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Exercice 1. Soit n ∈ Z. Considérons l’anneau Z/nZ, et notons Z/nZ× le sous-ensemble des éléments
inversibles pour la loi de la multiplication sur Z/nZ.

a. Trouver deux entiers u, v ∈ Z tels que 15u+ 26v = 1.

b. Soit m ∈ Z un autre entier. Montrer que gcd(m,n) = 1 si et seulement s’il existe deux entiers
u, v ∈ Z tels que um+ vn = 1.

c. Montrer que Z/nZ× est un groupe.

Exercice 2. Le but de cet exercice est de montrer le théorème des restes chinois suivant : Soient m,n

deux entiers, et ϕ : Z/mnZ → Z/mZ × Z/nZ le morphisme de réduction défini par ϕ : x +mnZ 7→
(x+mZ, x+ nZ). Si (m,n) = 1, alors ϕ est un isomorphisme d’anneaux.

a. Montrer que ϕ est un homomorphisme d’anneaux.

b. Supposons que (m,n) = 1. Montrer que ϕ est injectif, et en déduire que ϕ est un isomorphisme
d’anneaux, et qu’il induit donc un isomorphisme de groupes (Z/mnZ)× → (Z/mZ)× × (Z/nZ)×.

c. Soient u, v ∈ Z satisfont um + vn = 1 et soient a, b ∈ Z des entiers arbitraires. Calculer l’image
de aum+ bvn dans Z/mZ× Z/nZ.

d. Trouver un entier x qui vérifie les conditions suivantes :
x ≡ 2 mod 3

x ≡ 1 mod 5

x ≡ 5 mod 7

Exercice 3. Dans cet exercice, on donne des applications du théorème des restes chinois.

a. Soit G un groupe abélien de type fini. Montrer qu’il existe une unique suite des entiers positifs
d1, d2, . . . telle que di divise di+1 pour tout i et

G =
∏
i

Z/diZ.

b. Soit n ∈ Z⩾1 avec la factorisation primaire n = pa1

1 · · ·pak

k , où ai ∈ Z⩾1 et pi sont des nombres
premiers avec pi ̸= pj si i ̸= j. Montrer qu’on a un isomorphisme d’anneaux

Z/nZ =
∏
i

Z/pai

i Z

c. Calculer l’ordre du groupe (Z/nZ)×.

d. Montrer que tout groupe abélien d’ordre 24 est isomorphe à l’un des trois groupes suivants :

Z/24Z, Z/2Z× Z/3Z× Z/4Z, (Z/2Z)3 × Z/3Z.

Pourquoi ces trois groupes ne sont-ils pas isomorphes ? Trouver les nombres di correspondants.

e. Combien y-a-il de classes d’isomorphisme des groupes abéliens d’ordre 104 ?

Exercice 4. Soient p ⩾ 3 un nombre premier, et e ⩾ 1 un entier. Le but de cet exercice est de montrer
que le groupe G = (Z/peZ)× est cyclique d’ordre (p− 1)pe−1.
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a. Soit a ≡ b mod pe. Montrer que ap ≡ bp mod pe+1.

b. Montrer que (1+ ap)p
e−2 ≡ 1+ ape−1 mod pe.

c. On fixe un a ∈ Z tel que p ∤ a. Trouver l’ordre de 1+ ap dans le groupe (Z/peZ)×.

d. On notera par H ∈ G le sous-groupe cyclique engendré par 1+ap. Montrer qu’on a un isomorphisme
de groupes G/H ∼= (Z/pZ)× ∼= Z/(p− 1)Z.

e. Soit x ∈ G tel que son image dans (Z/pZ)× soit un générateur. Montrer que x(1 + ap) est un
générateur de G.

Exercice 5.* Soit e ⩾ 2 un entier. On pose H = {x ∈ (Z/2eZ)×|x ≡ 1 mod 4}.

a. Montrer que 52
e−3 ≡ 1+ 2e−1 mod [2e].

b. Montrer que H est un groupe cyclique d’ordre 2e−2 et 5 ∈ H est un générateur de H.

c. Montrer que on a (Z/2eZ)× = H× Z/2Z.

Exercice 6.* Soit G un groupe fini. Une représentation de G est un homomorphisme ρ : G → Aut(V),
où V un espace vectoriel sur C de dimension finie.

