Année 2025-2026
Mathématiques L3 (S6). Equations différentielles ordinaires. Mis a jour le 27 janvier 2026.

Exercice 1. (1.4.1) Il y a deux sortes d’atome de carbone : les '*C les plus nombreux et les *C qui
sont radioactifs. On admet que le taux de concentration Ty de '*C est constant dans I’atmosphére (il
est produit par le rayonnement cosmique et son taux reste constant, sinon soit 1’atmosphére serait
totalement radioactive et nous ne serions pas la pour en parler, soit il n'y aurait plus de *C du tout).
Ainsi tant qu’'un organisme est vivant et qu'’il absorbe du carbone (si c’est une plante, par exemple)
son taux de concentration en '*C est constant égal & Ty. Dés qu'il meure, comme le '*C se désintégre le
taux va baisser. En fait il baisse suivant une loi probabilité : la probabilité qu’un atome de se désintégre
entre 'instant t et l'instant t + dt est dp = Adt. On suppose que le nombre d’atomes radioactifs est
petit devant le nombre total. (En fait 1y = 1.3-107'2, ce qui veut dire que dans 12 grammes de carbone
ilya6.0-102 x13-107"2=7.9-10" atomes radioactifs).

a. SiT(t) est le taux de C & I'instant t démontrer que
T(t + At) — 1(t) = —At(t)At + o(At)

. dt
b. En déduire que T —AT.
c. Au bout de combien de temps la moitié des atomes de '“C présents & I'instant 0 ont disparu ?
d. Proposer un expérience de durée 1 an pour évaluer A. On trouve A = 1.2- 10~*an™".

e. Un papyrus a un taux de concentration de '*C égal & 0.92 - 107"2. Quel age a-t-il?
f. Supposons qu'en fait A =1.1-10"*an™' ou A =1.3-10*an™" qu'aurait on trouvé?
Exercice 2. (1.4.2) Un récipient contient 100 litres d’eau mélangée a de 1’alcool, & la concentration de

10% (1 partie de l'alcool et 9 parties de 1’eau). On le remplit a la vitesse de 5 litres par minute avec
de l'eau et il se vide a la méme vitesse.

a. Quelle équation différentielle satisfait la concentration de 1’alcool ?

b. Au bout de combien de temps celle-ci est inférieure a 1%.

d
Exercice 3. (1.4.3) On considére I’équation différentielle (E) d—: = ax + b(t), ol a est une certaine

constante et b une fonction de R dans R.
a. On pose y(t) = x(t)e . Quelle équation différentielle satisfait y?
b. En déduire la solution de 1’équation (E) telle que x(ty) = %o

c. Résoudre I’équation quand b(t) =t?, a = —1.

Exercice 4. (1.4.4) On considére I’équation différentielle linéaire dans R? :

i (o) - () 6)

. . d
a. En posant z = x + iy, écrire I’équation sous la forme complexe d—i = f(z) et la résoudre.

b. Dessiner les solutions quand A =1, w = 27

Exercice 5. (1.4.5) Soit f : QO C R™ — R" une fonction de classe C'. On considére I’équation autonome

dx
— = f(x).
T (x)
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Rappeler pourquoi on dit que 1’équation est autonome.

b. Démontrer que si la fonction x définie sur un intervalle ]a, b[ est une solution de cette équation,
telle que x(ty) = xo alors la fonction y définie par y(t) = x(
la+c,b+cl.

t — c) est une solution définie sur

c. Six(t)ety(t) sont deux solutions et si x(ty) = y(t;) démontrer que pour tout t, y(t) = x(t—t;+to).

Exercice 6. (1.4.6) Modéle logistique (Pierre-Frangots Verhulst, 1836).

On étudie une population de mammiféres dans un parc animalier. Soit N(t) le nombre de ces
animaux. On observe que si N > A il n’y a pas assez & manger et la population décroit, alors que si
N < A elle a tendance a augmenter. Verhulst (1836) a décidé de modéliser cela par ’équation

(E) %:rN <1—§)

N
A

Ecrire 1’équation différentielle satisfaite par x =
b. En notant que cette équation est une équation autonome de dimension 1, la résoudre explicitement.
c. Dessiner (peut étre avec votre logiciel préféré) cette solution, en supposant que r = 0.15, A = 1500,
No = 100, 1000, 10000.
Exercice 7. (1.4.7) Soit QO C R? un ouvert et f: QO — R une fonction de classe C'. On suppose que
en tout point de Q, 'une des deux dérivées partielles %, ? est non nulle.

On note C, la courbe de niveau {(x,y) € Q: f(x,y) = A}

a. Rappeler le théoréme des fonctions implicites, et démontrer qu’au voisinage d'un point (x¢,yo) tel

of . . .
que P = 0 on peut décrire C, comme graphe d’une fonction y(x) dont on calculera la dérivée.
Y

b. Soit I C R un intervalle, ¢ : I — Q une fonction de classe C' : autrement dit, c(t) = (x(t),y(t))
est une courbe paramétrée. Démontrer que c(t) reste dans une courbe C, si et seulement si

of dx of dy
——— +t7——=0
oxdt dydt
c. Démontrer que les courbes de niveau de f sont les solutions de I’équation différentielle
dy _ a]C/ of (qu’on écrit aussi of dx + afd =0)
dx  ox’ oy d 0x ay“’_ '

d. Ecrire une équation différentielle dont les graphes des solutions sont les hyperboles x ' +y = A du
demi plan x > 0. Sur quel intervalle est définie la solution y(x) telle que y(xo) = yo.

Exercice 8. (1.4.8) Systéme conservatif.
X
Une particule se proméne dans un champs de forces. Newton nous dit que sa position X = | y
z

—

2
satisfait 1’équation différentielle du second ordre m— =F.

dt
U
. . . ox
On suppose que F dérive d'une potentiel F = —VU = — %



version de 27 janvier 2026 Equations différetielles 3

—

On note )z(t) la position a 'instant t. Montrer que )Z’(t) = Y(t) satisfait

%U(f(t)) = (ﬁu, V(t)), et en déduire que U(X(t) + %1(\7, \7) reste constant.

On suppose la pesanteur est un vecteur constant g = —9.8m -s~2- 12, oil K est un vecteur unitaire
dirigé vers le haut. Trouver U tel que VU = —myg et en déduire a quelle hauteur un objet lancé
verticalement & la vitesse v = 10m - s~' va monter (on néglige les frottements de air).

Exercice 9% (1.4.9) Equation Prédateurs-Proies : Lotka 1925, Volterra 1926.

Il s’agit d’une variante de l’équation logistique, ou maintenant on suppose qu’'une population est

non pas régulée par une constante (la quantité de nourriture) mais par un prédateur. Dans la littérature

on l’appelle ’équation Prédateurs-Proies, ou Lynx et Lapins.

g.

