Année 2025-2026
Mathématiques L3 (S6). Méthodes analyiques en arithmétique Mis a jour le 27 janvier 2026.

Exercice 1. Soit n € Z. Considérons ’anneau Z/nZ, et notons Z/nZ* le sous-ensemble des éléments
inversibles pour la loi de la multiplication sur Z/nZ.

Trouver deux entiers u,v € Z tels que 15u + 26v = 1.

Soit m € Z un autre entier. Montrer que gcd(m,n) = 1 si et seulement s’il existe deux entiers
u,v € Z tels que um+wvn = 1.

c. Montrer que Z/n7Z* est un groupe.
Exercice 2. Le but de cet exercice est de montrer le théoréme des restes chinois suivant : Soient m,n

deux entiers, et ¢ : Z/mnZ — Z/mZ x Z/nZ le morphisme de réduction défini par ¢ : x + mnZ —
(x + mZ,x +nZ). Si (m,n) =1, alors ¢ est un isomorphisme d’anneaux.

a. Montrer que ¢ est un homomorphisme d’anneaux.

b. Supposons que (m,n) = 1. Montrer que ¢ est injectif, et en déduire que ¢ est un isomorphisme
d’anneaux, et qu’il induit donc un isomorphisme de groupes (Z/mnZ)* — (Z/mZ)* x (Z/nZ)*.

c. Soient u,v € Z satisfont um +vn = 1 et soient a,b € Z des entiers arbitraires. Calculer I'image
de aum + bvn dans Z/MZ X Z/Nn7Z.

d. Trouver un entier x qui vérifie les conditions suivantes :

2 mod 3
1 mod>5
5 mod?7

X
X
X

Exercice 3. Dans cet exercice, on donne des applications du théoréme des restes chinois.

a. Soit G un groupe abélien de type fini. Montrer qu'’il existe une unique suite des entiers positifs
dy, dy, ... telle que d; divise d;,; pour tout i et

G=]]z/dz.

b. Soit n € Z.; avec la factorisation primaire n = p{'---py*, ot a; € Z; et p; sont des nombres
premiers avec p; 7 p; si i # j. Montrer qu’on a un isomorphisme d’anneaux

Z/nZ=]]Z/piZ

Calculer l'ordre du groupe (Z/nZ)*.

d. Montrer que tout groupe abélien d’ordre 24 est isomorphe a 1'un des trois groupes suivants :
7)247, 7.)27 x 7./37 x ZJAZ, (Z/27)* x Z./3Z.

Pourquoi ces trois groupes ne sont-ils pas isomorphes ? Trouver les nombres d; correspondants.

e. Combien y-a-il de classes d’isomorphisme des groupes abéliens d’ordre 10*?

Exercice 4. Soient p > 3 un nombre premier, et e > 1 un entier. Le but de cet exercice est de montrer
que le groupe G = (Z/p°Z)* est cyclique d’ordre (p — 1)p¢".
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a. Soit a =b mod p°. Montrer que a? = b? mod p¢*'.

b. Montrer que (1+ap)” =1+ ap®' mod p".

c. On fixe un a € Z tel que p { a. Trouver 'ordre de 1+ ap dans le groupe (Z/p°Z)*.

d. On notera par H € G le sous-groupe cyclique engendré par 1+ap. Montrer qu’on a un isomorphisme

de groupes G/H = (Z/pZ)* = Z/(p — 1)Z.

e. Soit x € G tel que son image dans (Z/pZ)* soit un générateur. Montrer que x(1 4 ap) est un
générateur de G.

Exercice 5% Soit e > 2 un entier. On pose H = {x € (Z/2°Z)*|x =1 mod 4}.

a. Montrer que 5 ° =1+ 2" mod [2¢].

b. Montrer que H est un groupe cyclique d’ordre 262 et 5 € H est un générateur de H.

c. Montrer que on a (Z/2°7Z)* = H x Z/27.

Exercice 6% Soit G un groupe fini. Une représentation de G est un homomorphisme p : G — Aut(V),

ol V un espace vectoriel sur C de dimension finie.
On dit qu’un sous-espace W C V est invariant si il est invariant par rapport a tout les applications

p(g) ou g € G.
Montrer que pour tout espace invariant W il existe un sous-espace invariant supplémentaire W'.
Montrer que si G est abélien il existe un sous-espace de V invariant de dimension 1.

c. Montrer que tout représentation de G est isomorphe a une somme de représentations de dimen-
sion 1.

Exercice 7. Expliciter tous les caractéres pour les groupes
a. (Z/127)*
b. (Z/97)*.

c. Expliciter tous les caractéres d’ordre 2 pour le groupe (Z/p"Z)*.

