
INRIA - CNRS Alsace delegation

Training augmented interpolation

FONSECA HINCAPIÉ Diana Sol Angel

STAGE M1 CSMI

Supervisors:

M.FRANCK Emmanuel

M.NAVORET Laurent



Contents

1 Objectives 3

2 Introduction 4

3 General context 5

4 Theoretical Framework 5
4.1 Transport equations . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Lagrange interpolation . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Semi-Lagrangian Scheme . . . . . . . . . . . . . . . . . . . . . . . 5
4.4 Augmented Interpolation . . . . . . . . . . . . . . . . . . . . . . 7

4.4.1 Deep Lagrange interpolation with PINNs . . . . . . . . . 7
4.5 PINNs for solving PDEs . . . . . . . . . . . . . . . . . . . . . . . 8
4.6 Supervised and unsupervised learning . . . . . . . . . . . . . . . 8

4.6.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . 8
4.6.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . . 8

4.7 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.7.1 Multi Layer Perceptron (MLP) . . . . . . . . . . . . . . . 9
4.7.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 10
4.7.3 Activation functions . . . . . . . . . . . . . . . . . . . . . 11
4.7.4 Universal Approximation Theorem . . . . . . . . . . . . . 11

4.8 Physics Informed Neural Networks . . . . . . . . . . . . . . . . . 11
4.8.1 The Loss Function . . . . . . . . . . . . . . . . . . . . . . 12
4.8.2 Parametric PINNs . . . . . . . . . . . . . . . . . . . . . . 13
4.8.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.8.4 Convergence analysis . . . . . . . . . . . . . . . . . . . . . 14

5 Implementation 15
5.0.1 Neural Network Class . . . . . . . . . . . . . . . . . . . . 15
5.0.2 Parameters class . . . . . . . . . . . . . . . . . . . . . . . 15
5.0.3 Network class . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.0.4 Optimization step . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Semi-Lagrangian solver . . . . . . . . . . . . . . . . . . . . . . . . 17

1



6 Results 18
6.1 Finding uθ using PINNs . . . . . . . . . . . . . . . . . . . . . . . 18

6.1.1 Unsupervised learning . . . . . . . . . . . . . . . . . . . . 19
6.1.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . 20
6.1.3 Supervised and unsupervised learning . . . . . . . . . . . 21

6.2 Semi-Lagrangian solver using deep interpolation . . . . . . . . . 23
6.2.1 Interpolation of order 1 . . . . . . . . . . . . . . . . . . . 23
6.2.2 Interpolation of order 3 . . . . . . . . . . . . . . . . . . . 30

6.3 Average gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Conclusions 37

2



1 Objectives

We are interested in solving simple transport equations. The goal of work is to
increase the accuracy of the method by using a prediction of the solution learnt
using a PINN method. For this we implement the Semi-Lagrangian scheme and
a simple case of deep interpolation where we approximate the solution of our
transport equation by training a physics informed neural network. We used a
machine learning framework like PyTorch to implement PINNs.

3



2 Introduction

The focus of the internship was on solving simple transport equations using deep
learning techniques, specifically Physics-Informed Neural Networks (PINNs).I
will start by discussing the importance of solving transport equations numeri-
cally and the role of neural networks in this process.

Then, I will provide a theoretical framework for understanding the Semi-
Lagrangian scheme with augmented interpolation and PINNs. In the imple-
mentation section I will describe the code developed.

In the results section I will present the outcomes of the PINNs strategy
including the results of unsupervised and supervised learning approaches and
it’s implementation in the Semi-Lagrangian scheme.

Finally, I will draw conclusions based on the findings and discuss the impli-
cations of the work.

4



3 General context

The internship project was supervised by Emmanuel Franck and Laurent Na-
voret researchers on the development of numerical methods to solve partial
differential equations for the simulation of physical phenomena from the Na-
tional Institute for Research in Digital Science and Technology (INRIA) which
is a leading research institution focused on computer science, applied mathe-
matics, and control theory and the University team ‘Modeling and Control’ of
the IRMA laboratory. The work is done in collaboration with both institutions.

