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0.0.0.1 Plan (first pass) :
——————————————–

• Linear hyperbolic systems

• Linearization of nonlinear hypeperbolic systems

• The linear Riemann problem

• Nonlinear Riemann problem (shock and the Hugoniot locus)

• Example : Isothermal Euler system

——————————————–

• Jin-Xin relaxation method

• LBM (generalities) [?]

• Vectorial kinetic relaxation in 1D

• Vectorial kinetic relaxation in 2D

• Example : D2Q4 for the barotropic Euler system

——————————————–

• Numerical scheme (transport & relaxation steps,...)

• Numerical stability (CFL, order,...)

• Test : Riemann problem (1D / 2D ?)

——————————————–

• Implementation with C (UML diagrams for classes ?)

• Test : Barotropic Euler system in 2D

——————————————–

• Conclusion (pro - cons)

• Opening : Euler –> MHD –> Plasmas

[Nondimensionalisation, Mach number] ??



3

1 Mathematical background

The general context of this work is the study of systems of form

∂t u +
d∑

k=1
∂k F k (u) = 0

u(X ,0) = u0(X ),

for
u(X , t ) :Rd ×R→Rm and F k :Rm →Rm ,

but we will stick to the case d = 1 to introduce the theory.

1.1 Linear hyperbolic systems

Let A ∈Rm×m be a constant matrix. The system

∂t u + A∂xu = 0

u(X ,0) = u0(X ),
(1)

is said to be hyperbolic (resp. strictly hyperbolic) if A is diagonalizable with (resp. dis-
tincts) real-valued eigenvalues. From now, we’ll assume the strict hyperbolicity of all
systems.

Writing A = RΛR−1, Λ= diag(λ1, · · · ,λm), and R = (r1| · · · |rm) gives us

Arp =λp rp , p = 1, · · · ,m. (2)

We start multiplying (1) by R−1 to obtain an equation on v := R−1u

R−1∂t u +R−1(RΛR−1)∂xu = 0 ⇔ ∂t v +Λ∂x v = 0, (3)

which is a set of m independents scalar transport equations

∂t v p +λp∂x v p = 0

p = 1, · · · ,m.
(4)
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We find the solution using the method of characteristics

v p (x, t ) = v p (x −λp t ,0) (5)

and thus, as u = Rv =∑
p v p rp , we get

u(x, t ) =
m∑

p=1
v p (x −λp t ,0)rp

u0(x) = Rv0(x).

(6)

We’ll call any curve satisfying

x(t ) = x0 +λp t

x ′(t ) =λp

(7)

a p-characteristic, along which v p (x, t ) will remain constant.

A very important property holding here is that any singularity in the initial data can
propagate along characteristics only, and that smooth initial data leads to smooth solu-
tions. This won’t necessarily be the case for nonlinear equations.

1.2 Linearization of Nonlinear system

We now consider a nonlinear system

∂t u +∂xF (u) = 0, (8)

and we ask ourselves to what extent could we recover the results of the linear case.
Witing A(u) = F ′(u), (8) can be written as

∂t u + A(u)∂xu = 0. (9)

Unlike the linear case, the hyperobolicity condition depends on the solution u. The pth
characteristic now writes

x ′(t ) =λp (u(x(t ), t ))

x(0) = x0,
(10)
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and the method we used in the linear case doesn’t work anymore. But the expansion
u(x, t ) = ū + εu(1)(x, t )+O(ε2) (with ε > 0 and ū a constant state) gives us, as ε→ 0, a
linear behavior of the first order term of the solution

∂t u(1)(x, t )+ A(ū)∂xu(1)(x, t ) = 0. (11)

We are now able to integrate x ′(t ) and we obtain a result similar to previously

xp (t ) = x0 +λp (ū)t (12)

We lost the property of the shock to propagate only along characteristics, but it re-
mains (approximately) true for small disturbance of the solution. We could use higher
order correction with the same process and so on, but we’ll instead use the following :

Theorem 1 (Rankine-Hugoniot jump condition). The speed s of a discontinuity
and the states uR and uL are related by the Rankine-Hugoniot jump condition :

F (uR )−F (uL) = s(uR −uL), (13)

which can be written
[F ] = s[u], (14)

Where [.] indicates the jump across the discontinuity.

