
Reduced order models

for partial differential equations

Internship report
Master 1 Calcul Scientifique et Mathématiques de l’Information

August 25, 2022

Supervised by
Presented by Emmanuel Franck
Claire Schnoebelen Emmanuel Opshtein

Laurent Navoret

Contents

Introduction 4

1 Non-linear reduced order model for Burgers’ equation 5
1.1 Reduced order model . 5

1.1.1 General case . 5
1.1.2 Proper Orthogonal Decomposition . 6
1.1.3 Burgers’ equation . 7

1.2 Non-linear reduction methods . 8
1.2.1 Isomap . 9
1.2.2 Parallel Transport Unfolding . 9
1.2.3 Eigenmap . 10

1.3 Generalization to out-of-sample points . 10
1.4 Application to Burgers’ equation . 11

2 Symplectic reduced order model 16
2.1 Mathematical background . 17

2.1.1 Alternate forms on Rn . 17
2.1.2 Exterior multiplication . 17
2.1.3 Differential forms . 20
2.1.4 Exterior derivative . 21
2.1.5 Symplectic manifolds . 24
2.1.6 Generating functions . 25

2.2 Reduced order models for Hamiltonian systems . 26
2.2.1 Hamiltonian systems . 26
2.2.2 Symplectic matrices and symplectic inverse . 27

2.3 Linear symplectic reductions . 28
2.3.1 Greedy algorithm . 28
2.3.2 Proper Symplectic Decomposition . 29

2.4 Symplectic scheme . 29

2

2.4.1 Construction . 30
2.4.2 Geometrical properties . 31
2.4.3 Generalisation to general Hamiltonian systems . 32
2.4.4 Comparison with Euler scheme . 33

2.5 Application to a piano vibrating string . 33
2.5.1 Linear model . 35
2.5.2 Non-linear model . 37

2.6 Ideas to look into for non-linear cases . 41
2.6.1 Hyper-reduction . 41

Conclusion 46

Bibliography 47

Appendices 49
.1 Störmer-Verlet . 49
.2 Reduced order models . 49
.3 Hyper-reduction . 51

3

Introduction

INRIA (for Institut National de Recherche en Informatique et Automatique) is a public establishment
created in 1967 within the framework of the "plan calcul", a governmental plan intended to develop
French knowledge in the field of digital technology and to ensure the digital sovereignty of the country.
Today, it has 200 teams spread over 10 research centers, bringing together a total of 3,900 researchers and
engineers in mathematics and computer science [9]. The institute works by "équipes-projets", groups of
about twenty people working on the same project and for the most part in collaboration with companies
[9].

The Nancy research centre was founded in 1986 and today has 20 teams bringing together over 400
people. It has a branch at the University of Strasbourg, where researchers from the TONUS team (for
TOkamaks and NUmerical Simulations) work, including my supervisor, Mr. Emmanuel Franck.

I did my internship under the direction of Mr Franck, Mr Opshtein and Mr Navoret between 6 June
and 31 July 2022. The aim of the intership was to understand and code (with Python) reduced order
models. Given a partial differential equation, the objective of reduced order models is to find a family of
functions which alone can explain a large part of the behaviour of the equation solutions. The interest
of reduced order modelling is that it allows a faster computation of solutions at any time and for any
value of the equation parameters in the interval considered during reduction.

As we saw during last semester project, Proper Orthogonal Decomposition (POD) gives good results
for linear equations such as Burgers’ one with high viscosity but fail for non-linear one. The aim of
last semester project was to study three non-linear reduction methods in the field of manifold learn-
ing, Isomap, Parallel Transport Unfolding (PTU) and Eigenmap. Their applications in reduced order
modelling in the case of Burgers’ equation with no viscosity was the first task of my internship.

The second one was about reduced order modelling in the particular case of linear Hamiltonian
systems, where the symplectic structure allows the construction of more robust reduced order models.
In short, it consisted of understanding, coding an testing linear reduced order model for Hamiltonian
systems. This part required to read and understand theoretical symplectic geometry, particularly about
differential forms, symplectic manifolds and generating functions. For that, I mainly used the references
[2], [11] and [10]. I also had to read and understand articles dealing with symplectic schemes [7] and
symplectic reduced order model ([1], [12] and [13]). To test the models I coded, I had to use three systems
modelling a piano string vibration, given in [6]. All these references were given to me by my supervisors,
except for [10] and [7], which I found by searching for additional information on my own. Methods and
test systems were also given to me.

Among the three problems on which I had to test the reduced order models, two were non-linear. We
expected the linear reduced order modelling to fail - and indeed it did. The last objective was then to
think about ways to improve those reduced order model in the case of non-linear system.

4

1 Non-linear reduced order model for
Burgers’ equation

In that part, we begin by briefly summarize results of the last semester project concerning reduced order-
model, non-linear projection and kernel regression. Then, we present results we obtain when we apply
those methods to non-linear Burgers’ equation.

1.1 Reduced order model

1.1.1 General case

Continuous problem

In what follows, we consider a partial differential equation depending on a parameter g ∈ J ⊂ R.{
∂tu = Fg(u, ∂zu, ∂zzu, ...) ∀z ∈ Ω ∀t ∈ I,

u(z, 0) = u0(z) ∀x ∈ Ω. (1.1)

Denote byM a functional space where lies the solution of (1.1), Cp, Lp or Hp for instance. We make
the hypothesis that the long-term evolution of the system modelled by this equation depends only on few
variables. It means that the solution of (1.1) at any t in I, which is a subset of an infinite dimensional
space, can be described using a finite -and low- number of variables, say k.

More precisely, we assume the existence of a k-dimensional manifold M and of a coordinate map
D : Rk →M such that

u(t, g) = D(v(t, g)), (1.2)
where u(t, g) is the solution of (1.1) at time t and v(t, g) ∈ Rk its coordinates on M .

Discrete problem

After spacial discretisation, the problem (1.1) becomes{
d
dtZ(t, g) = Fg(Z(t, g)) ∀t ∈ I,

Z(0) = Z0 ∀x ∈ Ω. (1.3)

with Z ∈ Rn and F : Rn → R a function that depends on F and on the scheme we have chosen for space
discretisation.

In the discrete space, the assumption that the system (1.1) only depends on k variables leads to the
existence of a manifold M embedded in Rn on which lies solutions Z(t, g) of (1.3).

Let D : Rk →M ⊂ Rn a discrete coordinate function and X ∈ Rk be the coordinates of Z(t, g). The
discrete formultion of (1.2) is then given by

Z(t, g) = D(X(t, g)). (1.4)

5

Galerkin projection and discrete reduced equation

Applying the chain rule on the previous equation gives
d

dt
Z(t, g) = J (D)(X(t, g)) d

dt
X(t, g).

We would like to express the discrete system time evolution with a differential equation in Rk of
the form (1.3). If JD were everywhere invertible, then it would suffice to multiply the identity (1.2) by
J−1
D (v(t, g)) but this can not be true as JD is not a square matrix. We will solve this problem by using

Galerkin projection.
Let us consider f : x ∈ Rk 7→ 1

2‖z − Jx‖
2 with J ∈ Mn,k(R). We have that f(x + h) = f(x) +

〈h, JT (Jx−z)〉+〈h, JTJh〉, so f is twice differentiable with ∇f(x) = JT (Jx−z) and ∇2f(x) = JTJ . Let
us consider the singular value decomposition of J = UΣV , with U ∈ O(n), V ∈ O(k) and Σ ∈ Mn,k(R)
such that

Σ =

λ1

...
λd

0

 ,

with λ1 ≤ ... ≤ λd.
Then, JTJ = V TΛ2V ∈ S+

k (R) with Λ = diag(λ1, ..., λk). If J has full column rank, λ1 > 0
and JTJ ∈ S++

k (R). It implies that f is λ1-convex and in particular that it is strictly convex and
coercive. Then, f reaches its unique minimum on Rk. It satisfies Euler’s equation, that is ∇f(x) = 0,
ie JT (Jx − z) = 0, which happens if and only if x = (JTJ)−1JT z. We note J+ = (JTJ)−1JT the
Moore-Penrose pseudo-inverse of J .

Using this results with x = d
dtX, z = d

dtZ and J = J (D)(X(t)), we have

d

dt
X(t) = J (D)(X(t))+F (D(X(t))). (1.5)

Reduced order modelling consists therefore in finding a decoding operator D : Rk → Rn such that
(1.4) is verified.

1.1.2 Proper Orthogonal Decomposition

We want to build a numerical model to solve the reduced equation. Assume first that E and D are
linear. In that case, (1.5) becomes

d

dt
X = A+F̃ (AX), (1.6)

with A ∈Mn,k the matrix of the projection into the low dimensional space.
To build our model, we first consider a model to solve the original equation (1.1). We discretize the

spacial domain Ω into n points xi, the time interval into m points tl and we note Ẑl ∈ Rn the solution at
a time tl and at the point xi. In what follows, we use Euler scheme to approximate the time derivative.

Our model gives a discrete operator F̃ : Rn → Rn such that :

Zl+1
i − Zli

∆t = F̂ (Zl).

Then, the corresponding scheme in low dimension is

X l+1
i −X l

i

∆t = A+F̂ (AX l), (1.7)

6

where X l ∈ Rk denotes the solution of (1.6) at time t = l∆t. The initial condition X0 is given by
A+Z0(x).

It then remains to defind A. In the linear case, the fact that the solution of (1.1) can be expressed
in k variables means that

X(x, t) =
d∑
i=1

ai(t)ψi(x), (1.8)

for ψi some functions inM called modes of the equation.
Then, if we compute the solution for a lot of different times tn, we can expect that the eigenvectors

of the resulting matrix X̂ = (Xn
i)i,n give a basis on which X(x, t) can be decomposed as in (1.8) at

any time t. The operator A that will be used in (1.7) is then the orthogonal matrix whose columns are
the d eigenvectors associated to the d largest eigenvalues of X̂. This process is known as the Proper
Orthogonal Decomposition (POD).

1.1.3 Burgers’ equation

Here, we consider Burgers’ equation

∂tZ(z, t) = ∂zZ
2

2 (z, t)− ε∂zzZ(z, t), ∀z ∈ J ⊂ R, ∀t ∈ I ⊂ R, (1.9)

where ε denotes the viscosity
We use the Lax-Friedrichs scheme to build F̂ :

F̂ (Zl) =
Fi+ 1

2
−Fi− 1

2

2 − ε
Zli+1 − 2Zli + Zli−1

∆2
z

,

with

Fi+ 1
2

=
(Zli+1)2

2 + (Zli)
2

2
2 − ci+ 1

2

Zli+1 − Zli
2 ,

where ci+ 1
2

= max{|Zli+1|, |Zli |}.

Figure 1.1: Numerical solution of Burgers’ equation with ε = 1.The reduced order model gives results
very similar to what we obtain with Lax-Friedrichs model in low dimension.

7

Figure 1.2: Numerical solution of Burgers’ equation with ε = 0. The solution obtained with the reduced
order model with k = 2 gives unaccurate results and with k = 6, it seems "noisy" for highest values of t
next to singular points of the exact solution.

When ε is large enough, that is when there is enough diffusion in the equation to regularize the
solution, this gives satisfying results, see Figure 1.1. This is not the case anymore when ε is too small,
as we see in Figure 1.2. This means that the hypothesis that the solution belongs to a linear subspace
does not hold anymore.

Therefore, we should look for an operator E with less restrictive conditions than the linearity. Instead,
we make the assumption that the solution at any time t lies on a manifold and look for a map φ : Z ∈
Mn,m → Y ∈Md,m that best preserves the geometry of the samples Z.

More generally, the question is the following. Let χ be a set of m samples in Rn that we assume to
lie on a k-dimensional manifold M . Although the dataset is described with n coordinates, its "intrinsic"
dimension is much lower than n and the dataset can be described with only k � n coordinates. How
can we find, without any other information on the underlying manifold than the sampling χ, k variables
to describe the dataset while preserving its geometry ?

1.2 Non-linear reduction methods

During the last semester project, we studied three non-linear reduction methods, two distance-based
methods, Isomap [14] and Parallel Transport Unfolding (PTU) [4], and another based on Laplace-
Beltrami eigenvalues, Eigenmap [3].

In what follows, the zi are points in Rn supposed to live in a k-dimensional manifold M embedded
in Rn. We note Z the dataset composed of the zi. We want to find the coordinates Y of Z in Rk. Using
the r-nearest neighboors or δ-neighborhoods, we build a graph G whose vertices are the zi.

8

1.2.1 Isomap

The idea of Isomap, proposed in [14], is to apply MultiDimentional Scaling (MDS) to a distance matrix
that approaches distances in the manifold.

Suppose that M is isometric to an open set of Rk. In that case, there exists a map φ : M → U ⊂ Rk
such that distM (x, y) = distRk(φ(x), φ(y)) for all x, y ∈ M . Without further information about M we
want to find a map φ̃ that verifies the previous equality on the zi.

