
Tsunami modelling: a link between
partial differential equations and neural

networks

Guillaume Steimer

M1 CSMI

UFR de Mathématiques et d’Informatique

Université de Strasbourg

Contents

1 Model and simulation 4
1.1 Saint Venant equations . 4
1.2 1D finite volume method . 5
1.3 A well-balanced HLL scheme . 6

2 Numerical implementation 9
2.1 Calculation script . 9
2.2 Validation . 10

2.2.1 Lake at rest solution . 10
2.2.2 The propagation a perturbation . 11
2.2.3 Thacker test case for wet-dry transitions . 12

2.3 How to add some randomness . 13
2.3.1 Add a random perturbation . 13
2.3.2 Make random sea beds . 14

2.4 A numerical result . 15
2.5 Statistical insight . 17

3 About the project 18
3.1 Road map . 18

3.1.1 At the milestone of the V0 report (14 April) 18
3.1.2 At the milestone of the V1 report (22 May) 19
3.1.3 Between the V1 and the final report (28 May) 19

3.2 Choices and resources . 19

4 Conclusion 20

2

Introduction
All over the world, countries with maritime borders must prepare to face a common threat: tsunamis.
From the Mediterranean Sea to the Pacific Ocean, every country must be able to react quickly to
such a risk: within 15 minutes to an earthquake, every government must be able to predict whether
there will be a tsunami and, if so, when the wave will hit the coast and how high it will be.

There are numerical models to simulate tsunamis, unfortunately these calculations take hours or
days, so we should find another way to make good predictions.

In this semester project, we will try to demonstrate that a combination of one-dimensional par-
tial differential equations (PDEs) and neural networks can produce tangible results in this type of
problem.

Our objectives are to study and implement a one-dimensional scheme that reproduces the waves,
taking into account the topography of the ocean floor. Then, we will validate it with test cases
available in the article [1]. Finally, we will focus on the generation of random topographies. This
project is a preparatory work that has to be done before the use of neural networks.

The project takes place in the MOCO (Modélisation et Contrôle) team, located at the IRMA
(Institut de Recherche Mathématique Avancée) in Strasbourg. This team is specialised in PDEs
analysis, control theory, scientific computing and high performance computing, statistics.

The project is supervised by Emmanuel Franck, Laurent Navoret and Vincent Vigon who are
working on machine learning for simulation, numerical modelling... I would like to thank them for
their guidance and help during this project.

3

1 Model and simulation
In this section, we will present the chosen model and develop a numerical scheme that preserves the
well-balanced property based on finite volume methods.

1.1 Saint Venant equations
To describe the dynamic of tsunamis, we consider the Saint Venant equations, also called shallow-
water equations to design this problem. Indeed, the ocean can be seen as a thin layer of water1: this
is reasonable because the depth of the ocean (∼ 1 − 10 km) is small compared to the distance this
type of wave travels (∼ 100− 1000 km).

Let h(t, x) be the water height and u(t, x) the velocity which depend on time t and space x, b(x)
is a smooth topography and g > 0 refers to the gravitational acceleration. They satisfy the following
system:∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + 1

2gh
2
)

= −g h∂xb.
(1)

We will set h0(x) and u0(x) as initial conditions for the resolution.
If we consider a surface of water at rest, we have u(x) = 0, ∀x and we obtain from equation (1):

∂th = 0⇒ h(t, x) = h(x)

∂x

(1
2gh

2
)

= gh∂xh = −gh∂xb⇒ ∂x(h+ b) = 0⇒ b(x) + h(x) is constant

Therefore, every couple (u, h) of this form: u(x) = 0,
b(x) + h(x) = c,

(2)

are usually called "steady states of the lake at rest" (indeed, without wind, a lake surface is plane).
It is vital that our scheme preserve this type of solution (well-balanced property) as we will consider
perturbations of this physical equilibrium to create simulations for our neural network. Otherwise,
spontaneous waves could appear in the simulation and greatly disrupt the results.