In the case where ||uR −uL|| ≡ ε<< 1 we are close to the linear theory. The expansion

F (uL) = F (uR )+F ′(uR )(uL −uR )+O(ε2), (15)

with the RH conditions gives

F ′(uR )(uR −uL) = s(uR −uL)+O(ε2), (16)

such as

A(uR )z = sz

z := l i m
ε→0

(uR −uL)/ε,
(17)

and the speed of propagation remains an eigenvalue of the jacobian.
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1.3 Linear Riemann problem

A Riemann problem is simply a hyperbolic system as (1) with a piece-wise constant
initial data

∂t u + A∂xu = 0

u(x,0) =
uL , x < 0

uR , x > 0.

(18)

We will assume a strict hyperbolicity such that Sp(A) = {λ1 < ·· · <λm}.

We decompose uL and uR in the diagonalization basis

uL =
m∑

p=1
αp rp , uR =

m∑
p=1

βp rp , (19)

then

v p (x,0) =
αp , x < 0

βp , x > 0,
(20)

and so

v p (x, t ) =
αp , x −λp t < 0

βp , x −λp t > 0.
(21)

Writing P (x, t ) the maximal value of p for which x −λp t > 0, the solution can be broken
down into the following form

u(x, t ) =
m∑

p=1
v p (x, t ) =

P (x,t )∑
p=1

βp rp +
m∑

p=P (x,t )+1
αp rp . (22)

Picture ??

When crossing the pth characteristic the solution jumps with the jump given by

[u] = (βp −αp )rp . (23)

Using the fact that F (u) = Au, the Rankine-Hugoniot condition is here written

[F ] = A[u]

= (βp −αp )Arp

=λp [u].

(24)
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NB : We notice that in this case, from the RH condition results the fact that the pth
jumps propagates at speed λp , which allows us to write the solution in terms of these
jumps as

u(x, t ) = uL +
∑

λp<x/t
(βp −αp )rp (25)

= uR − ∑
λp≥w/t

(βp −αp )rp , (26)

from which we have
uR −uL =

m∑
p=1

(βp −αp )rp . (27)

Finding a way to split a jump into a sum of m jumps propagating at constant speed
λp is what one could call "solving the Riemann problem". The next part is about the
generalization to the nonlinear case.

1.4 Nonlinear Riemann problem

Let’s get back to the nonlinear system

∂t u +∂xF (u) = 0, u(x, t ) ∈Rm . (28)

We place ourselves in a normalized diagonalization basis : {rp (u)}m
p=1 / ||rp (u)|| = 1. Let

a discontinuity propagating at the speed s, between the values uL and uR . Given the
point uL, we look for the set of all points uR which can be connected to uL by a discon-
tinuity satisfying the RH condition (13).

As uR ∈ Rm and s ∈ R are m + 1 unknowns, and RH condition gives m condition, we’ll
find one parameter families of solutions. The linear case told us that the pth family ’s
jump was co-linear to rp , i.e. [u]p = ξrp , ξ ∈ R. Parameterization of these families using
this scalar gives us the following solution curves

uR (ξ,uL) = uL +ξrp

sp (ξ,uL) =λp

, p = 1, · · · ,m. (29)

The RH condition now gives

F (uR,p (ξ))−F (uL) = sp (ξ)(uR,p (ξ)−uL), (30)
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which becomes, after beeing derived with respect to ξ at the origin :

f ′(uL)u′
R,p (0) = sp (0)u′

R,p (0), (31)

meaning that the curve uR,p (ξ) is tangent to rp (uL) at the point uL. If uR,p lies through
uL on the pth curve, called the pth Hugoniot curve, then we say that uL and uR,p are
connected by a p-shock.

2 Vectorial kinetic relaxation method

2.1 Jin-Xin relaxation method

We want to solve the following non-linear transport equation

(P ) : ∂tρ+∂xF (ρ) = 0,

with ρ = ρ(t , x) ∈R and F :R→R non-linear in the general case.
We relax the equation with a system of two coupled linear transport equations, which is
much easier to solve (ε> 0 is the relaxation parameter and v ∈R the speed) [JIN-XIN]

Rε :

∂tρ+∂x v = 0

∂t v +α2∂xρ = 1
ε (F (ρ)− v)

.

Near equilibrium, i.e. ε<< 1, we write

vε = F (ρε)+εvε1 +O(ε2),

which implies
F (ρε) = vε−εvε1 +O(ε2).

