SQQI>---7Qk7Qk+1) o .
Qe+1 =1
Conversely, put ug+1 = 0 in (1.6) and let £ = [. Then (1.6) yields (1.4),
so that

(18> Anl,...,nk (S’ q1,--- 7Qk) = Bnl,...,nk,()(S; qi,--- ,Qk)

We emphasize the fact that A,(s;q) has [ indices and (I + 1) variables,
whereas By (s;q) has (k4 1) indices and (k + 1) variables.

When k£ = 0, then By(s,q1,...,qx) reduces to the usual Eulerian
polynomial A, (s) defined in (1.1). When [ = 1, then A,(s,q1,...,q)
is the ¢-FEulerian polynomial A, (s,q) that is known to be [St] the gen-
erating polynomial for the permutation group by the bivariate statistic
(1 4+ number of descents, inversion number). Identity (1.6) for k = 1 was
considered by Désarménien [De] for his definition of the ¢- Eulerian poly-
nomaials with two indices.

The theory of basic hypergeometric series is now well understood, wit-
ness the forthcoming book by Gasper and Rahman [GaRa2]. They have
also paved the way for the almost untouched forest of multi-basic hypergeo-
metric series ([Ga], [GaRal]). Our intention here is to derive the properties
of the multibase-analog of the classical Eulerian polynomials using mainly
symmetric function techniques and combinatorial manipulations on the
inversion numbers.

We first give a combinatorial interpretation to A,(s;q) and By(s;q).
Because of (1.7) it suffices to do it for the Ay (s;q)’s. Two combinatorial
interpretations will be given, the first one in terms of lignes of route of
permutations, the second one in terms of inversion numbers. The ligne of
route Ligneo of 0 = o(1)...0(n) is defined to be the set of all r such
that 1 <r <n—1and o(r) > o(r + 1). Hence |Ligne o| is the number of
descents, des o, defined above. Furthermore, the sum of all r in Ligneo is
the classical major index, majo, of o.

Let n = (nq,...,n;) satisfy ny+---+mn; = n. Also let nyp = 0 and denote
by n; the partial sum n; = ny +---+n; (0 <j <1). For j =1,...,1
define the j-th n-inverse ligne of route of o as being

Higne;o ={r:n; 1 +1<r<n; -1, ot r) > o7 (r+ 1)},
and the j-th n-inversion number of o as
inv;o=#{(r,r):nj_1+1<r<r <nj, o '(r)>c ()}

3



D. FOATA AND D. ZEILBERGER

Also let
imajj0:2{r—nj_1 :r € lligne; o} (j=1,...,10).

When | = 1, the statistics imaj; o and inv, o are the familiar inverse major
index and inversion number of the permutation o, respectively.
The first two results of the paper can be stated as follows.

THEOREM 1. — For each n = (ny,...,n;) the generating polynomial
for the permutation group Sy, by the (I+1)-vector (1+ des,imaj,, . ..,imaj;)
is equal to An(s;q). In other words, if An(s;q) is defined by identity (1.4),
then

(1.9)  An(siq) =) sttdesogmhe gmh7 (5 e8,).

THEOREM 2. — For each n = (ny,...,n;) the generating polynomial
for the permutation group S, by the (I + 1)-vector (14 des,invy, ..., inv;)
is equal to An(s;q), i.e.,

(1.10) An(s;q) = Z lerdeS"qilnVl 7 q}n‘” 7 (0 €8p).
o

The proof of theorem 1, derived in section 2, makes use of symmetric
function techniques, especially the Schur function algebra. To prove the-
orem 2 it is more conventient to show that Ay (s;q), as defined in (1.10)
satisfies the recurrence relation (1.5). This is done in section 3, by using
an appropriate factorization of permutations.

The combination of (1.9) and (1.10) suggests that there must be a bijec-

tion of S,, onto itself that sends the vector (14 des,imaj;,...,imaj;) onto
(1+ des,invy, ..., inv;). Such a bijection can indeed be derived (section 4).
Call it o — o’. It has even the following stronger property.
THEOREM 3. — The bijection o — o’ satisfies :
Ligne o = Ligne o’ ; imaj,; o; =inv;o’ (j=1,...,1).

In particular, deso = deso’ and majo = majo’.

