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ABSTRACT. This paper takes up again the study of the Jacobi and Watson identities
that have been derived combinatorially in several manners in the classical literature.

1. Introduction

In the classical literature the Jacobi triple product appears in one of
the following two forms

(1.1)
∞∏

n=1

(1− x−1qn−1)(1− xqn) =
∞∏

i=1

1
(1− qi)

+∞∑
k=−∞

(−1)k xk qk(k+1)/2,

(1.2)
∞∏

n=1

(1− x−1 q2n−1)(1− x q2n−1) =
∞∏

i=1

1
(1− q2i)

+∞∑
k=−∞

(−1)k xkqk2
,

while the Watson quintuple product reads

(1.3)
∞∏

n=1

(1− x−1qn−1)(1− xqn)(1− x−2 q2n−1)(1− x2 q2n−1)

=
∞∏

i=1

1
(1− qi)

+∞∑
k=−∞

q(3k2+k)/2(x3k − x−3k−1).

The letters x and q may be regarded as complex variables with |q| < 1
and x 6= 0 or as simple indeterminates. In the latter case consider the ring
Ω[x, x−1] of the polynomials in the variables x and x−1 such that xx−1 = 1
with coefficients in a ring Ω. Then the identities hold in the algebra of
formal power series in the variable q with coefficients in Ω[x, x−1].

As usual, let (a; q)n denote the q-ascending factorial

(a; q)n =
{

1, if n = 0;
(1− a)(1− aq) . . . (1− aqn−1), if n ≥ 1;

(a; q)∞ =
∏
n≥0

(1− aqn);

and adopt the following classical notation for the q-binomial coefficient:
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n

k

]
q

=
(q; q)n

(q; q)n−k(q; q)k
(0 ≤ k ≤ n).

Then identities (1.1) and (1.2) have two finite versions given by

(x−1; q)n (xq; q)m =
m∑

j=−n

[
n + m

j + n

]
q

(−x)j qj(j+1)/2;(1.4)

(x−2; q2)n (x2q; q2)m =
m∑

j=−n

[
n + m

j + n

]
q2

(−x2)j qj2
.(1.5)

Those two versions with n and m not necessarily equal are apparently due
to MacMahon ([Ma15], vol. 2, § 323). He proved (1.5) by using Sylvester’s
[Sy82] “quasi-geometrical method of demonstration” and notes that to
obtain (1.4) the variable x is to be replaced by xq and then q2 by q. With
similar substitutions (1.5) can be derived from (1.4). As those substitutions
are made within finite expressions the derivations are straightforward.

On the other hand, as shown to us by Andrews [An98], and as it is
well-known in the case m = n, identity (1.4) can be proved by means of
the q-binomial identity in its finite form. Proceed as follows:

(x−1; q)n (xq; q)m =(−1)nx−nqn(n−1)/2(xq1−n; q)n (xq; q)m

=(−1)nx−nqn(n−1)/2(xq1−n; q)n+m

=(−1)nx−nqn(n−1)/2
n+m∑
j=0

[
n + m

j

]
q

(−xq1−n)jqj(j−1)/2

=
n+m∑
j=0

[
n + m

j

]
q

(−x)j−nq(j−n)(j−n+1)/2

=
m∑

j=−n

[
n + m

j + n

]
q

(−x)jqj(j+1)/2.

Now to deduce the “infinite” versions (1.1), (1.2) from the finite ones we
only have to let n and m tend to infinity. Using (1.4) for n = m the
product (x−1; q)m (xq; q)m (q; q)∞ can be expressed as

m∑
j=−m

(qm−j+1; q)m+j (qm+j+1; q)∞ (−x)j qj(j+1)/2.