. . d —x(1 — .

On considére ’équation — ) = X y) définie sur 'ouvert x > 0, y > 0.
dt \y y(1—x)

Dessiner le champs de vecteur associé. On commencera par chercher ou il s’annule, ou il est vertical

vers le haut, vers le bas, horizontal a droite ou a gauche.

x(t)
y(t)

x(t—t1)

Montrer que si
: ( ylt— 1)

) est la solution qui vaut <X0> a l'instant t =0, ( ) est la solution
Yo

. X .
qui vaut ) & l'instant t;.
Yo

Comme on pense a cette équation différentielle comme un champ de vecteur autonome, une solution
s’appelle une trajectoire.

En utilisant le théoréme d’unicité montrer que deux trajectoires sont soit égales soit ne se ren-
contrent jamais.

On note 1,2,3,4 les régions (1) : {x > 1,y > 1}, (2) : {x > T,y< 1}, B): {y< I,x <1}, (4 :
{x < 1,y > T1}. Montrer que si la donnée initiale est dans la région 1 la trajectoire va d’abord
rentrer dans la région 2 puis dans la 3 et dans la 4 avant de revenir dans la région 1.

Soit H(x,y) =x —1In(x) +y — In(y).
Démontrer que le long d’une trajectoire, la fonction H reste constante.

Montrer que la restriction de la fonction H & la demi-droite x > 1,y = 1 est injective, et en déduire
que la trajectoire revient a sa position initiale.

En utilisant 'unicité montrer que toute trajectoire est périodique.

Exercice 10. (2.7.1) On considére ’équation du second ordre dans R.

LS 2
E‘F(DX:O.

dx
On pose z(t) = — + iwx. Ainsi z est une fonction a valeurs dans C.

a.
b.

C.

dt
Quelle équation satisfait z 7

Quelle équation satisfait z 7

Résoudre 1’équation.

Exercice 11. (2.7.2) Soit d_: = A(t)x, x € E,t € I une équation différentielle linéaire. Soit £ 1’espace

vectoriel de ses solutions.
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a. En utilisant le théoréme d’existence et d’unicité, démontrer que si xq,...,xx est une famille de
solutions, les propositions suivantes sont équivalentes :
1. 1l existe un instant ty de I tel que les vecteurs x;(to),...xx(to) sont linéairement indépendants
(forment une famille libre).
2. Dans €& les vecteurs xq,...,x, sont indépendants.
3. Pour tout instant t de I, les vecteurs x;(t),...xy(t) sont linéairement indépendants.
b. Méme question avec « sont une famille génératrice » a la place de famille libre.
Exercice 12. (2.7.3) On rappelle que le barycentre d’une famille de point ay,...ay d'un espace affine
affectée des coeficients Aj,.... A (avec X A; = 1) est I'unique point b tel que pour tout point o,

— y
ob = Z}f:] 7\10 a;.

1<i<n

Soit —: = A(t)x + B(t), une équation différentielle linéaire avec second membre.

Vérifier que si x;(t) est une famille de solutions telle qu’a 'instant ty, x;(ty) = ai, la fonction

Z};J\ixi est la solution de I’équation différentielle dont la valeur a I'instant t, est Z‘-f:ﬁ\iai.

Autrement dit I’ensemble des solutions de 1’équation avec second membre est un espace affine.

Exercice 13. (2.7.4)(Equation de Riccati)

On considére 1’équation différentielle linéaire

d (x\ [a(t) c(t) X
at\y)  \b@) da)) \y)"

. . t .
On considére une solution (j{t)) et on se place dans un intervalle de temps ot y ne s’annule pas.
x(t) o e L
On pose z(t) = ﬁ Montrer que z satisfait une équation différentielle de la forme

Z'(t) = q2(1)2" + g1 (t)z + qo(t).

Réciproquement, si on a une équation différentielle de la forme (R) z'(t) = q2(t)z* + q1(t)z + qo(t),
construire une équation différentielle linéaire (L) telle que les solutions de (R) soient précisément
les quotients de deux solutions de (L).

Soit E un espace vectoriel de dimension n, [ un intervalle de R. On se donne trois applications
continues Q, A, B de I a valeurs dans les matrices symétriques n xn, les matrices n x n et le vecteur
colonnes. Expliquer pourquoi l’équation de Riccati

dz
d_z’: — quij(t)zizj + Clij(t)zj + b;i(t)

peut se ramener a ’étude d’une équation différentielle linéaire en dimension n + 1.

Exercice 14. (2.7.5) Résoudre, en faisant « varier la constante »

a.

b.

dx

— —2x=1
dt x !
%%—x—et
dt Y
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d .
C. d_: +3x = e'.

dI
Exercice 15. (2.7.6) On, considére 1’équation La + RI=E, ou L, R, E sont trois constantes positives
(circuit LR).
a. Trouver la solution telle que I(0) = I, est une constante positive donnée.

b. Quelle est la limite de I quand t — +o0?

Exercice 16. (2.7.7)

. . d . .
a. On considére I'équation d—: + ax = b(t), ou b est définie sur R. La constante a et la fonction b
sont a valeurs complexes.

On suppose que sit > 0, |b(t)| <k, et on suppose que la partie réelle Re(a) de a est non nulle.

Soit x(t) la solution telle que x(0) = 0. Démontrer que |x(t)| < (1 — e Relaty

k
Re(a)
. ; . dxg dx; o
b. On considére deux équations TS + ax; = by(t), ¥ + ax; = by(t) ou b est définie sur R, et on

suppose que |bj(t) — b,(t)| < k. On considére des solutions x1, x;.

On suppose que x;(0) = x,(0) démontrer que |x;(t) — x,(t)| < (1 — e Relalty

k
Re(a)
On montre ainsi, que si Re(a) < 0, asymptotiquement les solutions de 1’équations ne dépendent
pas trop du second membre (le bruit), a condition que celui ci soit borné.
Exercice 17. (2.7.8) Résoudre les équations suivantes.

a. % + cos(t)x = sin(2t), icit e R,

d

b, XXt idt>o,
dt  t
dx X

c. —+42-=1} icit>0.
it %

Exercice 18. (2.7.9) On considére une fonction périodique continue a : R — C de période T. Soit x

d
une solution non nulle de d—: + ax = 0.

a. Démontrer qu'il existe une constante C telle que x(t + T) = Cx(t).

.
b. Démontrer que C = exp (—J a(u) du)
0

c. A quelle condition la fonction x est elle aussi périodique de période T 7
Exercice 19% (2.7.10) On considére deux fonctions périodiques continue a,b : R — C de période T,

. . . d
et b n’est pas la fonction nulle. Soit x une solution non nulle de —: + ax =b.