In its turn theorem 3 suggests that the polynomial

1A (s,p;q E sdesg maJ” lmahg . ..q;mam (0 €8y)

should also be investigated. Using the techniques developed in [DeFo2] its
generating function can be calculated in the form

Hju?j 14
Xn:(S;p) 54 »(5,iq ZH

ni+---+ng Hg (QJ) QJ)n

’
ujapa q])T+1 00

where
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(P, g)riroe = [ (Wi @) (G=1,...,0).
1<i<r+1

However the series on the right-hand side cannot be put into a form
explicit enough to deserve further study. Note that the previous generating
function for the A, (s,p;q)’s specializes for [ = 1 to an identity worked
out by Gessel [Gel]. For p = 1 the right-hand side can be summed, as will
be shown in the proof of theorem 1 (section 2). The idea of having the
ligne of route of a permutation split into compartments is due originally
to Remmel [Re]. Further work along these lines can be found in [DeFo2].

The second goal of the paper is to work out congruence properties for
the polynomials By (s;q) (n € N**t1). Let (dy,...,dx) be a given sequence
of positive integers and for each n = (ny,...,ng, nk11) let

(1.11) nj=djaj+b;, 0<b;<d;j—1 (1<j<k)
be the Euclidean division of n; by d;. Then define divn to be
divn = (bl,...,bk,nk+1 + a1 +~~-+ak).

Further let ®,4(q) denote the d-th cyclotomic polynomial (®1(q) =1 — g,
®5(q) =1+4¢q, ... ). We also prove the following theorem.

THEOREM 4. — We have the congruences :

Bu(s;q) = (1 — )@ DartHdi—lar g, (s;q)
(mod (®q4,(q1),- -, Pa,(qr)))

The case k = 1 is due originally to Désarménien [De| (see also [DeFo2]).

COROLLARY. — If all the remainders b; in (1.11) are equal to 0 or 1,
then

(1.12) By(s;q) = (1 —s)(DmDmtotldemae g Ly 4oy st (5)
(mod (P, (q1), - - -, Pay (qr))) ;
(1.13)  An(s;q) =(1— s)(dl_l)a1+"'+(dl_l)alAa1+b1+...+al+bl(s)
(mOd (q)dl (Q1)7 ooy @y (QIC))) )

where the polynomial Ag, +...(s) on both right-hand sides is the Fulerian
polynomial defined in (1.1).

In particular, if n = (2a1 + b1, ...,2a;+b;) withby =0,1, ..., b, =0,1
and g1 = --- = q; = q, then

(1'14) An(s; q) = (1 - 8)al+m+alAa1+bl+"'+al+bl (8) (mOd (1 + Q))

5
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Both theorem 4 and its corollary are proved in section 5. The case | = 1
of (1.14) was in fact conjectured by Loday [Lod] for a side calculation of
the cyclic homology of commutative algebras. It has since received several
specific proofs in [DeFo2] and [Wa]. Michelle Wachs [Wa| derived a very
ingenious involution for proving (1.14) in the case [ = 1. In section 6 we
give a Wachs-style combinatorial proof of theorem 4.

2. Proof of theorem 1

In fact (1.4) with the interpretation given in (1.7) can be viewed as
a specialization of a result on the (k,[)-colored permutations derived in
[DeFo2]. To make the paper self-contained we have preferred to prove
theorem 1 from scratch using a working example. Take up again the
notations preceding theorem 1 with o designating a permutation of
order n. For each j = 1,...,0 let 7; be the restriction of o to the set
o~ ([nj_1 + 1,1n,]), so that:

(21) Tj 20'_1([nj_1+1,nj]> — [nj_1+17nj].

Using the Robinson-Schensted correspondence ([Kn, p. 48-72]) each bi-
jection 7; is mapped onto a pair (P}, Q;) of Young tableaux of the same
shape that we shall denote by A;. It follows from the properties of that
correspondence that the entries of P; are the elements of the interval
[nj_1+1,n;] and the entries of Q; are those of the set o~ ([n;_; +1, n,]).
For j =1,...,llet T} be the Young tableau obtained from P; by replacing
each entry » by r —n;_; and let U be the product

U=Q1® - ®Q.

In the French way of displaying tableaux this means that U is the skew
tableau obtained by placing each Q; to the right of Q;—1 and just under
it for j = 2,...,l. Thus each T} is a Young tableau of shape \; whose
entries are 1,2,...,n; (j = 1,...,1); the entries of U are 1,2,...,n and
the shape of U is the skew shape \; ® --- ® \;. We summarize all this by
writing :

shapeT; = Xj; |[A\j|=n;; (=1,...,0);

(2.2)
shapeU =\ @ - ®@ N5 (M| + -+ [N =n.

