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Exercice 1. (1.4.1) Il y a deux sortes d’atome de carbone : les 12C les plus nombreux et les 14C qui
sont radioactifs. On admet que le taux de concentration τ0 de 14C est constant dans l’atmosphère (il
est produit par le rayonnement cosmique et son taux reste constant, sinon soit l’atmosphère serait
totalement radioactive et nous ne serions pas là pour en parler, soit il n’y aurait plus de 14C du tout).
Ainsi tant qu’un organisme est vivant et qu’il absorbe du carbone (si c’est une plante, par exemple)
son taux de concentration en 14C est constant égal à τ0. Dès qu’il meure, comme le 14C se désintègre le
taux va baisser. En fait il baisse suivant une loi probabilité : la probabilité qu’un atome de se désintègre
entre l’instant t et l’instant t + dt est dp = λdt. On suppose que le nombre d’atomes radioactifs est
petit devant le nombre total. (En fait τ0 = 1.3 ·10−12, ce qui veut dire que dans 12 grammes de carbone
il y a 6.0 · 1023 × 1.3 · 10−12 = 7.9 · 1011 atomes radioactifs).

a. Si τ(t) est le taux de 14C à l’instant t démontrer que
τ(t+ ∆t) − τ(t) = −λτ(t)∆t+ o(∆t)

b. En déduire que
dτ

dt
= −λτ.

c. Au bout de combien de temps la moitié des atomes de 14C présents à l’instant 0 ont disparu ?

d. Proposer un expérience de durée 1 an pour évaluer λ. On trouve λ = 1.2 · 10−4an−1.

e. Un papyrus a un taux de concentration de 14C égal à 0.92 · 10−12. Quel âge a-t-il ?

f. Supposons qu’en fait λ = 1.1 · 10−4an−1 ou λ = 1.3 · 10−4an−1 qu’aurait on trouvé ?

Exercice 2. (1.4.2) Un récipient contient 100 litres d’eau mélangée à de l’alcool, à la concentration de
10% (1 partie de l’alcool et 9 parties de l’eau). On le remplit à la vitesse de 5 litres par minute avec
de l’eau et il se vide à la même vitesse.

a. Quelle équation différentielle satisfait la concentration de l’alcool ?

b. Au bout de combien de temps celle-ci est inférieure à 1%.

Exercice 3. (1.4.3) On considère l’équation différentielle (E)
dx

dt
= ax + b(t), où a est une certaine

constante et b une fonction de R dans R.

a. On pose y(t) = x(t)e−at. Quelle équation différentielle satisfait y ?

b. En déduire la solution de l’équation (E) telle que x(t0) = x0
c. Résoudre l’équation quand b(t) = t2, a = −1.

Exercice 4. (1.4.4) On considère l’équation différentielle linéaire dans R2 :

d

dt

(
x

y

)
=

(
λ −ω

ω λ

)(
x

y

)
.

a. En posant z = x+ iy, écrire l’équation sous la forme complexe
dz

dt
= f(z) et la résoudre.

b. Dessiner les solutions quand λ = 1, ω = 2π.

Exercice 5. (1.4.5) Soit f : Ω ⊂ Rn → Rn une fonction de classe C1. On considère l’équation autonome
dx

dt
= f(x).
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a. Rappeler pourquoi on dit que l’équation est autonome.

b. Démontrer que si la fonction x définie sur un intervalle ]a, b[ est une solution de cette équation,
telle que x(t0) = x0 alors la fonction y définie par y(t) = x(t − c) est une solution définie sur
]a+ c, b+ c[.

c. Si x(t) et y(t) sont deux solutions et si x(t0) = y(t1) démontrer que pour tout t, y(t) = x(t−t1+t0).

Exercice 6. (1.4.6) Modèle logistique (Pierre-François Verhulst, 1836).
On étudie une population de mammifères dans un parc animalier. Soit N(t) le nombre de ces

animaux. On observe que si N > A il n’y a pas assez à manger et la population décroît, alors que si
N < A elle a tendance à augmenter. Verhulst (1836) a décidé de modéliser cela par l’équation

(E)
dN

dt
= rN

(
1−

N

A

)
a. Ecrire l’équation différentielle satisfaite par x = N

A
.

b. En notant que cette équation est une équation autonome de dimension 1, la résoudre explicitement.

c. Dessiner (peut être avec votre logiciel préféré) cette solution, en supposant que r = 0.15, A = 1500,
N0 = 100, 1000, 10000.

Exercice 7. (1.4.7) Soit Ω ⊂ R2 un ouvert et f : Ω → R une fonction de classe C1. On suppose que

en tout point de Ω, l’une des deux dérivées partielles
∂f

∂x
,
∂f

∂y
est non nulle.

On note Cλ la courbe de niveau {(x, y) ∈ Ω : f(x, y) = λ}.

a. Rappeler le théorème des fonctions implicites, et démontrer qu’au voisinage d’un point (x0, y0) tel

que
∂f

∂y
̸= 0 on peut décrire Cλ comme graphe d’une fonction y(x) dont on calculera la dérivée.

b. Soit I ⊂ R un intervalle, c : I → Ω une fonction de classe C1 : autrement dit, c(t) = (x(t), y(t))

est une courbe paramétrée. Démontrer que c(t) reste dans une courbe Cλ si et seulement si

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= 0

c. Démontrer que les courbes de niveau de f sont les solutions de l’équation différentielle
dy

dx
= −

∂f

∂x
/
∂f

∂y
(qu’on écrit aussi

∂f

∂x
dx+

∂f

∂y
dy = 0).

d. Ecrire une équation différentielle dont les graphes des solutions sont les hyperboles x−1+y = λ du
demi plan x > 0. Sur quel intervalle est définie la solution y(x) telle que y(x0) = y0.

Exercice 8. (1.4.8) Système conservatif.

Une particule se promène dans un champs de forces. Newton nous dit que sa position X =

xy
z


satisfait l’équation différentielle du second ordre m

d2X⃗

dt2
= F⃗.

On suppose que F⃗ dérive d’une potentiel F⃗ = −∇⃗U = −

∂U
∂x
∂U
∂y
∂U
∂z

.
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a. On note X⃗(t) la position à l’instant t. Montrer que X⃗ ′(t) = Y⃗(t) satisfait
d

dt
U(X⃗(t)) = ⟨∇⃗U, Y⃗(t)⟩, et en déduire que U(X⃗(t)) +

m

2
⟨Y⃗, Y⃗⟩ reste constant.

b. On suppose la pesanteur est un vecteur constant g⃗ = −9.8m · s−2 · k⃗, où k⃗ est un vecteur unitaire
dirigé vers le haut. Trouver U tel que ∇⃗U = −m0g⃗ et en déduire à quelle hauteur un objet lancé
verticalement à la vitesse v = 10m · s−1 va monter (on néglige les frottements de l’air).

Exercice 9.* (1.4.9) Equation Prédateurs-Proies : Lotka 1925, Volterra 1926.
Il s’agit d’une variante de l’équation logistique, ou maintenant on suppose qu’une population est

non pas régulée par une constante (la quantité de nourriture) mais par un prédateur. Dans la littérature
on l’appelle l’équation Prédateurs-Proies, ou Lynx et Lapins.