4 Theoretical Framework

In order to provide a solid conceptual foundation, this section provides the the-
oretical framework that allows to understand the context and the fundamental
concepts of the work carried out.

4.1 Transport equations

We are particularly interested in solving the following transport equation:{
∂tu+ a∂xu = 0

u(t = 0, x) = u0(x, µ)

With µ a parameter of the equation, and the velocity of the transport.

This equation has an analytical solution:

u(t, x) = u0(x, x− at)

4.2 Lagrange interpolation

We choose n points inside (x1, . . . , xm). The Lagrange interpolation operator is
defined as it follows:

Im
h (f)(x) =

m∑
i=1

f (xi)Pi(x).

with Pi (xj) = δij .

4.3 Semi-Lagrangian Scheme

The semi-Lagrangian scheme is a numerical method to solve transport equations.
It is based on the following idea for the 1D case.

First to allow long time-steps, we construct the numerical domain of depen-
dence to contain the physical domain of dependence.

5



We have an uniform grid for space [x1, . . . xN ] and one for the time [t1, ..tn]
with ∆t = ti+1 − ti and h = ∆x = xi+1 − xi.
The numerical solution can be computed using the following scheme

u (tn+1, xj) = u (tn, xj − a∆t) = u(tn+1, x∗).

Figure 1: Semi-Lagrangian Scheme

With x∗ = xj − a∆t but we can clearly see that our x∗ is not a point of our
mesh and consequently we cannot know u (tn, xi − a∆t). Is at this point that
we make use of the following scheme.

u (tn+1, xi) = Im
h (u (tn, xi)) (xi − a∆t) .

And introduce an approximated solution un
j where:

un+1
i = Im

h ((un
j )j)(xi − a∆t)

Where we interpolate u at time n+1 from the n-closest points at time n and
onto x∗, using our Lagrange interpolation operator described before Im

h uses
the n points around (xi − a∆t).

Figure 2: N-closest points for interpolation

Such a procedure is called Semi-Lagrangian because the discrete solution is
given on an Eulerian fixed mesh, but on the other hand the scheme relies on the
construction of u (tn, xj − a∆t) which is used to approximate u (tn+1, xj).

6



Figure 3: Different interpolation options

4.4 Augmented Interpolation

The deep Lagrange interpolation operator is defined as follows:

Im
d (f) =

n∑
i=1

f (xi)

upred (xi)
Pi(x)upred(x).

Where upred is the prediction of u and with Pi (xj) = δij
Using this choice, we obtain that Id(f) (xi) = f (xi) as the classical Lagrange

interpolation operator.

4.4.1 Deep Lagrange interpolation with PINNs

We will consider a specific case of the deep interpolation:

Im
d (f) = Im

(
f

uθ

)
upred(x)

This interpolation will be better than the classical one if f
uθ

≈= 1 since we have
the following error on the interpolation:

∥f − Im
d (f)∥Hm ≤ Chm+1

∥∥∥∥∥
(

f

uθ

)′′
∥∥∥∥∥
L2

∥f∥Hm .

Hence, the interpolation error will be smaller if uθ is good approximation of
the true solution

Now the question is how choose uθ(x). We propose to use a neural network
which will approximate the uθ(x) function.

uθ(x, t, µ, σ, a).

We will train these neural networks with a Physics Informed Neural
Network strategy, and we will use the previous interpolation to approximate
the solution of the PDE.

7



4.5 PINNs for solving PDEs

In this project we were particularly interested in approximating the uθ function,
which is the solution of the following PDE:

Advection Equation{
∂u
∂t + a∂u

∂x = 0 (x, t) ∈ Ω× (0, T )

u(x, t = 0) = u0(x) x ∈ δΩ
(1)

The problem (1) represents a wave propagating with a constant velocity a with
an unchanged shape and has an analytical solution equal to:

u(t, x) = u0(x, x− at)

We have an initial conditions u0 that we will be using:

Gaussian distribution

Defined as it follows:

u0 = exp

(
− (x− µ)2

σ

)

with µ the mean and σ the variance of the Gaussian distribution.