The system becomes

Rε →
ε→0

:

∂tρ
ε+∂xF (ρε) =O(ε)

∂t F (ρε)+α2∂xρ
ε = 1

ε (F (ρε)− v)
.
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We multiply the first line by F ′(ρε) so it becomes∂t F (ρε)+|F ′(ρε)|2∂xρ
e =O(ε)

∂t F (ρε)+α2∂xρ
ε =−vε1 +O(ε)

,

and finally, (L1)− (L2) gives us

vε1 =
(|F ′(ρε)|2 −α2)∂xρ

ε+O(ε),

which leads us to

∂tρ
ε+∂x vε = ∂tρ

ε+∂x
[
F (ρε)+εvε1

]+O(ε) = 0 ⇒ ∂tρ
ε+∂xF (ρe ) =−ε∂x vε1 +O(ε2).

This gives us the following result

Proposition : Under the hypothesis above, Rε is consistent with the equation

Pε : ∂tρ
ε+∂xF (ρe ) = ε∂x

([
α2 −|F ′(ρε)|2]∂xρ

ε
)+O(ε2).

which converge to the initial transport equation under the stability condition

α2 −|F ′(ρε)|2 > 0 ⇔|α| > |F ′(ρε)|.

Write Jin-Xin as D1Q2

2.2 Vectorial kinetic relaxation in 1D

We slightly generalize the former method for a set of M ∈N velocities and N ∈N macro-
scopic variables (such as density, speed, pressure, ...).

We will use f , f eq ∈RM , w = w(t , x) ∈RN , P ∈MN ,M (R),

and Λ=


λ1 O

. . .

O λM

 ∈MM (R), λi ∈R

We introduce the Lattice TOO DOO : definition of a lattice + picture

∂t f +Λ∂x f = 1

ε

(
f eq (w)− f

)
(∗)
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with two constraints on the moments of f and f eq

P f = P f eq (w) = w

PΛ f eq = F (w)
.

the constraints gives us the following relations

P × (∗) :

PΛ× (∗) :

∂t P f +∂xPΛ f = 1
ε

(
P f eq (w)−P f

)= w −w = 0

∂t PΛ f +∂xPΛ2 f = 1
ε

(
PΛ f eq (w)−PΛ f

) .

Writing v := PΛ f , the system reads∂t w +∂x v = 0

∂t v +∂x(PΛ2 f ) = 1
ε (F (w)− v)

.

We recognize the relaxation system from the Jin-Xin method.

Ref to Jin-Xin (edit : done)
We continue using the Chapman-Enskog expansion [CHA-ENS], which relies on writing
the first order Taylor expansion for each variables

w = w0 +εw1 +O(ε2), v = v0 +εv1 +O(ε2), f = f0 +ε f1 +O(ε2),

plugging them into both relaxation and Lattice equations
∂t w0 +ε∂t w1 +∂x v0 +ε∂x v1 =O(ε2)

∂t v0 +ε∂t v1 +∂x(PΛ2 f0)+ε∂x(PΛ2 f1) = 1
ε

(
F (w0)+εDw0 F w1 − v0 −εv1

)+O(ε2)

∂t f0 +ε∂t f1 +Λ∂x f0 +Λ∂x f1 = 1
ε

(
f eq (w0)+εDw0 f eq w1 − f0 −ε f1

)+O(ε2)

,

and writing the system at each order of ε.

Keeping only the O(1/ε) terms leads tov0 = F (w0)

f0 = f eq (w0)
,
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O(1) terms give us∂t w0 +∂x v0 = ∂t w0 +∂t F (w0) = 0 (∗∗)

∂t v0 +∂x(PΛ2 f0) = ∂t F (w0)+∂x(PΛ2 f0) = Dw0 F w1 − v1

,

which implies that
v1 = Dw0 F w1 −∂t F (w0)−∂x(PΛ2 f eq (w0)),

and, considering the O(ε) terms, we get

∂t w1 +∂x(Dw0 F w1) = ∂2
xt F (w0)+∂2xx(PΛ2 f eq (w0)) (∗∗∗),

We recombine the system using (∗∗)+ε(∗∗∗) :

∂t (w0 +εw1)+∂x(F (w0)+εDw0 F w1) = ε[
∂2

xt F (w0)+∂2
xx(PΛ2 f eq (w0))

]
i.e.