On considère l’équation
d

dt

(
x

y

)
=

(
−x(1− y)

y(1− x)

)
définie sur l’ouvert x > 0, y > 0.

a. Dessiner le champs de vecteur associé. On commencera par chercher ou il s’annule, ou il est vertical
vers le haut, vers le bas, horizontal à droite ou à gauche.

b. Montrer que si

(
x(t)

y(t)

)
est la solution qui vaut

(
x0
y0

)
à l’instant t = 0,

(
x(t− t1)

y(t− t1)

)
est la solution

qui vaut

(
x0
y0

)
à l’instant t1.

Comme on pense à cette équation différentielle comme un champ de vecteur autonome, une solution
s’appelle une trajectoire.

c. En utilisant le théorème d’unicité montrer que deux trajectoires sont soit égales soit ne se ren-
contrent jamais.

d. On note 1, 2, 3, 4 les régions (1) : {x > 1, y > 1}, (2) : {x > 1, y < 1}, (3) : {y < 1, x < 1}, (4) :
{x < 1, y > 1}. Montrer que si la donnée initiale est dans la région 1 la trajectoire va d’abord
rentrer dans la région 2 puis dans la 3 et dans la 4 avant de revenir dans la région 1.

e. Soit H(x, y) = x− ln(x) + y− ln(y).
Démontrer que le long d’une trajectoire, la fonction H reste constante.

f. Montrer que la restriction de la fonction H à la demi-droite x ⩾ 1, y = 1 est injective, et en déduire
que la trajectoire revient à sa position initiale.

g. En utilisant l’unicité montrer que toute trajectoire est périodique.

Exercice 10. (2.7.1) On considère l’équation du second ordre dans R.

d2x

dt2
+ω2x = 0.

On pose z(t) =
dx

dt
+ iωx. Ainsi z est une fonction à valeurs dans C.

a. Quelle équation satisfait z ?

b. Quelle équation satisfait z̄ ?

c. Résoudre l’équation.

Exercice 11. (2.7.2) Soit
dx

dt
= A(t)x, x ∈ E, t ∈ I une équation différentielle linéaire. Soit E l’espace

vectoriel de ses solutions.
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a. En utilisant le théorème d’existence et d’unicité, démontrer que si x1, . . . , xk est une famille de
solutions, les propositions suivantes sont équivalentes :

1. Il existe un instant t0 de I tel que les vecteurs x1(t0), . . . xk(t0) sont linéairement indépendants
(forment une famille libre).

2. Dans E les vecteurs x1, . . . , xk sont indépendants.

3. Pour tout instant t de I, les vecteurs x1(t), . . . xk(t) sont linéairement indépendants.

b. Même question avec « sont une famille génératrice » à la place de famille libre.

Exercice 12. (2.7.3) On rappelle que le barycentre d’une famille de point a1, . . . ak d’un espace affine
affectée des coefficients λ1, . . . .λk (avec Σ

1⩽i⩽n
λi = 1) est l’unique point b tel que pour tout point o,

−→
ob = Σki=1λi

−→oai.
Soit

dx

dt
= A(t)x+ B(t), une équation différentielle linéaire avec second membre.

Vérifier que si xi(t) est une famille de solutions telle qu’à l’instant t0, xi(t0) = ai, la fonction
Σki=1λixi est la solution de l’équation différentielle dont la valeur à l’instant t0 est Σki=1λiai.

Autrement dit l’ensemble des solutions de l’équation avec second membre est un espace affine.

Exercice 13. (2.7.4)(Equation de Riccati)
On considère l’équation différentielle linéaire

d

dt

(
x

y

)
=

(
a(t) c(t)

b(t) d(t)

)(
x

y

)
.

On considère une solution

(
x(t)

y(t)

)
et on se place dans un intervalle de temps où y ne s’annule pas.

a. On pose z(t) =
x(t)

y(t)
. Montrer que z satisfait une équation différentielle de la forme

z ′(t) = q2(t)z
2 + q1(t)z+ q0(t).

b. Réciproquement, si on a une équation différentielle de la forme (R) z ′(t) = q2(t)z
2+q1(t)z+q0(t),

construire une équation différentielle linéaire (L) telle que les solutions de (R) soient précisément
les quotients de deux solutions de (L).

c.* Soit E un espace vectoriel de dimension n, I un intervalle de R. On se donne trois applications
continues Q,A,B de I a valeurs dans les matrices symétriques n×n, les matrices n×n et le vecteur
colonnes. Expliquer pourquoi l’équation de Riccati

dzi

dt
= Σjqij(t)zizj + Σjaij(t)zj + bi(t)

peut se ramener à l’étude d’une équation différentielle linéaire en dimension n+ 1.

Exercice 14. (2.7.5) Résoudre, en faisant « varier la constante »

a.
dx

dt
− 2x = 1,

b.
dx

dt
+ x = et,
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c.
dx

dt
+ 3x = eit.

Exercice 15. (2.7.6) On, considère l’équation L
dI

dt
+ RI = E, où L, R, E sont trois constantes positives

(circuit LR).

a. Trouver la solution telle que I(0) = I0 est une constante positive donnée.

b. Quelle est la limite de I quand t→ +∞ ?

Exercice 16. (2.7.7)

a. On considère l’équation
dx

dt
+ ax = b(t), où b est définie sur R. La constante a et la fonction b

sont à valeurs complexes.
On suppose que si t ⩾ 0, |b(t)| ⩽ k, et on suppose que la partie réelle Re(a) de a est non nulle.

Soit x(t) la solution telle que x(0) = 0. Démontrer que |x(t)| ⩽
k

Re(a)
(1− e−Re(a)t)

b. On considère deux équations
dx1

dt
+ ax1 = b1(t),

dx2

dt
+ ax2 = b2(t) ou b est définie sur R, et on

suppose que |b1(t) − b2(t)| ⩽ k. On considère des solutions x1, x2.

On suppose que x1(0) = x2(0) démontrer que |x1(t) − x2(t)| ⩽
k

Re(a)
(1− e−Re(a)t)

On montre ainsi, que si Re(a) < 0, asymptotiquement les solutions de l’équations ne dépendent
pas trop du second membre (le bruit), a condition que celui ci soit borné.

Exercice 17. (2.7.8) Résoudre les équations suivantes.

a.
dx

dt
+ cos(t)x = sin(2t), ici t ∈ R,

b.
dx

dt
−
x

t
= t, ici t > 0,

c.
dx

dt
+ 2

x

t
= t3, ici t > 0.

Exercice 18. (2.7.9) On considère une fonction périodique continue a : R → C de période T . Soit x

une solution non nulle de
dx

dt
+ ax = 0.

a. Démontrer qu’il existe une constante C telle que x(t+ T) = Cx(t).

b. Démontrer que C = exp
(
−

∫ T
0

a(u)du

)
c. A quelle condition la fonction x est elle aussi périodique de période T ?

Exercice 19.* (2.7.10) On considère deux fonctions périodiques continue a, b : R → C de période T ,

et b n’est pas la fonction nulle. Soit x une solution non nulle de
dx

dt
+ ax = b.

Démontrer que s’il existe une unique solution périodique de l’équation avec second membre, il n’y

a pas de solution périodique à l’équation homogène
dx

dt
+ ax = 0.