For instance, let [ =2, n = (5,4) and

U_(123456789>‘ 0_1_<12345‘6789>
864521973) 659342817/
Then
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<34569) <1278)
T = y T2 = .
45213 2697

Under the Robinson-Schensted correspondence

4 6
25 59
m— (P,Q1)= \13,34/; M\ =(2,2,1);
89 28
7’2'—>(P2,Q2):(67,17); A2 = (2,2);
and
4 6
25 34 59
T'h=P=13; To=P,—-n;=12; U=34
28

17

The inverse ligne of route Iligne U of U is defined as being the set of all
entries r such that (r 4 1) lies in a higher row than r in U (in the French
way of displaying tableaux). Furthermore, define

imajU = Z{r :r € Iligne U} ides U = |lligne U] .
With the working example, IligneU = {1,2,4,5,7,8}, imajU = 27 and
idesU = 6.
LEMMA 2.1. — The mapping (o,n) — (A1,..., \;T1,...,T;U) is a
bijection having properties (2.2) and satisfying
ligne; o —n;_; = lligneT; (j=1,...,1);

(2.3) . .
Ligne o = Iligne U.

We do not prove lemma 2.1, as it was already derived in [DeFo2] in
the context of the (k,1)-colored permutations. With our working example
lligne, 0 = {1,3} = lligneTy; lligne, o0 = {2} = IligneTs; Ligneo =
{1,2,4,5,7,8} = Iligne U.

It follows from (2.3) that
(2.4) imaj,; o =imajT; (j=1,...,0); deso = idesU.

Let s'A,(s;q) denote the right-hand side of (1.9). Then by (2.3) and
(2.4)

05 U@ =YY sesUgman g,
(M) (Ty),U
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where the first sum is over the sequences (A1, ..., \;) of partitions satisfy-
ing |A1| = n1, ..., [Ni| = ny, and the second over all sequences of tableaux
(Th,...,T;,U) satisfying (2.2).

The next step is to express the right-hand side of (2.5) in terms of
skew Schur functions. Let Sy(x1, zo, . ..) designate the skew Schur function
associated with the skew diagram 6 ([Mac, p. 39]). The following lemma
was proved in [DeFol].

LEMMA 2.2. — If 0 is a skew diagram of n elements, then
1 ides imaj r r
—Zsldequ a7 :ZS 80(17Q7q27"'7q )7
T

(85 @) n+1

r

where the first sum is over all standard tableaux T' of shape 6.

We are using here two specializations of this lemma obtained by letting
g =1 and s = 1, respectively :

1 ides T r
(26) mzsd T = Zt Sg(]. +1),

imaj T

(2.7)

= 59(1,q,q ,...),

where Sy(1771) is the skew Schur function obtained by taking an alphabet
of (r + 1) letters all equal to 1.
By (2.5), (2.6) and (2.7) we have :

An(s,q) 1 idesU T .imaj T
= S q; 7
(L=s)"T1;(a305)n, (L —9)"T1;(45545) 2 1:[ !

" () (T, U

:ZZSTS’“@ on (171 HS)\_ (L,q5,47,.-.)

(i) T

—ZZ HSA 1r+1 SA (1, QquJ"")’

(Aj) 7

as U is of shape \; ®---® \;. In the last step we have used the fondamental
multiplicative property of the Schur functions : Sxg,(z) = Sx(z)S.(x).
Now the Cauchy identity for Schur functions

> ulMsy@) Sy =] ( !
A

i 1 —ux;y;)

yields
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, 1
S sy, (1078, L) = [T

—1
A d>1 (1 - quj )r—i—l

As [N\l =n; (7 =1,...,1), we may write

j

Zn: (1- 8)”ﬁ~(qj;qg-)nj nloa)
D91 U9 o8 | EXEEENIRT.

(X))
r Aj r
= ZS ZHUL |S)\](1 +1)S/\j<17qj,qj2'7"')
r (Aj) J

= Zs’"HZuLAj‘SAj(lTH)S)\j(LC]ja%z, )
r 7oA
1
—ZH =5+ 11 (55 ¢5) s

uj?q])

Next replace each u; by u;/(1 —s). This yields

=2 Uy(s,q) =
— [1;(q554j)n, —s+[1;((1 = 8)uj3¢5) o
1—s

_S+H (( )UJ’QJ),

using the notation of the second g-exponential introduced in (1.3).
The generating function for the polynomials A, (s, q) involves the first
g-exponential, as shown in the next calculation

1—s
1+ s$,q) =358 —s+1
%H o Y = G )

1-—s

"1 sILe((T - s)uysq))

since E(u;q)e(—u;q) = 1. This proves theorem 1.
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3. Proof of theorem 2

Call A™(s;q) the right-hand side of (1.10), namely the generating
function for S,, by the vector (1 + des,invy,...,inv;). We will prove that
AWV (s: q) satisfies recurrence (1.5), i.e., the equation obtained from (1.5)
by replacing A, and A; by A" and A"V, respectively. Since Ag = APV =1
by convention, the result will follow by induction.