∂t w +∂xF (w) = ε[
∂2

xt F (w0)+∂2
xx(PΛ2 f eq (w0))

]+O(ε2) : (Pε)

We want the error term to be written to the form ε∂x[D f ]∂x w0, with D f the so-called
diffusion tensor, associated to the Lattice f .

Dw0 F × (∗∗) leads to

Dw0 F∂t w0 +Dw0 F∂xF (w0) = 0

⇒ ∂t F (w0)+ [
Dw0 F

]2
∂x w0 = 0

⇒ ∂t F (w0) =−[
Dw0 F

]2
∂x w0

Also note that

∂2
xx

[
PΛ2 f eq (w0)

]= ∂x
[
PΛ2∂x f eq (w0)

]= ∂x
[
PΛ2Dw0 f eq∂x w0

]
We thus obtain

D f = PΛ2Dw0 f eq (w0)− [
Dw0 F

]2 ,

and the approximated system is then written as :

(Pε) : ∂t w +∂xF (w) = ε∂x

[[
PΛ2Dw0 f eq − [

Dw0 F
]2

]
∂x w0

]
+O(ε2)
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which converge to the initial problem :

(Pε) −→
ε→0

(P ) : ∂t w +∂xF (w) = 0

with a stability condition relating to the eigenvalues of A := Dw0 F :

|λmax(A)| > max
k

|λk |

NB : Note that, the system being hyperbolic, A is diagonalizable with reals eigenvalues.

2.3 Vectorial kinetic method in 2D

This paragraph tells the exact same thing as the previous one. Its aim is to generalize
all the notations and concepts in order to write them for any dimension.

With respect to the previous notations, we write

f , f eq ∈RM , w = w(t , x, y) ∈RN , Λα =


λα1 O

. . .

O λαM

 ∈MM (R), ∀α ∈ {x, y},

Λ=
(
Λx 0

0 Λy

)
∈M2M , P ∈MN ,M (R)

The lattice is then written as follows :
∂t f +Λx∂x f +Λy∂y f = 1

ε

(
f eq (w)− f

)
P f = P f eq (w) = w

PΛα f eq = Fα(w)

With a very similar method than the one dimensional case (see Appendix), we show
that for ε→ 0, this kinetic model is consistent with the following equation

∂t w +∇·F (w) = ε∇·
[[

P ¯̄ΛDw0 f eq −Dw0 F
]
∇w0

]
+O(ε2)

We call D f = P ¯̄ΛDw0 f eq −Dw0 F the diffusion tensor, which has the same structure than
before and must verify a similar stability condition.
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2.4 Example: D2Q4 for the barotropic Euler system

We’ll now study the particular case of the approximation of the barotropic Euler sys-
tem with a D2Q4 scheme for each macroscopic variable.1

Barotropic Euler system reads :∂tρ+∂x(ρux)+∂y (ρuy ) = 0

∂t (ρu)+∇· (ρu ⊗u +p Id) = 0
⇔


∂tρ+∂x(ρux)+∂y (ρuy ) = 0

∂t

ρux

ρuy

+∂x

ρuxux +P

ρuy ux

+∂y

 ρuxuy

ρuy uy +P

= 0

Writing

w = (ρ,ρux , ρuy )T , F x(w) = (ρuxux +P, ρuxuy )T and F y (w) = (ρuy ux , ρuy uy +P )T ,

we recognize the non-linear tranport equation : ∂t w +∇·F (w) = 0

As we calculate the equilibrium for each macroscopic variable separately, we’ll use the
following notations :

P =
(
1 1 1 1

)
, Λx =


λ

0

−λ
0

 , Λy =


0

−λ
0

λ

 , λ ∈R

Using the relations from the previous section, we already got 3 equations per variable.
We add the constraint PΛ2

x f eq
wi

= wiλ
2/2, in order to close the system on f eq .

Equation on ρ All constraints writes :



P f eq
ρ = ρ

PΛx f eq
ρ = ρux

PΛy f eq
ρ = ρuy

PΛ2
x f eq

ρ = ρλ2/2

⇔



∑
i f eq

i ,ρ = ρ
λ( f eq

1 − f eq
3 ) = ρux

λ( f eq
4 − f eq

2 ) = ρuy

λ2( f eq
1 + f eq

3 ) =λ2ρ/2

⇔

A︷ ︸︸ ︷
1 1 1 1

λ 0 −λ 0

0 −λ 0 λ

λ2 0 λ2 0

 f eq
ρ =

b︷ ︸︸ ︷
ρ

ρux

ρuy

λ2ρ/2


which gives us :

f eq
ρ = A−1b = 1

2


0 1/λ 0 1/λ2

1 0 −1/λ −1/λ2

0 −1/λ 0 1/λ

1 0 1/λ −1/λ2

b ⇔ f eq
ρ = ρ

4


1

1

1

1

+ 1

2λ


ρux

−ρuy

−ρux

ρuy


1This is called [D2Q4]3
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We repeat the same operations for ρux and ρuy .

