

DE LA RECHERCHE À L'INDUSTRIE

Schémas « asymptotic preserving » sur maillages non structurés. Application au transport linéaire et aux systèmes de Friedrichs

Emmanuel Franck Directeurs de thèse: Christophe Buet (CEA), Bruno Després (UPMC)

CEA, DAM, DIF, F-91297 Arpajon, France - UPMC/LJLL

19/09/2012

www.cea.fr

Introduction

- 2 Schémas AP en 1D et difficultés en 2D
- 3 Schémas AP pour l'équation de la chaleur hyperbolique en 2D
- 4 Schémas AP pour les approximations angulaires
- 5 Discrétisation du modèle non linéaire M_1
- 6 Résultats numériques
- 7 Conclusions et perspectives

Equation de transport linéaire : soit $f(t, \mathbf{x}, \Omega) \ge 0$ la fonction de distribution des particules (photons ou neutrons) localisées en $\mathbf{x} \in \mathbb{R}^d$ et de direction $\Omega = \frac{\mathbf{v}}{||\mathbf{v}||} \in \mathbb{S}^{d-1}$. On considère l'équation de transport

$$\partial_t f(t,\mathbf{x},\boldsymbol{\Omega}) + \frac{1}{\varepsilon} \boldsymbol{\Omega}.\nabla f(t,\mathbf{x},\boldsymbol{\Omega}) = \frac{\sigma}{\varepsilon^2} \int_S \left(f(t,\mathbf{x},\boldsymbol{\Omega}') - f(t,\mathbf{x},\boldsymbol{\Omega}) \right) d\boldsymbol{\Omega}'.$$

avec $\varepsilon \in [0,1]$ et $\sigma > 0$.

Example : Limite de diffusion : pour $\varepsilon \to 0$, l'équation de transport tend vers l'équation de diffusion

$$\partial_t E - \operatorname{div}\left(\frac{1}{3\sigma}\nabla E\right) = 0,$$

avec
$$E = \int_{S^{d-1}} f(t, \mathbf{x}, \mathbf{\Omega}) d\mathbf{\Omega}, \ \mathbf{F} = \int_{S^{d-1}} \mathbf{\Omega} f(t, \mathbf{x}, \mathbf{\Omega}) d\mathbf{\Omega}$$
 et $S^{d-1} = \{ ||\mathbf{\Omega}|| = 1, \mathbf{\Omega} \in \mathbb{R}^d \}.$

Équation de transport linéaire : soit $f(t, \mathbf{x}, \Omega) \ge 0$ la fonction de distribution des particules (photons ou neutrons) localisées en $\mathbf{x} \in \mathbb{R}^d$ et de direction $\Omega = \frac{\mathbf{v}}{||\mathbf{v}||} \in \mathbb{S}^{d-1}$. On considère l'équation de transport

$$\partial_t f(t,\mathbf{x},\boldsymbol{\Omega}) + \frac{1}{\varepsilon} \boldsymbol{\Omega}.\nabla f(t,\mathbf{x},\boldsymbol{\Omega}) = \frac{\sigma}{\varepsilon^2} \int_S \left(f(t,\mathbf{x},\boldsymbol{\Omega}') - f(t,\mathbf{x},\boldsymbol{\Omega}) \right) d\boldsymbol{\Omega}'.$$

avec $\varepsilon \in [0,1]$ et $\sigma > 0$.

Example : Limite de diffusion : pour $\varepsilon \to 0$, l'équation de transport tend vers l'équation de diffusion

$$\partial_t E - \operatorname{div}\left(\frac{1}{3\sigma}\nabla E\right) = 0,$$

avec
$$E = \int_{S^{d-1}} f(t, \mathbf{x}, \mathbf{\Omega}) d\mathbf{\Omega}$$
, $\mathbf{F} = \int_{S^{d-1}} \mathbf{\Omega} f(t, \mathbf{x}, \mathbf{\Omega}) d\mathbf{\Omega}$ et $S^{d-1} = \{ ||\mathbf{\Omega}|| = 1, \mathbf{\Omega} \in \mathbb{R}^d \}$.