On dit qu’un sous-espace W ⊂ V est invariant si il est invariant par rapport à tout les applications
ρ(g) où g ∈ G.

a. Montrer que pour tout espace invariant W il existe un sous-espace invariant supplémentaire W ′.

b. Montrer que si G est abélien il existe un sous-espace de V invariant de dimension 1.

c. Montrer que tout représentation de G est isomorphe à une somme de représentations de dimen-
sion 1.

Exercice 7. Expliciter tous les caractères pour les groupes

a. (Z/12Z)×

b. (Z/9Z)×.

c. Expliciter tous les caractères d’ordre 2 pour le groupe (Z/pnZ)×.

Exercice 8. Soient G un groupe abélien fini et Ĝ son groupe de caractères. Notons CG l’espace des
fonctions complexes sur G. Pour f ∈ CG, on définit sa transformée de Fourier f̂ ∈ CĜ par

f̂(χ) =
1

|G|

∑
x∈G

χ(x)f(x).

a. Montrer que pour toute f ∈ CG, on a

f(x) =
∑
χ∈Ĝ

f̂(χ)χ(x).

b. Montrer qu’on a une égalité ∑
x∈G

|f(x)|2 = |G|
∑
χ∈Ĝ

|f̂(χ)|2

c. Soit H ∈ G un sous-groupe de G et H⊥ ⊂ Ĝ est défini comme {χ ∈ Ĝ|χ(x) = 1 pour tout x ∈ H}.
Montrer que pour tout f ∈ CG ∑

x∈H

f(x) = |H|
∑
χ∈H⊥

f̂(χ)

.
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d. Montrer que f̂g = f̂ ∗ ĝ et f̂ ∗ g = |G|f̂ĝ. Ici f ∗ g(x) =
∑

y,z|y+z=x f(y)g(z) et la convolution des
fonctions f et g.

Exercice 9.

a. Montrer que (
a

p

)
= a

p−1
2 mod p

b. Caractériser les nombres premiers p modulo lesquels −1 est un carré.

c. Caractériser les nombres premiers p modulo lesquels 2 est un carré.

Exercice 10. Exprimer la condition que a premier avec p est un carré modulo pk, en termes de
symbole de Legendre.

Exercice 11. Sommes de Gauss. Soit p un nombre premier. On pose ζ une racine primitive p-ème
de l’unité, par exemple ζ = exp (2πi/p). Soit χ : (Z/pZ)× → C× un caractère. On étend χ en une
fonction sur Z/pZ en posant χ(0) = 0. Pour a ∈ Z/pZ on pose

τa(χ) =
∑

x∈Z/pZ

χ(x)ζax

et τ(χ) = τ1(χ). On appelle les τa(χ) des sommes de Gauss de χ.

a. Montrer que τa(χ) = χ̄(a)τ(χ) pour tout (a, χ) ̸= (0, ε) où ε est le caractère trivial.

b. Calculer τ(χ1)τ(χ2)/τ(χ1χ2) pour tout (χ1, χ2) tels que χ1χ2 ̸= ε.

c. Calculer τ(χ)τ(χ̄) pour tout χ ̸= ε.

d. Calculer |τ(χ)| pour tout χ ̸= ε.

e. Montrer que si χ(x) =

(
x

p

)
est le symbole de Legendre, alors on a τ(χ)2 = (−1)(p−1)/2p et en

déduire que

τ(χ) = ±

{ √
p si p ≡ 1 mod 4,

i
√
p si p ≡ 3 mod 4.

f. Soit q un nombre premier différent de p. Calculer τ(χ)q mod q avec la formule de binôme. En
déduire la loi de réciprocité :

(−1)

p− 1

2

q− 1

2

(
p

q

)(
q

p

)
= 1

g. Calculer
(

79

101

)
et
(
1877

3323

)
.

Exercice 12. (Somme de Gauss quartique). Soit p un nombre premier avec p ≡ 1 mod 4, et soit
χ : (Z/pZ)× → C× un caractère d’ordre 4. On pose

J =

p−2∑
t=1

(
1+ t

p

)
χ(t).

a. Montrer que
τ(χ)2 = Jτ(χ2)

.
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b. Montrer que J prend valeurs dans les nombres Gaussien Z[i] et que JJ̄ = p. En déduire que tout
nombre premier p avec p ≡ 1 mod 4 est une somme de deux carrées.

c. Montrer que tout nombre premier p avec p ≡ 3 mod 4 n’est pas une somme de deux carrés.