Equation on ρux



P f eq
ρux = ρux

PΛx f eq
ρux = ρuxux +P

PΛy f eq
ρux = ρuxuy

PΛ2
x f eq

ρux = ρuxλ2/2

⇔

A︷ ︸︸ ︷
1 1 1 1

λ 0 −λ 0

0 −λ 0 λ

λ2 0 λ2 0

 f eq
ρ =

b︷ ︸︸ ︷
ρux

ρuxux +P

ρuxuy

ρuxλ2/2



⇔ f eq
ρux = A−1b = ρux

4


1

−1

1

−1

+ 1

2λ


ρuxux +P

λρux −ρuxuy

−ρuxux −P

λρux +ρuxuy

⇔ f eq
ρux = ρux

4


1

1

1

1

+ 1

2λ


ρuxux +P

−ρuxuy

−ρuxux −P

ρuxuy


Equation on ρuy



P f eq
ρuy = ρuy

PΛx f eq
ρuy = ρuy ux

PΛy f eq
ρuy = ρuy uy +P

PΛ2
x f eq

ρuy = ρuyλ2/2

⇔

A︷ ︸︸ ︷
1 1 1 1

λ 0 −λ 0

0 −λ 0 λ

λ2 0 λ2 0

 f eq
ρ =

b︷ ︸︸ ︷
ρuy

ρuy ux

ρuy uy +P

ρuyλ2/2



⇔ f eq
ρuy = A−1b ⇔ f eq

ρuy = ρuy

4


1

1

1

1

+ 1

2λ


ρuy ux

−ρuy uy −P

−ρuy ux

ρuy uy +P


We finally gather all those results and obtain f eq = ( f eq

ρ , f eq
ρux , f eq

ρuy )T

Matrix diffusion error Since we know the equilibrium function, we are now able
to determine the error of our relaxation by writing the viscosity term D f of the continu-
ity equation.

As Λx y =Λy x = 0, we get Λ=
(
Λ2

x 0

0 Λ2
y

)
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From now on we’ll write qα = ρuα and A := Du0 F .

The viscosity then reads :

D f = P ¯̄ΛDu0 f eq −Du0 F = P ¯̄ΛDu0 f eq − A.

And we now want to calculate the following term :

P ¯̄ΛDu0 f eq =
(

PΛ2
xDu0 f eq 0

0 PΛ2
y Du0 f eq

)
,

which we are going to write in two steps, thanks to the diagonal structure of the tensor
: 

PΛ2
xDu0 f eq

uk
=

(
λ2 0 λ2 0

)
Du0 f eq

uk
,

PΛ2
y Du0 f eq

uk
=

(
0 λ2 0 λ2

)
Du0 f eq

uk
.

We start by calculating the partial derivatives of f eq
ρ :

∂ρ f eq
ρ = ∂ρ


ρ

4


1

1

1

1

+ 1

2λ


q x

−q y

−q x

q y



= 1

4


1

1

1

1

 ,

∂q x f eq
ρ = ∂q x


ρ

4


1

1

1

1

+ 1

2λ


q x

−q y

−q x

q y



= 1

2λ


1

0

−1

0

 , ∂q y f eq
ρ = ∂q y


ρ

4


1

1

1

1

+ 1

2λ


q x

−q y

−q x

q y



= 1

2λ


0

−1

0

1

 .