Démontrer que s’il existe une unique solution périodique de I’équation avec second membre, il n’y

. . . d
a pas de solution périodique a I’équation homogeéne d_: + ax = 0.

Exercice 20. (2.7.11) Repére de Frenet et équation intrinséque des courbes planes.
On considére, dans le plan affine euclidien orienté, une courbe paramétrée par 1’abscisse curviligne

(on dit aussi longueur d’arc), et de classe C?; ainsi la courbe paramétrée est une fonction de classe
C?:M:1—E, M(s).
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a. Démontrer que le vecteur tangent t(s) = s est de longueur 1.

b. Soit 7i(s) le vecteur normal tel que t, 7 soit une repére direct. On a donc en identifiant E a C,
fi(s) = it(s). Démontrer qu’il existe une fonction continue k(s) telle que :

dt P
— =k(s)n = ik(s)t.
ds
En déduire que la fonction k : I — R détermine t & une constante prés.
d. Touver la fonction k(o) pour un cercle de rayon R.
e. Démontrer que si M; et M, sont deux courbes paramétrées par 1’abscisse curviligne et si k;(s) =
K2(s), alors M, se déduit de M; par un déplacement (isométrie directe du plan affine).

Exercice 21. (2.7.12)

a. Soit | une matrice telle que J*> = —Id, démontrer que e") = cos(t)Id + sin(t)].
. —b . . .
b. Soit A = (8 a ) = ald + b]J. En utilisant la premiére question démontrer que :

e = e'*(cos(tb)Id + sin(tb)])

c. Soit U un endomorphisme d’un R—espace vectoriel de dimension 2 dont les deux valeurs propres
sont imaginaires. Montrer que celle-ci sont conjuguées.

d. Soit A = a + ib 'une d’entre elle. Montrer qu'’il existe une base dans laquelle la matrice de u est

b
C?, et poser e; = Re(e), e; = Im(e).

a —b L s -
( ) et en déduire comment calculer e (on pourra considérer un vecteur propre e de u dans
a

0 2

Exercice 22. (2.7.13) On considére la matrice A = ( 11

). Calculer 'image du carré |x| < T;

ly| < 1 par exp A.

Exercice 23. (2.7.14) Soit B = ( (]) (1) ) et C = ( 411 Z ), calculer B", C" et en déduire exp tB, exp tC.

Exercice 24* (2.7.15) L’application exponentielle est définie exp : M, (C) — GL,(C) C M,(C) .
(_1 )k—1

a. SiH e M,,(C) est une matrice de norme < 1 démontrer que la série In(Id + H) = X2, > H*
est convergente.

b. Montrer que si M est suffisamment proche de 'identité, par exemple [M|| < 75, [[expM —1d| < 1.

c. Soit M une matrice diagonalisable suffisamment proche de zéro, démontrer que In(exp M) = M.

d. Montrer que I'ensemble des matrices telles que |[M| < 15 et In(exp M) — M = 0 est fermé.

e. Montrer que dans la boule fermée |M|| < 7; I'ensemble des matrices diagonalisables est dense.

f. En déduire que si |[M|| < & <In(expM) = M.

g. Par un argument analogue démontrer que si |[M —Id|| < ]]—0, exp(In(M)) = M.
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h. Soit f: (R,+) — (GL,(C), ) un homomorphisme continu.
Soit & > 0 tel que si [t| < «, alors ||f(t) —Id|| < 5.
Démontrer que si [t| < % et si Jul < % alors Inf(t +u) = Inf(t) + In f(u).

1
i. Soit ny tel que — < 3“
%) 2
En déduire que pour tout [t| < % Inf(t) = notlnf (%0) (on pourra commencer par les réels t de
1 1
la forme t = ——). Et que si [t] < E, f(t) = exptA, pour A =ng-f (—)
n-ng 2 noy

j. Démontrer que cette formule reste vraie pour tout t dans R.

Exercice 25% (2.7.16) Démontrer que si E est un espace vectoriel de dimension finie sur C, A € End(E)
un endomorphisme, la décomposition de Dunford A = D + N, D diagonalisable, N nilpotente, et D
et N commutent est unique. On pourra utiliser le fait que si A commute avec une matrice D’, les
sous-espace propre de D’ sont stables par A.

Exercice 26! Soit P(x) un polynéme de dégrée n et f(x) une fonction entiére.
a. Montrer qu'’il existe un unique polynéme R(x) de dégrée < n tel que f(x) = P(x)S(x) + R(x), ou
K

S(x) est une fonction entiére. Indication : Si P(x) = [ [(x — A;)* alors a_xk(R(X) — f(x))lx=r, =0

pour toutes racines A; et pour k < v;.
b. Montrer que pour toute matrice tel que P(X) =0 on a f(X) = R(X).

Cela permet de calculer en particulier 'exponentiel d’une matrice sans chercher les vecteurs propres.

Exercice 26. (2.7.17) Soit M € M,,(C) une matrice diagonalisable et (A,...A,) ses valeurs propres.
X—=A
Soit L; le polynéme de Lagrange L;(X) = Kién,j#i(?\i——?\]j)'
a. Montrer que : exp(M) = ]<Z< eML;(M) =Q(M),ou Q = ]<};< eML;.

b. Montrer que si M € M,,(R), Q € R[X].

c. Sin =2, il existe donc deux coefficients «, § tels que eM = «M + BId ; exprimer «, 3 en fonction
des valeurs propres de M, puis en fonction de la trace et du déterminant.

d* Si M n’est pas diagonalisable, son polynéme minimal est de la forme 1<]1 (X —A{)"i. En utilisant
<i<m

la décomposition de Dunford, montrer comment calculer exp M avec le polyndémes de Sylvester,
(X =2A)* (X—=A)

™ — Ak X avec 1 <i<mO0<k<<y;—1.
(Aj — A)Rr<i<miz A — Ay SISMUS SV

Six =

Exercice 27% (2.7.18) On considére 1'espace vectoriel complexe E des solutions de I’équation différen-
tielle & coefficients constants x™ 4 a,_1x™" + ... + a;x’ + apx = 0. On considére le polynéme associé
P(X) = X"+ an_ 1 X" '+ .-+ a,. On sait que dim(E) =n.

d
1. Soit D l'opérateur de dérivation x — Ex. Démontrer que E est stable par D.
2. Montrer que E = ker(P(D)), et que P est le polynéme minimal de la restriction D de D & E.
On écrit P comme produit P = TT(X — Ay)Yt.

3. Soit E; = ker(D — A;)"i. Montrer que E; est I’espace vectoriel des fonctions de la forme p(t)elit,
ol p est un polynéme de degré deg(p) < v; — 1.