Then, Y = φ̃(Z) minimizes the loss function :

E(Y) = ‖SM − SY ‖F ,

where SM = (distM (zi, zj)2)ij is the matrix of the squared distances in M .
By the hypothesis we made on M , DM = Dk, with (Dk)ij = distRk(φ(zi), φ(zj)). A solution to the

problem is then obtained by applying MDS method on DM .
In practice, DM is unknown. To estimate it, we use Dijkstra’s algorithm, assuming that if G meshes

M sufficiently well, lengths of shortests paths in G give good approximations of geodesic distances on
M , in other words, for x, y ∈ G :

dM (x, y) = inf
γ∈Γ

∫ 1

0
‖γ̇‖dt ≈

s−1∑
i=1
‖
−−−−→
zizi+1‖,

where Γ = {γ : [0, 1]→M ∈ C1
pm | γ(0) = x∧ γ(1) = y} and {zi}i=1,...,s is the set of points where the

shortest path in G between x and y passes through.

1.2.2 Parallel Transport Unfolding

Differences between Parallel Transport Unfolding (PTU), proposed in [4], and Isomap occurs when
estimating geodesic distances. In [4], authors propose a more accurate way to esimate geodesic distances
on M when the manifold is geodesically convex.

The whole point of calculating distances with Dijkstra’s algorithm is to take into account the curvature
of M . This process also takes into account the curvature resulting from the particular paths used on M .
The aim of PTU is to compute distances by reducing the overestimation induced by the curvature of the
paths used while retaining the effect of the curvature of the manifold, in order to have a more accurate
estimate of the true distances on the manifold.

Roughly speaking, the idea is to sum vectors
−−−−→
zizi+1 instead of summing there norms. As they do not

belong to the same tangent space, we need for that to parallel transport them to the tangent space at z.
If we note vi the parallel transported of

−−−−→
zizi+1 into TxM , we take

‖
n−1∑
i=1

vi‖

as an approximation of dM (x, y).
If M is k-dimensional manifold, its tangent spaces are vector spaces of dimension k. An approximate

basis Ti of TziM is given by the k eigenvectors associated to the k largest eigenvalues of the matrix
whose columns are

−−→
zizj , with {zj} the set of r-nearest neighboors of zi in G.

The parallel transport between TziM and TzjM is approached by the transformation R in O(k) which
best aligns bases Ti and Tj , in the sense that R minimizes

‖Ti − TjR‖F ,

where ‖ · ‖F is the Frobenius norm.

9

1.2.3 Eigenmap

If Isomap and PTU give good results, these two methods have a high computational cost. This is due to
Dijkstra’s algorithm, whose complexity is in O(m2 log(m)) [4]. Thus, it can be interesting to see if we
could find a "good" projection without computing distances in the manifold.

In the Eigenmap method, proposed in [3], the idea is to exploit information provided by the Laplacian
of a manifold. Another way to justify this approach is to consider the following inequality :
Proposition 1.2.1. Let f : M → R twice differentiable and x, y two close points in M . Then,

|f(x)− f(y)| ≤ distM (x, y)‖∇f(x)‖+ o(distM (x, y)).

This shows that ∇f controls the distance where two points x and y of M are sent by a function
f : M → R. If we want that two close points in M are sent by f to two close points in R, a good way
to choose f is to take a minimizer of

E(f) =
∫
M

‖∇f(x)‖2dx. (1.10)

To remove a scaling factor and a translation invariance, we impose ‖f‖ = 1 and 〈f,1〉 = 0.
After integrating by parts, E(f) can be written as∫

M

Lf · f,

where L denotes the Laplace-Beltrami operator on the manifoldM . It is a positive semidefinite operator
whose spectrum is discrete [5]. Thus, the function that minimizes E on the unit sphere is the eigen-
function associated to the smallest eigenvalue of this operator. As it is 1, associated to the eigenvalue
0, and as eigenfunctions associated to different eigenvalues are orthogonal, the minimum of E under the
specified conditions is reached on the unit eigenfunction associated to the second smallest eigenvalue.

This argument can be generalized to the case where we look for f : M → Rk, with k > 1. The
solution is then given by the k first unit eigenfunctions associated to the k smallest positive eigenvalues
of L.

Several discrete operators can be chosen to approach L [8], one of them is ∆ = Id−D−1W , with W
the weight matrix of G and D the diagonal matrix whose coefficients are Dii = di =

∑m
j=1 wij . It can

be shown that ∆ converges, in a certain sense and at certain conditions, to L as the number of points zi
increases (see [8] for exact statement and proof).

1.3 Generalization to out-of-sample points

Non-linear projection methods give a low-dimensional representation of a sample, optimal according
to several criteria, but contrary to the linear projection method they do not provide a simple way to
compute the projection of a new point in the reduced space.

The final step of the reduced order model construction is to build a map f : Rn → Rk which
generalizes the projection found on the sample. An efficient way to proceed is to use a kernel regression.

We recall the kernel and positive semi-definite kernel definitions.
Definition 1.3.1. 1. A map K : Rn × Rn → R is called a kernel.

2. A kernel is said positive definite symmetric (PDS) if for all {x1, ..., xn} ∈ Rn the matrix (K(xi, xj))ij
is symmetric positive semidefinite.

In a kernel regression over the {zi}i=1,...,m, we look for f of the form

fθ(x) =
m∑
i=1

θiK(zi, x), (1.11)

10

where K : Rn × Rn → R is a symmetric PSD kernel and θi ∈ Rk are such that

L(θ) =
m∑
i=1
|fθ(zi)− xi|2

is minimal, with xi the projections of the zi. The improve the computation of the optimal values of θ,
it can sometimes be useful to consider instead the regularized loss

Lα(θ) =
m∑
i=1
|fθ(zi)− xi|2 + α

m∑
i=1
‖fθ(zi)‖22.

The choice of the kernel is important. We used Gaussian and Laplacian kernels, whose expressions
are respectively

Kσ(x, y) = exp(‖x− y‖
2
2

2σ2)

and
Kγ(x, y) = exp(γ‖x− y‖1)

with σ and γ scale parameters, and obtain very different results.
As shown on Figure 1.3, the decoder built with Laplacian kernel gives a very satisfying generalization

for the projection obtained with Isomap applied to a swiss roll : out-of-samples images are well placed
on the swiss rolll. On the reverse, the use of a Gaussian kernel on the same test case gives a poor
generalization : out-of-samples images are not on the swiss roll. We have never obtained good results
with a Gaussian kernel, regardless of the value we took for γ.

The difference between the two results may be explained by the functional space where live functions
of the form (1.11) for both kernels. Gaussian kernel produces functions of C∞(Rn,Rk) where as Laplacian
kernel produces functions of H1(Rn,Rk). Then, the assumptions we implicitely make on the regularity
of f when we choose a Laplacian kernel rather than a Gaussian one are less restrictive.

Figure 1.3: Generalized projection built with Laplacian (center) and Gaussian (right) kernels applied to
200 out-of-sample points of the swiss roll. On the left are shown the 2000 samples used to build the
projection with Isomap. The Isomap projection was computed from a 11-neighboors graph using sklearn
library.

1.4 Application to Burgers’ equation

In short, the construction of the reduced order model followed the steps :

1. Computing snapshots with Lax-Friedrichs scheme in high dimension.

11

2. Find a non-linear projection of these snapshots to a low-dimensional space using Isomap, PTU or
Eigenmap.

3. Generalize the previous projection.

4. Solve the equation in the low-dimensional space.

By doing this, we obtain very good results, far better than what we got with POD: results presented in
Figure 1.4 show that this non-linear model succeed to reproduce almost perfectly the solution computed
in high dimension, regardless of the reduction method used, Isomap or Eigenmap. In both cases, we have
chosen the Laplacian kernels. To be efficient, these models should be built with α and γ small, as one
can see on Figure 1.5 and Figure 1.6. This is not surprising as a high value of α leads to a f too far from
the projection computed on the samples: the loss L gives too much importance to the regularization.

The computation using the reduced model is really faster than the computation using Lax-Friedrichs
in high dimension (a quasi-instantaneous compared to a few second computation). Projection computa-
tion with Isomap and PTU has however a cost of O(n2 log(n)) [4] du to singular vlue decomposition and
Dijkstra’s algorithm. In tests we made, Eigenmap was two or three times faster for the same amount of
snapshots.

12

Figure 1.4: Numerical solution of Burgers’ equation with ε = 0. Samples were computed using Lax-
Friedrichs scheme with m = 1000 points in time on the interval [0, 1] and n = 50 points in space.
Parameters for non-linear models are r = 5, k = 1, α = 0 and γ = 0.1 (we have taken the same
parameters values for encoding and decodinng operators). We built G with the r-nearest neighboors.
The solution computed with the non-linear models are closer to the solution computed in high dimension
with Lax-Friedrichs schema than the one given by the POD.

13

Figure 1.5: Numerical solution of Burgers’ equation with ε = 0. Samples were computed using Lax-
Friedrichs scheme with m = 1000 points in time on the interval [0, 1] and n = 50 points in space.
Parameters for the Isomap reduction are r = 4, k = 2. We have tested threevalues for the kernel
regression parameters, α and γ (we have taken the same parameters values for encoding and decodinng
operators). We built G with the r-nearest neighboors. We see that the reduced order model is better
when these two parameters are small.

14

Figure 1.6: Numerical solution of Burgers’ equation with ε = 0. Samples were computed using Lax-
Friedrichs scheme with m = 1000 points in time on the interval [0, 1] and n = 50 points in space.
Parameters for the Eigenmap reduction are r = 4, k = 2. We have tested threevalues for the kernel
regression parameters, α and γ (we have taken the same parameters values for encoding and decodinng
operators). We built G with the r-nearest neighboors. We see that the reduced order model is better
when these two parameters are small.

15

2 Symplectic reduced order model

We have seen that the POD works well on Burgers’ equation for large values of ε which makes the
equation "almost" linear. Nevertheless, the reduction is not always so good, even for linear equations.
On Figure 2.1, we show what happens if we use the POD on a one-parameter linear equation modelling a
piano string vibration (which will be presented below): even when we take a large value of k, the reduced
model fails to capture the shape of the solution.

The system we have chosen has a particular form, this is in fact what we call a Hamiltonian system.
The idea we follow from now on is to exploit this structure to build a more robust reduction. We explain
below what makes these kinds of systems so particular but we first need to introduce some geometrical
concepts.

Figure 2.1: Numerical solution of linear piano string equations. The reduction was made using POD
with k = 5 (top right), 10 (bottom left) and 20 (bottom right).Snapshots were 20 trajectories computed
in high dimension with explicit Stormer-Verlet scheme, for values of the equation parameter g taken in
I = [0, 1], n = 200, dt = 0.001 and m = 500. Trajectories in low dimension were computed using the
reduced model with the same discretisation in time and space and with g = 0.537 (this value has been
chosen to be different from those used for the projection). Trajectories in high dimension (top left) were
also computed with Strörmer-Verlet using the same discretisations.

16

2.1 Mathematical background

This part is a digest of [2], [11] and [10].

2.1.1 Alternate forms on Rn

Definition 2.1.1. Let n, k ∈ N. A k-form ω on Rn is a k-linear skew-symmetric application of (Rn)k
in R.

Remark 2.1.1. Saying that a k-linear form ω on a vector space E is a skew-symmetric means that for
all x1, ..., xk in E and for all permutation σ,

ω(xσ(1), ..., xσ(k)) = ε(σ)ω(x1, ..., xk),

with ε(σ) the signature of σ.

Example 2.1.1. • The 1-forms on Rn are the elements of the dual of Rn. For {ei}i=1,...,n a basis
of Rn, they can be uniquely written as ω = ω1e

∗
1 + ...+ωne

∗
n, where the forms e∗i are characterized

by e∗i (ej) = δij and where the coefficients ωi are given by ω(ei).

• The 2-forms are the bilinear applications verifying ω(u, v) = −ω(v, u) for all u, v ∈ Rn. In R2, the
oriented area S : (u, v)→ u1v2 − u2v1 is a 2-form.

2.1.2 Exterior multiplication

The exterior multiplication gives a way to build a k + l-form from a k-form and a l-form.

Definition 2.1.2. Let ωk and ωl be a k-form and a l-form on Rn. The exterior product of ωk and ωl
is a (k + l)-form defined by

ωk ∧ ωl(u1, ..., uk+l) =
∑
σ∈S

ε(σ)ωk(uσ(1), ..., uσ(k))ωl(uσ(k+1), ..., uσ(k+l)),

where S := {σ ∈ Sk+l | σ(1) < ... < σ(k) ∧ σ(k + 1) < ... < σ(k + l)}.

We easily verify that ωk∧ωl is really a (k+ l)-form. The linearity of ωk∧ωl follows from the linearity
of ωk and ωl. On another hand, for all permutation µ,

ωk ∧ ωl(uµ(1), ..., uµ(k+l)) =
∑
σ′∈Sµ

ε(σ′)ωk(uσ′◦µ(1), ..., uσ′◦µ(k))ωl(uσ′◦(k+1), ..., uσ′◦µ(k+l)),

where Sµ := {σ′ ∈ Sk+l | σ′ ◦ µ ∈ S}. The change of variable σ = σ′ ◦ µ transforms the previous sum
into ∑

σ∈S
ε(σ ◦ µ−1)ωk(uσ(1), ..., uσ(k))ωl(uσ(k+1), ..., uσ(k+l)).