We then get the Jacobian of f eq
ρ which gives us the first part of the viscosity :

Du0 f eq
ρ =

(
∂ρ f eq

ρ ∂q x f eq
ρ ∂q y f eq

ρ

)
=


1
4

1
2λ 0

1
4 0 −1

2λ
1
4

−1
2λ 0

1
4 0 1

2λ

⇒ PΛ2
xDu0 f eq

ρ =λ2
(
1/2 0 0

)
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Doing the same with q x and q y gives us :
PΛ2

xDu0 f eq
ρ =λ2

(
1/2 0 0

)
PΛ2

xDu0 f eq
q x =λ2

(
0 1/2 0

)
PΛ2

xDu0 f eq
q y =λ2

(
0 0 1/2

)
and : 

PΛ2
y Du0 f eq

ρ =λ2
(
1/2 0 0

)
PΛ2

y Du0 f eq
q x =λ2

(
0 1/2 0

)
PΛ2

y Du0 f eq
q y =λ2

(
0 0 1/2

)
So we finally have the following result :

D f =
λ2

2
I6 − ¯̄A

which allows us to write the stability condition of the system

D f =
λ2

2
I6 − ¯̄A > 0 ⇔λ2 > 2 λmax( ¯̄A) ⇔|λ| >p

2 |λmax(A)|

2.5 Nondimensionalization of the barotropic Euler system∂tρ+∇· (ρu) = 0

∂tρu +∇· (ρu ⊗u +P ) = 0
⇔

∂tρ+u ·∇ρ+ρ∇·u = 0

∂t u + (u ·∇)u + ∇P
ρ

= 0

t = t0 t̂ ⇒ ∂t = 1
t0
∂t̂

∇= ∇̂
L

ρ = ρ0ρ̂, u = u0û,P = P0P̂

⇒

ρ0
t0
∂t̂ ρ̂+ u0ρ0

L û · ∇̂ρ̂+ ρ0u0
L ρ̂∇̂ · û = 0 (L1)

u0
t0
∂t̂ û + u2

0
L (û · ∇̂)û + P0

ρ0L
∇̂P̂
ρ̂ = 0 (L2)

t0
ρ0

×L1 :
t0
u0

×L2 :

∂tρ+ t0u0
L u ·∇ρ+ t0u0

L ρ∇·u = 0

∂t u + t0u0
L (u ·∇)u + t0P0

u0ρ0L
∇P
ρ = 0

(T̂ ≡T )

⇒
∂tρ+ t0u0

L (u ·∇)ρ+ t0u0
L ρ∇·u = 0

∂t u + t0u0
L (u ·∇)u + t0c2

0
u0L

∇P
ρ = 0

(P = c2ρ)
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⇒
∂tρ+ u0

v0
(u ·∇)ρ+ u0

v0
ρ∇·u = 0

∂t u + u0
v0

(u ·∇)u + c2
0

u0v0

∇P
ρ

= 0
(v0 := L

t0
)

M := u0
ρ0

(Mach number)

u0 = v0 (we are interested in the overall speed of the fluid, i.e. the convection)

⇒
∂tρ+ (u ·∇)ρ+ρ∇·u = 0

∂t u + (u ·∇)u + 1
M 2

∇P
ρ

= 0

P = P (0) +M 2Π

u = u(0) +M 2u(1)

ρ = ρ(0) +M 2ρ(1)

O(1/M 2) : 1
M 2

∇P (0)

ρ(0) = 0 ⇒ P (0) ≡ cte ⇒ ρ(0) ≡ cte (continuity gives us the constancy over time)

O(1) :

∂tρ
(0) +u(0) ·∇ρ(0) +ρ(0)∇·u(0) = ρ(0)∇·u(0) = 0

∂t u(0) + (u(0) ·∇)u(0) + ∇Π
ρ(0) = 0

We obtain Euler equations (incompressible case) :

(E ) :

∂t u(0) + (u(0) ·∇)u(0) +∇Π= 0

∇·u(0) = 0
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3 Appendix

3.1 Equivalent equation for the vectorial kinetic method
in 2D

with P the moment matrix which gives us the following relations :

P × (∗) :

PΛx × (∗) :

PΛy × (∗) :


∂t w +∂x v x +∂y v y = 0

∂t v x +∂xPΛ2
x f +∂y PΛxΛy f = 1

ε [F x(w)− v x]

∂t v y +∂xPΛyΛx f +∂y PΛ2
y f = 1

ε [F y (w)− v y ]

We use once again the Taylor expansion :

w = w0 +εw1 +O(ε2)

vα = vα0 +εvα1 +O(ε2)

f = f0 +ε f1 +O(ε2)

We also introduce the following notations :

DFα(wβ) = JacFα(wβ)

Λαβ =ΛαΛβ ∀α,β ∈ {x, y}

Plugging everything in our set of equations :