4.6 Supervised and unsupervised learning

4.6.1 Supervised learning

Supervised learning is a subcategory of machine learning and artificial intelli-
gence. It is defined by its use of labeled datasets to train algorithms that to
classify data or predict outcomes accurately. As input data is fed into the model,
it adjusts its weights until the model has been fitted appropriately, which occurs
as part of the cross validation process. Supervised learning uses a training set to
teach models to yield the desired output. This training dataset includes inputs
and correct outputs, which allow the model to learn over time. The algorithm
measures its accuracy through the loss function, adjusting until the error has
been sufficiently minimized.

4.6.2 Unsupervised learning

Unsupervised learning uses machine learning algorithms to analyze and cluster
unlabeled datasets. These algorithms discover hidden patterns or data group-
ings without the need for human intervention. Its ability to discover similarities
and differences in information make it the ideal solution for exploratory data
analysis, cross-selling strategies, customer segmentation, and image recognition.

8



In our context we will be interested in both supervised and unsupervised
learning. We will use unsupervised learning to train the neural networks without
knowing the solution and supervised learning to learn from the data calculated
based on the exact solution of the PDE.

4.7 Neural Networks

Neural networks process training data by mimicking the interconnectivity of the
human brain through layers of nodes, each node is made up of inputs, weights,
a bias (or threshold), and an output. If that output value exceeds a given
threshold, it “fires” or activates the node, passing data to the next layer in
the network. Neural networks learn this mapping function through supervised
learning, adjusting based on the loss function through the process of gradient
descent. When the cost function is at or near zero, we can be confident in the
model’s accuracy to yield the correct answer.

They are basically functions that map an inputX to an output Y by perform-
ing successive linear and nonlinear transformations. The linear transformations
are represented by a set of weights W and biases b and the nonlinear trans-
formations are represented by activation functions σ. The output of a neural
network is given by:

uθ(X) = Wnσn−1(Wn−1σn−2(...(W2(W1X + b1) + b2) + ..) + bn−1) + bn

Figure 4: Neural Network Architecture — Source: IBM Cloud Education

4.7.1 Multi Layer Perceptron (MLP)

A Multilayer Perceptron has input and output layers, and one or more hidden
layers with many neurons stacked together. And while in the Perceptron the
neuron must have an activation function that imposes a threshold, like ReLU
or sigmoid, neurons in a Multilayer Perceptron can use any arbitrary activation
function. Multilayer Perceptron falls under the category of feedforward algo-
rithms, because inputs are combined with the initial weights in a weighted sum
and subjected to the activation function, just like in the Perceptron. But the
difference is that each linear combination is propagated to the next layer. Each

9



layer is feeding the next one with the result of their computation, their internal
representation of the data. This goes all the way through the hidden layers
to the output layer. But it has more to it. If the algorithm only computed
the weighted sums in each neuron, propagated results to the output layer, and
stopped there, it wouldn’t be able to learn the weights that minimize the cost
function. If the algorithm only computed one iteration, there would be no actual
learning.

Figure 5: Multi Layer Perceptron — Source: Multilayer Perceptron Explained
with Real-Life Example and Python

4.7.2 Backpropagation

Backpropagation is a learning mechanism that allows the Multilayer Perceptron
to iteratively adjust the weights in the network, with the goal of minimizing the
cost function. There is one hard requirement for backpropagation to work prop-
erly. The function that combines inputs and weights in a neuron, for instance
the weighted sum, and the threshold function, for instance ReLU, must be dif-
ferentiable. These functions must have a bounded derivative, because Gradient
Descent is typically the optimization function used in MultiLayer Perceptron.
In each iteration, after the weighted sums are forwarded through all layers, the
gradient of the Mean Squared Error is computed across all input and output
pairs. Then, to propagate it back, the weights of the first hidden layer are up-
dated with the value of the gradient. That’s how the weights are propagated
back to the starting point of the neural network