In that sum the running term is equal to (−x)j qj(j+1)/2(1− qm−|j|+1aj),
with aj a series in q, so that (x−1; q)m (xq; q)m (q; q)∞ = bm + qmc, where

bm is the series bm =
m∑

j=−m

(−x)j qj(j+1)/2 and c is a non-null series. Hence

(x−1; q)∞ (xq; q)∞ (q; q)∞ = limm bm =
∞∑

j=−∞
(−x)j qj(j+1)/2, which is

simply (1.1).
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The MacMahon finite versions (1.4) and (1.5) could be regarded as
the “fundamental” triple product identities and still, they are derived by
means of the q-binomial identity in its finite form. Here we face one of the
mysteries of mathematical tradition: explain why so many proofs of those
identities can be found in the literature, as will be recalled below.

On the other hand, a glance at the left-hand sides of identities (1.1),
(1.2), (1.3) shows that (1.3) must be a consequence of (1.1) and (1.2) once
we know how to handle the product of the right-hand sides of the first two
identities, when x is replaced by x2 in (1.2). It is true, as was first derived
by Carlitz and Subbarao [Ca72]. In section 5 we shall reprove (1.3) using
an argument very close to theirs.

In fact, our first aim was to give a combinatorial proof of (1.3), that
could be deduced from the combinatorial study of (1.1) and (1.2). This
program was only partially fulfilled, because (1.3) is an easy consequence
of both triple product identities and changing the “manipulatorics” needed
into some combinatorial construction would have been a useless task. As
will be seen in section 5, besides the two triple product identities, we only
need the Euler pentagonal number formula, another special case of those
two identities, and a simple summation manipulation.

Before imagining our own combinatorial proofs of (1.1) and (1.2) we
tried to go through the classical literature. The first combinatorial proofs
go back to Sylvester [Sy82] and have been the sources of inspiration of
several subsequent ones, by Wright [Wr65], Sudler [Su66], Ewell [Ew81],
Lewis [Le84]. Joichi and Stanton [Jo89] discuss the various merits of
those proofs. They are mostly interested in building natural involutions
for proving partition identities; they also compare the approaches due to
Zolnowsky [79] and Cheema [Ch64].

The other proofs are of formal nature, as in MacMahon ([Ma15], vol. 2,
§ 327, see our discussion of that proof in section 2), Bressoud [Br97] or of
analytical nature, as in Andrews [An65], [An74], [An84], or in the classical
treatises by Hardy and Wright [Ha38], Andrews [An76], Gupta [Gu87]. A
fairly complete bibliography can be found in Gasper and Rahman [Ga90].

The quintuple product identity is originally due to Watson [Wa29].
Other proofs were given by Gordon [Go61], Carlitz and Subbarao [Ca72],
Subbarao and Vidyasagar [Su70]. Hirschhorn [Hi88] proposes a generali-
sation of that identity and claims that there are “no fewer than twelve
proofs of the quintuple product identity,” in particular by Bailey [Ba51],
Sears [Se52], Atkin and Swinnerton-Dyer [At54], Andrews [An74].

Finally, those identities are found in classical topics in Number The-
ory or Lie Algebra, as in Adiga, Berndt, Bhargava and Watson [Ad85],
Gustafson [Gu87], Kac [Ka78], [Ka85], Lepowsky and Milne [Le78], Mac-
donald [Ma82], Menon [Me65], Milne [Mi85].
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The combinatorial construction we are using can be seen on Fig. 2.
Let us call it the moving rectangle construction: rectangle B after being
transposed is placed under rectangle A, while the staircase E is deleted.
This combinatorial pattern is used to prove both identities (1.1) and (1.2)
(see Propositions 1 and 2 below). The only difference between the proofs
of the two propositions is the fillings of the diagrammes with pluses and
crosses in the first case (see Fig. 1) and crosses and bullets in the second
case (see Fig. 3).

As pointed out by an anonymous referee, a similar construction had
already been made, though only for proving (1.1), by Garvan [Ga86] in his
unpublished Ph.D. thesis. We then called our construction the “modified
Garvan method.” Finally, our friends Zeng [Ze98] and Krattenthaler [Kr99]
mentioned to us that our diagramme-filling method could also be used in
the very first model imagined by Sylvester himself.