∂t w0 +ε∂t w1 +∂x v x
0 +ε∂x v x

1 +∂x v y
0 +ε∂x v y

1 =O(ε2)

∂t v x
0 +ε∂t v x

1 +∂x(PΛ2
x f0)+ε∂x(PΛ2

x f1)+∂y (PΛx y f0)+ε∂y (PΛx y f1)

= 1
ε

[
F x(w0)+εDw0 F x w1 − v x

0 −εv x
1

]+O(ε2)

∂t v y
0 +ε∂t v y

1 +∂x(PΛy x f0)+ε∂x(PΛy x f1)+∂y (PΛ2
y f0)+ε∂y (PΛ2

y f1)

= 1
ε

[
F y (w0)+εDw0 F y w1 − v y

0 −εv y
1

]+O(ε2)

∂t f0 +ε∂t f1 +Λx∂x f0 +Λx∂x f1 +Λy∂y f0 +Λy∂y f1

= 1
ε

[
f eq (w0)+εDw0 f eq (w0)w1 − f0 −ε f1

]+O(ε2)
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As in the previous section, we write the system at each order of ε :

O(1/ε) :

vα0 = Fα(w0)

f0 = f eq (w0)

O(1) :



∂t w0 +∂x v x
0∂y v y

0 = ∂t w0 +∂xF x(w0)+∂y F y (w0) = 0 (∗∗)

∂t v x
0 +∂x(PΛ2

x f0)+∂y (PΛx y f0) = ∂t F x(w0)+∂x(PΛ2
x f0)+∂y (PΛx y f0)

= Dw0 F x w1 − v x
1

∂t v y
0 +∂x(PΛy x f0)+∂y (PΛ2

y f0) = ∂t F y (w0)+∂x(PΛy x f0)+∂y (PΛ2
y f0)

= Dw0 F y w1 − v y
1

⇒ v1 = Dw0 F w1 −∂t F (w0)−→∇· (P ¯̄Λ f eq (w0)) (K )

O(ε) :


∂t w1 +∂x v x

1 +∂y v y
1 = ∂t w1 +∇· v1 = 0 (∗∗∗)

∂t v x
1 +∂x(PΛ2

x f1)+∂y (PΛx y f1) = 0

∂t v y
1 +∂x(PΛy x f1)+∂y (PΛ2

y f1) = 0

In a conciseness concern, we introduce the tensorization and the application of the di-
vergence to matrices :

¯̄Λ :=
(
Λ2

x Λx y

Λy x Λ2
y

)
=Λ⊗Λ=ΛΛT ,

→∇·
 →

H1
→

H2

 :=
(
∇· (H11, H12)

∇· (H21, H22)

)
=

(
∂x H11 +∂y H12

∂x H21 +∂y H22

)
Using these, (∗∗∗) &(K ) leads us to :

∂t w1 +∇· (DF (w0)w1) =∇· (∂t F (w0)+~∇·P ¯̄Λ f0) (�∗∗∗)

and then, we write (∗∗)+ε(�∗∗∗) :

∂t w +∇·F (w) = ε∇· (∂t F (w0)+~∇·P ¯̄Λ f0)+O(ε2)

We now want to show the diffusion tensor in the error term :

Dw0 F x × (∗∗) :

Dw0 F y × (∗∗) :



Dw0 F x∂t w0 +Dw0 F x∂xF x(w0)+Dw0 F x∂y F x(w0) = 0

⇒ ∂t F x(w0)+ [
Dw0 F x]2

∂x w0 +Dw0 F xDw0 F y∂y w0 = 0

Dw0 F y∂t w0 +Dw0 F y∂xF x(w0)+Dw0 F y∂y F x(w0) = 0

⇒ ∂t F y (w0)+Dw0 F y Dw0 F x∂x w0 +
[
Dw0 F y]2

∂y w0 = 0
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We then obtain ∂t F (w0) =−Dw0 F ∇w0 ,
(
recall DF (w0) := [

Dw0 FαDw0 Fβ
]
α,β

)
, and the

approximated system is now written as :

(Pε) : ∂t w +∇·F (w) = ε∇·
[[

P ¯̄ΛDw0 f eq −Dw0 F
]
∇w0

]
+O(ε2)

with D f := P ¯̄ΛDw0 f eq −Dw0 F which must be positive for the stability. We also get the
convergence to the transport equation :

(Pε) −→
ε→0

(P ) : ∂t w +∇·F (w) = 0
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