Exercice 8. Soient G un groupe abélien fini et G son groupe de caractéres. Notons C® 1'espace des
fonctions complexes sur G. Pour f € CS, on définit sa transformée de Fourier fecst par

00 = g X X0IfLx)

a. Montrer que pour toute f € C®, on a

fx) = ¥ fooxx).

xe6

b. Montrer qu’on a une égalité

> P =161 )Y Hx)P

x€G xeG
c. Soit H € G un sous-groupe de G et H+ C G est défini comme {x € Glx(x) = 1 pour tout x € H}.

Montrer que pour tout f € C©
3t =H Y fix)

x€H xEHL
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—

d. Montrer que ng = fxget fxg =|Gfg. Ici f*g(x) = 2y yiz— T(Y)g(z) et la convolution des
fonctions f et g.

Exercice 9.

a. Montrer que

a p—1
—]=a7z modp
)

b. Caractériser les nombres premiers p modulo lesquels —1 est un carré.
c. Caractériser les nombres premiers p modulo lesquels 2 est un carré.

Exercice 10. Exprimer la condition que a premier avec p est un carré modulo p*, en termes de
symbole de Legendre.

Exercice 11. Sommes de Gauss. Soit p un nombre premier. On pose ( une racine primitive p-éme
de 'unité, par exemple ( = exp (27i/p). Soit x : (Z/pZ)* — C* un caractére. On étend x en une
fonction sur Z/pZ en posant x(0) = 0. Pour a € Z/pZ on pose

et T(x) = T1(x). On appelle les t,(x) des sommes de Gauss de ¥.
Montrer que t.(x) = Xx(a)t(x) pour tout (a,x) # (0, ¢) ot € est le caractére trivial.

a
b. Calculer T(x1)t(x2)/T(X1X2) pour tout (x1,Xx2) tels que x1x2 # e.
Calculer t(x)t(X) pour tout x # e.

& o

Calculer |t(x)| pour tout x # €.

e. Montrer que si x(x) = (g) est le symbole de Legendre, alors on a t(x)?> = (—1)?"V/2p et en

déduire que

VPsip=1 mod 4,
==+
™) {i Bsip=3 mod 4.

f. Soit q un nombre premier différent de p. Calculer t(x)9 mod q avec la formule de bindéme. En
déduire la loi de réciprocité :

p—1qg—1

S )

79 1877
g. Calculer (m) et (ﬁ)

Exercice 12. (Somme de Gauss quartique). Soit p un nombre premier avec p = 1 mod 4, et soit
X : (Z/pZ)* — C* un caractére d’ordre 4. On pose

P—2
=3 ()

t=1

a. Montrer que
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b. Montrer que | prend valeurs dans les nombres Gaussien Z[i] et que ]T = p. En déduire que tout
nombre premier p avec p =1 mod 4 est une somme de deux carrées.

c. Montrer que tout nombre premier p avec p =3 mod 4 n’est pas une somme de deux carrés.

Exercice 13.

a. Montrer que pour tout k € N, la série

= (Inn)k
Z nS
n=I1
converge pour tout s € R.;.

b. Montrer que pour tout x >0 on a

c. Montrer que

Exercice 14. (Séries d’Eisenstein). Soient T € C avec Jm 7 > 0, et s € R.o.
a. Montrer que la série d’Eisenstein
E(s,T) = E 1
T Im + ntj?s
(m,n)#(0,0)

converge absolument lorsque s > 1.

b. Montrer que pour tout k € N la série d’Eisenstein
1
Ex(T) = —_
(m,n)#(0,0)

définit bien une fonction holomorphe sur le demi-plan supérieur T € H = {z € C|IJm 7 > 0}

a'r+b)

: b : : :
c. Soit S € SL(2,7Z) une matrice aux éléments entiers et déterminant 1. Calculer E (s, i d

Montrer que f est holomorphe sur C.
Montrer que f est bornée.

c. Calculer lim f(z).
Jmz—oo

d. En déduire que f = 0.

e. Montrer que

1 =z 2z 1 = 1 1
t(nz) = - = = .
meot(nz) z+;zz—n2 z+;(z—n+z+n)
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f. Montrer que

s1n7rz—7rzH (1——

Exercice 16* (Fonction p de Weterstrass). Considérons la fonction

1 1 1
plz) = ;Jr(m%m (z+m+nt)? (m+nt)?

a. Montrer que la série est convergente et que p est une fonction holomorphe en dehors de ’ensemble
{m+ntm,n € Z}.

b. Calculer p(z + m + nT).

Exercice 17. Soit C I’ensemble des fonctions complexes définies sur N*. Pour f,g € C on pose

fxg(n Zf g(n/d) = Z f(di)g(dz)

dn dq,dzldida=n

convolution multiplicative de f et g.
a. Montrer que la convolution est commutative et associative.
b. Trouver une fonction ¢ € C telle que fx ¢ = f.