The organization of the paper is the following. In the next section we
go back to the classical proof of (1.1) originated by MacMahon and show
how it can be derived using only the topology of formal power series.
Then in sections 3 and 4 we describe our rectangle moving method. We
also show that the finite version identities (1.4) and (1.5) can also be
proved by means of those combinatorial methods. We end the paper with
the derivation of the quintuple product identity. In the sequel the set of
all partitions of the nonnegative integer n will be denoted by P(n) and
p(n) will denote the number of partitions in P(n).

2. The classical proof

Let S be the set of all the pairs (i, j) with i ∈ {−1,+1}, j ∈ N and
(i, j) 6= (1, 0). Associate with each (i, j) ∈ S the polynomial 1−xiqj in the
variable q with coefficients in Ω[x, x−1]. The family (1− xiqj) ((i, j) ∈ S)
is multipliable. Denote by a the product of this family:

a =
∏

(i,j)∈S

(1− xiqj) = (1− x−1)(1− x−1q) . . . (1− x−1qn) . . .

× (1− xq)(1− xq2) . . . (1− xqn) . . .

We can always write the series a as the sum of the summable family

a =
∑
i∈Z

xi c(i, ?),

where

c(i, ?) :=


∑
j≥i

qj c(i, j), if i ≥ 0;

∑
j≥|i|−1

qj c(i, j), if i ≤ −1.
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As derived by MacMahon ([Ma15], vol. 2, § 327) the (classical) proof of
(1.1) consists of proving first the identity

a = c(0, ?)
∑
i∈Z

xi qi(i+1)/2(2.1)

and then
c(0, ?) = 1/(q; q)∞.(2.2)

For proving (2.1) MacMahon (op. cit.) did not bother using any kind of
analytical argument, but still got the formula. His purpose was “to give
some of the methods and processes of Gauss in the study of partition
series.” He believed that “they are highly ingenious and no student would
find his equipment complete without them.” As for (2.2) instead of using
what we now call the Frobenius notation for partitions, he invented a
clever but lengthy formal argument.

In modern times, see for instance [An65], [An74], [An84], the missing
argument in the proof of (2.1) is easily provided and of course the
Frobenius notation is a classic.

The purpose of this section is to derive (2.1) using only the topology of
formal power series, although our Krattenthaler [Kr99] finds the present
derivation somehow pedantic! We proceed as follows. First, 1− x−1 is the
constant coefficient of a and for n ≥ 1 its coefficient of qn is equal to the
coefficient of qn in the finite product bn defined by

bn :=
∏

(i,j)∈S, j≤n

ai,j = (1− x−1)(1− x−1q) . . . (1− x−1qn)

× (1− xq)(1− xq2) . . . (1− xqn).
Rewrite bn in the form

bn =
∑

−(n+1)≤i≤n

xi bn(i, ?),

where

bn(i, ?) :=


∑

i≤j≤2n−i

qj bn(i, j), if i ≥ 0 ;

∑
|i|−1≤j≤2n+1−|i|

qj bn(i, j), if i ≤ −1.

The coefficients bn(i, j) are zero outside the hexagon Hn based on the
vertices (0, 0), (n, n), (0, 2n), (−1, 2n), (−n − 1, n), (−1, 0), while the
coefficients c(i, j) are zero for all points (i, j) (j ≥ 0) not contained in
the angle A delimited by the lines i + j = −1, i = j. In particular, for all
n ≥ 0 ∑

−(n+1)≤i≤n

xic(i, n) =
∑

−(n+1)≤i≤n

xi bn(i, n).(2.3)
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On the other hand, bn+1 = bn× (1+x−1qn+1)(1+xqn+1) implies that for
0 ≤ j ≤ n and all i ∈ Z we have

(2.4) bn+1(i, j) = bn(i, j).