Exercice 20. (2.7.11) Repère de Frenet et équation intrinsèque des courbes planes.
On considère, dans le plan affine euclidien orienté, une courbe paramétrée par l’abscisse curviligne

(on dit aussi longueur d’arc), et de classe C2 ; ainsi la courbe paramétrée est une fonction de classe
C2 : M : I→ E, M(s).
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a. Démontrer que le vecteur tangent t⃗(s) =
dM

ds
est de longueur 1.

b. Soit n⃗(s) le vecteur normal tel que t⃗, n⃗ soit une repère direct. On a donc en identifiant E à C,
n⃗(s) = i⃗t(s). Démontrer qu’il existe une fonction continue κ(s) telle que :

d⃗t

ds
= κ(s)n⃗ = iκ(s)⃗t.

c. En déduire que la fonction k : I→ R détermine t⃗ à une constante près.

d. Touver la fonction k(σ) pour un cercle de rayon R.

e. Démontrer que si M1 et M2 sont deux courbes paramétrées par l’abscisse curviligne et si κ1(s) =
κ2(s), alors M2 se déduit de M1 par un déplacement (isométrie directe du plan affine).

Exercice 21. (2.7.12)

a. Soit J une matrice telle que J2 = −Id, démontrer que etJ = cos(t)Id + sin(t)J.

b. Soit A =

(
a −b

b a

)
= a Id + bJ. En utilisant la première question démontrer que :

etA = eta(cos(tb)Id+ sin(tb)J)

c. Soit U un endomorphisme d’un R–espace vectoriel de dimension 2 dont les deux valeurs propres
sont imaginaires. Montrer que celle-ci sont conjuguées.

d. Soit λ = a + ib l’une d’entre elle. Montrer qu’il existe une base dans laquelle la matrice de u est(
a −b

b a

)
et en déduire comment calculer etU (on pourra considérer un vecteur propre e de u dans

C2, et poser e1 = ℜe(e), e2 = ℑm(e).

Exercice 22. (2.7.13) On considère la matrice A =

(
0 2

1 1

)
. Calculer l’image du carré |x| ⩽ 1 ;

|y| ⩽ 1 par expA.

Exercice 23. (2.7.14) Soit B =

(
0 1

1 0

)
et C =

(
4 0

1 4

)
, calculer Bn, Cn et en déduire exp tB, exp tC.

Exercice 24.* (2.7.15) L’application exponentielle est définie exp :Mn(C) → GLn(C) ⊂Mn(C) .

a. Si H ∈Mn(C) est une matrice de norme < 1 démontrer que la série ln(Id +H) = Σ∞
k=1

(−1)k−1

k
Hk

est convergente.

b. Montrer que si M est suffisamment proche de l’identité, par exemple ∥M∥ ⩽ 1
10

, ∥ expM− Id∥ < 1.
c. Soit M une matrice diagonalisable suffisamment proche de zéro, démontrer que ln(expM) =M.

d. Montrer que l’ensemble des matrices telles que ∥M∥ ⩽ 1
10

et ln(expM) −M = 0 est fermé.

e. Montrer que dans la boule fermée ∥M∥ ⩽ 1
10

l’ensemble des matrices diagonalisables est dense.

f. En déduire que si ∥M∥ ⩽ 1
10

⩽ ln(expM) =M.

g. Par un argument analogue démontrer que si ∥M− Id∥ ⩽ 1
10

, exp(ln(M)) =M.
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h. Soit f : (R,+) → (GLn(C), ·) un homomorphisme continu.
Soit α > 0 tel que si |t| ⩽ α, alors ∥f(t) − Id∥ ⩽ 1

10
.

Démontrer que si |t| ⩽
α

2
et si |u| ⩽

α

2
alors ln f(t+ u) = ln f(t) + ln f(u).

i. Soit n0 tel que
1

n0
⩽
α

2
.

En déduire que pour tout |t| ⩽
α

2
ln f(t) = n0t ln f

(
1
n0

)
(on pourra commencer par les réels t de

la forme t =
1

n · n0
). Et que si |t| ⩽

α

2
, f(t) = exp tA, pour A = n0 · f

(
1

n0

)
.

j. Démontrer que cette formule reste vraie pour tout t dans R.

Exercice 25.* (2.7.16) Démontrer que si E est un espace vectoriel de dimension finie sur C, A ∈ End(E)
un endomorphisme, la décomposition de Dunford A = D + N, D diagonalisable, N nilpotente, et D
et N commutent est unique. On pourra utiliser le fait que si A commute avec une matrice D ′, les
sous-espace propre de D ′ sont stables par A.

Exercice 26.′ Soit P(x) un polynôme de dégrée n et f(x) une fonction entière.

a. Montrer qu’il existe un unique polynôme R(x) de dégrée < n tel que f(x) = P(x)S(x) + R(x), où

S(x) est une fonction entière. Indication : Si P(x) =
∏

(x − λi)
νi alors

∂k

∂xk
(R(x) − f(x))|x=λi = 0

pour toutes racines λi et pour k < νi.

b. Montrer que pour toute matrice tel que P(X) = 0 on a f(X) = R(X).

Cela permet de calculer en particulier l’exponentiel d’une matrice sans chercher les vecteurs propres.

Exercice 26. (2.7.17) Soit M ∈Mn(C) une matrice diagonalisable et (λ1, . . . λn) ses valeurs propres.

Soit Li le polynôme de Lagrange Li(X) = Π
1⩽j⩽n,j ̸=i

(X− λj)

λi − λj
.

a. Montrer que : exp(M) = Σ
1⩽i⩽n

eλiLi(M) = Q(M), où Q = Σ
1⩽i⩽n

eλiLi.

b. Montrer que si M ∈Mn(R), Q ∈ R[X].
c. Si n = 2, il existe donc deux coefficients α,β tels que eM = αM+ βId ; exprimer α,β en fonction

des valeurs propres de M, puis en fonction de la trace et du déterminant.

d.* Si M n’est pas diagonalisable, son polynôme minimal est de la forme Π
1⩽i⩽m

(X− λi)
νi . En utilisant

la décomposition de Dunford, montrer comment calculer expM avec le polynômes de Sylvester,

Si,k =
(X− λi)

k

(λj − λi)k
Π

1⩽j⩽m,j ̸=i

(X− λj)

λi − λj
, avec 1 ⩽ i ⩽ m, 0 ⩽ k ⩽ νi − 1.

Exercice 27.* (2.7.18) On considère l’espace vectoriel complexe E des solutions de l’équation différen-
tielle à coefficients constants x(n) +an−1x(n−1) + · · ·+a1x ′ +a0x = 0. On considère le polynôme associé
P(X) = Xn + an−1X

n−1 + · · ·+ an. On sait que dim(E) = n.

1. Soit D l’opérateur de dérivation x→ d

dt
x. Démontrer que E est stable par D.

2. Montrer que E = ker(P(D)), et que P est le polynôme minimal de la restriction D̄ de D à E.
On écrit P comme produit P = Π(X− λi)

νi .

3. Soit Ei = ker(D − λi)
νi . Montrer que Ei est l’espace vectoriel des fonctions de la forme p(t)eλit,

où p est un polynôme de degré deg(p) ⩽ νi − 1.