1In fact, the shallow-water system can be derived from Navier-Stokes equations by integration in the vertical
direction, see article [2].

4

1.2 1D finite volume method
Let’s start by transforming our system into the standard form of a hyperbolic equation. Using (1),
we obtain this equivalent form:

∂tw + ∂xf(w) = r(w) (3)

where w =
(
h
hu

)
, f(w) =

(
hu

hu2 + 1
2gh

2

)
is called the flux and r(w) =

(
0

−g(∂xb)h

)
the source term.

Then, we construct a uniform a mesh of [0, L] space: we consider a set of points (xi+ 1
2
)i∈{1,...,N}

that form interfaces between different cells (Ci)i∈{1,...,N} such that Ci =
]
xi− 1

2
, xi+ 1

2

[
with a constant

space step ∆xi = ∆x = xi+ 1
2
− xi− 1

2
. We note xi the middle of Ci.

We also introduce a time step ∆tn, n ∈ N to define a sequence of intermediate times tn with the
relation tn+1 = tn + ∆tn.

The main idea of the finite volume method (see article [3]) is to compute at each time step an
approximation (wn

i)i of the mean solution over each cell:

wn
i '

1
∆xi

∫
Ci

w(tn, x)dx

and

w0
i = 1

∆xi

∫
Ci

w(t0, x)dx where w(t0, x) =
(
h0
h0u0

)
(x)

As w is a solution of (3), we integrate (3) on a square K := (tn, tn+1)× Ci:∫
Ci

w(tn+1, x)dx−
∫

Ci

w(tn, x)dx+
∫ tn+1

tn
f(w(t, xi+ 1

2
))dt−

∫ tn+1

tn
f(w(t, xi− 1

2
))dt =

∫∫
K
r(w)dtdx

We replace the integrals with their approximations:

∆xiw
n+1
i −∆xiw

n
i + ∆tnfn

i+ 1
2
−∆tnfn

i− 1
2
' ∆tn∆xi

(
0

−g{h∂xb}i

)

where fn
i+ 1

2
is the numerical flux:

fn
i+ 1

2
' 1

∆tn
∫ tn+1

tn
f(w(t, xi+ 1

2
))dt,

and (
0

−g{h∂xb}i

)
' 1

∆tn∆xi

∫∫
K
r(w)dtdx

is an approximation of the source term in the cell Ci.

5

Finally, to compute the sequence (wn
i)i∈Z,n∈N, we will use an update formula:

wn+1
i = wn

i −
∆tn
∆xi

(
fn

i+ 1
2
− fn

i− 1
2

+
(

0
g∆xi{h∂xb}i

))
(4)

We have to rewrite fn
i+ 1

2
− fn

i− 1
2

+
(

0
g∆xi{h∂xb}i

)
in (4) in order to create two flows from the cells

Ci−1 and Ci+1 named FL and FR such that (4) become:

wn+1
i = wn

i −
∆tn
∆xi

(
FL

i+ 1
2
− FR

i− 1
2

)
(5)

Such flows have to preserve the well-balanced property (with u = 0, the quantity h + b must be
preserved in each cell between to time steps) and the positivity of water heights.

1.3 A well-balanced HLL scheme
In the following, we will present a 1D finite volume scheme. It is called the Harten-Lax-van Leer
(HLL) [1] scheme. A lot of numerical schemes struggles to preserve the well-balanced property, the
positivity of water heights and the entropy-preserving properties at the same time. This scheme
preserve the first two and a weak form of the third.

The objective is to define FL and FR.
The main principle of this scheme is to use an HLL solver to approximate a solution of the

Riemann problem2 at each interface xi+ 1
2
throughout each time step. It preserves the positivity of

water heights. With a correct approximation of the source term, we will preserve the well-balanced
property and allow the program to treat wet-dry transitions.