Noting that ε(µ−1) = ε(µ), we find that

ωk ∧ ωl(uµ(1), ..., uµ(k+l)) = ε(µ)ωk ∧ ωl(u1, ..., uk+l).

Proposition 2.1.1. The operation ∧ is distributive, associative and anticommutative.

Proof. Let ωk, ωl and ωm respectively be m, k and l-forms on Rn.

• Associativity :

17

Let us start be defining

Sk0,...,kp
µ :=

{
σ ∈ SKp |

{∀r ∈ [[0, p− 1]]
(
kr < i < j ≤ kr+1

)
=⇒

(
σ ◦ µ(Kr + i) < σ ◦ µ(Kr + j)

)
,

∀i ∈ [[0, k0]] σ ◦ µ(i) = µ(i)

}
,

and

Rk0,...,kp
µ :=

{
σ ∈ SKp |

{ ∀r ∈ [[−1, p− 2]]
(
kr < i < j ≤ kr+1

)
=⇒

(
σ ◦ µ(Kr + i) < σ ◦ µ(Kr + j)

)
,

∀i ∈ [[Kp−1 + 1,Kp]] σ ◦ µ(i) = µ(i)

}
,

for all k0, ..., kp ∈ N and all µ ∈ SKp , where we have noted Kr =
∑p
i=0 ki and k−1 = 0.

In particular, S0,m,k
id = Rm,k,0id is the set of partitions of [[0,m+ k]] into two subsets of size m and k

whose elements have been arranged in ascending order. More generally, S0,m,k
µ = Rm,k,0µ is the set of

partitions [[0,m+k]] into two subsets of sizem and k whose elements have been arranged in ascending
order according to their image by µ. Thus, if µ preserves order, S0,m,k

µ = S0,m,k
id = Rm,k,0µ = Rm,k,0id .

Note that for any µ ∈ S0,m,k+l
id and any σ ∈ Sm,k,lµ , σ ∈ S0,m,k,l

id . Conversely, any permutation of
S0,m,k,l
id is uniquely written as a composition of an element of S0,m,k+l

id and an element of Sm,k,lµ (it
suffices to see that once given µ, σ is uniquely given).
Similarly, for any µ′ ∈ Rm+k,l,0

id and any σ′ ∈ Rm,k,lµ , σ′ ◦µ′ ∈ Rm,k,l,0id = S0,m,k,l
id . And any element

of the last set is uniquely written as a composition of two elements of the first two.
Then,

ωm ∧ (ωk ∧ ωl)(u1, ..., uk+l+m)

=
∑

µ∈S0,m,k+l
id

ε(µ)ωm(uµ(1), ..., uµ(m))
(∑
σ∈Sm,k,lµ

ε(σ)ωk(uσ◦µ(m+1), ..., uσ◦µ(m+k))ωl(uσ◦µ(m+k+1), ..., uσ◦µ(m+k+l))
)

=
∑

µ∈S0,m,k+l
id

∑
σ∈Sm,k,lµ

ε(σ ◦ µ)ωm(uσ◦µ(1), ..., uσ◦µ(m))ωk(uσ◦µ(m+1), ..., uσ◦µ(m+k))ωl(uσ◦µ(m+k+1), ..., uσ◦µ(m+k+l))

=
∑

s∈S0,m,k,l
id

ε(s)ωm(us(1), ..., us(m))ωk(us(m+1), ..., us(m+k))ωl(us(m+k+1), ..., us(m+k+l))

=
∑

ν∈Rm+k,l,0
id

∑
η∈Rm,k,lν

ε(η ◦ ν)ωm(uη◦ν(1), ..., uη◦ν(m))ωk(uη◦ν(m+1), ..., uη◦ν(m+k))ωl(uη◦ν(m+k+1), ..., uη◦ν(m+k+l))

=(ωm ∧ ωk) ∧ ωl(u1, ..., um+k+l).

• Distributivity: obvious.

• Skew-commutativity: if we note c the permutation which send the l last elements of [[1, k + l]] on
the k first while keeping the order in the two subsets [[1, k]] and [[k + 1, k + l]], we have

ωk ∧ ωl(u1, ..., uk+l) =
∑

σ∈S0,k,l

ε(σ)ωk(uσ(1), ..., uσ(k))ωl(uσ(k+1), ..., uσ(k+l))

=
∑

σ∈S0,k,l

ε(σ ◦ c−1)ωk(uσ(l+1), ..., uσ(l+k))ωl(uσ(1), ..., uσ(k))

=ε(c)(ωl ∧ ωk)(u1, ..., uk+l).

Now, we see that c has (−1)kl for signature. In fact, we just have to notice that we can carry
out this permutation by making the last l elements of (1, ..., k + l) "go up" one after the other by
means of k transpositions: we bring (k + i) to the desired position by means of k transpositions
(k + i− j, k + i− j − 1) for j going from 0 to k − 1 and this for all i going from 1 to l. By doing
so, we perform kl transpositions. We therefore deduce that ε(c) = (−1)kl.

18

Example 2.1.2. • If ω1 and ω2 are two 1-forms,

ω1 ∧ ω2(u1, u2) =
∣∣∣∣ω1(u1) ω2(u1)
ω1(u2) ω2(u2)

∣∣∣∣ .
In that case, S contains only the identity, with positive signature, and the transposition (1, 2), with
negative signature.

• The product of m 1-forms is given by

ω1 ∧ ... ∧ ωm(u1, ..., um) =

∣∣∣∣∣∣∣
ω1(u1) ... ωm(u1)

...
...

ω1(um) ... ωm(um)

∣∣∣∣∣∣∣ .
Let us show this by induction. The case m = 2 has been treated in the previous point. Assume
that we have already proved the desired equality for a certain m ≥ 2 and check that it is still true
for m+ 1. By definition,

(ω1 ∧ ... ∧ ωm) ∧ ωm+1 =
∑
σ∈S

ε(σ)(ω1 ∧ ... ∧ ωm)(uσ(1), ..., uσ(m))ωm+1(uσ(m+1)).

Here, S = {σ ∈ Sm+1 | σ(1) < ... < σ(m)} and the sum can in fact be indexed by the m + 1
possible choices for σ(m+ 1), the values of the others σ(i) being then fixed. The signature of the
corresponding permutation is then (−1)m+1−σ(m+1) = (−1)m+1+σ(m+1), as m + 1 − σ(m+ 1) is
the number of transposition needed to make the (m+ 1)-th coefficient go to the σ(m+ 1)-th place.
Set i = σ(m+ 1), and write the sum as :

m+1∑
i=1

(−1)i+m+1(ω1 ∧ ... ∧ ωm)(u1, ..., ûi, ..., um+1)ωm+1(ui).

The induction assumption yields

m+1∑
i=1

(−1)i+m+1 det([ωj(uk)]j∈[[1,m]];k=[[1,m]]\{i}),

which is exactly Lagrange’s developpement of the determinant from the (m + 1)-th column. The
equality is then true for m+ 1. We deduce that it is true for all m ≥ 2.

• On R2n with coordinates (p1, ..., pn, q1, ..., qn), we set ω2(u, v) = dp ∧ dq =
∑n
i=1 dpi ∧ dqi. It is

the sum of projected areas of the paralellograms formed by u and v on the subspaces (pi, qi).

Proposition 2.1.2. Let k ∈ N. The set of k-forms on Rn forms a vector space of dimension
(
n
k

)
.

Moreover, if {ei}i=1,...,n denotes a basis of Rn and {e∗i }i=1,...,n the corresponding dual basis, then
{e∗i1 ∧ ... ∧ e

∗
ik
}1≤i1<...<ik≤n gives a basis of the k-forms space.

Proof. Let ω be a k-form on Rn. Let u1, ..., uk be points of Rn and ui =
∑n
j=1 u

j
iej their decomposition

on the basis {ei}i=1,...,n. The linearity of ω and the definition of the dual basis yields

ω(u1, ..., uk) =
n∑

j1,...,jk=1
uj1

1 ...u
jk
k ω(ej1 , ..., ejk) =

n∑
j1,...,jk=1

e∗j1
(u1)...e∗jk(uk)ω(ej1 , ..., ejk).

Set ωj1,...,jk := ω(ej1 , ..., ejk). By skew-symmetry, if two indices jl and jm are equal in the k-uplet
{j1, ..., jk}, then ωj1,...,jk = 0. Therefore, for each {j1, ..., jk} ∈ {1, ..., n} such that the corresponding
term in the sum is not zero, there exists an unique permutation σ ∈ Sk such that jσ(1) < ... < jσ(k)}.
Conversely, to each permutation σ ∈ Sk corresponds an unique non-zero term involving {j1, ..., jk}.

19

Then,

ω(u1, ..., uk) =
∑

1≤j1<...<jk≤n

∑
σ∈Sk

e∗jσ(1)
(u1)...e∗jσ(k)

(uk)ωjσ(1),...,jσ(k)

=
∑

1≤j1<...<jk≤n

ωj1,...,jk

∑
σ∈Sk

ε(σ)e∗jσ(1)
(u1)...e∗jσ(k)

(uk).

Finally, we recognize the determinant of [e∗ji(ul)]i,l=1,...,k, and we have

ω(u1, ..., uk) =
∑

1≤j1<...<jk≤n

ωj1,...,jke
∗
j1
∧ ... ∧ e∗jk(u1, ..., uk).

To conclude the proof, it suffices to notice that the set of ordered subsets with k elements of [[0, n]]
has a cardinal of

(
n
k

)
.

2.1.3 Differential forms

Definition 2.1.3. Let M be a differential manifold. A k-differential form ω is a collection of k-linear
and skew-symmetric maps ωx : (TxM)k → R defined at each x ∈ M and varying differentiably with x
(ie. x 7→ ωx(u1(x), ..., uk(x)) is differentiable for all differential vector fields u1, ..., uk on M).

We note by Ωk(M) the set of all differential k-forms on M and Ω(M) the set of all differential forms
on M .

The exterior product between two differential forms ωk and ωl is defined as the form ωk ∧ ωl, which
corresponds to ωkx ∧ ωlx on each TxM .

In a coordinate neighbourhood, we have for any x a differentiable basis {e1, ..., en} of TxM . Let
us denote {dx1, ..., dxn} the 1-differentiable bases such that in any x, {dx1(x), ..., dxn(x)} is the dual
basis of {e1(x), ..., en(x)}. From the previous section, any ω differential form restricted to TxM can be
decomposed into the form ∑

1≤j1<...<jk≤n

ωj1,...,jk(x)dxj1(x) ∧ ... ∧ dxjk(x), (2.1)

with the ωj1,...,jk(x) given uniquely.
Defined on this neighbourhood, the applications x 7→ ωj1,...,jk(x) are differentiable. Conversely, any

set of differentiable applications ωj1,...,jk induces a differential form on this neighbourhood by the previous
formula.

Indeed, according to the second point of the example 2.1.2, for any x in the considered neighbourhood,
dxj1(x)∧ ...∧dxjk(x)(ei1 , ..., eik) = 0 if {i1, ..., ik} 6= {j1, ..., jk} (since dxj(xi) = δij , if one of the jq is not
in the iq, the matrix whose determinant is taken has a column of zeros). By evaluating ω in (ej1 , ..., ejk),
we obtain ωj1,...,jk which must be differentiable by definition of a differential form.

Conversely, any application of the form (2.1) defines a differential form on the coordinate neighbour-
hood considered.

Example 2.1.3. • A 0-form is a differentiable function and vice-versa. Note that for all 0-form f
and all k-form ω, f ∧ ω = fω.

• IfM = R2n and if x 7→ (p1, ..., pn, q1, ..., qn)(x) is a coordinate map, pdq :=
∑n
i=1 pidqi and dp∧dq

are respectively is a 1-form and a 2-form on M .

Definition 2.1.4. We say that a 2-differential form ω on M is non-degenerate if for all x ∈M and all
u ∈ TxM different from zero, ωx(u, ·) 6= 0.

20

Example 2.1.4. The form dp ∧ dq is non-degenerate. In fact, for all x ∈ M and u ∈ TxM , dp ∧
dq(u, ej) =

∑n
i=1 ui × 0− u2iδij = −u2i. In the same way, dp ∧ dq(u, e2j) =

∑n
i=1 uiδij − u2i × 0 = ui.

This shows that if dq(u, ·) is zero, then this is also the case of u, which means that dp ∧ dq is non-
degenerate.

Definition 2.1.5. Let M and N two differential manifolds and f : M → N a differentiable function.
Let ω be a differential k-form on N . The pullback of ω by f is the differential k-form on M given by

(f∗ω)x(u1, ..., uk) = ωf(x)(dxf(u1), ..., dxf(uk))

for all x ∈M and all u1, ..., uk ∈ TxM .

Proposition 2.1.3. Let M,N and L three differential manifolds and f : M → N , g : N → L two
differentiable functions.