4. Retrouver le théorème qui décrit toutes les solutions de l’équation.
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Exercice 28. (2.7.19) Résoudre.

a.
d2x

dt2
− 2

dx

dt
− 3x = 0, x(0) = 0,

dx

dt
(0) = 1,

b.
d2x

dt2
+ (4i+ 1)

dx

dt
+ x = 0, x(0) = 0,

dx

dt
(0) = 0,

c.
d2x

dt2
+ (3i− 1)

dx

dt
− 3ix = 0, x(0) = 2,

dx

dt
(0) = 1,

d.
d2x

dt2
+ (4+ 2i)

dx

dt
+ (3+ 4i)x = 0, x(0) = α,

dx

dt
(0) = β.

Exercice 29. (2.7.20) Particule dans un champ électro-magnétique.
Un particule de masse m et de charge q se promène dans un champ électro-magnétique constant.

Elle subit une force qui se décompose en F⃗ = qE⃗+ qV⃗ ∧ B⃗. L’équation de Newton s’écrit

qE⃗+ qV⃗ ∧ B⃗ = m
d

dt
V⃗.

On se place dans un système de coordonnées ou
B⃗

m
= ω

00
1

, et on pose P⃗ = mV⃗ de sorte que

l’équation est
dP⃗

dt
= ωP⃗ ∧

00
1

+ C⃗, où C⃗ =
q

m
E⃗ est un vecteur constant.

a. Ecrire l’équation sans second membre, et la résoudre. (indication quelle est la matrice de l’appli-

cation linéaire P⃗ → ωP⃗ ∧

00
1

, quelle est son exponentielle ?

b. Résoudre l’équation avec second membre par la méthode de la variation de la constante.

c. La position X⃗(t) satisfait
dX⃗

dt
= V⃗ =

1

m
P⃗, décrire X⃗(t).

Exercice 30. (2.7.21) Un projectile sort d’un canon qui tire avec un angle α par rapport à l’horizon-
tale. Il subit donc deux forces : la pesanteur mg⃗ et le frottement de l’air (proportionnel à la vitesse
−kv⃗). On se place dans le cas où le projectile ne va ni très haut ni très loin (ce n’est pas un missile
intercontinental), de sorte que g⃗ est constant.

a. Ecrire l’équation différentielle satisfaite par la vitesse de ce projectile.

b. Soit w⃗(t) = g⃗ ∧ v⃗. Ecrire l’équation différentielle satisfaite par w⃗(t), et montrer que le projectile
reste dans le plan constant et en déduire qu’à tout instant le projectile reste dans le plan engendré
g⃗ et la vitesse à l’instant initial.
On se place donc dans le plan en question rapporté à un repère orthonormé intelligent. Le vecteur

g⃗ est −g

(
0

1

)
, la vitesse initiale est v0

(
cosα
sinα

)
. Et le point initiale est

(
0

h0

)
.

c. Intégrer l’équation et déterminer l’abscisse du point ou le projectile touche le sol.

Exercice 31. (2.7.22) Résoudre

a.
d2x

dt2
+ x = |t|,

b.
d2x

dt2
− x = |t|,
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c.
d2x

dt2
− x = te3t,

d.
d2x

dt2
+ω2x = teiωt,

e.
d2x

dt2
+ 2

dx

dt
+ x = 2+ sin(t).

f. Quelle est la solution de l’équation
d2x

dt2
+ x = b(t) qui s’annule ainsi que sa dérivée pour t = 0 ?

Exercice 32. (2.7.23) Un ressort exerce une force de rappel proportionnelle à sa longueur.

a. Ecrire l’équation différentielle qui décrit le mouvement d’un petit objet accroché au bout d’un
ressort accroché au plafond. On suppose que sa vitesse initiale est verticale vers le bas, par exemple,
et que l’air n’exerce pas de frottement.

b. Même problème si on suppose que, maintenant, que le point d’attache du ressort accomplit un
mouvement oscillatoire a(t) = a0 sinωt. Ici a0 est petit devant la longueur du ressort, et à l’instant

initial, l’objet est au repos. La valeur ω =

√
k

m
joue un rôle spécial. Lequel ?

c. Maintenant on accroche le ressort au plafond d’un ascenseur, et on suppose qu’au départ, il est
fixe. Soit v(t) la vitesse verticale de l’ascenseur, de sorte que maintenant on a l’équation

m
d2x

dt2
= mg− kx−m

dv(t)

dt

On suppose que v(t) = γt pour t ∈ [0, t0] puis v = γt0 pour t ∈ [t0, t1] et v(t) = 0 si t > t1. Quand
l’ascenseur s’arrête, quelle est l’amplitude du mouvement du ressort ?

Exercice 33. (2.7.24)

a. Soient X1(t), . . . Xn(t) n fonctions de classes C1 définies sur un intervalles I ⊂ R et à valeurs dans
Rn. On suppose qu’en tout point t les nvecteurs X1(t), . . . Xn(t) sont linéairement indépendants.
Démontrer qu’il existe une matrice A(t) telle que les Xi soient une solution fondamentale de

l’équation
dX

dt
= A(t)X(t).

b. Soient x1, x2 deux fonctions de classe C2 sur l’intervalle I. On suppose qu’en tout point w(t) =

det

(
x1 x2
x ′1 x ′2

)
̸= 0. Démontrer qu’il existe une équation différentielle x ′′ + ax ′ + bx = 0 dont x1, x2

est une base de l’ensemble des solutions.

c. Dire si les paires de fonctions suivants peuvent être solutions s’une équation différentielle d’ordre
2 (et le cas échéant sur quel intervalle ?). Expliciter a et b.

I. (t, t+ 1),

II. (t, t2)

III. (et, t2).

d.

e. Former une équation différentielle linéaire homogène dont on connaît un système fondamental de
solutions.

I. (sin(t), cos(t)),

II. (et, tet),
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III. (t, t2).

f.* (Dérivée de Schwarz) Soit f une fonction de la classe C3 sur l’intervalle I. On suppose qu’en tout
point sa dérivée f ′ ne s’annule pas. Trouver l’équation différentielle x ′′ + bx = 0 possédant deux
solutions x1 et x2 telles que x1/x2 = f.

Exercice 34. (2.7.25) Trouver les solutions de l’équation sans second membre puis résoudre l’équa-
tion avec second membre :

t2x ′′ − tx ′ = 3t3

si t > 0.

Exercice 35. (2.7.26) Soit a une fonction continue sur I ⊂ R. On considère l’équation différentielle
x ′′ + a(t)x = 0 et deux solutions x1, x2.

a. Montrer que les 0 de x1 sont des points isolés. On pourra raisonner par l’absurde et montrer que
si t0 est un point où x(t0) = 0, est n’est pas un zéro isolé de la fonction x, alors x ′(t0) = 0.

b. Quelle est l’équation différentielle satisfait par le wronskien w(t) = det

(
x1 x2
x ′1 x ′2

)
?

c. Montrer qu’entre deux zéros de x1 il y a un zéro de x2.