Consider the set 7,, of all “commaed” permutations that consist of a
permutation in S, together with a comma inserted in such a way that
the sequence after the comma is increasing. For example, 4713,256;
47132,56; 471325,6; are all members of 7,,, but 47,13256 is not.

To each member (01,02) (i.e., o2 is increasing and non-empty and
0 1= 0104 is a regular permutation of S,,) of 7,, associate the weight

Weight(al, 02) — Sl+des 018(1 i S)Iength oa—1 H q;an o
J

Next to each o in S, associate the set C'(o) of all commaed permuta-
tions obtained from ¢ by inserting a comma right before one of the entries
that belong to the maximal terminal increasing right factor of o.

For example, 0 = 4713256 gives rise to the following set

C(o)={4713,256; 47132,56; 471325,6}.

We claim that this mapping C is weight preserving, i.e.,

gltdeso H q;.nvj 7 = Z weight 7.

J T€C(0)

Indeed the [, q;-nvj 7 factor is the same at both sides. The s-contribution
is as follows, letting r be the length of the maximal increasing right factor
of o :

weight(o(1)...0(n —7))[s(1 —8) "t + (1 —5)"" 2+ +5*(1—s)"]
= weight(o(1)...0(n —r))s = weight(o(1) ...o(n)) = weight(o).

Thus the sum of the weights of all the elements of S, (i.e., AM(s;q)) is
the same as the sum of all the weights of the elements of 7,,. Let’s compute
the latter, noting that inv; o is also equal to :

invjo=#{(r,r'):1<r<r' <n,n; >o(r)>o(') >n;_1 +1}

Consider the subset of 7, consisting of all elements such that the comma
comes right after i; members of the first class, ..., i, members of the [-
th class. Let hy = ny — i1, ..., hy = n; — i; and assume that after the

10
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comma we have the fixed increasing factor agl) . .ag) e agl) . .agl), with

1
nj_;+1< agj) < e < agj) <mn; for j =1,...,1. The total weight of the
above factor is easily seen to be

Ainv(s; q) 8(1 _ S)nl—il—l—ng—ig—i—n-—i—m—il—l
1

(nj—agb];)—l—(nj—aij) 1—1)+~~-+(nj—a(.j)—(hj—l))

<] . J
J

Now for a fixed i = (i1, 12,...,7;) we have that the sum runs independently
with respect to each of the exponents of the g;’s. It is easy to see that inside
the exponent of ¢; (j = 1,...,l) we have a typical partition of n with
largest part at most equal to n; — h; (= i;) and number of parts at most
equal to h;. The generating function of which is well known to be the g-
binomial [ZJ } . to base g;. Since the sums over each ¢; run independently,

J
the total weight of members of 7,, such that right before the comma come
i1 members of the first class, ..., 9, members of the [-th class (regardless
of what comes after) is

|:n]:| Ail’lv(s, q)s(l _ 8)n1—il+~--+nl—il—1
. CH .
; Llily,

Summing over all conceivable i # n establishes (1.5). 1

The technique used here was inspired by some methods developed in
[Ge2| and [Ze].

4. Inversion numbers

The proof of theorem 3 relies upon the properties of the so-called second
fundamental transformation ([Lot, chap. 10]), we shall designate by ¢. Let
w =17 ...%, bea word whose letters belong to N and let z be an integer.
If the last letter of w is greater (resp. smaller than or equal to) x, the word
w admits a unique factorization (wyy1, ..., wpYy,), called its - factorization
having the following properties :

(i) each y; (i =1,...,p) satisfies y; > x (resp. y; < x);

(ii) each word w; (i = 1,...,p) is either empty, or has all its letters
smaller than or equal to (resp. greater than) z.

Define 7v,(w) = yiw;...ypw,. (Note that w = wyy; ... wpy,.) The
transformation ¢ is defined by induction as follows : ¢(w) = w, if w is
of length one; if w has a length at least equal to 2, write w = v with x
being the last letter of w, and define :

$(vr) = 75 ((v))2.

11
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Let W be the rearrangement class of some word wy. It was proved in [Fo]
that ¢ is a bijection of W onto itself having the property that

(4.1) majw = inv ¢p(w),

for every w € W.