Then we get the following infographic that shows the whole process of a
Multilayer Perceptron with feedforward and backpropagation:

10



Figure 6: Multi Layer Perceptron and Backpropagation - — Source: Multilayer
Perceptron Explained with Real-Life Example and Python

4.7.3 Activation functions

The activation function that we choose for out neural network has an impact or
its training. There are many commonly used activation functions like Sigmoid,
Tanh, ReLU, we usually use the infinitely differentiable hyperbolic tangent ac-
tivation function tanh(x) that is perfect for PINN. The regularity of PINNs
can be ensured by using smooth activation functions like as the sigmoid and
hyperbolic tangent, allowing estimations of PINN generalization error to hold
true

4.7.4 Universal Approximation Theorem

The representational ability of neural networks is well established. According
to the universal approximation theorem: The universal approximation theorem
states that any continuous function

f : [0, 1]n → [0, 1]

can be approximated arbitrarily well by a neural network with at least 1 hidden
layer with a finite number of weights. Even if neural networks can express very
complex functions compactly, determining the precise parameters (weights and
biases) required to solve a specific PDE can be difficult.

4.8 Physics Informed Neural Networks

Physics-informed neural networks (PINNs) are a type of universal function ap-
proximators that can embed the knowledge of any physical laws that govern a
given data-set in the learning process, and can be described by partial differen-
tial equations (PDEs).

11



They approximate PDE solutions by training a neural network to minimize
a loss function; it includes terms reflecting the initial and boundary conditions
along the space-time domain’s boundary and the PDE residual at selected points
in the domain (called collocation point). They are deep-learning networks that,
given an input point in the integration domain, produce an estimated solution
in that point of a differential equation after training. Incorporating a residual
network that encodes the governing physics equations is a significant novelty
with PINNs.

The basic concept behind PINN training is that it can be thought of as an
unsupervised strategy that does not require labelled data, such as results from
prior simulations or experiments. It works by integrating the mathematical
model into the network and reinforcing the loss function with a residual term
from the governing equation, which acts as a penalizing term to restrict the
space of acceptable solutions.

4.8.1 The Loss Function

Using the PINNs approach we determine the parameters θ of the NN, uθ, by
minimizing the loss function:

θ = argminθL(θ)

Where the loss function is defined as:

L(θ) = Ldata(θ) + Lphysics(θ) + LSBC(θ) + LTBC(θ) + LIC(θ)

Data Loss

The data loss is the mean square error between the NN output and the validation
of known data points, it employs the data points to train the NN, so it’s a
supervised learning approach. The NN parameters are chosen by minimizing
the difference between the observed outputs and the model’s predictions for the
observed inputs.

Ldata(θ) =

N∑
i=1

|uθ(xi, ti)− uexact(xi, ti)|2

Residual Loss

The residual loss is the mean square error between the NN output and the
PDE residual. The PDE residual is the left-hand side of the PDE, which is
computed using the automatic differentiation of the NN. It represents the loss
produced by the mismatch with the governing physics laws defined by the PDE,
it enforces the NN to satisfy the PDE at the collocation points, which can be
chosen uniformly or unevenly over the domain

Lphysics(θ) = |PDE(uθ(xi, ti))|2

12



Periodic Boundary Conditions and Initial Condition Loss

Periodic boundary conditions in the space domain are defined as it follows:

LSBC =

N∑
i=1

|uθ(xmin, ti)− uθ(xmax, ti)|2

Periodic boundary conditions in the time domain are defined as it follows:

LTBC =

N∑
i=1

|uθ(xi, tmin)− uθ(xi, tmax)|2

And finally, the initial condition is defined as it follows:

LIC =

N∑
i=1

|uθ(xi, tmin)− u0(xi)|2

Where u0 is the initial condition function.

The loss function is minimized using the Adam optimizer, which is an exten-
sion to stochastic gradient descent that has recently seen broader adoption for
deep learning applications in computer vision and natural language processing.