From (2.3) et (2.4) it follows that for −(n + 1) ≤ i ≤ n we have
bn(i, n) = c(i, n); therefore, for −n ≤ i ≤ (n − 1) we have bn(i, n − 1) =
bn−1(i, n − 1) = c(i, n − 1), so that for 0 ≤ j ≤ n and −(j + 1) ≤ i ≤ j,
that is, for 0 ≤ j ≤ n and (i, j) ∈ A ∩Hn the following identity holds:

(2.5) bn(i, j) = c(i, j).

Relation (2.5) implies that for n ≥ i ≥ 0 and i ≤ −1, n ≥ |i| − 1 the series
c(i, ?) − bn(i, ?) has an order in q at least equal to (n + 1), a result that
we express as

(2.6) bn(i, ?) ≡ c(i, ?) (mod qn+1).

In bn = bn(x−1, x; q) = (1+x−1) · · · (1+x−1qn)(1+xq) · · · (1+xqn), make
the substitution x ← xq−1, x−1 ← x−1q, so that bn(x−1q, x q−1; q) =
(1 + x−1q) · · · (1 + x−1qn+1)(1 + x) · · · (1 + xqn−1). Then

(1 + xqn) bn(x−1q, x q−1; q) = x bn(x−1, x; q),

since x(1 + x−1) = (1 + x). We then get

(1 + xqn)
∑

−(n+1)≤i≤n

xi q−i bn(i, ?) =
∑

−(n+1)≤i≤n

xi+1bn(i, ?).

Comparing the coefficients of xi yields the formula

q−i bn(i, ?) + qn−i+1bn(i− 1, ?) = bn(i− 1, ?),

for 1 ≤ i ≤ n, i.e.,

bn(i, ?)− qi bn(i− 1, ?) ≡ 0 (mod qn+1).

By induction on i we get

(2.7) bn(i, ?) ≡ qi(i+1)/2 bn(0, ?) (mod qn+1).

for 1 ≤ i ≤ n. In the same manner, from bn(0, ?) + qn+1bn(−1, ?) =
bn(−1, ?) we deduce that for all i ≤ −1, n ≥ |i| − 1 the relation

(2.8) b(−i, ?) ≡ q−i(−i+1)/2 b(0, ?) (mod qn+1).
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It follows from (2.6), (2.7), (2.8) that for 0 ≤ i ≤ n and i ≤ −1, |i| ≤ n+1
we have c(i, ?) ≡ qi(i+1)/2c(0, ?) (mod qn+1) and then for all i ∈ Z the
relation c(i, ?) = qi(i+1)/2c(0, ?) and therefore identity (2.1).

Now evaluating c(0, ?) =
∑
n≥0

qn c(0, n) is a classic argument. We

reproduce it for the sake of completeness. The coefficient c(0, n) is the
coefficient of x0 qn in the finite product

(1 + x−1)(1 + x−1q) . . . (1 + x−1qn)× (1 + xq)(1 + xq2) . . . (1 + xqn).

Consequently, for n ≥ 1 the coefficient c(0, n) is equal to the number of
sequences (i1, i2, . . . , ik, j1, j2, . . . , jk) such that

(i) 1 ≤ k ≤ n ;
(ii) 0 ≤ i1 < i2 < · · · < ik ≤ n, 1 ≤ j1 < j2 < · · · < jk ≤ n ;
(iii) i1 + i2 + · · ·+ ik + j1 + j2 + · · ·+ jk = n.
In such a sequence we can never have ik = n, for condition (iii) would

be violated. We can then replace conditions (ii) and (iii) by
(ii)′ 0 ≤ i1 < i2 < · · · < ik ≤ n− 1, 0 ≤ j1 < j2 < · · · < jk ≤ n− 1 ;
(iii)′ i1 + i2 + · · ·+ ik + j1 + j2 + · · ·+ jk = n− k.

But a two-row matrix
(

ik . . . i2 i1
jk . . . j2 j1

)
satisfying conditions (i), (ii)′, (iii)′

is nothing but the Frobenius notation for a partition of n, of rank k.
Therefore, c(0, n) = p(n), the number of partitions of n and c(0, ?) =
1/(q; q)∞.