A further property of ¢ was stated and proved in [FoSch] for the
rearrangement classes W containing only words without repetitions, say,
subwords of permutations. If w is such a word, its inverse ligne of route
Iligne w may be defined as being the set of all k£ such that k and (k + 1)
are letters of w and (k + 1) is to the left of k in w. In particular, if w is a
permutation of 1,2, ..., n, then Ilignew is simply the ligne of route of the
inverse permutation w~!. Thus when the rearrangement class W contains
only subwords of permutations, it was shown in [FoSch] that

(4.2) lligne w = Iligne ¢(w).

Recently, Bjorner and Wachs [BjWa] have extended the properties of
the second fundamental transformation to a larger set of combinatorial
objects, and found several characterizations for sets that satisfied (4.2).
Our purpose presently is to include ¢ in the construction of a bijection
that will serve to prove theorem 3.

If o = o(1)...0(n) is a permutation and if n = (n1,...,n;) is a
sequence of integers of sum n, let

oj=0(mj_1+1)omj_1+2)...0(n; +1)
for j=1,...,1. If © is any transformation on §,,, we will write :
(O0); =0O0(n;j_1 +1)B0(n;j_1 +2) ... Oc(n; +1).

In particular, if we apply the second fundamental transformation ¢ to each
o; and form the juxtaposition product

(4.3) Y(o) = ¢(o1) ... d(ou),

we define a new transformation on S,,. Furthermore, ¢(c;) = (10); using
the previous notations.

PROPOSITION 4.1. — The sequence n being given, the mapping 1 s
a bijection of S,, onto itself satisfying :

majo; = imv(Bo); (= 1,...\0);
lligne o = Iligne ¢ (o).

12
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Proof. — Relation (4.4) is just (4.1) rewritten for the factors ;. Now
by (4.2) we have Iligneo; = Iligne ¢(o;). This takes care of all the pairs
(k,k + 1) contained in a single factor ¢;, and therefore in a factor ¢(o;).
Next, if 1 <i < j <land (k+1) is a letter of o;, while k is a letter of o,
then (k + 1) will be to the left of k£ both in ¢ and (o). 1

Let ioc = o~ ! and form the sequence :

oc—ioc—Yic—ivio,

By (4.5)

(4.6) Ligne o = lligneio = lligney io = Ligneiyio.
Furthermore, by (4.4)

(4.7) maj(io); =inv(yio); (j=1,...,0).
Define

o =1ivyio.
Then o +— o' is a bijection satisfying Ligneo = Ligneo’ by (4.6).
Furthermore,

—1

imaj; o; = maj(io); = inv(yio); =inv(e" "); = inv; o’

This completes the proof of theorem 3.

5. The Désarménien Verfahren

Let © = (z1,x2,...) be an infinite sequence of variables and for each
r =1,2,... denote by h,(x) the homogeneous symmetric function in the
z;’s and by p,(z) the power sum 3, z’. By convention, ho(x) = 1. The
generating function H(u;x) = Y <, u"h.(z) can be evaluated in different
forms :

(5.1) H(u;zx) = H(l —uz;) = eXpZqur(x).

. r
jz1 r>1

(See, e.g., [Mac, p. 14 and 17].)

Recall that a partition of an integer n can be expressed as a non-
increasing sequence A = (A1, Ag,...) (A1 > Ay > --+), or as a word
A = 1™2m2  (the multiplicative notation) with the meaning that A
has m; parts A\; equal to 1, mo parts \; equal to 2, etc... As usual, to
each partition A\ we attach the constant

Zy = 17122 omylme! L.

13



D. FOATA AND D. ZEILBERGER
and the power symmetric function

pa(z) = px, (T)pay) () - -

Also |A\| = n means that ) is a partition of n and the notation /() stands
for the number of parts of A.
Désarménien [De] introduced the polynomials

(5.2 1h(0) =

where A = 1™12™2 _ is a partition of n. He noticed that T)(q) is a
polynomial of degree n(n — 1)/2 and can also be expressed as :

(5.3) T\(q) = (:Q)npr(1,0, ¢ .. .).

Furthermore, he proved the following congruence property.

LEMMA 5.1. — Letn=da+0b,0<b<d—1and A =1"2"2 ., be
a partition of n. Then the following congruences hold :
(i) if mq # a, then Tx(¢) =0 (mod ®4(q)).
(ii) if mgq = a, let u = A\ d* be the partition obtained from \ by deleting
the myq parts equal to d. Then

T\ =d%a!T,(q) (mod P4(q)).