Exercice 36.* (2.7.27) Soit a, b deux fonctions continues sur I ⊂ R. On considère les équations
différentielles x ′′ + a(t)x = 0, x ′′ + b(t)x = 0 et deux solutions x1, x2 de la première et la seconde
équation. On suppose que b > a.

a. Quelle est l’équation différentielle satisfaite par le wronskien w(t) = det

(
x1 x2
x ′1 x ′2

)
?

b. Montrer qu’entre deux zéros de x1 il y a un zéro de x2.

c. En étudiant l’équation x ′′ + ω2x = 0, montrer que toute solution de l’équation x ′′ + tx = 0

à une infinité de zéro sur [1,+∞[. montrer qu’on peut ranger ces zéros en une suite croissante
t1 < t2 < t3 . . . telle que tn → ∞ et tn+1 − tn → 0

Exercice 37. (2.7.28) Soit I ⊂ R un intervalle et A = I → Mn(R) une application continue. On
suppose que pour tout t, la matrice A(t) est antisymétrique.

a. Soit X(t) une solution de
dX

dt
= A(t)X(t). Démontrer que la fonction ∥X(t)∥2 = ⟨X(t), X(t)⟩ est

constante. Soit Y une autre solution. montrer que la fonction ⟨X(t), Y(t)⟩ reste constante.

b. Soient (X1, . . . Xn) la solution fondamentale telle que {Xi(0)} soit un repère orthonormé. Montrer que
pour tout t, (X1, . . . Xn)(t) est un repère orthonormé, autrement dit que la solution fondamentale
est orthogonale.

c. En déduire que l’exponentielle d’une matrice antisymétrique est orthogonale.

d.* Est-ce que si l’exponentielle d’une matrice A est orthogonale, A est forcement antisymétrique ?

Exercice 38.* (2.7.29) Soit Φ(t) une solution fondamentale de l’équation différentielle linéaire dX
dt

=

A(t)X(t). La matrice R(t, s) = Φ(t)Φ(s)−1 s’appelle résolvante du système, ou monodromie de l’équa-
tion. Montrer que :

a. R(t, s) ne dépend pas du choix de la solution fondamentale.

b. R(t, u) = R(t, s)R(s, u), et en particulier R(t, s) = R(s, t)−1.
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c.
∂R(t, u)

∂t
= A(t)R(t, u),

∂R(t, u)

∂u
= −R(t, u)A(u).

Exercice 39. (2.7.30) Soit X(t) une solution de l’équation différentielle linéaire dX
dt

= A(t)X(t), et
t→ P(t) une fonction à valeur dans les matrices inversibles. Trouver une équation différentielle linéaire
dont P(t)X(t) est solution.

Exercice 40. (2.7.31) En utilisant la méthode de la réduction de l’ordre, résoudre les équations dont
on donne une solution.

a. t > 0, t2x ′′ − 7tx ′ + 15x = 0, x1(t) = t
3

b. t > 0, t2x ′′ − tx ′ + x = 0, x1(t) = t

c. 0 < t < 1, (1− t2)x ′′ − 2tx ′ + 2x = 0 : on cherchera une solution de la forme tα.

Exercice 41. (2.7.32) En utilisant la méthode de la réduction de l’ordre, et la méthode de variation
de la constante résoudre les équations avec second membre connaissant une solution de l’équation sans
second membre.

a. t > 0, une solution de t2x ′′ − 2x = 0 est x1(t) = t2. Résoudre t2x ′′ − 2x = 2t− 1.

b. t > 0, une solution de t2x ′′ − tx ′ + x = 0 est x1(t) = t. Résoudre t2x ′′ − tx ′ + x = tn.

Exercice 42. (2.7.33) Equations d’Euler homogène
C’est une équation linéaire dont le terme de degré k est un monôme de la forme aktk.

a. On considère l’équation t2x ′′ + atx ′ + bx = 0. Chercher une solution sous la forme posant x = tα.

b.* Soit P(X) = Xn + an−1Xn−1 + · · ·+ a0. Démontrer qu’il existe un polynôme Q tel que si Q(α) = 0

la fonction tα satisfait l’équation différentielle tnx(n) + an−1tn−1x(n−1) + · · ·+ a1tx ′ + a0x = 0

c. Résoudre x ′′ =
2x

t2
.

d. Résoudre t2x ′′ + 3tx ′ + x = 0.

Exercice 43.* (2.7.34)

a. Résoudre l’équation x ′′ − tx ′ + x = 0 en séries entières.

b. Pour quelle valeur de α l’équation (1−t2)x ′′−2tx ′+α(α+1)x = 0 possède une solution polynomiale.

Exercice 44.* (2.7.35) Equations d’Euler non homogène.
C’est une équation linéaire qui se ramène à une équation à coefficients constants grâce à un chan-

gement de variables. On se place sur l’intervalle t > 0.
On fait le cas d’ordre 2.
On considère l’équation (at+ b)2x ′′ + a1(at+ b)x

′ + a2x = f(t).

On se place sur l’intervalle t >
−b

a
et on pose at+ b = es.

a. Vérifier que
dx

dt
= ae−s

dx

ds
,

d2x

dt2
= a2e−2s

(
d2x

ds2
−
dx

ds

)
.

b. Montrer que la fonction x(s) satisfait une équations différentielle linéaire à coefficients constants.

c. Intégrer l’équation (t+ 1)2x ′′ − 3(1+ t)x ′ + 4x = (1+ t)3.
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Exercice 45. (Problème 2.7.1) Quasi-polynômes et équations différentielles linéaires à coefficients
constant.

On veut donner une approche purement «algèbre linéaire» du théorème sur les équations diffé-
rentielles à coefficients constants. On considère l’espace vectoriel E des fonction C∞ de R à valeurs
dans C Un quasi-polynôme est une fonction de la forme f(t) =

∑
i=1k pi(t)e

λit où les pi sont des po-
lynômes. Nous noterons F ⊂ E , le sous espace des quasi-polynômes et Fλ = F0eλt ⊂ F le sous espace
vectoriel des quasi-polynômes de la forme p(t)eλt. Soit P(X) = Xn + an−1X

n−1 + · · · + a1X + a0 un
polynôme unitaire de degré n à coefficients constant. On veut étudier l’équation différentielle sans
second membre :

x(n) + an−1x
(n−1) + · · ·+ a0x = 0

Ou on cherche x dans E , et on appelle E l’espace vectoriel des solutions.
On introduit l’application linéaire D ∈ End E

a. Montrer que E = ker(P(D)).

b. Rappeler pourquoi, si P est le produit de deux polynômeA et B premiers entre eux alors ker(A(D))⊕
ker(B(D)) = ker(P(D)).

c. Dans C, tout polynôme unitaire se décompose P =
∏k

i=1(X − λi)
νi, ou les λi sont les racines

distinctes de P et les νi leur multiplicité.

d. Montrer que kerDν est l’espace vectoriel des polynômes de degré inférieur ou égal à ν− 1

e. Montrer que ker(D− λId)ν est l’espace vectoriel des quasi-polynômes de la forme p(t)eλt, où p est
un polynôme de degré inférieur ou égal à ν− 1.

f. En déduire que les fonctions tjeλit, avec 0 ⩽ i ⩽ k et 0 ⩽ j ⩽ νi forment une base de l’ensemble
des solutions.

g. Démontrer que les fonctions de la forme tjeλit, λ ∈ C, j ∈ N forment une base de F .

h. Soit P =
∏k

i=1(X− λi)
νi, et Q = (X− λ), de sorte que P et Q sont premier entre eux.