Our goal is to define FL
i+ 1

2
and FR

i+ 1
2
, the numerical flux between Ci and Ci+1. To achieve that,

we introduce some quantities which will be used in our scheme. Let X be the height h, the velocity
u or the topography b.

In a cell Ci, we note Xi the mean of X in Ci.

Xi = 1
∆x

∫
Ci

X(x)dx

At the interface between Ci and Ci+1, we note XL the mean of X in the left cell Ci and XR the mean
of X in the right cell Ci+1:

XL = 1
∆x

∫
Ci

X(x)dx and XR = 1
∆x

∫
Ci+1

X(x)dx

For instance, uL = 1
∆x

∫ 0
−∆x u(x)dx.

Those two notations describe the same thing but the point of view differ: in fact the flows will
be computed on an interface, that is why we use the indexes L and R.

2An initial value problem with a piecewise constant initial data (we will approximate w with a constant in each
cell) and a single discontinuity.

6

We define FHLL, the HLL flow:

FHLL(wL, wR) =

f(wL) if 0 < λL,
λRf(wL)− λLf(wR)

λR − λL

+ λLλR

λR − λL

(wR − wL) if λL < 0 < λR,

f(wR) if λR < 0.

where λL = min
w=wL,wR

(
u−
√
gh, 0

)
, λR = max

w=wL,wR

(
u+
√
gh, 0

)
are the waves velocity of the

approximate solution of the Riemann problem. We can remark that FHLL is continuous: it can deal
with a λ equal to 0. It will be used in (6).

Finally, we define the numerical flows FL and FR of (5):

FL
i+ 1

2
(wL, wR, bL, bR) = FHLL(wL, wR) +

λLλR∆b
λR − λL

−
λLg∆x{h∂xb}i+ 1

2

λR − λL

FR
i+ 1

2
(wL, wR, bL, bR) = FHLL(wL, wR) +

λLλR∆b
λR − λL

−
λRg∆x{h∂xb}i+ 1

2

λR − λL

(6)

where ∆b = bR − bL and {h∂xb}i+ 1
2
is an approximation of the source term the interface xi+ 1

2
:

{h∂xb}i+ 1
2

=

hL + hR

2∆x min(hL,∆b) if ∆b > 0
hL + hR

2∆x max(−hR,∆b) if ∆b < 0

Now, we can define the update formulas taken from (5) for our scheme:
wn+1

i = wn
i −

∆tn
∆x

(
FL

i+ 1
2
− FR

i− 1
2

)
w0

i = 1
∆x

(∫
Ci
h0(x)dx,

∫
Ci

(h0u0)(x)dx
)T

(7)

Its Courant-Friedrichs-Lewy (CFL) condition is:

∆t < ∆x
2 max

Ci

(|λL|, |λR|)
(8)

It’s a condition for the stability of our scheme. If we note:

CFL = 2 max
Ci

(|λL|, |λR|)
∆t
∆x (9)

7

We must have CFL < 1 and we obtain a way to calculate every ∆tn in order to ensure the stability
of our scheme, using (8) and (9):

∆tn = CFL ·∆x
2 max

Ci

(|λL|, |λR|)
(10)

Then, to calculate means, we will approximate the integral of a function by its value in the centre
of the domain of integration. It will result in an error of ∆x2.

A last important remark is that intermediates (during the calculation of flows) heights hL, hR can
be negative. It is crucial to take that into account: looking at the remark 2.1 in the article [1]: we
have to impose a threshold ε � 1 (10−12 in practice) such that whenever hL < ε (resp. hR), we set
uL = 0, hL = 0 (resp. uR = 0, hR = 0).

8

2 Numerical implementation
In this section, we will discuss two main points: the implementation of the numerical scheme (6)(7)
in C++ and how to add randomness in the topography.

2.1 Calculation script
In figure 1, the program is described in a UML diagram:

Figure 1: UML diagram of the calculation program

The program is based on the object-oriented dimension of C++. A more complete explanation
can be found reading README.md in the repository.