The physics constraints are included in the loss function to enforce model
training, which can accurately reflect latent system nonlinearity even when
training data points are scarce.

When solving PDEs using a numerical discretization technique, we are in-
terested in the numerical method’s stability, consistency, and convergence prop-
erties.

4.8.2 Parametric PINNs

PINNs can predict the variation in the solution for a range of parameters such
as velocity, density, geometry, conductivity in our case the parameters are the
mean µ and the variance σ for the Gaussian distribution and the amplitude A for
the rectangular function, both of which are considered as the initial conditions
of the PDE. By introducing them as features in the training data set, compared
to conventional numerical solvers where each parameter needs a separate simu-
lation and may require complex algorithms The idea is to add the parameter as
another feature into the training data set such that each parameter has its own
set of sampled points in the spatio-temporal domain.

13



4.8.3 Methodology

In our context t and x represent the time and space domains, we will train a
neural network to approximate the solution of the PDE for all the discretization
points in our domain at each time step by a multilayer feedforward neural net-
work, we can do this by minimizing the error of the PDE in a certain number
of points inside our domain.

We are going to represent our neural network by uθ then we define our
initial condition as u0 and our boundary condition as ub then we define our uθ
as follows:

uθ(x, t, β) = u0(x) + bc(x)u
NN
θ (x, t)

We assume then that:

uβ(x, t, θ) ≈ u(x, t)

Where β is the set of parameters we want to optimize in order to minimize
the error of the solution given by our neural network. It may seem strange to
define the partial derivative of a neural network, but since the neural network’s
activation function is smooth and differentiable in our case we will be u using
the Tanh activation function, we can derive it using automatic differentiation
for any values of x and t.

We look to minimize θ in order to minimize the error of our neural network,
we can do so by using a stochastic gradient descent-type (SGD) algorithm to
optimize the parameter θ just as the standard training of deep neural networks.
In our numerical examples, we use the Adam optimizer.

Figure 7: PINNs — Source: Youtube video: Introduction to PINNs

4.8.4 Convergence analysis

One of the goals for the implementation of the PINN theory is to investigate
the convergence and stability of the computed uθ to the exact solution of the

14



problem. They are related to how well the NN learns from physical laws and
data.

5 Implementation

Our main objective is to implement a solver that based on the Semi-Lagrangian
scheme, and implementing the Deep Lagrange interpolation operator using the
uθ function that will be approximated by a neural network that implements
the PINNs strategy will solve the equation (1) for different initial conditions
depending on the values of µ and σ for the Gaussian distribution and A for the
rectangular function.

5.0.1 Neural Network Class

The Net class represents a neural network model. It inherits from nn.DataParallel,
which is a PyTorch module used for parallelizing the computation on multiple
GPUs. Our neural network contains 6 fully connected layers, an input layer
that expects four or three input features x, t, mean, and variance/ A according
to the initial condition, and five hidden layers, each consisting of fully connected
linear units (nn.Linear) followed by the hyperbolic tangent activation function
(torch.tanh). The hidden layers progressively reduce the input dimensions and
extract higher-level features from the input data, and finally the output layer
that consists of a single fully connected linear unit (nn.Linear) without an acti-
vation function. It maps the output of hidden layer5 to a single output value.

The forward method

Defines the forward pass of the neural network, where the input tensors prop-
agate through the layers sequentially applying the specified operations and ac-
tivation functions. The resulting output is returned as the final output of the
network.

The networkBC method

Serves to impose the hard boundary condition, so when t = 0 we get that the
solution at that time is equal to the initial solution.

5.0.2 Parameters class

This class defines the set of parameters for the PINN class including the initial
condition u0 defined as a Gaussian distribution or a rectangular function.

5.0.3 Network class

The Network class represents a PINN model.

15



1. init (param: Parameters): Initializes the neural network model and
loads the model if available.

2. call (*args): Calls the network and returns the output.