Le coût de calcul étant trop important on résout des modèles approximant l'équation de transport.

Modèles hyperboliques, dépendant uniquement de x et t.

📕 Modèles simplifiés :

- Modèles P_n: développement de l'équation de transport sur une base d'harmoniques sphériques.
- Modèles S_n : approximation de l'opérateur intégrale à l'aide d'une formule de quadrature.
- **–** Modèles M_n : extensions non linéaires des modèles P_n .

Modèle P_1 :

$$\left\{ \begin{array}{l} \partial_t E + \frac{1}{\varepsilon} \operatorname{div} \mathbf{F} = 0, \\ \\ \partial_t \mathbf{F} + \frac{1}{3\varepsilon} \nabla E = -\frac{\sigma}{\varepsilon^2} \mathbf{F} \end{array} \right.$$

📕 Modèles hyperboliques, dépendant uniquement de ${f x}$ et t.

📕 Modèles simplifiés :

- Modèles P_n: développement de l'équation de transport sur une base d'harmoniques sphériques.
- Modèles S_n: approximation de l'opérateur intégrale à l'aide d'une formule de quadrature.
- Modèles M_n : extensions non linéaires des modèles P_n .

Modèle P_1 :

$$\left\{ \begin{array}{l} \partial_t E + \frac{1}{\varepsilon} \operatorname{div} \mathbf{F} = 0, \\ \partial_t \mathbf{F} + \frac{1}{3\varepsilon} \nabla E = -\frac{\sigma}{\varepsilon^2} \mathbf{F} \end{array} \right.$$

 Méthodes numériques adaptées : schémas de volumes finis « asymptotic preserving » (AP) capturant la limite de diffusion.

Objectif :

Construction de schémas de type volumes finis pour les modèles simplifiés capturant la limite de diffusion sur maillages non structurés.

Schémas « asymptotic preserving »

- Un schéma (P_h^{ε}) est dit « asymptotic preserving » lorsqu'il tend vers un schéma limite (P_h^0) consistant avec le modèle limite (P^0) quand ε tend vers zéro avec h > 0 le paramètre de discrétisation fixé.
- Un schéma est dit uniformément « asymptotic preserving » si l'estimation d'erreur et la condition CFL associées sont indépendantes de ε.

Schémas « asymptotic preserving »

- Un schéma (P_h^{ε}) est dit « asymptotic preserving » lorsqu'il tend vers un schéma limite (P_h^0) consistant avec le modèle limite (P^0) quand ε tend vers zéro avec h > 0 le paramètre de discrétisation fixé.
- Un schéma est dit uniformément « asymptotic preserving » si l'estimation d'erreur et la condition CFL associées sont indépendantes de ε.

Contraintes

- Schémas « asymptotic preserving » basés sur le schéma de Godunov ou upwind (bonnes propriétés en régime de transport).
- 📕 Schémas centrés aux mailles (pour compatibilité avec les schémas hydrodynamiques).

Test de validation des schémas AP : les données sont E(0, x) = G(x) avec G(x) une Gaussienne, F(0, x) = 0 et $\sigma = 1$, $\varepsilon = 0.001$.

Schéma	Erreur L^1	temps
Godunov, 10000 mailles	0.0366	1485m4.26s
Godunov, 500 mailles	0.445	0 m24.317s
AP, 500 mailles	0.0001	0m15.22s
AP, 50 mailles	0.0065	0m0.054s

Test de validation des schémas AP : les données sont E(0, x) = G(x) avec G(x) une Gaussienne, F(0, x) = 0 et $\sigma = 1$, $\varepsilon = 0.001$.