9

2.2 Validation
We will validate our program through test cases, some of them are available in the article [1].

2.2.1 Lake at rest solution

We take "lake at rest" type initial conditions and we observe the well-balanced property. The result
of figure 2 does not seem impressive nevertheless it shows that this scheme works. There are no
spontaneous wave, h+ b remain constant at all time.

Figure 2: Lake at rest solution (the whole problem and a zoom on the water surface)

10

2.2.2 The propagation a perturbation

This simulation is based on the section 3.1 from the article [1]. We have the domain [0, 2], ∆x = 1
40 ,

a final time of t = 0.2, a CFL condition of 0.9 and the bottom topography is defined by:

b(x) =

2 + 0.25(cos(10π(x− 0.5)) + 1) if 1.4 < x < 1.6
2 otherwise.

The initial conditions are u0(x) = 0 and

h0(x) =

3− b(x) + 0.001 if 1.1 < x < 1.2
3− b(x) otherwise.

It gives us similar results on the graph 3:

Figure 3: Case 3.1 in [1], our program (left) and the reference (right)

We can see the convergence of our scheme to the reference solution described in [1] and called
"Ref Solution" in the previous figure.

11

2.2.3 Thacker test case for wet-dry transitions

This test is based on the section 3.3 from the article [1]. The scheme have to handle wet-dry
transitions. The domain is [−2, 2].

The bottom topography is defined by:

b(x) = x2

2 + 3
2

The initial conditions are u0(x) = 0 and:

h0(x) =

−
1
2

((
x+ 1

2

)2
− 1

)
if − 3

2 < x < 1
2

0 else.

The final time is 16, ∆x = 1
80 and the CFL condition is 0.5. Lets compare our results to those of the

article in the figure 4:

Figure 4: Case 3.3 in [1], our program (left) and the reference (right)

We obtain the same results as in the article. It is reassuring, indeed wet-dry transitions are
managed and it should give proper results when the water depth is very low and the wave could
create dry surfaces.

12

2.3 How to add some randomness
We can easily randomise parameters such as the length of the domain, the maximum depth... This
part will explain how to set a random perturbation in the simulation and how to make random
sea beds. Throughout the simulation, a pseudo random generator, called twister engine, ensure the
generation of all the random variables.

2.3.1 Add a random perturbation

Starting from a lake at rest type solution, we add a window shape disorder with a random height,
width and position with the method HLL_perturbation().

The typical form used is illustrated by the figure 5:

Figure 5: Typical perturbation from the lake at rest state

13

2.3.2 Make random sea beds

Generating random topographies is more complicated than generating disturbances. In order to
accomplish that, a technique similar to the "midpoint displacement"3 algorithm is used.

The main principle is simple: we are going to explain it using the figure 6.

Figure 6: Midpoint displacement in 1D

We work an given interval [U, V] of two points with a given abscissa and height. Then, we look
for the middle of the segment: M . We keep the abscissa of M and add a random value within the
range [−a, a], a ∈ R+ to its height: we obtain the point W .

We restart the algorithm using [U,W], [W,V] and a range of [−a
2 ,

a
2] for the random height. until

the intervals are small enough. All the created segments form a random topography. We can make
it more or less steep by choosing a bigger or smaller. Is the code, a in represented by the parameter
roughness which is a percentage of the maximal depth.

In our situation, we already have a breakdown of the domain so we will use those values for the
abscissa of the points considered. In practice, we will initialise this algorithm with coasts and beaches
at the endpoints and we have to normalise our results so as not to exceed a maximum depth. The
first midpoint will also be chosen differently. Here is a draft in the algorithm 1:

Algorithm 1: random_topography(maxdepth, roughness, start, end)
Data: A set of N abscissa in M_x
Result: A set of N heights in M_b
middle ← (start + end) / 2
M_b[middle] ← (M_b[start] + M_b[end]) / 2 + random
if middle − start > 1 then

random_topography(max depth,roughness / 2,start,middle)
end
if end − middle > 1 then

random_topography(max depth,roughness / 2,middle,end)
end

3Common technique used in the video-game industry to create random landscapes.