On considère l’espace vectoriel ker PQ(D). En utilisant le fait que P et Q sont premier entre eux
démontrer que pour tout quasi-polynôme v de Fλ, il existe un unique quasi polynôme de Fµ tel
que P(D)u = v.
En déduire que l’équation différentielle

x(n) + an−1x
(n−1) + · · ·+ a0x = tν−1eµt

admet une solution de la forme p(t)eµt.

i. On, écrit P =
∏k

i=1(X− λi)
νi . montrer que l’équation x(n) + an−1x(n−1) + · · ·+ a0x = tν−1eλ1t admet

une solution de la forme p(t)eλ1t , ou degré de p est inférieur ou égal à ν. On pourra se ramener à
étudier une équation de la forme x(ν) = p(t), ou p est un polynôme.

Exercice 46. (3.7.1) On considère une équation différentielle

d

dt

(
x

y

)
=

(
f(x, y)

g(x, y)

)
.

On considère l’orbite C passant en un point (x0, y0) supposé non singulier.

a. A quelle condition la tangente en (x0, y0) est elle verticale ?

b. fait elle un angle α avec l’horizontale ?
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c. A quelle condition ce point est il un point d’inflexion de C ?

Une idée pour résoudre ce problème : Si

(
x

y

)
est une solution, exprimer que l’accélération

d2

dt2

(
x(t)

y(t)

)
=

d

dt

(
f(x(t), y(t))

g(x(t), y(t))

)
est proportionnelle à la vitesse.

Exercice 47. (3.7.2)

Soit A =

(
ln(2) − 2π

3
2π
3

ln(2)

)
.

a. Quelle est l’image d’un triangle (a, b, c) du plan par la valeur à l’instant 1 du flot de l’équation

linéaire
d

dt

(
x

y

)
= A

(
x

y

)
?

b. Quelle est l’image Σθ de demi-droite Dθ passant à l’origine et faisant un angle θ avec l’axe des x
par le flot de ce champ de vecteurs ?

Exercice 48. (3.7.3)
Soit X un champ de vecteurs défini sur R2, et f une fonction strictement positive.

a. Montrer que X et fX ont les mêmes orbites. Indication : Considérer le flot ψ(u, x) du champ fX
et chercher une fonction θ(t) telle que ψ(θ(t), x) soit le flot de X.

b. Réciproque ?

Exercice 49. (3.7.4)
Pour un TP de mat-appli. Ecrire un script permettant d’afficher le portrait de phase d’une équation

différentielle du second ordre en dimension 1 ou du premier ordre dans l’espace des phases qui est de
dimension 2.

Par exemple l’équation de Liénard

x ′′ − µ(1− x2)x ′ + x = 0

avec µ petit.

Exercice 50. (3.7.5)
En séparant les variables, intégrer

a. tg(x) sin2(y)dx+ cos2(x)ctg(y)dy = 0,

b. xy ′ − y = y2,

c. xyy ′ = 1− x2.

Exercice 51. (3.7.6)
Former une équation différentielle dont les solutions sont les courbes

a. x2 = λ(x2 − y2),

b. y2 +
1

x
= 2+ λe−y

2/2

Exercice 52. (3.7.7)
On cherche les courbes C vérifiant la propriété suivante. Au point M, la normale à C en M coupe

les deux axes [Ox] et [Oy] du demi plan x > 0, y > 0 en deux points A,B tels que M soit le milieu de
[A,B].
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Exercice 53. (3.7.8) Trajectoire orthogonales.
On considère une famille de courbe dépendant d’un paramètre. On cherche une famille de courbe

qui rencontre la première orthogonalement (à angle droit) en tout point.

a. Si la première famille est donnée par l’équation y ′ = f(x, y), montrer qu’on peut définir la seconde

par
−1

y ′ = f(x, y)

b. Si elle est donnée par f(x, y) = λ, montrer que l’autre est obtenue en résolvant
∂f

∂x
dy−

∂f

∂y
dx = 0.

c. Trouver les trajectoires orthogonales à la famille d’ellipses x2 + 2y2 = λ.

d. Même question avec les hyperboles xy = λ.

e. Si la famille est donnée par f(x, y, λ) = 0, démontrer que la famille orthogonale s’obtient en

résolvant
∂f

∂x
dy−

∂f

∂y
dx = 0 avec f(x, y, λ) = 0.

f. Traiter le cas des cercles (x− a)2 + y2 = a2.

Exercice 54. (3.7.9)(Théorème de Clairaut)
Soit ω = adx+bdy une forme différentielle définie sur un ouvert Ω supposé convexe. On suppose

qu’elle est fermée, i.e., que
∂a

∂y
−
∂b

∂x
= 0.

a. Montrer que l’intégrale F(x, y) =
∫
C

ω ou C est un chemin joignant (x0, y0) à (x, y) ne dépend pas

du chemin.
Indication : Soient γ1 et γ2 deux chemins paramétrées γi = [0, 1] → Ω de classe C1 joignant

(x0, y0) à (x, y). On pose γt = tγ1+(1− t)γ0 ; étudier
d

dt

∫
Ct

ω, où Ct est le chemin paramétré par
γt.

b. Montrer que dF = ω (on pourra considérer des chemins parallèles aux axes).

c. Réciproquement si F ∈ C2 et dF = adx+ bdy, montrer que
∂a

∂y
−
∂b

∂x
= 0.

Exercice 55. (3.7.10)
Passer en coordonnées polaires dans les équations suivantes pour les intégrer.

a. y ′ =

√
x2 + y2 − x

y

b. (x2 + y2)dx− xydy = 0

c.


dx

dt
= y+ x(1− (x2 + y2))

dy

dt
= −x+ y(1− (x2 + y2))

Exercice 56. Repère non-galiléen.(selon Problème 3.7.1)

a. Soit A(t) une matrice inversible dépendant de t. Exprimer la dérivée (A−1) ′ en termes de A et sa
dérivée.

b. Soit Ω = A−1A ′. Exprimer A−1A ′′ en termes de Ω et ces dérivées.

c. Soit maintenant A(t) une matrice orthogonale dépendant de t. Montrer que Ω(t) = A−1A ′ est une
matrice antisymétrique.
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d. Soit Ω une matrice 3 × 3 antisymétrique. Trouver un vecteur ω⃗ ∈ E3 dans l’espace euclidien tel
que Ωr⃗ = ω⃗∧ r⃗ en termes des éléments matriciels de Ω.

Rappelons que le passage d’un système de coordonnées orthonormée à un autre dans un espace R3

affine est donnée par r⃗ = O−1(R⃗− b⃗) ou O est une matrice orthogonale, R⃗ un vecteur de position dans
l’ancien système, r⃗ le vecteur de position dans le nouveau système et b⃗ est le vecteur de position de
l’origine du nouveau système par rapport à l’ancien.

Supposons que l’ancien système est galiléen, alors la trajectoire d’un point matériel satisfait dans
ce système l’équation

m
d2

dt2
R⃗ = F⃗.

Notons par f⃗ = O−1F⃗ le vecteur de la force dans le système non-galiléen et par a⃗ = O−1d
2b⃗

dt2
le

vecteur de l’accélération de l’origine d’un système par rapport à l’autre.

e. Exprimer l’accélération
d2r⃗

dt2
dans le système non-galiléen en termes du vecteur r⃗, la vitesse angulaire

ω⃗, la force f⃗, accélération a⃗ et ces dérivées.

Exercice 57. (3.7.11) Donner un exemple de système stable, mais pas asymptotiquement stable en
dimension 2.