4. Retrouver le théoréme qui décrit toutes les solutions de 1’équation.
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Exercice 28. (2.7.19) Résoudre.

a.%%—z%}axzq x(0) = 0, %%mzn
b.%%+wﬁ+n%%+x:q x(0) = 0, %%m—a
c.%%+wa—n%%—ﬁx:q MM:Z,%%M:J,
d.%§+m+ﬁ€%+B+Mh:Q um:a,%ﬁm:ﬁ

Exercice 29. (2.7.20) Particule dans un champ électro-magnétique.
Un particule de masse m et de charge g se proméne dans un champ électro-magnétique constant.
Elle subit une force qui se décompose en F = qE + qV /A B. L’équation de Newton s’écrit

A, d .
E4+qVAB =m2v.
ar+q Mt

— 0
B — —
On se place dans un systéme de coordonnées ou — = w | 0 |, et on pose P = mV de sorte que
m
1
dp 0
I’équation est - wPA 10| +C,ouC= %E est un vecteur constant.
1
a. Ecrire I’équation sans second membre, et la résoudre. (indication quelle est la matrice de ’appli-
0
cation linéaire P — wP /A | 0 |, quelle est son exponentielle ?
1

b. Résoudre I'’équation avec second membre par la méthode de la variation de la constante.

c. La position X(t) satisfait T \% HP, décrire X(t).

Exercice 30. (2.7.21) Un projectile sort d’un canon qui tire avec un angle « par rapport & ’horizon-
tale. Il subit donc deux forces : la pesanteur mg et le frottement de l'air (proportionnel a la vitesse
—kv). On se place dans le cas oul le projectile ne va ni trés haut ni trés loin (ce n’est pas un missile
intercontinental), de sorte que g est constant.

Ecrire I'’équation différentielle satisfaite par la vitesse de ce projectile.

Soit w(t) = g /\ V. Ecrire ’équation différentielle satisfaite par w(t), et montrer que le projectile
reste dans le plan constant et en déduire qu’a tout instant le projectile reste dans le plan engendré
g et la vitesse a l'instant initial.

On se place donc dans le plan en question rapporté a un repére orthonormé intelligent. Le vecteur
S 0 . . e 0
g est —g , la vitesse initiale est vy Cf)s *). Bt le point initiale est .
1 sin o ho
c. Intégrer I’équation et déterminer 1’abscisse du point ou le projectile touche le sol.

Exercice 31. (2.7.22) Résoudre

a d*x +x = [t]

Todt? S
d?x

b. — —x=]t],
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f.

d?x 3t
awe *T
d*x ) ;
— 4+ w'x = te'!
act ’
d’x  _dx
— 4+ 2—+x=2+sin(t).
dt? * dt * +sin(t)
. L. d*x . . L
Quelle est la solution de 1’équation a + x = b(t) qui s’annule ainsi que sa dérivée pour t =07

Exercice 32. (2.7.23) Un ressort exerce une force de rappel proportionnelle & sa longueur.

a.

Ecrire 1’équation différentielle qui décrit le mouvement d’'un petit objet accroché au bout d’un
ressort accroché au plafond. On suppose que sa vitesse initiale est verticale vers le bas, par exemple,
et que l'air n’exerce pas de frottement.

Méme probléme si on suppose que, maintenant, que le point d’attache du ressort accomplit un
mouvement oscillatoire a(t) = asin wt. Ici ay est petit devant la longueur du ressort, et & I'instant

[ k
initial, 'objet est au repos. La valeur w = o joue un rdle spécial. Lequel ?

Maintenant on accroche le ressort au plafond d’un ascenseur, et on suppose qu’au départ, il est
fixe. Soit v(t) la vitesse verticale de ’ascenseur, de sorte que maintenant on a 1’équation

mﬂ =m —kx—mdv(t)
az - M9 dt

On suppose que v(t) =yt pour t € [0, ty] puis v = vty pour t € [to,t;] et v(t) =0 si t > t;. Quand
I’ascenseur s’arréte, quelle est I’amplitude du mouvement du ressort ?

Exercice 33. (2.7.24)

a.

Soient X;(t),...Xn(t) n fonctions de classes C' définies sur un intervalles I C R et & valeurs dans
R™. On suppose qu’en tout point t les nvecteurs X;(t),...X,(t) sont linéairement indépendants.
Démontrer qu’il existe une matrice A(t) telle que les X; soient une solution fondamentale de

X
I’équation ((ii—t = A(t)X(t).

Soient xi,x, deux fonctions de classe C? sur l'intervalle I. On suppose qu’en tout point w(t) =

X1 X2
det | ,

X1 %X
est une base de ’ensemble des solutions.

. Démontrer qu'’il existe une équation différentielle x” + ax’ + bx = 0 dont x4, x;
0. Dé t il exist équation différentielle x” "+ bx =0 dont

Dire si les paires de fonctions suivants peuvent étre solutions s’une équation différentielle d’ordre
2 (et le cas échéant sur quel intervalle 7). Expliciter a et b.

I (t,t+1),
I (t,t?)
III. (et t?).

Former une équation différentielle linéaire homogéne dont on connait un systéme fondamental de
solutions.

I. (sin(t),cos(t)),
II. (e, te'),
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L (t,t2).

f.* (Dérivée de Schwarz) Soit f une fonction de la classe C3 sur l'intervalle I. On suppose qu’en tout
point sa dérivée f’ ne s’annule pas. Trouver 1’équation différentielle x” + bx = 0 possédant deux
solutions x; et x, telles que x;/x; = f.

Exercice 34. (2.7.25) Trouver les solutions de ’équation sans second membre puis résoudre ’équa-
tion avec second membre :
tx” —tx' =3t

sit>0.
Exercice 35. (2.7.26) Soit a une fonction continue sur I C R. On considére I’équation différentielle
x” + a(t)x = 0 et deux solutions x1, x;.

a. Montrer que les 0 de x; sont des points isolés. On pourra raisonner par ’absurde et montrer que
si ty est un point o x(ty) = 0, est n’est pas un zéro isolé de la fonction x, alors x’(ty) = 0.

!/ /

b. Quelle est I’équation différentielle satisfait par le wronskien w(t) = det (j z2> ?
1 X2

c. Montrer qu’entre deux zéros de x; il y a un zéro de x;.