14

Here are a few examples on figure 7 for a maximum depth of 5, a domain length of 10 and 400
points and different steeps using the method HLL_set_random_topography():

Figure 7: Random sea beds

2.4 A numerical result
We can observe a few phenomena on a simulation with a random topography: the height of the wave
increase in shallow waters and its speed diminish. We create a decomposition of [0, 4] with ∆x = 1

80 ,
a CFL condition of 0.8 and a sufficient time to make our observations. We use a perturbation 0.001
tall and 0.1 wide centred of 1.65. The maximal depth is set to 4, the roughness to 50% and the beach
proportion to 2%. In the figure 8, we can see the results of the simulation. Each dotted curve is a
representation of the wave at regular time intervals (∆t = 0.15). We remark that the greater is the
depth, the faster is the wave (which is normal because its speed is of the order of

√
gh). It is not

obvious here, but in the simulation it is remarkable that a diminution in water depth tends to cause
a rise in the wave height.

15

Figure 8: Random topography (left) and the propagation of a perturbation (right)

16

2.5 Statistical insight

Figure 9: Correlation matrix with 1000 simulations

All the chosen parameters are set with a uniform distribution on the following intervals:

• [0.0001, 0.001] for the perturbation height,

• [0.1, 0.2] for the perturbation width,

• [0.5, 0.6] for the roughness of the topography (I should have chosen a longer interval looking at
the matrix).

The domain of simulation is [0, 20], the max_depth is 1.0 and there are 2% of beaches at each border.
The CFL is set on 0.8 and ∆x = 1

50 . It will be necessary to refine these choices but this just gives an
idea of the work to follow.

We remark that the height of the wave is highly correlated to the perturbation parameters (es-
pecially its height), its distance from the border and its arrival time.

17

3 About the project

3.1 Road map
3.1.1 At the milestone of the V0 report (14 April)

This is what has already been achieved:

1. get acquainted with the one-dimensional finite volume method (∼ 2-3h),

2. reading the article about the HLL scheme [1] and other articles to be more familiar with the
subject (∼ 5-6h),

3. programming the scheme in C++ starting from scratch. (∼ 10-11h),

4. V0 report redaction (∼ 4-5h).

And the next steps are:

1. Test the code on basic cases and correct every issue(∼ 2-4h),

2. Run the code on benchmarks, test its efficiency (∼ 1-2h),

3. Complete the code by adding different outputs, automate it(∼ 4-6h),

4. prepare data relatively to the AI problem (∼ 3-4h),

5. continuous writing of the report and the presentation (∼ 11-13h),

I already spent 21 to 25 hours building this project. In total, I would spend 42 to 54 hours on it.
The deadlines are:

• 14 April: submit the first version of this report

• 1 May: have a functional script for the simulations

• 22 May: submit an almost finished report

• 29 May: final report and the PDF file of the presentation

• 30-31 May: defence of the project

My managers advised me to focus on producing a functional and efficient simulation program for
the project and to make some descriptive statistics on the results. Then I will be able to focus on AI
during my internship.

18

3.1.2 At the milestone of the V1 report (22 May)

At this time, I continue to write the report and improve the code. The random simulations took
much longer than expected and there were problems with the wet/dry transitions that had to be
resolved. Here is an overview of the work done since the previous phase:

1. correct every bug and a new output method (∼ 8h)

2. add unitary test and validate the code with test cases (∼ 5h)

3. learn about pseudo-random generators and add method to create correct random topographies
(∼ 6h)

4. write the report (∼ 12h)

5. learn markdown basics and write the user manual (∼ 3h)

I spent 55-59 hours on this project. I haven’t had time to make statistical inferences using simulations.
In fact, I preferred to focus on having a valid code with all the necessary features and to make the
statistics during the internship.