1. f∗ : ω 7→ f∗ω is a linear map from Ωk(N) to Ωk(M),

2. (g ◦ f)∗ = f∗ ◦ g∗,

3. f∗(ω1 ∧ ω2) = f∗ω1 ∧ f∗ω2 for all ω1, ω2 ∈ Ω(M).

Proof. 1. Obvious.

2. Let ω ∈ Ω(L). By definition and by the chain rule,

((g◦f)∗ω)x(u1, ..., uk) = ωg(f(x))(dx(g◦f)(u1), ..., dx(g◦f)(uk)) = ωg(f(x))(df(x)g(dxf(u1)), ..., df(x)g(dxf(uk))).

By definition of g∗ and f∗, we have

((g ◦ f)∗ω)x(u1, ..., uk) = (g∗ω)f(x)(dxf(u1), ..., dxf(uk)) = (f∗g∗ω)x(u1, ..., uk).

3. Obvious.

2.1.4 Exterior derivative

Proposition 2.1.4. There exists an unique linear map d : Ω(M) → Ω(M), called exterior derivative
verifying

1. if ω ∈ Ωk(M), dω ∈ Ωk+1(M) ∀k ∈ N,

2. d(ωk ∧ ωl) = d(ωk) ∧ ωl + (−1)kωk ∧ d(ωl) ∀ωk,∀ωl ∈ Ω(M) (with ωk f degree k),

3. d ◦ d(ω) = 0 ∀ω ∈ Ω(M),

4. d(f) = df ∀f ∈ C∞(M) = Ω0(M).

If ω ∈ Ω(M) can be decomposed in∑
1≤j1<...<jk≤n

ωj1,...,jk(x)dxj1(x) ∧ ... ∧ dxjk(x)

in a certain coordinate system, then its derivative is given by∑
1≤j1<...<jk≤n

dωj1,...,jk(x) ∧ dxj1(x) ∧ ... ∧ dxjk(x)

in the same coordinate system, where dωj1,...,jk denotes the differential of x 7→ ωj1,...,jk(x) = ωx(ej1(x), ..., ejk(x)).

21

Proof. Let us first verify that the given expression defines an application d̃ independent of the coordinate
system. Consider an open set U included in an unique coordinate neighborhood of a differential manifold
M and a form ω ∈ Ω(U). It is obvious that the expression given for d̃ω is linear. We can therefore
restrict ourselves to the case where ωx is of the form φ(x)dxj1 ∧ ... ∧ dxjk for all x ∈ U , with φ : U → R
differentiable and the indices ji such that j1 < ... < jk.

We have to write
dφ(x) ∧ dxj1(x) ∧ ... ∧ dxjk(x)

in a form which no longer involves the coordinates xi. In fact, we show that

(dφ(x) ∧ dxj1 ∧ ... ∧ dxjk)(u0, ..., uk) =
k∑
i=0

(−1)id(x 7→ ωx(u0, ..., ûi, ..., uk)) (2.2)

for all x ∈M and all ui ∈ TxM .
The developpement of dφ(x) and the skew-symmetry of alternate forms yield

dφ(x) ∧ dxj1 ∧ ... ∧ dxjk(u0, ..., uk) =
(n∑
p=1

∂φ

∂xp
dxp ∧ dxj1 ∧ ... ∧ dxjk

)
(u0, ..., uk)

=
∑

p6=j1,...,jk

∂φ

∂xp

(
dxp ∧ dxj1 ∧ ... ∧ dxjk

)
(u0, ..., uk).

By linearity of (2.2), we can restrict ourselves to the case where the ui are vectors eli of the basis
induced by the coordinates xl on TxM .

Then, all the terms in the sum are equal to zero, except maybe one, which would have to be such
that (p, j1, ..., jk) = (l0, ..., lk) up to a permutation σ. Indeed,

(
dxj1 ∧ ... ∧ dxjk+1

)
(ul1 , ..., ulk+1) =

det
(

[dxjs(ulr)]
)
is equal to ε(σ) if this condition is satisfied and is zero otherwise.

If one of the terms is not zero, we get ∂φ
∂xl0

ε(σ).

On another hand,

k∑
i=0

(−1)id(x 7→ ωx(el0 , ..., êli , ..., elk)) =
k∑
i=0

(−1)id
(
x 7→ φ(x)

(
dxj1 ∧ ... ∧ dxjk

)
(el0 , ..., êli , ..., elk)

)
,

with
(
dxj1 ∧ ... ∧ dxjk

)
(el0 , ..., êli , ..., elk) which, for the same reasons than previously, is equal to ε(µ)

if (j1, ..., jk) = (l0, ..., l̂i, ..., lk) up to a permutation µ and 0 otherwise. The ji and the li are fixed and
different (otherwise, the sum would be zero by skew-symmetry of the dxj and of exterior product), so
this can happen for at most one term of the sum. If it exists, it is equal to

(−1)id
(
x 7→ ε(µ)φ(x)

)
= ε(ν) ∂φ

∂xl0
,

where ν is the permutation given by the composition of µ with the shift which makes l0 go to the i-th
position.

Then, it suffices to notice that, first, if a term is non-zero in the first expression, then it exists a non-
zero term in the second one and, secondly, that the permutations σ and ν are the same for they both
match (p, j1, ..., jk) and (l0, ..., lk). We immediately conclude that (2.2) is true and that the expression
given in the definition really defines a map independente from the coordinate system where it is expressed.

This map is a differential form, as it can be decomposed in the same form than in (2.1) in all coordinate

22

system : ∑
1≤j1<...<jk≤n

dωj1,...,jk(x) ∧ dxj1(x) ∧ ... ∧ dxjk(x)

=
∑

1≤j1<...<jk≤n

n∑
l=1

∂ωj1,...,jk

∂xl
(x)dxl ∧ dxj1 ∧ ... ∧ dxjk

=
∑

1≤j1<...<jk+1≤n

(
n∑
l=1

(−1)l+1 ∂ωj1,...,ĵl,...,jk+1

∂xjl
(x)
)
dxj1 ∧ ... ∧ dxjk+1 .

Let us now verify that this form satisfies axioms (1-4). From the previous paragraph, it is obvious
that d̃ ∈ Ωk+1(M) and that d̃ = d in Ω0(M).

By linearity and skew-symmetry, if (2) is true on the forms ω = φdxj1 ∧ ... ∧ dxjk with j1 < ... < jk,
then it is also true on Ω(M). For φ, ψ ∈ C∞(M), we easily check (2) from the definition of d̃ :

d̃
(
(φdxj1 ∧ ... ∧ dxjk) ∧ (ψdxi1 ∧ ... ∧ dxil)

)
=d(φψ) ∧ dxj1 ∧ ... ∧ dxjk ∧ dxi1 ∧ ... ∧ dxil
=ψdφ ∧ dxj1 ∧ ... ∧ dxjk ∧ dxi1 ∧ ... ∧ dxil + φdψ ∧ dxj1 ∧ ... ∧ dxjk ∧ dxi1 ∧ ... ∧ dxil
=(dφ ∧ dxj1 ∧ ... ∧ dxjk) ∧ (ψdxi1 ∧ ... ∧ dxil) + (−1)k(φdxj1 ∧ ... ∧ dxjk) ∧ (dψ ∧ dxi1 ∧ ... ∧ dxil).

Finally, to prove (3), we use the linearity of d̃ to decompose d̃(d̃)ω into

d̃
[∑

1≤j1<...<jk≤n

n∑
l=1

∂ωj1,...,jk

∂xl
(x)dxl ∧ dxj1 ∧ ... ∧ dxjk

]
=

∑
1≤j1<...<jk≤n

n∑
l=1

d̃
[∂ωj1,...,jk

∂xl
(x)dxl ∧ dxj1 ∧ ... ∧ dxjk

]
=

∑
1≤j1<...<jk≤n

n∑
l,m=1

∂2ωj1,...,jk

∂xlxm
(x)dxl ∧ dxm ∧ dxj1 ∧ ... ∧ dxjk .

Terms sucht that l = m are zero for dxm ∧ dxl = 0. The others appear exactly two times with opposite
signs. The nullity of the sum follows from Schwarz’s lemma.

There really exists a linear operator k with properties (1-4) whose expression in local coordinates is
as in the proposition. It remains to prove that this operator is unique. We show that if a linear operator
d̃ satisfies (1-4), then its expression in local coordinates is given by the formula in the proposition.

Let ω be a differential k-form, for k ≥ 1, and∑
1≤j1<...<jk≤n

ωj1,...,jk(x)dxj1(x) ∧ ... ∧ dxjk(x)

its decomposition in a certain coordinate system. By (1),

d̃(ω) =
∑

1≤j1<...<jk≤n

d̃
(
ωj1,...,jk(x)dxj1(x) ∧ ... ∧ dxjk(x)

)
.

Using that the product between a 0-form and a k-form corresponds to the multiplication and applying
(2), terms of the previous sum can be written as

d̃(ωj1,...,jk(x)) ∧
(
dxj1(x) ∧ ... ∧ dxjk(x)

)
+ ωj1,...,jk(x)d̃

(
dxj1(x) ∧ ... ∧ dxjk(x)

)
.

Noticing that dxi is the differential of x 7→ xi and using (4) on ωj1,...,jk(x) and xi, we obtain

dωj1,...,jk(x) ∧
(
dxj1(x) ∧ ... ∧ dxjk(x)

)
+ ωj1,...,jk(x)d̃

(
d̃xj1(x) ∧ ... ∧ d̃xjk(x)

)
.

23

Finally, developing
d̃
(
d̃xj1(x) ∧ ... ∧ d̃xjk(x)

)
with (2) and applying (3), we find that this term is zero.

At the end,
d̃(ω) = dωj1,...,jk ∧ dxj1 ∧ ... ∧ dxjk ,

which was to be proved.

Example 2.1.5. On R2n, d(pdq) = dp ∧ dq.

Definition 2.1.6. We say that a differential k-form ω on a manifold M is closed if dω = 0.

Example 2.1.6. If a form is given by the differential of a function f ∈ C∞(M) (we say that it is exact),
then it is closed by (3). The converse is false in general.

2.1.5 Symplectic manifolds

Definition 2.1.7 (Symplectic form). Let M be a differential manifold. We call a symplectic form on
M a differential 2-form which is closed and non-degenerate.

The manifold M endowed with this form ω, (M,ω) is called a symplectic manifold.

Let (M,ω) be a symplectic manifold with even dimension 2n (one can think about it as a physical
phase space). Take a differentiable function H : M → R (one can think about it as an energy function).

If we had a metric g on M , we could have defined the gradient ∇H with dxH = g(∇H(x), ·) at
each point x ∈ M . Here, ω non-degeneracy allows to define a similar vector field. In fact, at each
point x of M , the linear function u → ωx(u, ·) between TxM and TxM

∗ is one-to-one. As TxM and
TxM

∗ have the same dimension, it is bijective. We define the vector field XH as the one which verifies
dxH = ω(XH(x), ·) for all x in M .

Proposition 2.1.5. 1. XH(x) ∈ T{H = H(x)},

2. LXHω = 0, ie. (φtXH)∗ω = ω, where φtXH represents the flow of XH .

Proof. 1. For Tq{H = H(x)} = ker(dH(q)), it suffices to prove that XH(q) ∈ ker(dH(q)). By
definition, dqH(XH(q)) = ω(XH(q), XH(q)). This is zero by skew-symmetry of ω.

2. We use Cartan’s formula: LZα = iZdα + d(iZα), where iZα(·) = (Z, ·), for Z = XH and α = ω.
We then have LXHω = iXHdω + d(iXHω). The form ω is closed, so the first term is zero. The
second one too as iXHω = dH and d ◦ d = 0.

Definition 2.1.8. A Hamiltonian equation is a differential equation of the form

dx(t)
dt

= XH(x(t)).

The previous proposition has for consequence that if t→ x(t) is a solution of the Hamiltonian equation
associated to H, then x(t) ∈ {H = H(x(0))}. In other words, the energy of the system is preserved over
time.

The second point of the proposition implies that (φtXH)∗(
ntimes︷ ︸︸ ︷

ω ∧ ... ∧ ω) = (φtXH)∗ω ∧ ... ∧ (φtXH)∗ω =
ω ∧ ... ∧ ω. In other words, a Hamiltonian flow preserves the volume of the phase space.

Example 2.1.7. • R2n endowed with dp ∧ dq.

24

• Let M be a differential manifold of dimension n. The cotangent space T ∗M is endowed with a
natural symplectic structure: ωcan = dλcan with λcan(q, p)(v) = p(Π∗v) for all q ∈ M and all
p ∈ (TqM)∗. Here, Π represents the canonical projection of TM∗ into M and Π∗ its differential.
It is obvious that λcan is a 1-form and so that ωcan is a 2-form. It is closed because it is exact. Let
us prove its non-degenerecy. Let v =

∑n
i=1 xi

∂
∂qi

+ yi
∂
∂pi

. We have

λcan(q, p)(v) = p(
∑n
i=1 xi

∂
∂qi

) =
∑n
i=1 xip(∂

∂qi
) =

∑n
i=1 xipi, hence λcan = pdq and ωcan =

dp ∧ dq. By a previous example, this form is non-degenerate.