Exercice 36¥* (2.7.27) Soit a,b deux fonctions continues sur I C R. On considére les équations
différentielles x” + a(t)x = 0, x” + b(t)x = 0 et deux solutions x;,x, de la premiére et la seconde
équation. On suppose que b > a.

a. Quelle est I’équation différentielle satisfaite par le wronskien w(t) = det (X} xf) ?
X1 X
b. Montrer qu’entre deux zéros de x; il y a un zéro de x;.

c. En étudiant I’équation x” 4+ w?x = 0, montrer que toute solution de 1'équation x” + tx = 0
a une infinité de zéro sur [1,+oo[. montrer qu’'on peut ranger ces zéros en une suite croissante
ti<ty<ts;...tellequet, D ocett,,1—t,—0

Exercice 37. (2.7.28) Soit I C R un intervalle e¢ A = I — M,,(R) une application continue. On
suppose que pour tout t, la matrice A(t) est antisymétrique.
: . dX .
a. Soit X(t) une solution de i A(t)X(t). Démontrer que la fonction ||X(t)||* = (X(t),X(t)) est
constante. Soit Y une autre solution. montrer que la fonction (X(t), Y(t)) reste constante.

b. Soient (Xj,...X,) la solution fondamentale telle que {X;(0)} soit un repére orthonormé. Montrer que
pour tout t, (Xi,...X,,)(t) est un repére orthonormé, autrement dit que la solution fondamentale
est orthogonale.

c. En déduire que I’exponentielle d'une matrice antisymétrique est orthogonale.

d¥ Est-ce que si I'exponentielle d’'une matrice A est orthogonale, A est forcement antisymétrique ?

Exercice 38% (2.7.29) Soit ®(t) une solution fondamentale de I’équation différentielle linéaire & =
A(t)X(t). La matrice R(t,s) = @(t)®(s)"' s’appelle résolvante du systéme, ou monodromie de 1’équa-
tion. Montrer que :

a. R(t,s) ne dépend pas du choix de la solution fondamentale.

b. R(t,u) = R(t,s)R(s,u), et en particulier R(t,s) = R(s,t)".
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OR(t,u) OR(t,u)
ot ou

Exercice 39. (2.7.30) Soit X(t) une solution de 1’équation différentielle linéaire % = A(t)X(t), et

t — P(t) une fonction a valeur dans les matrices inversibles. Trouver une équation différentielle linéaire
dont P(t)X(t) est solution.

= A(t)R(t,u), = —R(t, WA (u).

Exercice 40. (2.7.31) En utilisant la méthode de la réduction de l'ordre, résoudre les équations dont
on donne une solution.

a. t>0, %" —7tx'+15x =0, x(t) =t

b. t>0, t’x"—tx'+x=0, x(t)=t

c. 0<t<1, (1—t3)x"—2tx'+2x =0 : on cherchera une solution de la forme t*.

Exercice 41. (2.7.32) En utilisant la méthode de la réduction de l’ordre, et la méthode de variation

de la constante résoudre les équations avec second membre connaissant une solution de 1’équation sans
second membre.

a. t>0, une solution de t*x” —2x =0 est x;(t) =t>. Résoudre t’x” —2x =2t — 1.
b. t >0, une solution de t>x” —tx’ +x =0 est x;(t) =t. Résoudre t*x” — tx’ + x = t™.
Exercice 42. (2.7.33) Equations d’Euler homogéne
C’est une équation linéaire dont le terme de degré k est un monéme de la forme a;t*.
a. On considére 1'équation t*x” 4 atx’ + bx = 0. Chercher une solution sous la forme posant x = t*.

b* Soit P(X) = X" + a, 1 X" + - + ay. Démontrer qu'il existe un polynéme Q tel que si Qo) =0
la fonction t* satisfait I’équation différentielle t"x™ + an_1t" "x™ ™ + ... + a;tx’ + agx = 0
2x

c. Résoudre x” = 2

d. Résoudre t*x” + 3tx’ +x = 0.

Exercice 43% (2.7.34)
a. Résoudre ’équation x” — tx’ + x = 0 en séries entiéres.

b. Pour quelle valeur de o I'’équation (1—t?)x” —2tx’'+«(x+1)x = 0 posséde une solution polynomiale.

Exercice 44* (2.7.35) Equations d’Euler non homogéne.

C’est une équation linéaire qui se raméne a une équation a coefficients constants gréce a un chan-
gement de variables. On se place sur l'intervalle t > 0.

On fait le cas d’ordre 2.

On considére 1’équation (at 4+ b)’>x” + a;(at + b)x’ + a)x = f(t).

—b
On se place sur l'intervalle t > o et on pose at + b = e°.
75% ﬂ — (126725 ﬂ — %
ds’ dt? ds2 ds/)’
b. Montrer que la fonction x(s) satisfait une équations différentielle linéaire & coefficients constants.

dx
a. Vérifier que — = ae
Her due gt

c. Intégrer 'équation (t + 1)x” —3(1 +t)x' +4x = (1 +t)°.
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Exercice 45. (Probléme 2.7.1) Quasi-polynémes et équations différentielles linéaires & coefficients
constant.

On veut donner une approche purement «algeébre linéaire» du théoréme sur les équations diffé-
rentielles a coefficients constants. On considére 1’espace vectoriel £ des fonction C* de R a valeurs
dans C Un quasi-polynéme est une fonction de la forme f(t) = Y, ;. pi(t)e™' ou les p; sont des po-
lynémes. Nous noterons F C &, le sous espace des quasi-polyndémes et F, = FoeM C F le sous espace
vectoriel des quasi-polynémes de la forme p(t)e. Soit P(X) = X" + a1 X! + .-+ ;X + ap un
polyndéme unitaire de degré n a coefficients constant. On veut étudier ’équation différentielle sans
second membre :

x™ 4+ a, x4 apx =0

Ou on cherche x dans &, et on appelle E 1’espace vectoriel des solutions.
On introduit ’application linéaire D € End &£
Montrer que E = ker(P(D)).

Rappeler pourquoi, si P est le produit de deux polynéme A et B premiers entre eux alors ker(A(D))®
ker(B(D)) = ker(P(D)).

c. Dans C, tout polynéme unitaire se décompose P = Hl.l;(X — A)Yt, ou les A; sont les racines
distinctes de P et les v; leur multiplicité.

d. Montrer que ker DY est I’espace vectoriel des polynémes de degré inférieur ou égal a v — 1

e. Montrer que ker(D — AId)” est 1'espace vectoriel des quasi-polynémes de la forme p(t)e™, o p est
un polynéme de degré inférieur ou égal a v — 1.

f. En déduire que les fonctions t'eMt, avec 0 < i < k et 0 < j < v; forment une base de ’ensemble
des solutions.

g. Démontrer que les fonctions de la forme t/e’t, A € C, j € N forment une base de F.

h. Soit P = ]_[]f:] (X =AY, et Q = (X —A), de sorte que P et Q sont premier entre eux.
On considére ’espace vectoriel ker PQ(D). En utilisant le fait que P et Q sont premier entre eux
démontrer que pour tout quasi-polyndéme v de F,, il existe un unique quasi polynéme de F, tel
que P(D)u = v.