3. The rectangle moving method

Consider the infinite series

a =
∏

(i,j)∈S

(1− xiqj) =
∑
n≥0

a(n)qn

and for each k ∈ Z and n ∈ N let B(k, n) be the set of ordered pairs of
sequences of integers (i1, . . . , il), (j1, . . . , jm) such that

(i) 0 ≤ i1 < · · · < il; 1 ≤ j1 < · · · < jm;
(ii) i1 + · · ·+ il + j1 + · · ·+ jm = n;
(iii) m− l = k.

Let b(k, n) be the cardinality of B(k, n). Clearly, for B(n, k) to be non-
empty, the inequality n ≥ k(k +1)/2 must hold. Therefore, for each k ∈ Z

a(n) =
∑

n≥k(k+1)/2
k∈Z

(−1)k xk b(k, n).

Proposition 1. For each pair (k, n) ∈ Z × N there is a bijection
φ : B(k, n)→ P(n−k(k+1)/2). In particular, b(k, n) = p(n−k(k+1)/2).

The construction of such a bijection φ is made as follows. First let
k ≤ −1 and consider the pair π = (i1, . . . , il), (j1, . . . , jm) belonging to
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B(k, n), so that l = m − k ≥ 1 and i1 + · · · + im−k + j1 + · · · + jm = n.
Define π′ = (j1 − 1, . . . , jm − 1), (i1 + 1, . . . , im−k + 1). The sequence π′

has the following properties:

0 ≤ (j1 − 1) < · · · < (jm − 1),
1 ≤ (i1 + 1) < · · · < (im−k + 1),

(j1 − 1) + · · ·+ (jm − 1) + (i1 + 1) + · · ·+ (im−k + 1) = n− k.

Thus π′ belongs to B(−k, n− k). The mapping from π′ to π is defined in
an analogous manner. Consequently, π 7→ π′ is a bijection of B(k, n) onto
B(−k, n − k) and then b(k, n) = b(−k, n − k) for k ≤ −1. On the other
hand, P(n− k(k + 1)/2) = P((n− k)− (−k)(−k + 1)/2).

It then suffices to construct the bijection φ for k ≥ 0. Each sequence
π = (i1, . . . , il), (j1, . . . , jm) in the set B(k, n) can be represented by a top-
rectified diagramme containing n crosses and plus signs displayed on the
lattice Z2 in the following manner. On the horizontal axis starting at and
to the right of (1,−1) place jm crosses, on the axis just under it starting
at (2,−2) place jm−1 crosses, . . . , on the axis of ordinate −m place j1
crosses starting at (m,−m).

Next on the vertical axis starting from the point (1,−2) and going
down place il plus signs, on the axis of abscissa 2, starting from (2,−3),
place il−1 plus signs, . . . , on the vertical axis of abscissa l, starting from
(l,−(l + 1)), place i1 plus signs.

l



l︷ ︸︸ ︷ k︷ ︸︸ ︷
× × × × × × × × × ×
+ × × × × × × × × ×
+ + × × × × × ×
+ + + × × × × ×
+ + + × × × ×
+ + × × ×
+ + ×

Fig. 1

For example, for n = 51, k = 3, l = 4, m = l + k = 7, the sequence
π = (i1 = 0, i2 = 2, i3 = 5, i4 = 6), (j1 = 1, j2 = 3, j3 = 4, j4 = 5, j5 =
6, j6 = 9, j7 = 10) has the representation shown in Fig. 1. The diagramme
consists of five parts: (1) a square A of side l = 4 having crosses on and
above its diagonal, and plus signs below its diagonal; (2) a rectangle B of
width k = 3 and of height l = 4; (3) a diagramme C containing crosses
which is necessary a Ferrers diagramme because the sequence (im, . . . , i1)
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is strictly decreasing; (4) under A another Ferrers diagramme D containing
plus signs; (5) under B a staircase E containing k(k + 1)/2 crosses.