3. create network(): Creates the neural network model from the previously
defined Net class.

4. load(file name): Loads the model from a file.

5. save(file name, epoch, net state, optimizer state, loss, loss history):
Saves the model with the specific values passed as arguments into a file.

6. pde(x, t, mean, variance): Computes the PDE using the network and
returns the result.

7. predict u from torch(x, t, mean, variance): Predicts the value of
the solution given by the neural network based on the input variables x,
t, mean, and variance or A

8. random(min value, max value, shape, requires grad=False, de-
vice=device): Generates random numbers within a range.

9. make data(n data): Generates the data of size n data for the training
process based on the exact solution of the PDE.

10. make collocation(n collocation): Generates n collocation colloca-
tion points to enforce PDE constraints during training.

11. train(epochs, n collocation, n data): Trains the neural network using
a combination of PDE constraints and data fitting.

12. u exact(x, t, a, xmax, u0, mean, variance, device=device): Com-
putes the exact solution for the PDE.

13. plot(t, mean, variance): Plots the loss history, predicted solution, and
prediction error at the input variables x, t, mean, and variance.

5.0.4 Optimization step

The train function implements an optimization method for training a neural
network by combining PDE constraints and data fitting. It iterates over a
number of epochs to update the network’s weights and minimize the loss.

If there are collocation points specified, PDE constraints are enforced, col-
location points are generated, and the network’s output for these points is com-
puted. Then the MSE loss is calculated between the network’s output and a
tensor of zeros, and this loss is added to the overall loss.

Similarly, if there are training data points specified, data fitting is performed,
the raining data is generated, and then using the NN’s prediction of the solu-
tion based on the input variables, then the MSE loss is computed between the

16



predicted solution and the exact solution, and this loss is added to the overall
loss.

Additional loss terms are incorporated to enforce PDE constraints and bound-
ary conditions. The network’s solution is evaluated at the boundary points and
compared to the boundary values to enforce periodicity in both spatial and
temporal dimensions, then the loss is added to the overall loss.

Backpropagation is then performed to compute the gradients, and the weights
of the neural network are updated using the gradient descent algorithm.

Throughout the training process, the current loss is recorded in the loss
history and the model and optimizer states, as well as the loss history, are saved
for further analysis. Upon completion of all epochs, the best model is saved.

5.1 Semi-Lagrangian solver

We define a class called SemiLagrangianSolver that contains the following
methods:

1. u0: To compute the initial condition.

2. explicit solution: To compute the analytical solution

3. find closest: To find the nclosests points to x∗

4. li: To compute the Lagrange interpolation basis polynomial at x∗

5. solver: To calculate the numerical solution for the problem using the
Lagrange interpolation operator.

6. plot solution: To plot the solution at a specific time

7. error solution: To calculate the error of the numerical solution compared
to the exact solution

8. u theta The uΘ solution found by the neural network.

9. solver deep to calculate the solution of the transport equation using the
Deep Lagrange Interpolation and uΘ.

10. plot solution deep to plot the solution deep at a specific time

11. error solution deep to calculate the error of the numerical deep solution
compared to the exact solution

And the following parameters:

– nx the number of points in the space

– nt the number of points in the time

– a the velocity of the transport

17



– ∆t the time step

– ∆x the space step

– tmin the minimum time

– tmax the maximum time

– xmin the minimum space

– xmax the maximum space

– u0 the initial condition

– u the solution

6 Results

Here we present the results of the PINNs implementation, we will show the
results of the unsupervised and supervised learning, we will also show the results
of the deep interpolation method.

6.1 Finding uθ using PINNs

For training the neural network and solving the transport equation we used the
following parameters:

– min = 0.

– xmax = 1.

– tmin = 0.

– tmax = tf

– a = 1.

– learning rate = 1e− 3

– min mean = 0.45

– max mean = 0.55

– min variance = 0.01

– max variance = 0.05

This means that we will be learning the solution of the transport equation
in the domain [0, 1] × [0, 1] with a velocity of a = 1 for all the Gaussian ini-
tial conditions that have a mean between [0.45, 0.55] and a variance between
[0.01, 0.05].