A symplectic form defines a symplectic structure on the manifold. Maps that preserves this structure
are called symplectic maps.

Definition 2.1.9. Let (M,ω) and (N, η) be two symplectic manifolds. A differential map f : M → N
is said to be symplectic if f∗η = ω. If f is also a diffeomorphism, then it is a symplectomorphism.

Example 2.1.8. The flow of a Hamiltonian equation is always symplectic.

2.1.6 Generating functions

In this section, we take M = R2n endowed with the standard symplectic structure ω2.
Given a Hamiltonian function H, we want to solve the system (2.1.8). The form of this equation is left

unchanged under a symplectic transformation. We then look for such a symplectic change of coordinates
(p, q)→ (P,Q) which would lead to an system integrable by quadratures.

Suppose that q and Q are independant coordinates, that is det∂(Q,q)
∂(p,q) = det∂Q∂p 6= 0. If (p, q)→ (P,Q)

is a symplectic transformation, then pdq − PdQ is an exact form dS̃ (see [2], chapter 45 for proof). As
q and Q are free, S̃ can be expressed in these coordinates : S(q,Q) = S̃(p(q,Q), q).

Definition 2.1.10. The function S is the generating function of the symplectic transformation (p, q)→
(P,Q).

The identity pdq − PdQ = dS yields

∂S

∂q
(q,Q) = p and ∂S

∂Q
(q,Q) = −P. (2.3)

The converse is true, that is

Theorem 2.1.1. Let S : Rn × Rn → R a function of (q,Q). If det ∂
2S

∂Q∂q 6= 0, then S is the generating
function of a symplectic transformation (p, q)→ (P,Q).

Proof. The hypothesis that det ∂2S
∂Q∂q 6= 0 allows us to use the implicit function theorem on ∂S

∂q . We obtain
a function Q depending on p and q. Then, we set P (p, q) = P1(Q(p, q), q), where P1(Q, q) = − ∂S

∂Q (Q, q).

The map (p, q)→ (P,Q) we obtained is symplectic with generating function S since

pdq − PdQ = ∂S

∂q
(q,Q)dq + ∂S

∂Q
(q,Q)dQ = dS.

This means that given a generating function S, we can easily built a symplectic transformation. This
result will be used later to build numerical integrators.

25

2.2 Reduced order models for Hamiltonian systems

2.2.1 Hamiltonian systems

In what follows, we consider a symplectic manifold (M,ω) and we study Hamiltonian systems, i.e.
systems of the form {

ż = XH(z),
z(0) = z0,

with XH ∈ Γ(M) the Hamiltionian vector field defined by

ω(XH , ·) = dH,

for H : M → R a Hamiltonian function.
We also consider, in addition to the symplectic structure induced by ω onM , a Riemannian structure

induced by a metric g on this same space. Like any bilinear form, the 2-form ω can be formulated in
terms of g : for all x ∈M , there exists Aωx such that for all u, v ∈ TxM

ωx(u, v) = g(Aωxu, v).

The matrix A must be skew-symmetric and nondegenerate.
We first considerM = R2n. We consider the standard symplectic form ω = dp∧dq and the Euclidean

structure induced by the standard scalar product 〈·, ·〉. In this case, for all u, v ∈ R2n,

ω(u, v) = 〈JT2nu, v〉,

where
J2n =

(
0 In
−In 0

)
.

The previous system is then rewritten as

ż = J2n∇zH(z).

If we write z(t) = (p(t), q(t)), this is equivalent to{
pt = −∂H∂q (p, q),
qt = −∂H∂p (p, q).

We wish to build a reduced model for the equation

ż = XH(z),

with z ∈ R2n, which is also in a Hamiltonian form:

ẏ = XH̃(y),

that is
ẏ = J2k∇yH̃(y),

with y ∈ R2k, for a certain Hamiltonian function H̃ of R2k for k � n.

26

2.2.2 Symplectic matrices and symplectic inverse

First, let us assume that the equation depends linearly on the parameters and on time. We then look for
a matrix A such that if y verifies Ay = z, with z the solution of the initial problem, y is also a solution
of a Hamiltonian system.

In particular, we want the decoder A to preserve the Hamiltonian structure, i.e.

ω2n(Au,Av) = ω2k(u, v)

for all u, v ∈ R2k.
Using the expression of ω2n and ω2k in terms of the scalar products on R2n and R2k, we immediately

find that a necessary and sufficient condition for A to preserve the Hamiltonian structure is given by

AT J2nA = J2k.

A matrix A ∈M2n,2k(R) is said to be symplectic if it satisfies the above condition.
We define the symplectic inverse of a matrix A ∈M2n,2k as being

A+ := JT2kAT J2n.

It is easy to check that if A is symplectic, then A+A = I2k and (A+)T is symplectic: if A is symplectic,
then using the fact that J2k is orthogonal,

A+A = JT2kAT J2nA = JT2kJ2k = I2k.

Similarly,

A+J2n(A+)T = (JT2kAT J2n)J2n(JT2nAJ2k) = JT2k(AT J2nA)J2k = JT2kJ2kJ2k = J2k.

It is therefore in the set of symplectic matrices that we are now looking for the decoder A. Let us
show that this is a sufficient condition for the resulting reduced equation to be Hamiltonian.

By replacing z by Ay in
ż = J2n∇zH(z),

we obtain
Aẏ = J2n∇zH(Ay).

Multiply the previous equation by A+ and using the identities JT2k = −J2k, J2
2n = −I2n and A+A =

I2k, we have
ẏ = J2kA

T∇zH(Ay).

The chain rule then gives
ẏ = J2k∇y(H ◦A)(Ay).

Finally, if z = Ay with A a symplectic matrix, the initial problem is rewritten{
ẏ = J2k∇yH̃(y),
y(0) = A+y0,

with H̃ = H ◦A.

27

2.3 Linear symplectic reductions

The idea is to find a symplectic A ∈M2n,2k(R) such that Ay is as close as possible to z, where y is the
solution of the reduced problem induced by A and z is the solution of the initial problem.

To do this, we first compute the solution of the initial problem for some values of the parameters
and time and we evaluate the difference between these solutions and their images after encoding and
decoding, i.e.

‖S −AA+S‖F . (2.4)

We would like to minimize this loss.
However, the set of symplectic matrices is not bounded and this optimization problem does not admit

an explicit solution.
Several methods have been proposed to find an optimal A-matrix under additional constraints, such

as the cotangent lift method, or the complex SVD. We focus here on two methods, Proper Symplectic
Decomposition and another, called greedy, proposed in [1].

2.3.1 Greedy algorithm

The idea of the greedy method is to construct an orthosymplectic basis by adding at each iteration the
vector most likely to decrease an error indicator E to be specified. As for orthogonal bases, there exists
an "orthosymplectization" procedure, called Gram-Schmidt symplectic algorithm. We detail it below.

In greedy algorithm, each iteration follows the following pattern:

1. Choice of the parameter gk+1 maximising E among all possible values for the parameters.

2. Computation of the high dimensional solution for some times for this parameter: S := {z(ti, gk+1)}i=1,...,m.

3. Choice of the sample with the "worst" projection for the projection on the space generated by the
2k vectors already present in the basis: sk+1 = argmaxs∈S‖s−A2kA

+
2ks‖2.

4. Add to the basis the vector s̃, obtained by applying the Gramm-Schmidt symplectic orthogonal-
ization procedure.

In point 1. we actually evaluate the maximum among the parameter values in a grid. If the calculation
of the E-error is straightforward, one can take this grid very fine.

The error E considered here will be ∆Hk(t) := |H(z(t)) − H̃2k(yk(t))|, with H̃2k and yk the Hamil-
tonian function and the solution of the corresponding problem after the k-th iteration. According to the
properties of the Hamiltonian flow, this quantity is independent of time and can therefore be rewritten
as ∆H2k = |H(z0)−H(A2kA

+
2kz0)|.

Symplectic Gramm-Schmidt algorithm

Suppose that we have an orthosymplectic family of vectors A2k = {e1, ..., ek}∪ {JT2ne1, ..., JT2nek} and an
element ṽ ∈ R2n such that ṽ /∈ Span(A2k). We want to build ek+1 such that A2(k+1) = {e1, ..., ek+1} ∪
{JT2ne1, ..., JT2nek+1} is a symplectic family and Span(A2(k+1)) = Span(A2k ∪ {ṽ}). As in the Gramm-
Schimdt algorithm, we look for v̄ such that v = ṽ − v̄ is orthogonal to A2k (for the scalar product). We
add the symplectic constraint

ω(v, u) = 0 ∀u ∈ Span(A2k).

Finally, we want these conditions to be also verified for J2nv. Note that these last two conditions are in
fact satisfied as soon as the first one is satisfied. Indeed,

28

ω(v, ei) =〈JT2nv, ei〉 = 〈v, J2nei〉,
ω(v, J2nei) =〈JT2nv, J2nei〉 = 〈v, J2

2nei〉 = −〈v, ei〉,

which ensures that v is JT2n-orthogonal to A2k if it is already orthogonal to it and vice versa. Similarly,

ω(J2nv, ei) =〈JT2nJ2nv, ei〉 = 〈v, ei〉,
ω(J2nv, J2nei) =〈JT2nJ2nv, J2nei〉 = 〈v, J2nei〉

which ensures that J2nv is orthogonal, and therefore JT2n-orthogonal, to A2k if v is.
Finally, since ω(v, v) = 0, 〈v, J2nv〉 = 0, while ω(v, J2nv) = 〈v, v〉 = 0. It is thus enough to construct

v̄ as in the traditional Gramm-Schmidt algorithm, i.e. to take 〈v, ei〉 and 〈v, J2nei〉 for i-th and (i+n)-th
coordinates for v̄ in the base A2k.

Finally, we set A2(k+1) = {e1, ..., ek+1} ∪ {JT2ne1, ..., JT2nek+1}.
Note that the procedure described above leads to particular orthosymplectic bases. The matrix A

composed of the vectors of the basis thus constructed is of the form(
φ −ψ
ψ φ

)
with φ and ψ such that φTφ+ ψTψ = Ik and φTψ = ψTφ. It is thus a unitary matrix, element of a

very particular subgroup of the group of symplectic matrices.

Convergence results

We have the following result (see [1] for the proof) :

Theorem 1. Let S be a compact set of R2k having a Kolomogorov k-width dk ≤ c exp(−αk) with α > 3.
Then, it exsits β > 0 and C a constant such that the projection P2k on the basis obtain after greedy
algorithm verifies

‖s− P2k(s)‖2 ≤ C exp(−βk).

2.3.2 Proper Symplectic Decomposition

We can further restrict the space where we look for the minimum of (2.4). The idea of Proper Symplectic
Reduction (PSD), also called "cotangent lift", is to look for an operator A of the form(

φ 0
0 φ

)
,

with φ ∈ O(n).
As shown in [12], this is in fact equivalent to choose the k columns of φ among the {p1, ..., pm, q1, ..., qm}

using classical POD.

2.4 Symplectic scheme

We present here the Störmer-Verlet scheme. It is a two-order time scheme which preserves symplectic
structure of equations, in a sense which will be given below. Its construction and geometrical interpre-
tation are taken from [7].

29

2.4.1 Construction

As in [7], we consider first a second order differential equation of the form

q̈ = f(q), (2.5)

where the right hand side does not depend on q̇. This kind of equation is very common in physics where
q represents the position of a mass point.

As usual, we discretize the time interval we consider into m points tl separated by a time step h and
look for approximate values of the exact solution at these times, ql. We approach the second derivative
in time with centered finite differences. Replacing q̈l by its approached value in (2.5), we get

ql+1 − 2ql + ql−1 = h2f(ql), (2.6)

for all l = 1, ...,m− 1. This gives ql+1 whenever ql and ql−1 are known.
Now, we consider v = q̇ the velocity of the mass point and its finite difference approximation

vl = ql+1 − ql−1

2h .

We also consider the staggered time grid, where

vl+1/2 = ql+1 − ql
h

and ql+1/2 = ql+1 + ql
2 .

We then express ql+1 in terms of ql and vl+1/2 :

ql+1 = ql + h

2 vl+1/2.

We find vl+1/2 by making it appear in (2.6), where

2ql+1 − 2ql − (ql+1 − ql−1) = h2f(ql)

vl+1/2 − vl = h

2 f(ql).

Using (2.6) evaluated in l + 1, we have the expression of vl+1 in terms of vl+1/2 and ql+1 :

ql+2 − ql − 2ql+1 + 2ql = h2f(ql+1)

vl+1 − vl+1/2 = h

2 f(ql+1).

Finally, we can find vl+1 and ql+1 whenever we know vl and ql : from the two-steps scheme (2.6), we
get a one-step one, explicitly given by

vl+1/2 = vl + h

2 f(ql),

ql+1 = ql + h

2 vl+1/2,

vl+1 = vl+1/2 + h

2 f(ql+1).