Exercice 58. (3.7.12)
Trouver les points d’équilibre et discuter leur stabilité.

a.
dx

dt
= −x(1− x),

b.
dx

dt
= 1− x2,

c.


dx

dt
= −2x(x− 1)(2x− 1)

dy

dt
= −2y

.

Exercice 59. (3.7.13)
Etudier les orbites du système : 

dx

dt
= x

dy

dt
= −y+ x3

et comparer au système linéarisé.

Exercice 60. (3.7.14) Soit U : R2 → R une fonction de classe C3. On étudie l’équation différentielle
∂X

∂t
= −∇U.

a. Quels sont les points d’équilibre de ce système ?

b. Démontrer que si X(t) = (x(t), y(t)) est une solution, la fonction U est décroissante le long des
trajectoires.

On suppose que U est propre, c’est à dire que lim(x,y)→∞U(x, y) = +∞.
c. Démontrer que la solution du problème de Cauchy

∂X

∂t
= −∇U, X(0) = (x0, y0) est définie sur R+.
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d. On suppose que pour tous les points critique de U (les points où ∇U = 0 la Hessienne

(
∂2U
∂x2

∂2U
∂x∂y

∂2U
∂y∂x

∂2U
∂y2

)
est non dégénérée. Discuter la stabilité des points critiques.

e. Etudier le cas particulier U(x, y) = −
x2

2
+
x4

4
+
y2

2
et esquisser le portrait de phase.

Exercice 61.* (Problème 3.7.2) Soit A ∈Mn(R) une matrice dont toutes les valeurs propres λ1, . . . λn
(complexes),ont une partie réelle strictement négative. On rappelle que le produit scalaire est donné
par la formule ⟨X, Y⟩ = Σni=1xiyi
a. En utilisant la forme générale des solutions de l’équation dX

dt
= AX, démontrer que la fonction

⟨(exp tA)x, (exp tA)y⟩ est une somme de fonctions de la forme pi,je(λi+λj)t

b. En déduire que pour l’intégrale
∫∞
0

⟨exp tAx, exp tAy⟩dt est convergente et défini un nouveau pro-

duit scalaire ⟨u, v⟩n sur Rn défini positif. On note q(x) = ⟨x, x⟩n le carré scalaire, c’est le carré
d’une norme euclidienne sur Rn.

c. Soit Y = Ax le champ de vecteur linéaire associé à A. Montrer que

Yq(x) = 2⟨x,Ax⟩n =

∫∞
0

⟨exp tAx,A exp tAx⟩dt = 2
∫∞
0

⟨x(t), x ′(t)⟩dt = −⟨x, x⟩.

d. En déduire qu’il existe un certain α > 0 tel que Yq(x) ⩽ −αq(x) et que le long d’une orbite
q(x(t)) ⩽ e−αtq(x)

e. Démontrer le cas général du Théorème de Stabilité en vous inspirant du cas particulier traité dans
la démonstration du théorème 3.

Exercice 62. (3.7.15)
On considère l’équation différentielle x ′′ + f(x) = 0

a. Ecrire l’équation dans l’espace des phases en posant y = x ′.

b. Soit U une primitive de f. Re-démontrer que E = U+
y2

2
est un intégrale première de cette équation

c. Dessiner côte à côte le graphe de la fonction U et quelques courbes E = cte pour les exemples
suivants.

I. f(x) = x2n−1,

II. f(x) = x− x3,

III. f(x) = x− x2.

Dans chacun des cas, on cherchera les positions d’équilibre (points critiques) et on discutera leur
stabilité. On décrira les orbites périodiques, homoclines et hétéroclines.

Exercice 63. (3.7.16)

On considère l’équation x ′′ = −∇U(x), ou U(x) = −
U0

ch2αx

a. Chercher le minimum d’énergie E =
1

2
x ′
2
+U(x) et montrer que celui ci est stable.

b. Pour quelles valeurs de E le mouvement est il périodique ?

c. Calculer alors sa période.
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Exercice 64. (Problème 3.7.3 ) Champ central et problème de Kepler. 1

On se place dans R3, et on se donne un champ de forces central. Conformément à la tradition nous
noterons r⃗ la position d’un point soumis à la force en question, et r = ∥⃗r∥ sa norme euclidienne.

En tout point la force F⃗ se dirige vers l’origine, autrement dit il existe une fonction F⃗(⃗r) = ϕ(⃗x)⃗r,
ou ϕ est peut-être positif (si l’objet est repoussé du centre), peut être négatif (il y est attiré). On

étudie l’équation de Newton m
d2r⃗

dt2
= F⃗(⃗r).

a. Soit v⃗ =
d⃗r

dt
la vitesse. Montrer que mv⃗∧ r⃗ = M⃗ reste constant au cours du temps. On note M sa

longueur.

b. Montrer que au cours du temps le point reste dans le plan Π perpendiculaire au vecteur M⃗ passant
à l’origine.

Ainsi le mouvement reste dans un plan au cours du temps et ce plan ayant un point privilégié, il
est tentant de passer en coordonnées polaires dans le plan Π : r⃗(t) = (r cos θ, r sin θ).

On suppose maintenant de plus que la valeur absolue de la force ne dépend que de la distance à
l’origine, de sorte que F⃗(⃗r) = g(r)⃗r = −∇U(r).

c. Calculer
d⃗r

dt
, en coordonnées polaires et montrer quemr2

dθ

dt
=M reste constant au cours du temps

(utiliser a.). C’est la loi des aires.

d. L’énergie cinétique de l’objet est
1

2
m

〈
d⃗r

dt
,
d⃗r

dt

〉
combien vaut elle en coordonnées polaires ?

e. Montrer que l’énergie totale est

E =
1

2
m

(
dr

dt

)2
+
M2

2mr2
+U(r).

Ce qui ramène à l’étude d’un système à un degré de liberté dont l’énergie potentielle serait

Ueff(r) =
M2

2mr2
+U(r)

f. On suppose maintenant que le potentiel U est le potentiel de Kepler U(r) = −
α

r
. Dessiner côte à

côte le potentiel efficace
M2

2mr2
−
α

r
et les trajectoires dans l’espace des phases r,

dr

dt
. En déduire

que si E > 0 le mouvement s’en va à l’infini, alors que si E < 0 l’orbite est périodique.

g. On a
dθ

dt
=
M

mr2
et
dr

dt
=

√
2

m

(
E+

α

r

)
−
M2

mr2
. En déduire que

dθ

dr
=
M

mr2

√
2

m

(
E+

α

r

)
−
M2

mr2
,

et intégrer grâce au changement de variables x =
1

r
.

h. Montrer que les trajectoires sont de la forme r =
p

1+ e cos θ
, avec p =

M2

mα
, e =

√
1+

2EM2

mα2
. Ce

sont des coniques d’excentricité e, et on retrouve bien les résultats du f.

1. Pour plus de renseignements, voir Landau et Lifchitz, mécanique ch.3.
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i. Dans le cas du potentiel de Kepler, montrer que le vecteur de Runge-Lenz

A⃗ = v⃗∧ M⃗− α
r⃗

r

reste constant.

Exercice 65. (4.4.1)
Donner un exemple ou il y a égalité dans l’inégalité de Grönwall.