l︷ ︸︸ ︷ k︷ ︸︸ ︷
A B C

D E
7→

k



l︷ ︸︸ ︷
A C

BT

Q

D

Fig. 2

The bijection φ is completely described in Fig. 2: remove the staircase E;
then move out the rectangle B and insert it between the square A and
the Ferrers diagramme D in such a way that its side of length l coincide
with the side of length l of the square A; finally, push the diagramme E
to the left so that its left rim coincide with the figure constructed with
A, the transpose BT of the rectangle B, and D. The conditions k ≥ 1,
m = l + k imply that the configuration thereby derived—call it F—is a
Ferrers diagramme containing n− k(k + 1)/2 crosses or plus signs.

Note that when l = 0, the square A, the rectangle B and the dia-
gramme D are empty. The initial configuration is reduced to the stair-
case E and the Ferrers diagramme C, itself reduced to its part contiguous
to E. Then the configuration F is simply the Ferrers diagramme C. In
particular, F has most k rows.

When k = 0, the rectangle B and the staircase E are empty and E
is reduced to its part contiguous to A. The configuration reduced to A,
to D and to the part of E contiguous to A is a Ferrers diagramme which
remains alike under the transform φ.

When k ≥ 1 and l ≥ 1, the Ferrers diagramme F has at least (k + 1)
rows, since k rows have been added to the square A which itself has l ≥ 1
rows.

Conversely, how can we get back the original representation of π from
the diagramme F , i.e., from any Ferrers diagramme with n − k(k + 1)/2
points?

First, if k = 0, we know that π 7→ F is the identity mapping. If k ≥ 1
and if the diagramme F has at most k rows, the representation of π is

9



DOMINIQUE FOATA AND GUO-NIU HAN

obtained by putting the diagramme F to the right of a staircase E with
k(k + 1)/2 crosses.

It remains to study the case where k ≥ 1 and F has at least (k + 1)
rows. When building the diagramme F (see Fig. 2) the rightmost bottom
point of the rectangle BT , in position (l,−l − k), always belongs to the
rim of the diagramme F . Its right neighbor belongs to F if C has (l + k)
rows; in the same manner, the point just above it belongs to F if the
greatest part of D is equal to l. But, in every case, the diagramme F has
no point in position (l + 1,−l − k − 1). The point (l,−l − k) can then
be characterized as being the unique point Q in F located on the line of
equation y = −x− k and on the rim of F .

To reconstruct π from F we just have to find the location of the point Q.
Its position (l,−l − k) uniquely determines l. We can then redraw the
rectangle BT , the square A and reverse the construction.

From Proposition 1 it follows that

a =
∑
n≥0

a(n) qn

=
∑
k∈Z

n≥k(k+1)/2

(−1)k xk p(n− k(k + 1)/2) qn

=
∑

n≥0, k∈Z
(−1)k xk p(n) qn+k(k+1)/2

=
∑
n≥0

p(n) qn
∑
k∈Z

(−1)kxk qk(k+1)/2,

which is precisely the Jacobi triple product identity (1.1).

4. Crosses and bullets

To prove identity (1.2) we consider the formal power series:

d =
∞∏

n=1

(1− x−1q2n−1)(1− xq2n−1) =
∑
n≥0

qn d(n)

and try to express it as the product of the two series forming the right-
hand side of (1.2). For each k ∈ Z and n ≥ 0 let B′(k, n) denote the
set of all ordered pairs of strictly increasing sequences of odd integers
(i1, . . . , il), (j1, . . . , jm) such that l−m = k and i1+· · ·+il+j1+· · ·+jm =
n. Let b′(k, n) be the cardinality of B′(k, n). Then

d(n) =
∑

k

(−1)k x2k b′(k, n).

The combinatorial result to be proved is the following proposition which
is parallel to Proposition 1. It was already stated by Lewis [Le84], but
proved differently, as that author makes use of a different bijection.
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Proposition 2. For each pair (k, n) ∈ Z × N there is a bijection
φ′ : B′(k, n)→ P((n− k2)/2). In particular, b′(k, n) = p((n− k2)/2).