(2.7)

Using expressions of ql in terms of ql+1/2 and ql−1/2, we obtain the dual version of (2.7) :
ql = ql−1/2 + h

2 vl−1/2,

vl+1/2 = vl−1/2 + hf(ql),

ql+1/2 = ql + h

2 vl+1/2.

(2.8)

Both equations leads to the same scheme. Essentially, a step consists in a uniform motion during a
half time interval, followed by a correction of the trajectory and another uniform motion for the remaining
half time step.

30

2.4.2 Geometrical properties

In what follows, we consider Hamiltonian systems whose energy is a sum of a kinetic and a potential
energy U :

H(p, q) = 1
2p

TM−1p+ U(q), (2.9)

where the momentum is p = Mq̇, with M a symmetric positive definite mass matrix.
We easily find that

∇qH(p, q) = ∇U(q) and ∇pH(p, q) = M−1p = v.

Then, the canonical equations for this system are{
ṗ = −∇U(q),
q̇ = M−1p.

(2.10)

It is a particular case of (2.5) for f(q) = −M−1∇U(q). Multiplying equations involving vl by M in
(2.7) and (2.8), we get
pl+1/2 = pl −

h

2∇qH(ql),

ql+1 = ql + h

2∇pH(pl+1/2),

pl+1 = pl+1/2 −
h

2∇qH(ql+1).

and

ql = ql−1/2 + h

2∇pH(pl−1/2),

pl+1/2 = pl−1/2 − h∇qH(ql),

ql+1/2 = ql + h

2∇pH(pl+1/2).

(2.11)

Applied to this kind of systems, Störmer-Verlet scheme is symplectic, in the sense of the following
theorem, taken form [7] :

Theorem 2.4.1. The numerical flow associated to Störmer-Verlet scheme applied to (2.10) Φ : (pl, ql)→
(pl+1, ql+1) is a symplectic map.

Proof. To prove this result, we use generating functions. More precisely, we find a function Sh :
(ql, ql+1)→ (pl, pl+1) which satisfies (2.3).

To do that let us forget Störmer-Verlet scheme a moment and consider the least action principle,
which states that the trajectories (p(t), q(t)) are extremum of∫

Ω
L(q, q̇), (2.12)

with L is the Lagrangian of the system, given by the Legendre’s transform of H, L(q, v) = p · v−H(p, q)
with p(v) = ∇vL(q, q̇).

We approach the integral with trapezes formula, which gives
m−1∑
l=0

S(ql, ql+1),

with S(ql, ql+1) = h
2 (L(ql, vl+1/2)+L(ql+1, vl+1/2)). We are looking for (q0, ..., qm) for which this discrete

version of (2.12) reaches an extremum. The componants of this sum gradient of this sum are zeros if
and only if

∇qS(ql, ql+1) +∇QS(ql−1, ql) = 0 (2.13)
for all l = 0, ...,m− 1, where q and Q respectively denotes the first and the second variable of S.

We have that

∇qS(ql, ql+1) = h

2∇qL(ql, vl+1/2)− 1
2(∇vL(ql, vl+1/2) +∇vL(ql+1, vl+1/2)

31

and
∇QS(ql, ql+1) = h

2∇qL(ql+1, vl+1/2) + 1
2(∇vL(ql, vl+1/2) +∇vL(ql+1, vl+1/2).

In the case of a Hamiltonian function of the form (2.9),

L(q, v) = 1
2p

TM−1p− U(q).

Indeed, as v = q̇ = ∇pH(p, q) = M−1p, we have p · v = pTM−1p, from which we immediately get
L(q, v) = 1

2p
TM−1p− U(q) = 1

2v
TMv − U(q). Thus, ∇qL(q, v) = −∇U(q) and ∇vL(q, v) = Mv.

For such systems, (2.13) is equivalent to(
h

2∇U(ql)−Mvl+1/2

)
+
(
h

2∇U(ql) +Mvl−1/2

)
= 0,

that is, after multiplication by −hM−1,

−h2f(ql) + (ql+1 − 2ql + ql−1) = 0,

which is exactly the equation from which we set the ql ad the pl.
On another hand, using the first line of (2.7) we have

∇qS(ql, ql+1) = h

2∇U(ql)−Mvl+1/2 = h

2M
2
h

(vn+1/2 − vn)−Mvl+1/2 = −Mvl = −pl,

∇QS(ql, ql+1) = h

2∇U(ql+1) +Mvl+1/2 = M(vl+1+1/2 − vl+1) +Mvl+1/2 = Mvl+1 = pn+1,

which means that S is the generating function of the transformation (pl, ql) → (pl+1, ql+1). We
deduce that the numerical flow is a symplectic map.

2.4.3 Generalisation to general Hamiltonian systems

The schemes (2.11) can be built for all Hamiltonian systems, even if there are not of the form (2.10).
The following generalisation is also taken from [7].

Taking the first and the last equations of (2.7) and (2.8) for l + 1/2 and l + 1, we get the map
ΦA : (pl, ql)→ (pl+1/2, ql+1/2) and its adjoint ΦB : (pl+1/2, ql+1/2)→ (pl+1, ql+1) :

{
vl+1/2 = vl + h

2 f(ql),
ql+1/2 = ql + h

2 vl+1/2,
and

{
ql+1 = ql+1/2 + h

2 vl+1/2,
vl+1 = vl+1/2 + h

2 f(ql+1). (2.14)

Numerical flows of schemes (2.7) and (2.8) are respectively the compositions ΦA ◦ ΦB and ΦB ◦ ΦA.
This interpretation, given in [7], allows generalisation of (2.7) and (2.8) to most general systems of

differential equations, where
q̇ = g(p, q) and v̇ = f(p, q).

So far, we worked with g(p, q) = M−1p.
In [7], authors extend (2.14) with{

vl+1/2 = vl + h
2 f(ql, vl+1/2),

ql+1/2 = ql + h
2 g(ql, vl+1/2), and

{
ql+1 = ql+1/2 + h

2 f(ql+1, vl+1/2),
vl+1 = vl+1/2 + h

2 g(ql+1, vl+1/2). (2.15)

After composing the two numerical flows, we get
pl+1/2 =pl −

∆t
2 ∇qH(ql, pl+1/2)

ql+1 =ql + ∆t
2
(
∇pH(ql, pl+1/2) +∇pH(ql+1, pl+1/2)

)
,

pl+1 =pl+1/2 −
∆t
2 ∇qH(ql+1, pl+1/2),

(2.16)

32

and

ql+1/2 =ql + ∆t

2 ∇pH(ql+1/2, pl),

pl+1 =pl −
∆t
2
(
∇qH(ql+1/2, pl) +∇qH(ql+1/2, pl+1)

)
,

ql+1 =ql+1/2 + ∆t
2 ∇pH(ql+1/2, pl+1).

(2.17)

Note that the resulting schemes are implicit when the Hamiltonian function is not separable.

2.4.4 Comparison with Euler scheme

We have tested Störmer-Verlet model on the simple pendulum system, whose Hamiltonian function is

H(p, q) = 1
2p

2 + 10(1− cos(q)).

We see on Figure 2.4.4 that the numerical motion computed with Störmer-Verlet scheme is periodic,
as expected, and that the energy oscillates between two fixed values. On the contrary, classical models as
explicit or implicit Euler schemes do not conserve energy : it decreases (implicit) or increases (explicit).
The pendulum makes bigger (explicit) or shorter (implicit) oscillations with time and the motion is not
periodic.

2.5 Application to a piano vibrating string

We test the reduction on a set of equations modelling a piano string vibration, proposed in [6].
We consider the following problem:

∂2
ttU(x, t) = ∂x

[
∇V (∂xU(x, t))

]
∀(x, t) ∈ Ω× R+

U(x, 0) = U0(x) ∀x ∈ Ω,
∂tU(x, 0) = U1(x) ∀x ∈ Ω,
U(x, t) = 0 ∀(x, t) ∈ ∂Ω× R+.

In what follows, U(x, t) = (v(x, t), u(x, t)) represents the longitudinal and transverse variations of the
position of the point x in a piano string on the oscillation plane. The domain Ω is the interval [0, 1].

Let q = (u, v) and p = (∂tu, ∂tv). The previous equation is rewritten
∂q

∂t
= p,

∂p

∂t
= ∂x

[
∇V (∂xq)

]
.

The has an Hamiltonian formulation with the energy function

H(p, q, t) =
∫

Ω

1
2 |p|

2 + V (∂xq)dx.

Indeed, on the one hand

H(p+ p′, q, t) =
∫

Ω

1
2 |p|

2 + V (∂xq)dx+
∫

Ω
p · p′dx+

∫
Ω

1
2 |p
′|2dx = H(p, q, t) + 〈p, p′〉+ o(|p′|),

33

Figure 2.2: Simple pendulum motion numerically computed with Störmer-Verlet, Euler explicit and
Euler implicit schemes. The mass of the pendulum and its length were respectively equal to 1 and 10.
The initial angle and speed were set to π

4 . The computation was made with a time step dt = 0.01 during
m = 2000 steps.

34

from which
∇pH(p, q, t) = p.

On the other hand,

H(p, q+q′, t) =
∫

Ω

1
2 |p|

2+V (∂xq)dx+
∫

Ω
∇V (∂xq)·∂xq′dx+

∫
Ω
o(|∂xq′|) = H(p, q, t)+

∫
Ω
∇V (∂xq)·∂xq′dx+o(|q′|).

After an integration by parts, since by hypothesis q′ is null on ∂Ω, we find∫
Ω
∇V (∂xq) · ∂xq′dx = −

∫
Ω
∂x∇V (∂xq) · q′dx,

from which
∇qH(p, q, t) = −∂x∇V (∂xq).

The Hamiltonian is thus separated. The term in p represents the kinetic energy and that in q the
potential one. We study different expressions for V , all given in [6].

2.5.1 Linear model

The model

We consider the case where the potential energy is given by V (u, v) = (1−α)
2 u2 + 1

2v
2, with α a parameter

depending on the string caracteristics.
This yields the following system :

∂2
ttu = ∂x

[
(1− α)∂xu

]
= (1− α)∂2

xxu,

∂2
ttv = ∂x

[
∂xv
]

= ∂2
xxv,

or, in Hamiltonian formulation{
∇pH(pu, pv, qu, qv) =(pu, pv),
∇qH(pu, pv, qu, qv) =−

(
(1− α)∂2

xxqu, ∂
2
xxqv

)
.

In a similar way than proposed in [1], we build a discrete approxiation of ∇H by approximating
second derivatives with finite differences. We obtain

∇H (pq) ≈Ml (pq) ,

with
Ml =

(
I2n 02n
02n Bn

)
,

where
Bn =

(
(1− α)L 0n

0n L

)
and

L = 1
∆2
x

2 −1 −1

−1
. −1

−1 −1 2

 .

35

Results

Figure 2.3: Numerical solution of piano string equation with V = 1
2 ((1−g)u2+v2), where g = 0.537. The

reductions were made using greedy algorithm and PSD with k = 5. Trajectories were computed in high
dimension with explicit Stormer-Verlet scheme, for values of g taken in I = [0, 1], n = 200, dt = 0.001
and m = 500. For PSD, we have taken 5 values of the parameter g uniformly sampled in I. Trajectories
in low dimension were computed using the reduced model with the same discretisation in time and space
and with g = 0.537 (this value has been chosen to be different from those used for the projection). the
two first lines represent the piano string position in the oscillation plane for different times. the first line
represents the solution computed in high dimension with Stormer-Verlet scheme after being compressed
in low dimension and decompressed (that is AA+z). The second line represents the solution computed in
low dimension using reduced models. At bottom right are the errors, in L2 and H1 norms, between the
solutions computed with the reduced model and the solution computed in high dimension. At bottom
left is the variation of energy of those solutions with time.

36

Figure 2.4: Numerical solution of piano string equation with V = 1
2 ((1 − g)u2 + v2), where g = 0.537

computed in high dimension with explicit Stormer-Verlet scheme, with n = 200, dt = 0.0005 and
m = 500.

We see on Figure 2.3 that both PSD and greedy algorithm lead to satisfying models, which gives a
solution C0-close from the solution computed in high dimension (see Figure 2.4 for comparison). The
energy is constant and close to the initial energy of the solution computed in high dimension. From this
point of view, the reduced model is even better than the initial one, in which energy undergoes more
important variations.

As for Burgers’ equation, computation using the reduced order model is faster than the one us-
ing Störmer-Verlet in high dimension (a quasi-instantaneous computation compared to a few seconds
computation).

2.5.2 Non-linear model

The model

We now consider antoher model, where V is non-linear: V (u, v) = 1−α
2 u2 + 1

2v
2 + α

2 (u2v + 1
4u

4).
This yields the following system :

∂2
ttu = ∂x

[
(1− α)∂xu+ α(∂xu∂xv + 1

2(∂xu)3)
]
,

∂2
ttv = ∂x

[
∂xv + α

2 (∂xu)2
]
.

As previously, we approach first and second derivatives with finite differences :

∂xu ≈
u(xi+1)− u(xi)

∆x
and

∂2
xu ≈

u(xi+1)− 2u(xi) + u(xi−1)
∆x2 .