Now let (¢;) (i =0,1,...) be a sequence of elements belonging to some
given ring. The relation

(5.4) Z Cz% => cie"—1)

defines a sequence (C};) in a unique manner.
Désarménien considered the expansion

m

Z Cn,m(m)unv—' = Zci (H(u;z)e’ — 1)i
m>0,n>0 me i>0

and showed that C, ,,(z) can be expressed in terms of the symmetric
finctions (px(x)) as

Cn,m(x) = Z Cm+l(/\) pA(m) (‘)“ = n)
A

ZX

14



MULTIBASIC EULERIAN POLYNOMIALS

Then he defined the polynomials

Km,n(Q) - (CJ; Q)n Cm,n(la q, q27 .. ')7

and using lemma 5.1 proved the congruence

Km.da+5(q) = Kmiap(q)  (mod ®4(q)).

Finally, he applied the latter congruence to his ¢-Eulerian polynomials
with two indices to obtain theorem 4 for k = 1.

The program for an arbitray £ and consequently for the multiba-
sic Eulerian polynomials will closely follow the foregoing pattern. This

time we have to introduce [ sequences of variables x/ = (z],723,...)

(1 < j < 1), and relation (5.4) being given we expand the expression
ZiZO ci(Hj H(uj;27) — 1)1, as a power series in the w;’s. This is done as
follows.

ProrosiTION 5.2. — If

(5.5) Zﬁu?jcn=Zci<ﬁH(uj;xj)—l>i,

n j=1 i>0  j=1
then

l .
3 Pai (2
(56) Cn — Cl()\l)+~~+l(/\l) H A ( ),
PRIPY: j=1

Z\J

the sum being over all partitions satisfying ‘)\1‘ =N, ..., ‘)\l‘ =ny.

The proof has been made in [DeFo2] in the case [ = 2 and H (uq; 2?) =
e"2. The proof for an arbitrary [ is quite similar and will therefore be left
out.

Let 0 < k and k + 1 = [ and suppose that H(u;;z!) is equal to e™.
From (5.1) it follows that p;(2') = 1 and p,(z!) = 0 for » > 2. Hence, if
’)\l’ = n;, we have

pa(=) _ [0, if A" £ (1)
(57) o {1/nl!, if Al = (1m),

Hence (5.6) takes the form

c o Sopw(@d) 1
5.8 n = n ST
(5.8) et LA 4+ 1(AF)+ k+1j1;[1 2 Mg

15
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where ‘)\1‘ =ny, ..., |)\k| = ng, and (5.5) the form
k+1 k :
(5.9) Z H u?an = Z (H (uj;z?)e s+t — 1) :
n j=1 i>0  j=1

Forj=1,...,kand r = 1,2,... replace each z by q; Yin (5.8) and (5.9).
This substitution being made, deﬁne

k
Ka(q, - a) = [ [ (@5 @)n, na41! Ca
7j=1

:L“] — qg L
By (5.3) and (5.8) we obtain
T Tho(g))
LSACY]
(5:10) Kn(gr--nae) = D Gty [[ =57
[M]=n1,...,|\k|=ng Jj=1 N
On the other hand, by (1.2) and (5.1)
H(uj;a?) el =[] —wg;™) " = e(uy; q)-
J r>1
Hence (5.9) becomes
(5.11)
[T, v : i
Z — Kn(q1,---,qx) Z(H e(u; “’““—1).
k ) ’ 334
Remark. — In the notations of lemma 5.1, case (ii) (mq = a) we have

[(A) = l(p) + a and z\ = z,d"a! Hence

(5.12) TZE\q) = Ti(q) (mod P®4(q))-

Now let (dy, ..., dy) be given and let nj = d;a;+b; (0 <b; <d;j—1; 1 <
j < k). When K, is taken mod (®g4,(q1),...,®q,(qx)), formula (5.10)
becomes in view of lemma 5.1 and (5.12) :

k
T, (gj)
Kn(q) = Z Cl(u1)+a1+~-+l(u’“)+ak+nk+1 H S

; 2,3
‘:U’l|:b17“'7‘uk|:bk Jj=1 H

16
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But by (5.10) the right-hand side of the previous congruence is also equal
to Kaivn(q) with

divn = (bl,...,bk,nk+1 + a1 +~~-+ak).
Hence

(5.13) Kn(q) = Kaivn(q)  (mod (®a, (q1), - Py (qx)))-

To apply the foregoing congruence results to the multibasic Eulerian
polynomials we note that (1.6) can be rewritten as

k+1 n;
Z I1;5, Bn(s;q)

n Hle(q]’ qj)nj nk+1! (1 — 3)n1+"~+nk+1

N Z<1 . 3>1<H€(uj;qj)e“’““ - 1)

i>0 j=1

Comparing the latter identity with (5.11) we see that we can apply (5.13)
to Kn(q) = Bn(s;q)/(1 —s)™ T T+1 which are polynomials in the ¢;’s
with coefficients in the field Q(s). This gives immediately theorem 4.