Décrire toutes fonctions f € C inversibles par rapport a la convolution.

o

o

Monter que 'espace de fonctions multiplicatives est stable par rapport a la convolution.

e. Soit pu € C la fonction telle que n(n) = (—1)" sin = p; - - - p, est un produit de r nombres premiers
distincts, et u(n) = O sinon. On appelle u la fonction de Mébius. Calculer u+ 1. En déduire
I’inverse de la fonction p par rapport a la convolution.

f. Soit ¢ € C la fonction définie par @(n) = #(Z/n7Z)*. On appelle ¢ l"indicatrice d’Euler. Calculer

Zd\n
g. Let g € C. Trouver la fonction f € C telle que g(n) =} ,, f

Exercice 18. On dit que f € C est & croissance polynomazale, s’il existe un entier k tel que f(n) =
O(n*) lorsque n — co. On notera par C’ C C 'espace de fonctions de croissance polynomiale.
Pour f € C’ on pose

Lis, =Y fln)

ns
n

a. Montrer que C’ est fermé par rapport a la convolution.

b. Montrer que L(s, f) est une fonction holomorphe pour Re(s) assez grand.

c. Exprimer L(s,f*g) en termes de L(s,f) et L(s,g).

d. Calculer L(s,u) et L(s,@) en termes de ((s) = L(s,1), ou ¢ est 'indicatrice d’Euler et p - la

fonction de Mobius.

Exercice 19. La fonction de Liouuville A € C’ est une fonction strictement multiplicative définie par
A(p) = —1 pour tout p premiers.

a. Calculer } ,; A(d)
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b. Exprimer [(s,A) en termes de la fonction zéta et comme un produit infini.

Exercice 20. Soit k € N un nombre naturel et soit o,(n) la somme de k-émes puissances de diviseurs

ox(n) = Z d.

dn

den

Exprimer la série de Dirichlet L(s, 0y) en termes de la fonction zéta.

Exercice 21.

a. Exprimer la somme

1
2

m,neN?
(myn):]
en termes de la fonction zéta.
b. La méme question pour la somme
o0
1

Z ms1 mff

mi,...,my Nk L
(M yeeeymye)=1

Exercice 22.
Soit Jx(n) est le nombre de k-tuplets d’entiers positifs n;,...,ny inférieurs a n tels que
(ny,...,ny,n) =1.

a. Exprimer Ji(n) en termes de diviseurs premiers de n.
b. Calculer } . Jx(n).

c. Calculer la série de Dirichlet L(s, Jy).

Exercice 23. La fonction A de von Mangoldt est définie par

Inp sin=p¢
A =
(n) { 0 sinon

Montrer que pour une fonction f strictement multiplicative

L(s,f)’
= —L(s, Af).
L(S, f) (S) )
Exercice 24. Formule de Perron. Calculer les intégrales
1 c+ioo ds
_ L(s. f)x*—
|t e

ﬁ c—ioo C(S) ?

pour x € R., et c assez grand afin que 'intégrale converge.

b* 1 Jchioo C/(S) SdS

Exercice 25% Les nombres de Bernoulli By sont défini par le développement

z _OoBkk
ez — 1 _kZ_O K Z
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a. Calculer By, By By, B4 et By pour k > 1 impaires.

Trouver le développement en série de Taylor de la fonction.
f(z) = mzcot mz.

c. Exprimer ((2k), k =1,2,... en termes de nombres de Bernoulli.

d* Utilisant ’équation fonctionnelle (*(s) = (*(1 —s) ou

C(s) = 2T (s/2)Ls) = as)J et

exprimer C(— ) k=1,2,... en termes de nombres de Bernoulli. En particulier calculer (—1.
e. BExprimer S, = Y ' ,i™ en termes de nombres de Bernoulli. Indication : Utiliser la formule
d’ Euler-l\/[aclaurln :
2=y B
— k!

edx — 1
o f- =[5 1l
Exercice 26.

a. Trouver le domaine de divergence simple de la série

b. Exprimer n(s) en termes de la fonction (.

c. Trouver le résidu Rgs ((s)ds

Exercice 27*% Trouver la série de Taylor pour la série d’Eisenstein

1
Ex(q) = Z T
n00) (m+ nT)

otl q = e,
Exercice 28. Trouver le résidu R_es L(s,x)ds, oit X est un caractére de Dirichlet
a. non-trivial N

b. trivial

modulo N.

Exercice 29. Trouver les limites
©(N)

N
lim sup o(N) et liminf

N—oo N—oo

ou ¢ est 'indicatrice d’Euler.

Exercice 30% Calculer l'intégrale J lzdx, ou {x} est la partie fractionnelle de x. Exprimer le résultat
pe

1
en termes de la constante d’Euler-Mascheroni
=
= lim — —Ilnn ~0.5772
Y= ; K

Exercice 31*% Trouver le produit infini
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Reponses :

2. c:(ab);d: 26