Results

As we see on Figure 2.5, reduction using PSD as well as greedy algorithm gives inaccurate reduced models
for k = 5. The reduced model built with greedy algorithm does not produce the sharp bumps which can
be seen on the solution computed in high dimension Figure 2.8. On the contrary, the "bumps" are too
sharp on the solution computed with PSD and one can see some oscillations. Looking at H1 errors and
energy, the model built with PSD produces an unstable solution.

37

Figure 2.5: Numerical solution of piano string equation with V = 1
2 ((1 − g)u2 + v2) + (g2 (u2v + 1

4u
4),

where g = 0.8. The reductions were made using greedy algorithm and PSD with k = 5. Trajectories were
computed in high dimension with explicit Stormer-Verlet scheme, for values of g taken in I = [0, 0.8],
n = 200, dt = 0.0005 and m = 500. For PSD, we took 20 trajectories, with values of g uniformly sampled
in I. Trajectories in low dimension were computed using the reduced model with the same discretisation
in time and space and with g = 0.8. the two first lines represent the piano string position in the oscillation
plane for different times. the first line represents the solution computed in high dimension with Stormer-
Verlet scheme after being compressed in low dimension and decompressed (that is AA+z). The second
line represents the solution computed in low dimension using reduced models.

38

Figure 2.6: Numerical solution of piano string equation with V = 1
2 ((1−g)u2+v2)+(g2 (u2v+ 1

4u
4), where

g = 0.8. The reductions were made using greedy algorithm and PSD with k = 10. Trajectories were
computed in high dimension with explicit Stormer-Verlet scheme, for values of g taken in I = [0, 0.8],
n = 200, dt = 0.0005 and m = 500. For PSD, we took 20 trajectories, with values of g uniformly sampled
in I. Trajectories in low dimension were computed using the reduced model with the same discretisation
in time and space and with g = 0.8. the two first lines represent the piano string position in the oscillation
plane for different times. the first line represents the solution computed in high dimension with Stormer-
Verlet scheme after being compressed in low dimension and decompressed (that is AA+z). The second
line represents the solution computed in low dimension using reduced models.

39

Figure 2.7: Numerical solution of piano string equation with V = 1
2 ((1−g)u2+v2)+(g2 (u2v+ 1

4u
4), where

g = 0.8. The reductions were made using greedy algorithm and PSD with k = 20. Trajectories were
computed in high dimension with explicit Stormer-Verlet scheme, for values of g taken in I = [0, 0.8],
n = 200, dt = 0.0005 and m = 500. For PSD, we took 20 trajectories, with values of g uniformly sampled
in I. Trajectories in low dimension were computed using the reduced model with the same discretisation
in time and space and with g = 0.8. the two first lines represent the piano string position in the oscillation
plane for different times. the first line represents the solution computed in high dimension with Stormer-
Verlet scheme after being compressed in low dimension and decompressed (that is AA+z). The second
line represents the solution computed in low dimension using reduced models.

40

Figure 2.8: Numerical solution of piano string equation with V = 1
2 ((1−g)u2+v2)+(g2 (u2v+ 1

4u
4), where

g = 0.8 computed in high dimension with explicit Stormer-Verlet scheme, with n = 200, dt = 0.0005 and
m = 500.

When we take k = 10, these problems are still visible on both models, as one can see on Figure
2.7. To obtain a satisfactoring solution with the reduced model, one should increase the reduced space
dimension and take k = 20. This in fact means that the reduction failed because we did not succeed in
capturing the low dimensional structure of the problem. As for Burgers’ equation when the parameter
ε is close to 1, we can deduce that the problem we want to solve here is too far from being linear to
admit a linear reduction. If we still want to use greedy algorithm or PSD, we thus have to look further
to improve the reduction.

2.6 Ideas to look into for non-linear cases

2.6.1 Hyper-reduction

In practice, even in linear case, solving the system with H̃ = H ◦ A requires a lot of computation time,
as the evaluation of H and ∇H requires the evaluation of H and a multiplication by A. The idea is
therefore to find a continuous operator H̄ : R2k → R close to H̃ whose expression does not depend on A
and H.

A simple way to construct H̄ is to proceed by kernel regression. For a certain kernel K, the Hamil-
tonian takes the form

H̄(x) =
m∑
i=1

θiK(xi, x)

with the θi being real coefficients such that the difference between H̄ and H ◦ A is minimal. The
{xi}i=1,...,m are the interpolation points. Here, they will be Azi with zi = (piu, piv, qiu, qiv) the solution of
the equation computed in high dimension at different times and for different values of the parameter g.

This is in fact the difference between these two functions evaluated in the samples that we seek to
minimise, more precisely

L(θ) =
m∑
i=1
|H̄(xi)−H(Axi)|2 = ‖y −Kθ‖22,

where y ∈ Rm is such that yi = H(xi) and Kij = K(xi, xj).
If K is not singular, it is clear that L is coercive, which implies that it admits at least one minimizer,

which verifies ∇L(θ) = 0. This happens if and only if θ = (KTK)−1KT y, which is thus the unique
minimizer.

When we apply this on H ◦ A, we obtain a function Hθ : R2k × R2k → R with fits almost perfectly
H ◦A. However, trajectories obtained with Störmer-Verlet scheme in low dimension are stationary.

41

In fact, by doing so we build H̄ to be C0 close to H ◦A. Nevertheless, in the Hamiltonian system we
are looking to solve, H̃ appears only through its gradient.

Maybe, looking for a H̄ which would be not only C0 but also C1 close to H ◦ A would improve the
reduce order model.

A more precise idea is to consider the loss

L(θ) = α

m∑
i=1
‖A

+zi+1 −A+zi

∆t − J2k∇H̄(xi)‖2 + β

m∑
i=1
|H̄(xi)−H(Axi)|2.

Note that the case where α = 0 and β = 1 corresponds to the previous loss. Let ∆i = A+zi+1−A+zi

∆t
and dxKi =

(
∂K
∂yj

(xk, xi)
)
kj
.

Each term which composes L is of the form ‖Ax − a‖, whose gradient is −2AT (A − a). Thus, L is
differentiable and its gradient is given by

∇θL(θ) =− 2
[
α

(
m∑
i=1

(dxKi)T
(
J2k∆i − dxKiθ

))
+ βKT (y −Kθ)

]

=2
[(

βKT y + α
m∑
i=1

(dxKi)T J2k∆i

)
−

(
βKTK + α

m∑
i=1

(dxKi)T (dxKi)
)
θ

]
.

Then, ∇L is zero if and only if

θ = (αB + βKTK)−1(βKT y + αb),

with b ∈ Rm and B ∈Mm,m(R) such that

b =
m∑
i=1

(dxKi)T J2k∆i and Bij =
m∑
i=1

(dxKi)T (dxKi).

In what follows, we use the Matérn kernel, whose expression is

K(x, y) = 1
Γ(ν)2ν−1

(√
2ν
σ

)ν
‖x− y‖ν2Kν(

√
2ν
σ
‖x− y‖2),

with Knu the Bessel function with parameter ν. Here, sigma is the variance of the kernel.
When ν = 0.5, K is the exponential kernel and at the limit when ν → ∞, K corresponds to the

gaussian kernel. As ν increases, K becomes more regular. More precisely, K is d times differentiable if
and only if ν > d [13].

In the case of Matérn’s kernel, we have

(dxKi)kj = ∂K

∂xk
(xi, xj) = 2νc1

σ2 (xik − x
j
k)
(
νKν(c1) + c1K

′
ν(c1)

)
,

where c1 =
√

2ν
σ ‖x

i − xj‖2 and c2 = 1
Γ(ν)2ν−1 c

ν−2
1 .

Results

Here, we put this method into practice by taking for the xi snapshots of 20 trajectories computed in high
dimension for different values of g. To reduce the computational cost of the method, we take only the
solution at one time tn every ten, so we have 20 × 100 samples. On Figure 2.10, we see that including
the derivatives of Hθ in the loss leads to a better reduced model: for the value of parameter chosen

42

(g = 0.783, a value different from those used during th construction of A) the trajectory associated to
Hθ is no longer stationary and is close to the one associated to H ◦A. The difference with the trajectory
computed in high dimension is not smaller but is of the same order.

However, the energy of the solution computed with the reduced model decreases linearly with time,
as we can better see on Figure 2.12. This shows that we didn’t succed to built a symplectic reduced
model, as energy is not conserved. Yet, as shown on Figure 2.9, if Hθ no longer matches exactly H ◦A,
what we expected because we have taken α > 0, it is still close to it.

Moreover, we see on Figure 2.11 that a little change of α yields a completetly different solution,
close to stationary solutions. This means that the hyper-reduction is very sensitive to the value of its
parameters, which may be problematic to find the good parameters.

For example, we have tried to use hyper-reduction method on the linear model, for which the reduced
oder model give very good results, in order to see if this method could be generalized. In that case too,
we experimented a strong dependance on the parameters, especially α. On Figure 2.13, we show the
better solution we obtained. Visually, it is far from the solution we expected (compare with Figure 2.3)
but this does not mean that it is impossible to obtain a good result with this method. Maybe we just
didn’t find the good parameters.

At least, these tests show that it is imperative to consider ∇H and not only H to construct H̄, in
other words to approach H in a C1 way and not only C0.

Figure 2.9: Variation of energie during time for different values of the parameter g. On the left are
the variations of H for solutions computed in high dimension, on the middle the variations of H ◦ A
for solutions computed in high dimension and projected in low dimension with A+, on the right, the
variations of Hθ for solutions computed in high dimension and projected in low dimension with A+. The
projection and the hyper-reduction are those of Figure 2.10. If the regression had produced the exact
H ◦A, the two graphs on the right would have been the same.

43

Figure 2.10: Numerical solution of piano string equation with V = 1
2 ((1 − g)u2 + v2) + (g2 (u2v + 1

4u
4),

where g = 0.783. The first column represents the piano string position in the oscillation plane for
different times computed in high dimention (top), in low dimension with H ◦ A (middle) and in low
dimension with Hθ (bottom). The second column represents an estimation of the errors made on the
string position through time on L2 (top) and H1 (middle) norms and the variation of energy durng
time for the three different solutions (bottom). Blues curves represent the solution computed with the
reduce model without hyper-regression, orange curves the solution computed wih the reduce model with
hyper-regression and the green curve the solution in high dimension. The reduction was made using
PSD with k = 5 using 20 trajectories, computed in high dimension with explicit Stormer-Verlet scheme,
for values of g uniformly sampled in I = [0, 0.8], n = 200, dt = 0.0005 and m = 500. Trajectories in low
dimension were computed using the reduced model with the same discretisation in time and space and
with g = 0.783. The construction of Hθ was made with the hyper-regression using Matern kernel with
ν = 6.5, σ = 50 and α = 0.001.

44

Figure 2.11: Numerical solution of piano string equation with V = 1
2 ((1 − g)u2 + v2) + (g2 (u2v + 1

4u
4),

where g = 0.783. Both pictures represent the piano string position in oscillation plane computed with
reduce model and hyper-reduction built as in Figure 2.10. The parameter α of the hyper-reduction is
0.00099 (left) and 0.00101 (right).

Figure 2.12: Variations of energy during time for solutions computed as in Figure 2.10. Solution of
reduce model with hyper-reduction was computed for a longer time.

Figure 2.13: Numerical solution of piano string equation with V = 1
2 ((1− g)u2 + v2), where g = 0.537.

The reduction was made with PSD with 20 trajectories and with the same parameters as in Figure 2.3.
The hyper-reduction parameters were α = 0.00799, ν = 4.5 and σ = 50.

45

Conclusion

We have seen different methods to build reduced order model. The first one, the POD, fails when the
equation is non-linear or has the particular form of a Hamiltonian equation. We have seen that combining
a non-liear projection using geodesics distances or Laplacian eigenvectors with a kernel regression gives
good results for Burgers’ equation and allows to save time when computing the solution. When the
problem is a linear Hamiltonian system, cotangent lift or greedy algorithm provides a good reduction
with a noticeable gain of time during computation too.

In the case of non-linear Hamiltonian systems however, these two last methods do not work. As a
symplectic structure is less constraining than a Riemannian one, we have less theoretical tools available
to build relevant reduced order models respecting this structure. For these reasons, it seems to be more
delicate to build a reduced order models for Hamiltonian systems. Nevertheless, hyper-regression may
be an idea to develop.

To conclude, I think that the two first of the internship objectives were reached. The results of
the tests were in line with the theorical expectations, so there were no unforeseen problems or changes
of objectives during the intership. I could surely have been expected to code more quickly, especially
the hyper-reduction, and this is certainly the reason why the last part is less developed than originally
planed and the third objective is partiatially reached. It could have been interesting to try a non-linear
reduction method for Hamiltonian systems.

During this intership, I worked on some skills I acquired during the year of M1. I used Python
to implement methods I learned and this gave me the opportunity to discover Scikit-learn tools for
manifold learning and kernel regression. From the numerical analysis point of view, I discovered new
kinds of schemes to solve PDEs - symplectic schemes. I also worked on my English skills as almost all
the references I had to read were in English.