As we shall see, the bijection φ′ will make use of the same geometric
moves that entered the definition of φ. Only the displaying of crosses and
now bullets will be different. In the following construction whenever a cross
is deposited onto a point of the lattice Z2 on which a previous cross has
been deposited, the superimposition of the two crosses will be indicated
by a bullet. For convenience let us write: × & × = • .

Let π = (i1, . . . , il), (j1, . . . , jm) be an element of B′(k, n). It can be
represented by a top-rectified diagramme in Z2 in the following manner.
On (1,−1) place a single cross and to its right place (il−1)/2 bullets, then
on (2,−2) place a single cross and to its right (il−1 − 1)/2 bullets, . . . ,
on the row of ordinate −m place a single cross on (m,−m) and (i1− 1)/2
bullets to its right.

In the same way, place crosses and bullets on the vertical axis starting
with (−1, 1). If a cross is deposited on a point already occupied by another
cross, change the superimposition of those two crosses by a bullet. Place a
cross on (−1, 1) and (jm − 1)/2 bullets under that point, then a cross on
(−2, 2) and (jm−1 − 1)/2 bullets under it, . . . , a cross on (−m,m, ) and
(j1 − 1)/2 bullets under it.

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • •
• • • • • • • •
• • • × • • •
• • × • •
• • ×

Fig. 3

With the above convention the configuration will exactly have
(il − 1)/2 + · · · + (i1 − 1)/2 + (jm − 1)/2 + · · · + (j1 − 1)/2 + min(l, m)
= n/2 − (l + m)/2 + min(l,m) = n/2 − k/2 bullets and |k| = |l − m|

crosses.
For example, for l = 7, m = 4, k = l − m = 3, the sequence

π = (i1 = 1, i2 = 5, i3 = 7, i4 = 9, i5 = 11, i6 = 17, i7 = 19), (j1 =
1, j2 = 5, j3 = 11, j4 = 13) has the representation shown in Fig. 3. The
configuration contains (9 +8+5 +4+ 3+2) + (6+5 +2)+4 = 48 bullets
and three crosses.

If k ≥ 0, the configuration has the same shape as the configuration
described in Fig. 1. If k ≤ −1 the configurations in B′(k, n) can be deduced
from the configurations in B′(−k, n) by making a rotation about the axis

11
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x + y = 0. Assume k ≥ 0. Each configuration may be partitioned into five
components A, B, C, D, E whose dimensions have the same constraints
as in the case of Fig. 1. Only their contents are different. The staircase E
exactly has k crosses along its diagonal and 1+2+· · ·+(k−1) = (k−1)k/2
bullets. As each bullet stands for two crosses, the staircase E contains the
equivalent of k + 2× (k − 1)k/2 = k2 crosses. In particular n ≥ k2.

We can apply the bijection π 7→ F described in Fig. 2. If π is in B′(k, n)
(k ≥ 0), then F is a Ferrers diagramme containing n/2 − (l + m)/2 +
min(l,m)− (k− 1)k/2 = n/2− k2/2 bullets. Thus π 7→ F is a bijection of
B′(k, n) onto P(n/2− k2/2).

It follows from Proposition 2 that

d =
∑
n≥0

d(n) qn =
∑

k∈Z, n≥k2

(−1)k x2k p((n− k2)/2) qn

=
∑

n≥0, k∈Z
(−1)k x2k p(2n) q2n+k2

=
∑
n≥0

p(2n) q2n
∑
k∈Z

(−1)k x2k qk2
,

which is precisely identity (1.2).

The bijection π 7→ F may also serve to proving the finite versions (1.4)
and (1.5). We illustrate the method for the latter identity. Let PL,M (n)
be the set of partitions of n whose greatest part is at most equal to L
and number of parts at most equal to M . Also let pL,M (n) denote the
cardinality of PL,M (n). We make use of the classical identity (easy to
derive) ∑

n≥0

qn pL,M (n) =
[
L + M

L

]
q

.