Exercice 13.

a. Montrer que pour tout k ∈ N, la série ∞∑
n=1

(lnn)k

ns

converge pour tout s ∈ R>1.

b. Montrer que pour tout x > 0 on a ∞∑
n=1

1

n2 + x2
<

π

2x

c. Montrer que ∞∑
n=1

∞∑
m=1

1

n2 +m4
<

π3

12

Exercice 14. (Séries d’Eisenstein). Soient τ ∈ C avec ℑm τ > 0, et s ∈ R>0.

a. Montrer que la série d’Eisenstein

E(s, τ) =
∑

(m,n) ̸=(0,0)

1

|m+ nτ|2s

converge absolument lorsque s > 1.

b. Montrer que pour tout k ∈ N la série d’Eisenstein

E2k(τ) =
∑

(m,n)̸=(0,0)

1

(m+ nτ)2k

définit bien une fonction holomorphe sur le demi-plan supérieur τ ∈ H = {z ∈ C|ℑm τ > 0}

c. Soit

(
a b

c d

)
∈ SL(2,Z) une matrice aux éléments entiers et déterminant 1. Calculer E

(
s,

aτ+ b

cτ+ d

)
et E2k

(
aτ+ b

cτ+ d

)
.

Exercice 15.* Considérons la fonction

f(z) =
π2

sin2 πz
−

∞∑
n=−∞

1

(z− n)2

a. Montrer que f est holomorphe sur C.

b. Montrer que f est bornée.

c. Calculer lim
ℑmz→∞ f(z).

d. En déduire que f = 0.

e. Montrer que

π cot(πz) =
1

z
+

∞∑
n=1

2z

z2 − n2
=

1

z
+

∞∑
n=1

(
1

z− n
+

1

z+ n

)
.
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f. Montrer que

sinπz = πz

∞∏
n=1

(1−
z2

n2
)

.

Exercice 16.* (Fonction ℘ de Weierstrass). Considérons la fonction

℘(z) =
1

z2
+

∑
(m,n)̸=(0,0)

1

(z+m+ nτ)2
−

1

(m+ nτ)2

a. Montrer que la série est convergente et que ℘ est une fonction holomorphe en dehors de l’ensemble
{m+ nτ|m,n ∈ Z}.

b. Calculer ℘(z+m+ nτ).

Exercice 17. Soit C l’ensemble des fonctions complexes définies sur N∗. Pour f, g ∈ C on pose

f ⋆ g(n) =
∑
d|n

f(d)g(n/d) =
∑

d1,d2|d1d2=n

f(d1)g(d2)

convolution multiplicative de f et g.

a. Montrer que la convolution est commutative et associative.

b. Trouver une fonction ε ∈ C telle que f ⋆ ε = f.

c. Décrire toutes fonctions f ∈ C inversibles par rapport à la convolution.

d. Monter que l’espace de fonctions multiplicatives est stable par rapport à la convolution.

e. Soit µ ∈ C la fonction telle que µ(n) = (−1)r si n = p1 · · ·pr est un produit de r nombres premiers
distincts, et µ(n) = 0 sinon. On appelle µ la fonction de Möbius. Calculer µ ⋆ 1. En déduire
l’inverse de la fonction µ par rapport à la convolution.

f. Soit φ ∈ C la fonction définie par φ(n) = #(Z/nZ)×. On appelle φ l’indicatrice d’Euler. Calculer∑
d|n φ(d).

g. Let g ∈ C. Trouver la fonction f ∈ C telle que g(n) =
∑

d|n f(d).

Exercice 18. On dit que f ∈ C est à croissance polynomiale, s’il existe un entier k tel que f(n) =

O(nk) lorsque n → ∞. On notera par C ′ ⊂ C l’espace de fonctions de croissance polynomiale.
Pour f ∈ C ′ on pose

L(s, f) =
∑
n

f(n)

ns
.

a. Montrer que C ′ est fermé par rapport à la convolution.

b. Montrer que L(s, f) est une fonction holomorphe pour ℜe(s) assez grand.

c. Exprimer L(s, f ⋆ g) en termes de L(s, f) et L(s, g).

d. Calculer L(s, µ) et L(s,φ) en termes de ζ(s) = L(s, 1), ou φ est l’indicatrice d’Euler et µ - la
fonction de Möbius.