Schéma	Erreur L^1	temps
Godunov, 10000 mailles	0.0366	1485m4.26s
Godunov, 500 mailles	0.445	0m24.317s
AP, 500 mailles	0.0001	0m15.22s
AP, 50 mailles	0.0065	0m0.054s

Le schéma AP est bien plus précis que le schéma de Godunov.

$$\left(\begin{array}{c} \partial_t E + \frac{1}{\varepsilon} \partial_x F = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E = -\frac{\sigma}{\varepsilon^2} F, \end{array}\right) \longrightarrow \partial_t E - \partial_x \left(\frac{1}{\sigma}\right) \partial_x E = 0.$$
 (1)

Consistance du schéma de Godunov pour le modèle (1)

- première équation : $O\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$,
- seconde équation : $O\left(\frac{\Delta x^2}{\varepsilon} + \Delta x + \Delta t\right)$.
- Condition CFL : $\Delta t \left(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2} \right) \le 1.$

$$\left(\begin{array}{c} \partial_t E + \frac{1}{2} \partial_x F = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E = -\frac{\sigma}{\varepsilon^2} F, \end{array}\right) \longrightarrow \partial_t E - \partial_x \left(\frac{1}{\sigma}\right) \partial_x E = 0.$$
 (1)

Consistance du schéma de Godunov pour le modèle (1)

- première équation : $O\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$,
- seconde équation : $O\left(\frac{\Delta x^2}{\varepsilon} + \Delta x + \Delta t\right)$.
- Condition CFL : $\Delta t \left(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2} \right) \leq 1.$

Schéma de Jin-Levermore

Principe : introduction de l'état stationnaire $\partial_x E = -\frac{\sigma}{\varepsilon}F$ dans les flux. on écrit les relations

$$\left\{ \begin{array}{l} E(x_j) = E(x_{j+\frac{1}{2}}) + (x_j - x_{j+\frac{1}{2}})\partial_x E(x_{j+\frac{1}{2}}),\\ E(x_{j+1}) = E(x_{j+\frac{1}{2}}) + (x_{j+1} - x_{j+\frac{1}{2}})\partial_x E(x_{j+\frac{1}{2}}). \end{array} \right.$$

$$\left(\begin{array}{c} \partial_t E + \frac{1}{2} \partial_x F = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E = -\frac{\sigma}{\varepsilon^2} F, \end{array}\right) \longrightarrow \partial_t E - \partial_x \left(\frac{1}{\sigma}\right) \partial_x E = 0.$$
 (1)

Consistance du schéma de Godunov pour le modèle (1)

- première équation : $O\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$,
- seconde équation : $O\left(\frac{\Delta x^2}{\varepsilon} + \Delta x + \Delta t\right)$.
- Condition CFL : $\Delta t \left(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2} \right) \leq 1.$

Schéma de Jin-Levermore

Principe : introduction de l'état stationnaire $\partial_x E = -\frac{\sigma}{\varepsilon}F$ dans les flux. on écrit les relations

$$\left\{ \begin{array}{l} E(x_j) = E(x_{j+\frac{1}{2}}) - (x_j - x_{j+\frac{1}{2}}) \frac{\sigma}{\varepsilon} F(x_{j+\frac{1}{2}}), \\ E(x_{j+1}) = E(x_{j+\frac{1}{2}}) - (x_{j+1} - x_{j+\frac{1}{2}}) \frac{\sigma}{\varepsilon} F(x_{j+\frac{1}{2}}). \end{array} \right.$$

$$\left(\begin{array}{c} \partial_t E + \frac{1}{2} \partial_x F = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E = -\frac{\sigma}{\varepsilon^2} F, \end{array}\right) \longrightarrow \partial_t E - \partial_x \left(\frac{1}{\sigma}\right) \partial_x E = 0.$$
 (1)

Consistance du schéma de Godunov pour le modèle (1)

- première équation : $O\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$,
- seconde équation : $O\left(\frac{\Delta x^2}{\varepsilon} + \Delta x + \Delta t\right)$.
- Condition CFL : $\Delta t \left(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2} \right) \leq 1$.