18



6.1.1 Unsupervised learning

For the unsupervised approach we trained our NN with 40.000 epochs and 50.000
collocation points, the best loss we obtained was: 3.21e-04

With a Gaussian initial condition with mean µ = 0.49 and variance σ2 = 0.4
we get the following approximation made by the network at different time steps:

Figure 8: t=0

Figure 9: t=0.25

Figure 10: t=0.5

Figure 11: t=0.75

Figure 12: t=1

19



We can clearly see that by training our NN with collocation points it does
not learn quite well all the detail of our solution. Even if the loss is small like in
this case when implementing a PINNs strategy a small loss does not neccesarily
equal to a good approximation.

6.1.2 Supervised learning

For the supervised approach we trained our NN with 40.000 epochs and 15.000
data points, the best loss we obtained was: 3.76e-04

With a Gaussian initial condition with mean µ = 0.48 and variance σ2 =
0.042 we get the following approximation made by the network at different time
steps:

(a) t=0

(b) t=0.25

(c) t=0.5

(d) t=0.75

20



Figure 14: t=1

Error analysis

For 15.000 data points and different number of epochs the error of the NN is
shown in the following table:

Epochs Error
1000 7.28e-01
5000 2.86e-02
10000 4.12e-03
20000 1.95e-03
30000 1.25e-03
40000 3.76e-04

Table 1: Error of the NN prediction in for different number of epochs

6.1.3 Supervised and unsupervised learning

In the following figures we show the results of the PINNs implementation, we
will show the results of the unsupervised and supervised learning.

The training was done using the following parameters:

– epocs = 40000

– ncollocation = 50000

– ndata = 10000

The best loss we obtained was: 7.80e-04
For an initial solution with mean=0.5 and variance = 0.035 we get the following
approximation made by the network at different time steps:

u0(x) = exp
−(x−0.5)2

0.035

21



Figure 15: t=0

Figure 16: t=0.25

Figure 17: t=0.5

Figure 18: t=0.75

Figure 19: t=1

Error analysis

For 15.000 data points and different number of epochs the error of the NN is
shown in the following table:

22



Epochs Error
1000 3.30e-01
5000 1.36e-02
10000 5.11e-03
20000 1.95e-03
30000 8.35e-04
40000 7.80e-04

Table 2: Error of the NN prediction in for different number of epochs

6.2 Semi-Lagrangian solver using deep interpolation

The following results were obtained using the following parameters:

– xmin = 0.0

– xmax = 1.0

– tmin = 0.0

– tf = 1.0

– nt = 100

– a = 1

– mean = 0.48

– variance = 0.042

We obtained the following errors calculated in L2 norm compared to the
exact solution (in loglog scale) of the transport equation according to the ini-
tial condition defined by the Gaussian with the mean and the variance given in
parameter at times tf/4 tf /2 and tf (with tf the final time)

The SL classic solution is obtained with the Semi-Lagrangian scheme and
the classic Lagrange interpolation, SL Deep is calculated using this time the
deep interpolation operator and uθ as the solution given by the neural network,
Network is the solution obtained by the network.

6.2.1 Interpolation of order 1

23



Figure 20: nx = 10

Figure 21: nx = 20

Figure 22: nx = 40

The solution perturbed SL is defined as: uexact(x, t)+ϵ cos(x) here is what
we get when we vary the value of ϵ:

24



For nx=10

25



For nx=20

26



27



For nx=40

28



29



6.2.2 Interpolation of order 3

Figure 23: nx = 10

Figure 24: nx = 20

Figure 25: nx = 40

For the perturbed SL we get the following results:

30



For nx=10

31



For nx=20

32



33



For nx=40

34



35



6.3 Average gain

By randomly drawing 20 parameters for the mean and the variance to have
different initial conditions, we calculate for each the solution with the classic
and deep Semi-Lagrangian method and we look at the gain=SL error/deep SL
error by doing the average over the 20 parameters.

