Steinberg symbol and tau function.

Vladimir Fock

22 October 2025

Steinberg symbol.

R — ring, A — Abelian group, $a, b, c \in R^{\times}$.

$$\{\cdot,\cdot\}\to\mathcal{A}$$

- 1. $\{ab, c\} = \{a, c\}\{b, c\}$,
- 2. $\{a,b\}\{b,a\}=1$,
- 3. $\{a,b\} = 1$ if a+b=1 or a+b=0.
- 4. $\{a,a\}^2=1$,

Main example (Beilinson).

$$R = C^{\infty}(\mathbb{R}/\mathbb{Z} \to \mathbb{C})$$
, $\mathcal{A} = \mathbb{C}^{\times}$.

$$\{f,g\} = \left(\exp\frac{1}{2\pi i} \int_{x}^{x+1} \ln f \, d \ln g\right) g(x)^{-\deg f}$$

f,g — functions on Riemann surface Σ with isolated singularities, γ — closed path on Σ , $p\in \Sigma$, γ_p small path around p:

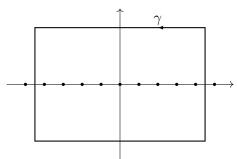
$$\{f,g\}_{\gamma}:=\{f|_{\gamma},g|_{\gamma}\},\quad \{f,g\}_{p}:=\{f,g\}_{\gamma_{p}}$$

Claim: f, g meromorphic then

$$\{f,g\}_p = (-1)^{\deg_p f \deg_p g} \left. \frac{f^{\deg_p g}}{g^{\deg_p f}} \right|_p$$

$$\{f,g\}_\gamma = \prod_{p \text{ inside } \gamma} \{f,g\}_p$$

Example - complex analysis



$$\begin{split} 1 &\leftarrow \{1 - \frac{a}{z}, \sin z\}_{\gamma} = \\ &= \{1 - \frac{a}{z}, \sin z\}_{0} \{1 - \frac{a}{z}, \sin z\}_{a} \prod_{k \neq 0} \{1 - \frac{a}{z}, \sin z\}_{\pi k} = \\ &= \frac{1}{\sin a} \prod_{k \neq 0} (1 - \frac{a}{\pi k}) \end{split}$$

Heisenberg group

 γ - unit circle,

 $\mathbf{B} = R^{\times}$: functions $\gamma \to \mathbb{C}^{\times}$,

 ${m B}^+$ (resp. ${m B}^-$): restrictions of functions holomorphic inside γ (resp. holomorphic outside γ with $z^k f \to 1$ for $z \to \infty$).

 $B_0 \subset B$: $B_0 = \{f | \deg f = 0\}$.

Any function f can be represented as a product $f = f^+f^-$ with $f^+ \in \mathbf{B}^+$ and f_- in \mathbf{B}^- .

Heisenberg group $\hat{\mathbf{\textit{B}}} = \mathbb{C}^{\times} \times \mathbf{\textit{B}} = \{x\hat{f}|x \in \mathbb{C}^{\times}, f \in \mathbf{\textit{B}}\},$

$$\hat{f}\hat{g} = \{g^-, f^+\}\hat{f}g$$

$$\langle
angle : \widehat{m{B}}
ightarrow \mathbb{C}$$
, $\langle x \hat{f}
angle = x \delta_{\deg f}$, $\langle \widehat{f^+} A \widehat{f^-}
angle = \langle A
angle \delta_{\deg f}$

Fermionic algebra

F: 1/2-differentials on a unit circle,

 F^{\pm} : 1/2-differentials extensible inside/outside of the unit circle.

F: External algebra of $F + F^* = \{(\varepsilon, \varepsilon^*)\}.$

 $\hat{\mathbf{F}}$: Clifford algebra of $F + F^*$.

$$\langle \rangle : \hat{\pmb{F}} \to \mathbb{C}, \quad \langle 1 \rangle = 1, \ \langle v^- A v^+ \rangle = 0 \text{ for any } v^\pm \in F^\pm + (F^\pm)^\perp.$$

$$\hat{m{B_0}}
ightarrow \hat{m{F}}$$

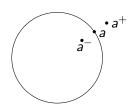
Action of \boldsymbol{B} on F by orthogonal transformations:

$$f:(\varepsilon,\varepsilon^*)\mapsto (f\varepsilon,f^{-1}\varepsilon^*).$$

Induced map $\hat{\mathbf{\textit{B}}}_0 \rightarrow \hat{\mathbf{\textit{F}}}$ (Spinor representation):

$$f \mapsto \exp \int \ln f \ \varepsilon \wedge \varepsilon^*,$$

$\hat{m{F}} ightarrow \hat{m{B}}$



$$\psi_a = \lim_{a^+, a^- \to a} \frac{z - a^+}{z - a^-}, \qquad \psi_a^* = \lim_{a^+, a^- \to a} \frac{z - a^-}{z - a^+}.$$