En déduire que ’équation différentielle
XM apx™ g =t et

admet une solution de la forme p(t)e*t.

i. On, écrit P = Hli‘:] (X —A)Yt. montrer que I’équation x™ + a,_1x™ ™V ... 4 apx =tV 'eMt admet
une solution de la forme p(t)eM*' , ou degré de p est inférieur ou égal & v. On pourra se ramener a
étudier une équation de la forme x¥) = p(t), ou p est un polynéme.

Exercice 46. (3.7.1) On considére une équation différentielle

d (x) _ (f(xy)
dt\y) \gxy) /"

On considére ’orbite C passant en un point (x¢,yo) supposé non singulier.
a. A quelle condition la tangente en (x¢,yo) est elle verticale ?

b. fait elle un angle « avec I'horizontale ?



version de 27 janvier 2026 Equations différetielles 13

c. A quelle condition ce point est il un point d’inflexion de C 7

: : : . dr [x(t
Une idée pour résoudre ce probléme : Si <X> est une solution, exprimer que 1’accélération FrS) (X( )> =
Y

d [(fx(t),y (1)
dt

) est proportionnelle a la vitesse.

Exercice 47. (3.7.2)

Soit A = <m§) 1;3).

3
a. Quelle est I'image d’un triangle (a,b,c) du plan par la valeur a l'instant 1 du flot de ’équation

linéaire i (X) =A <X> ?
dt \y y

b. Quelle est I'image Yy de demi-droite Dy passant & l'origine et faisant un angle 0 avec ’axe des x
par le flot de ce champ de vecteurs ?

Exercice 48. (3.7.3)
Soit X un champ de vecteurs défini sur R?, et f une fonction strictement positive.

a. Montrer que X et fX ont les mémes orbites. Indication : Considérer le flot 1 (u,x) du champ X
et chercher une fonction 0(t) telle que P (0(t), x) soit le flot de X.

b. Réciproque?
Exercice 49. (3.7.4)

Pour un TP de mat-appli. Ecrire un script permettant d’afficher le portrait de phase d’une équation
différentielle du second ordre en dimension 1 ou du premier ordre dans ’espace des phases qui est de

dimension 2.
Par exemple 1’équation de Liénard

X" —u(1=x*)x"+x=0
avec | petit.

Exercice 50. (3.7.5)
En séparant les variables, intégrer
a. tg(x)sin?(y)dx + cos?(x)ctg(y)dy = 0,
b. xy' —y =17
c. xyy' =1-—x2
Exercice 51. (3.7.6)
Former une équation différentielle dont les solutions sont les courbes

a. x*=A(x*—y?),
1
b. y 4+ - =247V
X
Exercice 52. (3.7.7)
On cherche les courbes C vérifiant la propriété suivante. Au point M, la normale a C en M coupe

les deux axes [Ox] et [Oy] du demi plan x > 0,y > 0 en deux points A, B tels que M soit le milieu de
[A, B].
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Exercice 53. (3.7.8) Trajectoire orthogonales.
On considére une famille de courbe dépendant d’un paramétre. On cherche une famille de courbe
qui rencontre la premiére orthogonalement (a angle droit) en tout point.

a. Sila premiére famille est donnée par ’équation y’ = f(x,y), montrer qu’on peut définir la seconde

—1
par -7 = f(x,y)

of of
b. Si elle est donnée par f(x,y) = A, montrer que ’autre est obtenue en résolvant a—dy — a—dx =0.
x )
Trouver les trajectoires orthogonales & la famille d’ellipses x> + 2y% = A.
d. Méme question avec les hyperboles xy = A.
e. Si la famille est donnée par f(x,y,A) = 0, démontrer que la famille orthogonale s’obtient en
of of
résolvant &dy — de =0 avec f(x,y,A) =0.

f. Traiter le cas des cercles (x — a)? +y% = a’.

Exercice 54. (3.7.9)(Théoréme de Clairaut)

Soit w = adx + bdy une forme différentielle définie sur un ouvert () supposé conveze. On suppose

0 ob
qu’elle est fermeée, i.e., que oa 9% _
oy 0x

a. Montrer que l'intégrale F(x,y) = J w ou C est un chemin joignant (xo,yo) & (x,y) ne dépend pas
C
du chemin.

Indication : Soient y; et v, deux chemins paramétrées v; = [0,1] — Q de classe C' joignant

(x0,Yo) & (x,y). On pose vy = ty; + (1 —t)yo; étudier Fra It ou C, est le chemin paramétré par
Ct

Yt

b. Montrer que dF = w (on pourra considérer des chemins paralléles aux axes).

. 0 ob
c. Réciproquement si F € C? et dF = adx + bdy, montrer que a_a Tk 0
y X
Exercice 55. (3.7.10)
Passer en coordonnées polaires dans les équations suivantes pour les intégrer.

VX2 +yr—x

a. y' =
Yy
b. (x*+y?)dx —xydy =0
dx
T =~y X0 =6 7))
c. q
= x4y =+ y?)

Exercice 56. Repére non-galiléen.(selon Probléme 3.7.1)

a. Soit A(t) une matrice inversible dépendant de t. Exprimer la dérivée (A~')’ en termes de A et sa
dérivée.
b. Soit O = A~'A’. Exprimer A~"'A” en termes de Q) et ces dérivées.

c. Soit maintenant A(t) une matrice orthogonale dépendant de t. Montrer que Q(t) = A~'A’ est une
matrice antisymétrique.
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d. Soit Q une matrice 3 x 3 antisymétrique. Trouver un vecteur & € E® dans l'espace euclidien tel
que OF = @ /\ T en termes des éléments matriciels de Q.

Rappelons que le passage d’un systéme de coordonnées orthonormée & un autre dans un espace R?
affine est donnée par ¥ = O~ (ﬁ — ‘5) ou O est une matrice orthogonale, R un vecteur de position dans
I’ancien systéme, T le vecteur de position dans le nouveau systéme et b est le vecteur de position de
I'origine du nouveau systéme par rapport a l’ancien.

Supposons que l’ancien systéme est galiléen, alors la trajectoire d'un point matériel satisfait dans
ce systéme l’équation

2 - -
—R=F.
M
¢ IF . o . _,d%
Notons par f = O~ 'F le vecteur de la force dans le systéme non-galiléen et par @ = O o le

vecteur de 1’accélération de l'origine d’un systéme par rapport a 'autre.
2y
e. Exprimer ’accélération FT5) dans le systéme non-galiléen en termes du vecteur 7, la vitesse angulaire

@, la force f, accélération d et ces dérivées.