Exercice 66. (4.4.2)

a. On considère l’équation différentielle
dx

dt
= t + sin x. Soit x0 la solution telle que x0(0) = 0, et x1

celle pour laquelle x1(0) = 0, 1 estimer le maximum de |x1(t) − x0(t)| sur l’intervalle [0, T ]. Pour
quelle t l’erreur obtenue en remplaçant x1 par x0 est elle inférieure à 1% ?

b. On considère l’équation différentielle 
dx

dt
= x− y,

dy

dt
= tx.

avec comme condition initiale, x(0) = 1, y(0) = 0. Soit xε(t) = 1+ t+ t2/2, yε(t) = t2/2. Trouver
un majorant de l’erreur commise sur l’intervalle [0, 0.1] si on remplace la solution par la solution
approchée.

Exercice 67. (4.4.3)

a. Soient ψ et y deux fonctions continues définie sur [t0, t1] et à valeurs dans R>0 et c une constante

telles que y(t) ⩽ c+
∫ t
t0

ψ(u)y(u)du. En posant F(t) = c+
∫ t
t0

ψ(u)y(u)du et en étudiant la fonction

de classe C1 : G(t) = F(t) exp
(
−

∫ t
t0

ψ(u)du

)
montrer que y(t) ⩽ c

∫ t
t0

ψ(u)du.

b. Soit x une solution de x ′′ + q(t)x = 0, où q : [0,+∞[→ R>0 est une fonction croissante strictement

positive (et donc minorée par q(0)). Montrer que x ′2 + q(t)x2 = K +

∫ t
0

q ′(s)x2(s)ds. En déduire

que x est bornée.

Exercice 68. (4.4.4)

a. Soit f : R → R une fonction continue. Ecrire le schéma d’Euler pour l’équation
dx

dt
= f(t), x(0) = x0.

Que constate-t-on ? Et si on fait la méthode de Picard ?

b. Mêmes questions avec l’équation différentielle
dx

dt
= x, x(0) = x0.

Exercice 69. (4.4.5 Numérique)
Ecrire la méthode d’Euler pour trouver une solution approchée au problème de Cauchy, dans les

exemples suivants. On subdivise l’intervalle en 10 parties égales. On pourra faire le calcul à la main
ou avec son logiciel préféré.

a. x ′ = x + t, x(0) = 1, pas h = 0.1, on subdivise en 10 intervalles. Combien vaut x(1) ? et la vraie
solution ?
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b. x ′ =
x

1+ t
, x(0) = 2. Combien vaut x(1) ? Et la vraie solution ?

Exercice 70. (4.4.6 Numérique)

a. S’inspirer de l’annexe A pour écrire le schéma d’Euler d’une équation différentielle, par exemple
l’équation des lynx et des lapins.

d

dt

(
x

y

)
=

(
x(1− y)

y(1− x)

)

définie sur l’ouvert 2 > x > 0, 2 > y > 0.

b. Perturber un peu cette équation avec un petit terme comme

( (x−1)
2

)2
siny(

(y−1)
2

)2
cosy

 pour voir le résultat.

Exercice 71. (4.4.7) Soit I ⊂ R un intervalle et A : I → Mn(R) une application continue, soit

[t0, t1] ⊂ I un intervalle compact. Soit k = maxt∈[t0,t1] ∥A∥. On considère l’equation linéaire
dx

dt
=

A(t)x, x(t0) = x0. On considère l’opérateur de Picard qui défini une automorphisme affine continue de
C([t0, t1],Rn) par la formule Φx0(t)x = x0 +

∫t1
t0
A(u)x(u)du.

a. Montrer que ∥Φ(t)x−Φ(t)y∥ ⩽ k(t− t0)

b. Puis que ∥Φn(t)x−Φn(t)y∥ ⩽ kn
(t− t0)

n

n!
c. En déduire qu’il existe une puissance Φn0 de Φ qui soit 1/2 contractante, et que la solution au

problème de Cauchy est bien définie et unique sur tout l’intervalle I. On vérifiera qu’une fonction
est un point fixe de Φ si et seulement si c’est un point fixe de Φn0.

d. Même question si on ne suppose plus l’équation différentielle linéaire, mais seulement globalement
k lipschitzienne ; c’est à dire f : I× Rn → Rn et ∥f(t, x) − f(t, y)∥ ⩽ k|x− y|.

Exercice 72. (4.4.8) Sortie de tout compact.
Soit Ω ⊂ Rn et f : Ω→ Rn une fonction continue. Soit K ⊂ Ω un compact, et ε > 0. Montrer qu’il

existe un T (dépendant de ε et K) tel que pour toute donnée initiale x0 dans K, il existe une solution

ε approchée de l’équation différentielle
dx

dt
= f(x) telle que x(0) = x0 définie sur l’intervalle [0, T ]. On

suppose de plus que f est localement lipschitzienne. Démontrer que si x0 ∈ K, et x : [0, T [→ Ω est la
solution maximale du problème de Cauchy, soit t = +∞, soit T est fini et il existe un instant t1 tel
que si t > t1 x(t) /∈ K. Autrement dit x(t) sort de K et n’y revient jamais.

Exercice 73. (4.4.9) Convergence uniforme.
Soit X un ensemble et E, ∥.∥ un espace vectoriel normé complet (par exemple de dimension finie).

L’ensemble des fonctions bornées Fb(X, E) est un espace vectoriel. Si f ∈ Fb(X, E), on pose ∥f∥∞ =

sup
x∈X

∥f(x)∥

a. Montrer, que muni de cette norme, Fb(X, E) est un espace complet.

b. On suppose de plus que X est un espace topologique (par exemple un espace métrique) et on fixe
un point x0 ∈ X. Montrer que l’ensemble des fonctions discontinues en x0 est un ouvert, et que
l’ensemble des fonctions continues en x0 est un fermé.

c. Montrer que l’ensemble des fonctions continues bornées, muni de la norme ∥f∥∞ est un espace
complet.
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d. Soient fn une suite de fonctions continues et bornées sur X qui converge uniformément vers une
fonction. Montrer que cette fonctions est continue et bornée.

Exercice 74. (4.4.10) Dépendance par rapport à la condition initiale.
On veut étudier le comportement d’un système conservatif a un degré de liberté au voisinage de

sa position d’équilibre. Il satisfait l’équation différentielle

x ′′ = −f ′(x).

On suppose que f est de classe Cn, atteint un minimum non dégénéré en 0, et qu’on a un développement
limité

f ′(x) = ω2x+ a2x
2 + a3x

3 + · · ·+ anxn + o(xn)

On sait que, si x(t, h) est la valeur à l’instant t de la solution de l’équation telle que x(0, h) =

h, x ′(0, h) = 0, alors x est de classe Cn+1 par rapport à h et, comme x(t) = 0 on a

x(t, h) = x1(t)h+ · · ·+ xn(t)
hn

n!
+ hnη(t, h),

où les fonctions xi sont de classe Cn ainsi que η. Pour h fixé, et pour k = 1 ou 2.

x(k)(t, h) = x
(k)
1 (t)h+ · · ·+ x()k)n (t)

hn

n!
+ hnη(tk, h).

a. Quelle équation différentielle satisfont x1, x2 ? (on précisera les conditions initiales).

b. Résoudre ces équations.

c. Montrer qu’en général xk satisfait une équation différentielle linéaire dont le second membre est
un polynôme en x1, . . . .xk−1, et en déduire que xk est un quasi-polynôme.