Consider a polynomial By (s;q) (n € N¥*1) and suppose that the first
k components of n are equal to 0 or 1. It then follows from (1.7) and the-
orem 1 that there is no variable ¢; occurring in the expression of By(s; q).
Therefore, this polynomial reduces to the ordinary Eulerian polynomial
Api 4. tnyy, (5) defined in (1.1). The corollary is then a consequence of
this observation and theorem 4.

6. A Wachs-style proof of Theorem 4

We will give a Wachs-style proof of theorem 2 of [DeFo2]., i.e. the
one-colored case of theorem 4. The same argument then goes to prove
theorem 4 itself. We use the combinatorial interpretation of theorem 2.

We have to prove that if w = primitive d-th root of unity, then

(6.1) Baarpm(s;w) = (1 — )@ DB, 1 (s5w).

Let us first prove the case a = 1, b = 0, m = 0, i.e., that By o(s;w) =
(1 —98)4"1By1(s;w) = (1 — ) 1A;(s) = (1 — 5)?!s. This follows from
recurrence (1.5) with one color, and the fact that

ld] _ (1= —q¢™h). .. =g
il (1=¢)...(1—q)

17
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vanishes when ¢ = w and 1 < i < d. Thus by plugging in ¢ = w in (1.5)
there is only one surviving term, ¢ = 0. We summarize this result as :

(6.2) Z weight 0 = (1 — 5)4 7 Ls.

Sato

Now let us prove (6.1) in general. We may write

(6.3) Baa+b,m(s39) = Z weight m = Z gltdesm invim

S(da+b)+7n

with 7 running over S(gq44)+m, so that only the elements 1,2,...,da + b
are taken into account for the calculation of the exponent of g. Group
those (da + b) colored elements into families of consecutive d elements :

Vi={1,...,d}; Vo:={d+1,...,2d}; ...V, :={(a—1)d+1,...,ad};
plus a set of “bachelors”

W:={ad+1,...,ad + b}.

It is possible to view a permutation as a “seating” in a one-row auditorium.
From now on “seating” and “permutation” will be used interchangeably.
A happy seating is one in which no family had to split, i.e., every family
sits in d consecutive chairs. An unhappy seating is one in which at least
one of the d families had to split. We claim

(i) The sum of all the weights of the happy seatings is

(1 - S)(d_l)aBb,m-l-a(S; w) :

(ii) The sum of the weights of all the unhappy seatings is zero.

Proof of (). — Each happy seating can be characterized by a sequence
7= (0,m1,...,7,), where o belongs to S (m+q) and indicates how the b
bachelors, the m uncolored elements and the a family-blocks are displayed
on the one-row seating and where 74, ..., 7, are permutations that arrange
the seatings within each family. We have

desm™ =deso +desm; + -+ + desm,

since the total number of descents is the sum of the inter-family and
intra-family descents. We also have that the number of inversions of 7
(that count, i.e., the inversions between the da + b elements themselves,
disregarding relationships with the m elements that “don’t count”) equals
d? times the number of inversions in o between the a family blocks, plus
d times the number of inversions that result between the b bachelors and

18
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the a family blocks. To these we have to add, of course, the “intra-family”
inversions, i.e., inv w1+ - -+inv 7, and finally we have to add the inversions
between the b bachelors. Moding out by d the contributions from the first
two kinds of inversions vanish and we have (recall ¢ = w, w a primitive
d-th root of unity)

inv g,

q )

l+deso invy Usdes T

weight 7 = s q

inv mq Sdes Ta

q
so that

5% weight m = weight o weight 7 . . . weight 7.
Thus

Z weight m = s7¢ Z weight o Z weight 7 ... Z weight 7,
Sq

7 happy Sb+(m+a) Sa
= By mta(s;w)(1 — 3)(d*1)a,

by (6.2) and (6.3).

Proof of (ii). — For any set X = {z1 < 22 < --- < x1} and any
permutation p = z;, x;, ... x;, of X we denote by red p the permutation
of 1,2,..., L, called the reduction of p, defined by red p = iyis...10r.

Michelle Wachs (d = 2) killed bad guys in pairs. We would have to
exterminate them in bunches. Let r (1 < r < a) be the smallest unhappy
family (i.e., r is the smallest integer for which V. is an unhappy family). Let
the connected components of the seats occupied by the V,.-family members
have lengths aq,...,a.. Obviously ¢ > 2 and a; + ag + -+ + a. = d.