Exercice 57. (3.7.11) Donner un exemple de systéme stable, mais pas asymptotiquement stable en
dimension 2.

Exercice 58. (3.7.12)
Trouver les points d’équilibre et discuter leur stabilité.

d
a. d—::—xﬂ—x),
dx
b. = =1-%*
dt b
%:—ZX(X—U(ZX—”
dt
C. dy
Y _ )
at Y

Exercice 59. (3.7.13)

Etudier les orbites du systéme :
dx
dt
dy

_ = 3
at Y+ X

X

et comparer au systéme linéarisé.

Exercice 60. (3.7.14) Soit U : R* — R une fonction de classe C3. On étudie ’équation différentielle

0X

— =—VLUu.

ot

a. Quels sont les points d’équilibre de ce systeme ?

b. Démontrer que si X(t) = (x(t),y(t)) est une solution, la fonction U est décroissante le long des
trajectoires.

On suppose que U est propre, c’est & dire que limy )00 U(x,Yy) = +00.

0X
c. Démontrer que la solution du probléme de Cauchy i —VU, X(0) = (x0,Yo) est définie sur R*.
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d.

€.

U o’u
On suppose que pour tous les points critique de U (les points ot VU = 0 la Hessienne < 2;; Z’;?)
oydx  oy?
est non dégénérée. Discuter la stabilité des points critiques.
2 4 2
Etudier le cas particulier U(x,y) = —% + XZ + > et esquisser le portrait de phase.

Exercice 61*% (Probléme 3.7.2) Soit A € M, (R) une matrice dont toutes les valeurs propres Ay, ... A,
(complexes),ont une partie réelle strictement négative. On rappelle que le produit scalaire est donné
par la formule (X;Y) = X' ;xy;

a.

En utilisant la forme générale des solutions de 1’équation % =

((exptA)x, (exp tA)y) est une somme de fonctions de la forme p;jelMitht

AX, démontrer que la fonction

o0

En déduire que pour l'intégrale J (exp tAx, exp tAy)dt est convergente et défini un nouveau pro-

0
duit scalaire (u,v), sur R™ défini positif. On note q(x) = (x,x), le carré scalaire, c’est le carré
d’une norme euclidienne sur R™.

Soit Y = Ax le champ de vecteur linéaire associé a A. Montrer que

o0 o0

(exp tAx, A exp tAx)dt = ZJ (x(t),x'(t))dt = —(x, x).

Yq(x) = 2(x, Ax)n = J
0

0
En déduire qu’il existe un certain o« > 0 tel que Yq(x) < —aq(x) et que le long d’une orbite
q(x(t)) < e q(x)

Démontrer le cas général du Théoréme de Stabilité en vous inspirant du cas particulier traité dans
la démonstration du théoréme 3.

Exercice 62. (3.7.15)

On considére I’équation différentielle x” + f(x) =0

Ecrire I’équation dans ’espace des phases en posant y = x/'.
2
Soit U une primitive de f. Re-démontrer que E = LH—% est un intégrale premieére de cette équation

Dessiner cote a cote le graphe de la fonction U et quelques courbes E = cte pour les exemples
suivants.

I f(x)=x"",
II. f(x) =x—x3,
I f(x) =x—x

Dans chacun des cas, on cherchera les positions d’équilibre (points critiques) et on discutera leur
stabilité. On décrira les orbites périodiques, homoclines et hétéroclines.

Exercice 63. (3.7.16)

Uy

On considére I'équation x” = —VU(x), ou U(x) = ——
ch”ax

1
Chercher le minimum d’énergie E = zx’ gue U(x) et montrer que celui ci est stable.

Pour quelles valeurs de E le mouvement est il périodique ?

Calculer alors sa période.
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Exercice 64. (Probléme 3.7.3 ) Champ central et probléme de Kepler.*

On se place dans R3?, et on se donne un champ de forces central. Conformément a la tradition nous
noterons 7 la position d’un point soumis a la force en question, et r = ||7|| sa norme euclidienne.

En tout point la force F se dirige vers l'origine, autrement dit il existe une fonction l?(?) = ¢(X)T,

ou ¢ est peut-étre positif (si 'objet est repoussé du centre), peut étre négatif (il y est attiré). On
ar -
étudie I’équation de Newton md—z = F(7¥).

—

. o dr . Ao
a. Soitv= & la vitesse. Montrer que mv /A ¥ = M reste constant au cours du temps. On note M sa

longueur.

b. Montrer que au cours du temps le point reste dans le plan IT perpendiculaire au vecteur M passant

a l'origine.

Ainsi le mouvement reste dans un plan au cours du temps et ce plan ayant un point privilégié, il
est tentant de passer en coordonnées polaires dans le plan IT : ¥(t) = (rcos 0, rsin 0).

On suppose maintenant de plus que la valeur absolue de la force ne dépend que de la distance a
D'origine, de sorte que F(¥) = g(r)¥=—-VUu(r).

—

T ) do
c. Calculer —, en coordonnées polaires et montrer que mrza = M reste constant au cours du temps

(utiliser a.). C’est la lot des aires.
dr dr

s dt> combien vaut elle en coordonnées polaires ?

1
d. L’énergie cinétique de l'objet est 2m<

e. Montrer que I'énergie totale est

1 dr\? M2

Ce qui rameéne a ’étude d’un systéme a un degré de liberté dont 1’énergie potentielle serait

MZ
Ues(r) = 5 + U(r)
mr
f. On suppose maintenant que le potentiel U est le potentiel de Kepler U(r) = _2" Dessiner cote a

T
2

dr
cote le potentiel efficace _X et les trajectoires dans l’espace des phases r, — TR En déduire

my?
que si E > 0 le mouvement s’en va a l'infini, alors que si E < 0 ’orbite est périodique.

o M dr 2 x M?
g. Onaazmeta:\/a<E+?>—W En déduire que

\/ -
dr ~ mr? m r Cmr?’

et intégrer grace au changement de variables x =
.

P M2 2EM2

———,avecp=—,e=1/1+
) o 1+ ecos0 mox m
sont des coniques d’excentricité e, et on retrouve bien les résultats du f.

h. Montrer que les trajectoires sont de la forme r =

1. Pour plus de renseignements, voir Landau et Lifchitz, mécanique ch.3.
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i. Dans le cas du potentiel de Kepler, montrer que le vecteur de Runge-Lenz

A=VvAM—«

==

reste constant.

Exercice 65. (4.4.1)
Donner un exemple ou il y a égalité dans 'inégalité de Gronwall.