Exercice 19. La fonction de Liouville λ ∈ C ′ est une fonction strictement multiplicative définie par
λ(p) = −1 pour tout p premiers.

a. Calculer
∑

d|n λ(d).
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b. Exprimer L(s, λ) en termes de la fonction zêta et comme un produit infini.

Exercice 20. Soit k ∈ N un nombre naturel et soit σk(n) la somme de k-èmes puissances de diviseurs
de n

σk(n) =
∑
d|n

dk.

Exprimer la série de Dirichlet L(s, σk) en termes de la fonction zêta.

Exercice 21.

a. Exprimer la somme ∑
m,n∈N2

(m,n)=1

1

m2n2

en termes de la fonction zêta.

b. La même question pour la somme

∞∑
m1,...,mk∈Nk

(m1,...,mk)=1

1

ms1
1 · · ·msr

r

Exercice 22.
Soit Jk(n) est le nombre de k-tuplets d’entiers positifs n1, . . . , nk inférieurs à n tels que
(n1, . . . , nk, n) = 1.

a. Exprimer Jk(n) en termes de diviseurs premiers de n.

b. Calculer
∑

d|n Jk(n).

c. Calculer la série de Dirichlet L(s, Jk).

Exercice 23. La fonction Λ de von Mangoldt est définie par

Λ(n) =

{
lnp si n = pa

0 sinon

Montrer que pour une fonction f strictement multiplicative

L(s, f) ′

L(s, f)
= −L(s,Λf).

Exercice 24. Formule de Perron. Calculer les intégrales

a.
1

2πi

∫ c+i∞
c−i∞ L(s, f)xs

ds

s
,

b.*
1

2πi

∫ c+i∞
c−i∞

ζ ′(s)

ζ(s)
xs
ds

s
.

pour x ∈ R>0 et c assez grand afin que l’intégrale converge.

Exercice 25.* Les nombres de Bernoulli Bk sont défini par le développement

z

ez − 1
=

∞∑
k=0

Bk

k!
zk
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a. Calculer B0, B1 B2, B4 et Bk pour k > 1 impaires.
b. Trouver le développement en série de Taylor de la fonction.

f(z) = πz cotπz.

c. Exprimer ζ(2k), k = 1, 2, . . . en termes de nombres de Bernoulli.
d.* Utilisant l’équation fonctionnelle ζ∗(s) = ζ∗(1− s) où

ζ∗(s) = π−s/2Γ(s/2)ζ(s) = ζ(s)

∫∞
−∞ e−πt2 |t|s−1dt

exprimer ζ(−k), k = 1, 2, . . . en termes de nombres de Bernoulli. En particulier calculer ζ−1.
e. Exprimer Sm(n) =

∑n
i=0 i

m en termes de nombres de Bernoulli. Indication : Utiliser la formule
d’Euler-Maclaurin :

1

e
∂
∂x − 1

f(z) =

∞∑
k=0

Bk

k!
f(k−1)(z),

où f(−1)(z) :=
∫z

0
f(t)dt.

Exercice 26.

a. Trouver le domaine de divergence simple de la série

η(s) =

∞∑
n=1

(−1)n+1

ns

b. Exprimer η(s) en termes de la fonction ζ.
c. Trouver le résidu Res

s=1
ζ(s)ds.

Exercice 27.* Trouver la série de Taylor pour la série d’Eisenstein

E2k(q) =
∑

m,n ̸=(0,0)

1

(m+ nτ)2k
,

où q = e2πiτ.

Exercice 28. Trouver le résidu Res
s=1

L(s, χ)ds, où χ est un caractère de Dirichlet

a. non-trivial
b. trivial
modulo N.

Exercice 29. Trouver les limites

lim sup
N→∞

φ(N)

N
et lim inf

N→∞
φ(N)

N

où φ est l’indicatrice d’Euler.

Exercice 30.* Calculer l’intégrale
∫∞
1

{x}

x2
dx, où {x} est la partie fractionnelle de x. Exprimer le résultat

en termes de la constante d’Euler-Mascheroni

γ = lim
n→∞

n∑
k=1

1

k
− lnn ≈ 0.5772

Exercice 31.* Trouver le produit infini ∞∏
n=1

(1− zn)µ(n)/n.
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Reponses :

2. c : (a,b) ; d : 26.