- $1. \hat{\psi}_{a}\hat{\psi}_{b} + \hat{\psi}_{b}\hat{\psi}_{a} = 0$
- 2. $\hat{\psi}_{a}^{*}\hat{\psi}_{b}^{*}+\hat{\psi}_{b}^{*}\hat{\psi}_{a}^{*}=0$
- 3. $\hat{\psi}_a\hat{\psi}_b^* + \hat{\psi}_b^*\hat{\psi}_a = 2\pi i\delta_{a-b}$
- 4. $\hat{f}\hat{\psi}_a\hat{f}^{-1}=\widehat{f(a)\psi_a}$,
- 5. $\hat{f}\hat{\psi}_a^*\hat{f}^{-1} = \widehat{f^{-1}(a)\psi_a^*}$.

Tau function

 $L \in F$ such that $L + F^+ = F$.

$$\langle \rangle_L : \hat{\mathbf{F}} \to \mathbb{C}, \quad \langle 1 \rangle = 1, \ \langle v^- A v^+ \rangle_L = 0 \text{ for any } v^+ \in F^+ + (F^+)^\perp, \ v^- \in L + (L)^\perp,$$

$$\tau_L(f^-) = \langle \hat{f^-} \rangle_L,$$

where $f^- \in \mathbf{B}^-$.

$$\boldsymbol{B}_{L}=\{\hat{g}|gL=L\},$$

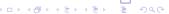
Proposition

For any $g \in \mathbf{B}_L$

$$\tau_L(f^-) = \{g^+, f^-\} \tau_L(g^-f^-).$$

Proof.

$$\langle \hat{f^-} \rangle_L = \langle \hat{g} \hat{f^-} \rangle_L = (-1)^{\deg f^- \deg g} \{ f^-, g \} \langle \hat{f^-} \hat{g} \rangle_L = \{ g^+, f^- \} \langle \widehat{g^- f^-} \rangle_L.$$



Corollary (automorphic property of the tau function)

 Σ : closed Riemann surface,

 $p_1,\ldots,p_s\in\Sigma$,

B: collection of functions on punctured vicinities of p_i 's,

L: holomorphic 1/2-differentials on $\Sigma \setminus \{p_1, \ldots, p_s\}$.

 B_L : holomorphic nonzero function on $\Sigma \setminus \{p_1, \ldots, p_s\}$.

$$\tau_{\Sigma}(f_1,\ldots,f_s)=\langle f_1,\ldots,f_s\rangle_L$$

For any $g \in \mathbf{B}$

$$au_{\Sigma}(g_{1}^{-}f_{1}^{-},\ldots,g_{s}^{-}f_{s}^{-}) = \prod_{\alpha} \{f_{\alpha}^{-},g_{\alpha}^{+}\}_{\rho_{\alpha}} \tau_{\Sigma}(f_{1}^{-},\ldots,f_{s}^{-})$$

Where g_{α} is the restriction of g to the vicinity of p_{α} .

Further questions

- 1. Generalization for nonabelian loop groups $\boldsymbol{B} \rightsquigarrow$ functions $S^1 \to G$, $\boldsymbol{B}/\boldsymbol{B}^+ \rightsquigarrow$ affine Grassmanian.
- 2. Number theory generalization $\boldsymbol{B} \leadsto \mathbb{Q}_p$ (or Witt vectors), $\boldsymbol{B}/\boldsymbol{B}^+ \leadsto$ characters of $\mathbb{Q}_p/\mathbb{Z}_p$, $\Sigma \leadsto$ number field \mathbb{F} , $p_1, \ldots, p_s \leadsto$ places of \mathbb{F} .
- 3. Possible analogy: τ is constructed out of three subrgoups \mathbf{B}^+ , \mathbf{B}^- and \mathbf{B}_L like a quadratic form is constructed out of three Lagrangian subspaces of a symplectic space.