Exercice 66. (4.4.2)

a. On considére I’équation différentielle o _ t + sinx. Soit xy la solution telle que xo(0) = 0, et x4

celle pour laquelle x;(0) = 0,1 estimer le maximum de [x;(t) — xo(t)| sur l'intervalle [0, T]. Pour
quelle t 'erreur obtenue en remplagant x; par x, est elle inférieure a 1% ?

b. On considére I’équation différentielle

x_
dt - y)
dy

— tx.
a

avec comme condition initiale, x(0) = 1, y(0) = 0. Soit x(t) = 1+t +t?/2, y.(t) = t*/2. Trouver
un majorant de ’erreur commise sur l'intervalle [0,0.1] si on remplace la solution par la solution
approchée.

Exercice 67. (4.4.3)

a. Soient P et y deux fonctions continues définie sur [to, t;] et & valeurs dans R., et ¢ une constante
t t

P(u)y(u)du. En posant F(t) = c+J P(u)y(u)du et en étudiant la fonction

to

telles que y(t) < c+J

to
t

de classe C' : G(t) = F(t) exp (— Jt P(u) du) montrer que y(t) < CJ P(u)du.

to to

b. Soit x une solution de x” + q(t)x =0, o q : [0, +00[— R, est une fonction croissante strictement
t

positive (et donc minorée par q(0)). Montrer que x> + q(t)x* = K +J q’(s)x*(s)ds. En déduire
0
que x est bornée.

Exercice 68. (4.4.4)

: . : : . d
a. Soit f: R — R une fonction continue. Ecrire le schéma d’Euler pour 1’équation d—: = f(t), x(0) = xo.

Que constate-t-on ? Et si on fait la méthode de Picard ?

. . . . d
b. Mémes questions avec 1’équation différentielle d—: =x, x(0) = xo.

Exercice 69. (4.4.5 Numérique)

Ecrire la méthode d’Euler pour trouver une solution approchée au probléme de Cauchy, dans les
exemples suivants. On subdivise 'intervalle en 10 parties égales. On pourra faire le calcul a la main
ou avec son logiciel préféré.

a. X’ =x+1t,x(0) =1, pas h = 0.1, on subdivise en 10 intervalles. Combien vaut x(1)? et la vraie
solution ?
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’ X

x' = ¢ x(0) = 2. Combien vaut x(1)? Et la vraie solution ?

Exercice 70. (4.4.6 Numérique)

a. S'inspirer de 'annexe A pour écrire le schéma d’Euler d’une équation différentielle, par exemple

I’équation des lynx et des lapins.
d (x) _ (x(1—y)
dt \y/ \y(1—x)

définie sur 'ouvert 2 >x > 0,2 >y > 0.
2
(—(XZ”> siny
w-1)?
<T) cosy

Exercice 71. (4.4.7) Soit I C R un intervalle et A : I — M,(R) une application continue, soit

b. Perturber un peu cette équation avec un petit terme comme pour voir le résultat.

: . : . ., . dx
[to,t1] C I un intervalle compact. Soit k = maxic, ;1 [|A]|. On considére 'equation linéaire pri

A(t)x, x(ty) = xo. On considére ’opérateur de Picard qui défini une automorphisme affine continue de
C([to, t1], R™) par la formule @, (t)x = xo + f:; A(u)x(u)du.
a. Montrer que | @(t)x — O (t)y|| < k(t—to)
. n n n (t - tO)n
b. Puis que [|[®"(t)x — O™ (t)y]| < k —
c. En déduire qu'il existe une puissance @™ de ® qui soit 1/2 contractante, et que la solution au
probléme de Cauchy est bien définie et unique sur tout l'intervalle I. On vérifiera qu’une fonction

est un point fixe de O si et seulement si c’est un point fixe de @™o

d. Méme question si on ne suppose plus I’équation différentielle linéaire, mais seulement globalement
k lipschitzienne; c’est a dire f: [ x R™ — R" et ||f(t,x) — f(t,y)| < klx —y|.

Exercice 72. (4.4.8) Sortie de tout compact.
Soit O C R™ et f: O — R™ une fonction continue. Soit K C () un compact, et ¢ > 0. Montrer qu'’il
existe un T (dépendant de ¢ et K) tel que pour toute donnée initiale x, dans K, il existe une solution

. . . d . .
¢ approchée de 1’équation différentielle d—: = f(x) telle que x(0) = x¢ définie sur l'intervalle [0, T]. On
suppose de plus que f est localement lipschitzienne. Démontrer que si xo € K, et x: [0, T[> Q est la

solution maximale du probléme de Cauchy, soit t = 400, soit T est fini et il existe un instant t; tel
que sit > t; x(t) ¢ K. Autrement dit x(t) sort de K et n’y revient jamais.

Exercice 73. (4.4.9) Convergence uniforme.
Soit X un ensemble et E, ||.|| un espace vectoriel normé complet (par exemple de dimension finie).
L’ensemble des fonctions bornées Fy, (X, E) est un espace vectoriel. Si f € F, (X, E), on pose ||f||o =

supl|f(x)||
xeX
a. Montrer, que muni de cette norme, 7, (X, E) est un espace complet.

b. On suppose de plus que X est un espace topologique (par exemple un espace métrique) et on fixe
un point x, € X. Montrer que ’ensemble des fonctions discontinues en x, est un ouvert, et que
I’ensemble des fonctions continues en x; est un fermeé.

c. Montrer que l’ensemble des fonctions continues bornées, muni de la norme ||f|., est un espace
complet.
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d. Soient f,, une suite de fonctions continues et bornées sur X qui converge uniformément vers une
fonction. Montrer que cette fonctions est continue et bornée.

Exercice 74. (4.4.10) Dépendance par rapport a la condition initiale.
On veut étudier le comportement d’un systéme conservatif a un degré de liberté au voisinage de
sa position d’équilibre. Il satisfait 1’équation différentielle

x" = —f'(x).
On suppose que f est de classe C", atteint un minimum non dégénéré en 0, et qu’on a un développement
limité
f(x) = whx + ayx* + azx® + - - + anx™ + 0(xn)

On sait que, si x(t,h) est la valeur a l'instant t de la solution de 1’équation telle que x(0,h) =
h,x’(0,h) = 0, alors x est de classe C™*' par rapport a h et, comme x(t) =0 on a

n

h
x(th) =% (4 4 xa(t) 7+ hn(t, h),

ol les fonctions x; sont de classe C™ ainsi que 1. Pour h fixé, et pour k =1 ou 2.

hﬂ.
O, ) =xM(th+- 4 X9 (t)— + R (t ).

Quelle équation différentielle satisfont x;,x; ? (on précisera les conditions initiales).
b. Résoudre ces équations.

c. Montrer qu’en général x; satisfait une équation différentielle linéaire dont le second membre est
un polyndéme en xq,....Xx_1, et en déduire que xi est un quasi-polynéme.