By making several draws of 20 parameters, the following average gains are
obtained:

For a 1st order interpolation: 137.7119541688143, 97.15674818809492,
185.7843283662372
For an interpolation of order 3: 7.608668520339034, 3.1395029764283313,
4.496461973620286

The gain is considerable when using a first order interpolation but much less
important when using the classical third order interpolation.

36



7 Conclusions

By implementing the deep Lagrange interpolation operator alongside the uθ so-
lution derived through the PINNs strategy in the Semi-Lagrangian scheme for
both the first and third interpolation degrees, the results demonstrate a notable
reduction in the error as compared to the classical Semi-Lagrangian approach.
Furthermore, we can see that the degree of improvement is considerably more
pronounced when using the deep interpolation operator in with a first-order
interpolation, as opposed to the utilization of the third-order one.
Additionally, our observations indicate that the PINNs strategy exhibit a re-
markable capacity to assimilate a diverse range of solutions for the advection
equation, accommodating varying initial conditions and parameters. This char-
acteristic contributes to a highly accurate approximation of the solution.

37



References

[1] Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., & Piccialli,
F. (2022). Scientific Machine Learning Through Physics–Informed Neural
Networks: Where we are and What’s Next.

[2] IBM Cloud Blog. (n.d.). Supervised vs. Unsupervised Learning: What’s
the Difference? Retrieved from https://www.ibm.com/cloud/blog/

supervised-vs-unsupervised-learning

[3] IBM. (n.d.). What are neural networks? Retrieved from https://www.ibm.

com/topics/neural-networks

[4] DeepAI. (n.d.). Feed Forward Neural Network. Retrieved from
https://deepai.org/machine-learning-glossary-and-terms/

feed-forward-neural-network

[5] IBM Cloud. (n.d.). What is a feedforward neural network? Retrieved from
https://www.ibm.com/cloud/learn/feedforward-neural-network

[6] Towards Data Science. (n.d.). Multilayer Perceptron Explained with a
Real-Life Example and Python Code: Sentiment Analysis. Retrieved from:
https://towardsdatascience.com/multilayer-perceptron-explained-

with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

[7] Proceedings of the National Academy of Sciences (PNAS). (n.d.). Retrieved
from https://www.pnas.org/doi/full/10.1073/pnas.1718942115

[8] Vadyala, S. R., Betgeri, S. N., Betgeri, N. P. (Ph.D). Advection equa-
tion using PyTorch. Department of Computational Analysis and Modeling,
Louisiana Tech University, Ruston, LA, United States.

[9] Raissi, M., Perdikaris, P., & Karniadakis. Physics Informed Deep Learning
(Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.

38

https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/topics/neural-networks
https://www.ibm.com/topics/neural-networks
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://www.ibm.com/cloud/learn/feedforward-neural-network
https://towardsdatascience.com/multilayer-perceptron-explained-
 with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
https://www.pnas.org/doi/full/10.1073/pnas.1718942115

	Objectives
	Introduction
	General context
	Theoretical Framework
	Transport equations
	Lagrange interpolation
	Semi-Lagrangian Scheme
	Augmented Interpolation
	Deep Lagrange interpolation with PINNs

	PINNs for solving PDEs
	Supervised and unsupervised learning
	Supervised learning
	Unsupervised learning

	Neural Networks
	Multi Layer Perceptron (MLP)
	Backpropagation
	Activation functions
	Universal Approximation Theorem

	Physics Informed Neural Networks
	The Loss Function
	Parametric PINNs
	Methodology
	Convergence analysis


	Implementation
	Neural Network Class
	Parameters class
	Network class
	Optimization step

	Semi-Lagrangian solver

	Results
	Finding u using PINNs
	Unsupervised learning
	Supervised learning
	Supervised and unsupervised learning

	Semi-Lagrangian solver using deep interpolation
	Interpolation of order 1
	Interpolation of order 3

	Average gain

	Conclusions