Consider all permutations that give rise to the same unhappy r, same
component sizes aq,...,a., whose last connected component reduces to
the same permutation p € §,, and in which all the non-V,. objects stay
the same. In other words, once the show has begun, only the V,-family
members can move seats between themselves, but they must observe the
same “pattern” in the last component. We will now show that the sum of
all the weights of the seatings that are related in such a way is zero.

The descents and inversions with “the outside world” remains fixed, as
do the descents and inversions within “the outside world”. All the changes
are the descents and inversions due to the placements of the V,.-family
members themselves. Furthermore, even the descents and inversions due
to the inhabitants of the last component among themselves remain fixed,
since only the relative sizes matter. In addition the sum of the contribu-
tions to the weights from the relative placements of the members of the
V,.-family within the first c—1 components remain the same, regardless the
occupants of the last component. (Only relative size matters.) The only
things that do change are the inversions caused by the interaction between
the V,.-members that occupy the last component and the rest of their fam-
ily. If the set of occupants of the last component is (let o, = L) (z1,...,2)
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(r1 < x9 < -+ < L), then the number of inversions contributed by these
interactions is (d—Zp)+(d—1—ZFp_1)+---+(d— (L—1) — 1), where T;
are the reduced labels in the V,-family : =; := x; — rd. What we get is a
typical partition with < L parts and largest part < d— L, whose generating
function (see [An, chap. 3])is (1—¢q9)...(1—¢¢ LT /(1—q)...(1—q%),
and therefore vanishes when ¢ = w. Since all the unhappy seatings can be
partitioned into these sets, they all die. §

Note. — The same argument exactly goes over to prove theorem 4 of
the present paper. We partition each color into the appropriate number
of families and “bachelors”, and in order to kill the unhappy seatings, we
choose the lowest color that has an unhappy family, and within this color,
the lowest unhappy family.
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Tables of A, n,.ns(S;¢1,92,93)
for 6 >n; >n2>n3>0

A table of the polynomials A, n,ns(S:41,¢2,q3) such that ng = 0,1
and ng = 0,1 and n; < 6 has already been published by Désarménien
[De]. Write AZ, , for the notations adopted in [De] and keep Ap, nyn,
for ours. We have the correspondence Ay, 5,0, = A% tns.ny s Whenever
0 S N9, N3 S 1. We then just list A272’O, Ag,g’o, A2,271, 144’2’07 A37370,
Az 2.1, Az 22 that have not appeared before. Only the last one actually
involves the four variables s, q1, ¢2, q3.

For example, the (2,2,0)-table is to be read : As22(s;q1,¢2,q3) =

s+ 5234+ 3q1 +3¢2 + quq2) + s3(1 + 3q1 + 3q2 + 4q1q2) + s*.

(3,2,0) (2,2,1)
(2,2,0) 1q1 g2 42 q1q2 43 4iq2 g2 1 q1 q2 q1g2
g1 g2 q1q2 s |1 1
s |1 216 6 4 6 2 2 2112 6 6 2
s2143 3 1 s31312 6 12 12 6 12 3 53|15 18 18 15
s3/1 3 3 4 st 2 2 6 4 6 6 s*12 6 6 12
st 1 s° 1 s° 1
(4,2,0)
lqi 2 ¢ 1q2 ¢ 3q2 45 3a2 ¢ qta2 45 afq2 ¢Bqo
s |1
289 512 3 9 4 3 3 1
s3/6 27 10 42 24 45 35 33 33 18 20 9
s 9 20 18 33 33 35 45 24 42 10 27 6
85 1 3 3 4 9 3 12 5 9 8
36
(3,3,0)
Lqi g2 @3 192 43 4§ a2 0143 45 4392 4305 0195 4343 4ids dvds
s |1
298 8 8 4 8 4 4 4
s319242424 36 2410 36 36 10 8 36 8 8 8 1
s41 8 8 8 36 810 36 36 10 24 36 24 24 24 9
s° 4 4 4 8 4 8 8 8 9
s8 1

21



D. FOATA AND D. ZEILBERGER

(3,2,1)

(2,2,2)

1 q1 q2 ¢} 192 &3 4iq2 a2

1 q1 g2 93 9192 9193 9293 919293

1
1712 8 12 4 4
33603460 44 18 44 9
9 441844 60 34 60 33
4 4 12 8 12 17
1

1

209 9 9 4 3 3 1

48 454545 33 33 33 20

20333333 45 45 45 48

1333 9 9 9 20
1
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