3.1.3 Between the V1 and the final report (28 May)

1. finish the code automation (∼ 1h)

2. write the Python script that read the output, create a data-frame and the correlation matrix
(∼ 2h)

3. write the slides for the final presentation (∼ 14h)

4. write the report (∼ 2h)

In total, I recorded 74-78 hours spent on this project (which is a raw estimation considering I didn’t
kept a schedule). I began an outline of the data work with Python in order to produce a correlation
matrix. Everything is set for the beginning of the internship.

3.2 Choices and resources
I chose to write the simulation program in C++ for its speed and adaptability. It requires more work
than Python, but it is worth it. I use VScode in conjunction with Github and a Docker environment
to develop and run it. I rely on Cmake and Ctest to handle compilation and unit testing. For the
moment, my personal computer seems to be sufficient to perform the simulations (it took around 2
seconds for one complete simulation with 1000 cells in a domain of [0, 20] that run until collisions). A
more powerful computer might be needed for the next part of the project, mainly to train the neural
networks.

I’m writing my report on Overleaf, an online LaTeX editor.
Due to the COVID-19 pandemic, my supervisors and I heavily used Google meeting and emails

to communicate.

19

4 Conclusion
On the whole work done, the assimilation of the knowledge required for this project and the produc-
tion of a valid code took much longer than expected. The road map was corrected early enough to
focus on the most important thing: a valid means of simulation. It was better to spend more time
on the latter in order to be able to work on a healthy foundation during the internship. The first
draft of the link between the calculation code and the Python code for the learning machine is also
being put in place, which will save time for the rest.

Concerning the questions raised at the beginning of the project, the idea of coupling scientific
computation with machine learning is recent and there are certainly many new techniques that will
come out of it. Throughout this project, I have laid the foundations for this exploration, I have
indeed a valid and efficient way to create a database of simulations.

We have to keep in mind that the shallow water system I’ve been using is a simplified 1D model
that assumes the ocean is a thin layer of water and doesn’t account for wave dispersion, so the idea
of this project is to provide some initial evidence.

During the internship that follows, I plan to train and test neural networks using those simulations.
It might gives us some tangibles evidence on the use of machine learning in scientific computing.
Then, I would like to implement a new scheme that consider dispersing effects. It will be based on
the article [4] and called the Green-Nagdhi model.

20

References
[1] Emmanuel Audusse, Christophe Chalons, Philippe Ung. A simple well-balanced and positive nu-

mericalscheme for the shallow-water system. Communications in Mathematical Sciences, Interna-
tional Press,2015, 13 (5), pp.1317-1332. 10.4310/CMS.2015.c13.n5.a11. hal-01083364v2. https://
hal.archives-ouvertes.fr/hal-01083364/file/simple_wellbalanced_positive_ARS.pdf.

[2] Equations de Saint Venant et application aux mouvements de fonds érodables.” Écoulements en
milieux naturels” Cours MSF12, M1 SU, P.-Y. Lagrée. http://www.lmm.jussieu.fr/~lagree/
COURS/MFEnv/MFEnv.pdf.

[3] Méthodes de volumes finis pour les fluides compressibles, Nicolas Seguin, Université Pierre et
Marie Curie - Paris 6. http://seguin.perso.math.cnrs.fr/DOCS/cours.pdf.

[4] Philippe Bonneton, Florent Chazel, David Lannes, Fabien Marche, Marion Tissier. A splitting
ap-proach for the fully nonlinear and weakly dispersive Green-Naghdi model. Journal of Compu-
tationalPhysics, Elsevier, 2010, 230 (4), pp.1479-1498. 10.1016/j.jcp.2010.11.015. hal-00482564.
https://hal.archives-ouvertes.fr/hal-00482564/document.

21