I also developed new skills during this internship. In mathematics, I discovered a new way to deal
with PDEs, namely the reduced order modelling. The part I found the most interesting in the internship
was the theoretical one, during which I discovered symplectic geometry, which I would otherwise never
have seen in the master’s programme.

In the field of "soft" skills, I often had to take a step back and think about the global mechanisms
rather than the technical details, but without losing sight of the geometric rigour which is the only way
to properly explain the validity of the methods studied. Because I had a geometrician and two numerical
analysts for supervisors, I sometimes had to switch from a point of view to another to understand what
there were saying about the same subject. I found these exercises difficult and enriching and I still have
a lot of room for improvement.

46

Bibliography

[1] B.M. Afkham and J.S. Hesthaven. Structure preserving model reduction of parametric hamiltonian
systems. Preprint at https://arxiv.org/abs/1703.08345, 2017.

[2] V.I. Arnold. Mathematical Methods of Classical Mechanics, chapter 7, 8, 9, 10, pages 163–200.
Springer, 1989.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396, 2003.

[4] B. Budninskiy, G. Yin, L. Feng, Y. Tong, and M. Desbrun. Parallel transport unfolding: A
connection-based manifold learning approach. Preprint at https://arxiv.org/abs/1806.09039v2,
2018.

[5] Y. Canzani. Analysis on manifold via the Laplacian, lecture notes, Harvard University, 2013.

[6] J. Chabassier and P. Joly. Energy preserving schemes for nonlinear hamiltonian systems of wave
equations: Application to the vibrating piano string. Computer Methods in Applied Mechanics and
Engineering, 199(45-48):2779–2795, 2010.

[7] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration illustrated by the Störmer-
Verlet method. Cambridge University Press, 2003.

[8] M. Hein, J.Y. Audibert, and U. von Luxbourg. Graph laplacians and their convergence on random
neighborhood graphs. Journal of Machine Learning Research, 8:1325–1368, 2007.

[9] INRIA. Inria et son écosystème. url: https://www.inria.fr/fr/innovation-numerique-ecosysteme,
november 2020. Accessed: 2022-08-20.

[10] P. Massot. Topologie différentielle, chapitre 6, lecture notes, Ecole Polytechnique, 2016.

[11] E. Opshtein. Formes différentielles, lecture notes, Université de Strasbourg, 2022.

[12] L. Peng and K. Mohseni. Symplectic model reduction of hamiltonian systems. Preprint at
https://arxiv.org/abs/1407.6118v2, 2015.

[13] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning, chapter Covariance
Functions, pages 84–85. MIT Press, 2006.

[14] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

47

Appendices

48

Here, we gives Python implementation we used to test schemes and methods used in the report.

.1 Störmer-Verlet

Here are the implicit version of the algorithm and the explicit one, for the particular case where H is
separated.

1 def Stormer_Verlet_explicit (DpH , DqH , v0 , n, m, dt) :
2 ’’’DpH , DqH : functions , gradients of H by respect to p and q
3 (it depend only on X)
4 v0 : vector of size n, initial solution
5 g : parameters of the Hamiltonian
6 n : integer , number of points in spatial discretization
7 m : integer , number of points in temporal discretization
8 dt : float , time step ’’’
9

10 # initialisation
11 X = np. zeros ((2*n,m))
12 X[: ,0] = v0
13 demi = np. zeros ((n))
14

15 # boucle en temps
16 for i in range (1,m) :
17 demi [:] = X[n:,i -1] + (dt /2)*DpH(X[:n,i -1])
18 X[:n,i] = X[:n,i -1] - dt*DqH(demi)
19 X[n:,i] = demi [:] + (dt /2)*DpH(X[:n,i])
20

21 ’’’dual version :
22 demi [:] = X[:n,i -1] - (dt /2)*DqH(X[n:,i -1])
23 X[n:,i] = X[n:,i -1] + dt*DpH(demi)
24 X[:n,i] = P_2 [:] - (dt /2)*DqH(X[n:,i]) ’’’
25

26 return X

1 def Stormer_Verlet_implicit (DpH , DqH , v0 , n, m, dt) :
2 ’’’DpH , DqH : functions , H gradient by respect to p and q
3 v0 : vector of size n, initial solution
4 g : parameters of the Hamiltonian
5 n : integer , number of points in spatial discretization
6 m : integer , number of points in temporal discretization
7 dt : float , time step ’’’
8

9 # initialisation
10 X = np. zeros ((2*n,m))
11 X[: ,0] = v0
12 demi = np. zeros ((n))
13

14 #time loop
15 for i in range (1,m) :
16 Fq = lambda q: X[n:,i -1]+(dt /2)*DpH(X[:n,i -1] ,q) -q
17 demi [:] = sp. optimize . newton (Fq , X[n:,i -1]+(dt /2)*DpH(X[:n,i -1] ,X[n:,i -1]) ,
18 maxiter =1000 , tol =1e-3, disp= False)
19

20 Fp = lambda p: X[:n,i -1] -(dt /2) *(DqH(X[:n,i -1] , demi) + DqH(p,demi)) -p
21 X[:n,i] = sp. optimize . newton (Fp , X[:n,i -1] - dt*DqH(X[:n,i -1] , demi),
22 maxiter =1000 , tol =1e-3, disp= False)
23

24 X[n:,i] = demi [:] + (dt /2)*DpH(X[:n,i],demi)
25

26 return X

.2 Reduced order models

We give here the cotangent lift and the greedy algorithm implementations.

49

1 def J(n) :
2 ’’’returns the matrix of the standard symplectic matrix for the standard
3 scalar product in R^2n ’’’
4 return np.diag(np.ones ((n)), k=n) + np.diag(-np.ones ((n)), k=-n)

1 def greedy (H, DpH , DqH , z0 , n, k, F, m, G, dt , a, dx , N=1) :
2 ’’’H : function , Hamiltonian function of the high dimensional system
3 DpH : function , gradient of the previous by respect to p
4 DqH : function , gradient of H by respect to q
5 z0 : function , initial condition of the high dimensional system , depends on
6 the parameters
7 n : integer , initial (high) dimension (= number of points in spatial
8 discretisation)
9 k : integer , 0.5* size of the reduced model

10 F : function , model to compute solutions in high dimensional space
11 m : integer , number of snapshots taken at each iteration
12 G : array of size (d,l) with l the number of parameters and d the number of
13 combinaison , parameters grid
14 dt : float , time step when taking snapshots
15 a : float , lower bound of spatial interval considered
16 dx : float , space step
17 plot : boolean , if , or not , the solution should be plot after computation
18 err : maximal error between the Hamiltonian functions
19 A : reduced orthosymplectic basis (size : (n,k))
20 Ap : its symplectic inverse ’’’
21

22 # discretization
23 x = np. linspace (a,a+dx*n,n)
24

25 # useful constants
26 J_2n = J(N*n)
27 v0 = z0(x) #de taille N*n : par ex , pour N=2 (p_1 , p_2 , q_1 , q_2)
28 H0 = H(v0 ,G)
29

30 # initialisation
31 g = G[0]
32 v = v0.copy ()
33 v /= np. linalg .norm(v)
34 J_2k = J(1)
35 A = np. stack ([v,J_2n.T@v]).T
36 Ap = J_2k.T@A. T@J_2n
37 stock = np. zeros ((2*N*n ,2*k*m))
38

39 for i in range (1,k) :
40 # choice of the worst parameter
41 dH = np.abs(H0 -H(A@Ap@v0 ,G))
42 g = G[np. argmax (dH)]
43

44 # computation of the solution in high dimension for this parameter
45 S = F(lambda p : DpH(p,g), lambda q : DqH(q,g), v0 , n*N, m, dt)
46 stock [:,i*m:(i+1)*m] = S[: ,:]
47

48 # choice of the worst projected snapshot
49 dP = np. linalg .norm(S-A@Ap@S , axis =0)
50 s = S[:,np. argmax (dP)]
51

52 # computation of the two new vectors in the basis using symplectic
53 Gramm - Schmidt process
54 v = s - A@(s.T@A).T
55 v /= np. linalg .norm(v)
56 J_2k = J(i+1)
57 A = np. concatenate ([A[: ,:i], v[:,np. newaxis], A[:,i:],
58 (J_2n.T@v)[:,np. newaxis]], axis =1)
59 Ap = J_2k.T@A. T@J_2n
60

61 # computation of final error on the Hamiltonian
62 dH = np.abs(H0 -H(A@Ap@v0 ,G))
63 err = max(dH)
64

65 return err , A, Ap , stock

50

1 def cotlift (DpH , DqH , g_list , v0 , n, k, m, dt , a, dx) :
2

3 l = len(g_list)
4 X = np. empty ((2*n+1,l*m))
5

6 for i in range (l):
7 g = g_list [i]
8 X[:-1,i*m:(i+1)*m] = Stormer_Verlet (lambda p : DpH(p,g),
9 lambda q : DqH(q,g),

10 v0 , n, m, dt , True)
11 X[-1,i*m:(i+1)*m] = g
12

13 U, S, V = np. linalg .svd(np. concatenate ([X[:n ,:] ,X[n: -1]] , axis =1))
14 A = U[: ,:k]
15

16 return A, X

.3 Hyper-reduction

Here are the functions that compute the optimal coefficient θ for the hyper-reduction, the resulting
energy function and its gradient.

1 def theta (X, H_vec , alpha , nu , sigma , dt , R) :
2 ’’’X : snapshots with corresponding parameter (in low dimension 2k) :
3 array of size (2k+1, l=nbr of snapshots),
4 H_vec : value of H \circ A at this snapshots : vector of size l,
5 alpha : proportion of the loss which controls the gradient of H_theta :
6 float between 0 and 1,
7 nu : parameter of the Matern kernel : positive float ,
8 sigma : kernel variance ,
9 dt : time step used for snapshots computation ,

10 R : nbr of trajectoiries in X. ’’’
11

12 (k,l) = X. shape
13 k = (k -1) //2
14 m = l//R
15

16 JD = J(k).T @ (X[: -1 ,1:] -X[: -1 ,: -1]) /dt
17 kv = Matern (length_scale =sigma , length_scale_bounds =’fixed ’, nu=nu)
18 K = kv(X.T)
19 C = np. zeros ((l,l))
20 c = np. zeros ((l))
21

22 for r in range (R) :
23 for s in range (m -1) :
24 i = r*m + s
25

26 Dx = X[:-1,i][: , np. newaxis] - X[: -1 ,:]
27 nDx = np.sqrt(np.sum ((X[:-1,i][: , np. newaxis] - X[: -1 ,:]) **2 , axis =0)
28 + (X[-1,i]* np.ones ((X. shape [1]))-X[-1 ,:]) **2)
29 c1 = np.sqrt (2* nu) * nDx / sigma
30 c2 = 1 / (spsp. gamma (nu) * (2**(nu -1)))
31 dxKi = c2 * c1 **(nu -2) * (np.sqrt (2* nu)/ sigma)**2 * Dx *
32 (nu*spsp.kv(c1 ,nu) + c1*spsp.kvp(c1 ,nu))
33

34 C += dxKi. T@dxKi
35 c += dxKi.T@JD [:,i]
36

37 B = alpha *C + (1- alpha)*(K.T@K)
38 b = alpha *c + (1- alpha)*(K. T@H_vec)
39

40 return K, C, c, np. linalg . solve (B,b)

1 def H_theta (X, x, nu , sigma , theta) :
2 ’’’X : trajectories used to compute theta :
3 array of size (2k+1, nbr de snapshots),
4 x : snapshots at which we want the energy :

51

5 array of size (2k+1, nbr of snapshots ,
6 each snapshot is of the form (p,q,g),
7 nu : Matern kernel parameter ,
8 sigma : Matern kernel variance ,
9 theta : optimal coefficients for H_theta . ’’’

10

11 k = Matern (nu=nu , length_scale_bounds =’fixed ’, length_scale = sigma)
12 K = k(X.T, x)
13 return K. T@theta

1 def dH_theta (X, x, nu , sigma , theta , g) :
2 ’’’X : trajectories used to compute theta :
3 array of size (2k+1, nbr de snapshots),
4 x : snapshots at which we want the energy :
5 array of size (2k, nbr of snapshots),
6 each snapshot is of the form (p,q),
7 nu : Matern kernel parameter ,
8 sigma : Matern kernel variance ,
9 theta : optimal coefficients for H_theta ,

10 g : parameter of H used during resolution . ’’’
11

12 Dx = x[:,np. newaxis] - X[: -1 ,:]
13 nDx = np.sqrt(np.sum ((x[:,np. newaxis] - X[: -1 ,:]) **2 , axis =0)
14 + (g*np.ones ((X. shape [1]))-X[-1 ,:]) **2)
15 c1 = np.sqrt (2* nu) * nDx / sigma
16 c2 = 1 / (spsp. gamma (nu) * (2**(nu -1)) * nDx)
17 dxK = c2 * (c1 ** nu) * Dx * (nu*spsp.kv(c1 ,nu) + c1*spsp.kvp(c1 ,nu))
18 return dxK@theta

52