On the other hand, let B′L,M (k, n) be the subset of pairs of sequences
(i1, . . . , il), (j1, . . . , jm) in B′(k, n) with the further condition that l ≤ L
and m ≤M and let b′L,M (k, n) be the cardinality of B′L,M (k, n). Then

dL,M (n) =
∑

k

(−1)kx2k b′L,M (k, n).

Now it is readily seen that the above bijection π 7→ F maps B′L,M (k, n)
onto PL−k,M+k((n−k2)/2). As (x2; q2)L (x−2; q2)M =

∑
n≥0

qn dL,M (n), we

obtain

(x2; q2)L (x−2; q2)M =
∑
n≥0

qn
∑

k

(−1)kx2k b′L,M (k, n)

12
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=
∑
n≥0

qn
∑

k

(−1)kx2k pL−k,M+k((n− k2)/2)

=
∑

k

(−1)kx2k
∑
n≥0

qn pL−k,M+k((n− k2)/2)

=
∑

k

(−1)kx2kqk2 ∑
n≥0

qn pL−k,M+k(2n)q2n

=
∑

k

(−1)kx2kqk2
[
L + M

L− k

]
q2

,

which is identity (1.5) with the substitutions n←M and m← L.

5. The quintuple product identity

To derive the quintuple product identity (1.3) it suffices to prove

∞∏
i=1

1
1− qi

∑
k∈Z

(−1)kxkqk(k+1)/2 ×
∞∏

i=1

1
1− q2i

∑
k∈Z

(−1)kx2kqk2

=
∞∏

i=1

1
1− qi

∑
k∈Z

q(3k2+k)/2(x3k − x3k−1),

or by using the Euler pentagonal number identity∏
i≥1

(1− qi) =
∑
k∈Z

(−1)k q(3k2−k)/2,

to prove the identity∑
k∈Z

(−1)kxkqk(k+1)/2 ×
∑
l∈Z

(−1)lx2lql2

=
∑
n∈Z

(−1)n q3n2−n ×
∑
m∈Z

q(3m2+m)/2(x3m − x−3m−1).

Write the product of the two series of the left-hand side as the sum of
three series denoted by S0, S1, S2:∑
k,l

(−1)k+l xk+2lqk(k+1)/2+l2 =
∑
m

x3m
∑

k+2l=3m

(−1)k+l qk(k+1)/2+l2

+
∑
m

x3m−1
∑

k+2l=3m−1

(−1)k+l qk(k+1)/2+l2

+
∑
m

x3m−2
∑

k+2l=3m+2

(−1)k+l qk(k+1)/2+l2

= S0 + S1 + S2.

13
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For S0 notice that k + 2l = 3m and l−m = n imply: k + l = 2m− n and
k(k + 1)/2 + l2 = (3m2 + m)/2 + 3n2 − n. Hence

S0 =
∑
m

q(3m2+m)/2 x3m
∑

n

(−1)n q3n2−n.

For S1 the change of indices k + 2l = 3m − 1 et l − m = n imply:
k + l = 2m − n − 1 and k(k + 1)/2 + l2 = (3m2 − m)/2 + 3n2 + n.
Hence

S1 = −
∑
m

q(3m2−m)/2 x3m−1
∑

n

(−1)n q3n2+n

= −
∑
m

q(3m2+m)/2 x−3m−1
∑

n

(−1)n q3n2−n.

Finally, for S2 make the change of indices k + 2l = 3m− 2 and l−m = n,
so that k+ l = 2m−n−2 et k(k+1)/2+ l2 = (3m2−3m+2)/2+3n2+3n.
Hence

S2 =
∑
m

x3m−2 q(3m2−3m+2)/2
∑

n

(−1)n q3n2+3n.

But
∑
n∈Z

(−1)n (q3)n(n+1) = 0, and S2 = 0. The sum S0 + S1 is exactly the

right-hand side of the quintuple product identity (1.3).

14
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