Schéma de Jin-Levermore

Principe : introduction de l'état stationnaire $\partial_x E = -\frac{\sigma}{\varepsilon}F$ dans les flux. on écrit les relations

$$\left\{ \begin{array}{l} E(x_j) = E(x_{j+\frac{1}{2}}) - (x_j - x_{j+\frac{1}{2}}) \frac{\sigma}{\varepsilon} F(x_{j+\frac{1}{2}}), \\ E(x_{j+1}) = E(x_{j+\frac{1}{2}}) - (x_{j+1} - x_{j+\frac{1}{2}}) \frac{\sigma}{\varepsilon} F(x_{j+\frac{1}{2}}). \end{array} \right.$$

On couple ces relations avec les flux

$$\begin{cases} F_j + E_j = F_{j+\frac{1}{2}} + E_{j+\frac{1}{2}}, \\ F_{j+1} - E_{j+1} = F_{j+\frac{1}{2}} - E_{j+\frac{1}{2}}. \end{cases}$$

$$\left(\begin{array}{c} \partial_t E + \frac{1}{\varepsilon} \partial_x F = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E = -\frac{\sigma}{\varepsilon^2} F, \end{array}\right) \longrightarrow \partial_t E - \partial_x \left(\frac{1}{\sigma}\right) \partial_x E = 0.$$
 (1)

Consistance du schéma de Godunov pour le modèle (1)

- première équation : $O\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$,
- seconde équation : $O\left(\frac{\Delta x^2}{\varepsilon} + \Delta x + \Delta t\right)$.
- Condition CFL : $\Delta t \left(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2} \right) \leq 1$.

Schéma de Jin-Levermore

Principe : introduction de l'état stationnaire ∂_xE = − ^σ/_εF dans les flux.
 on écrit les relations

$$\left\{ \begin{array}{l} E(x_j) = E(x_{j+\frac{1}{2}}) - (x_j - x_{j+\frac{1}{2}}) \frac{\sigma}{\varepsilon} F(x_{j+\frac{1}{2}}), \\ E(x_{j+1}) = E(x_{j+\frac{1}{2}}) - (x_{j+1} - x_{j+\frac{1}{2}}) \frac{\sigma}{\varepsilon} F(x_{j+\frac{1}{2}}), \\ \\ F_j + E_j = F_{j+\frac{1}{2}} + E_{j+\frac{1}{2}} + \frac{\sigma \Delta x}{2\varepsilon} F_{j+\frac{1}{2}}, \\ F_{j+1} - E_{j+1} = F_{j+\frac{1}{2}} - E_{j+\frac{1}{2}} + \frac{\sigma \Delta x}{2\varepsilon} F_{j+\frac{1}{2}}. \end{array} \right.$$

$$\begin{cases} \partial_t E + \frac{1}{2} \partial_x F = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E = -\frac{\sigma}{\varepsilon^2} F, \end{cases} \longrightarrow \partial_t E - \partial_x \left(\frac{1}{\sigma}\right) \partial_x E = 0.$$
(1)

Consistance du schéma de Godunov pour le modèle (1)

- première équation : $O\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$,
- seconde équation : $O\left(\frac{\Delta x^2}{\varepsilon} + \Delta x + \Delta t\right)$.
- Condition CFL : $\Delta t \left(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2} \right) \le 1.$

Schéma de Jin-Levermore

Principe : introduction de l'état stationnaire $\partial_x E = -\frac{\sigma}{\varepsilon}F$ dans les flux.

$$\begin{cases} E(x_j) = E(x_{j+\frac{1}{2}}) - (x_j - x_{j+\frac{1}{2}})\frac{\sigma}{\varepsilon}F(x_{j+\frac{1}{2}}), \\ E(x_{j+1}) = E(x_{j+\frac{1}{2}}) - (x_{j+1} - x_{j+\frac{1}{2}})\frac{\sigma}{\varepsilon}F(x_{j+\frac{1}{2}}). \end{cases}$$

Le schéma de Jin-Levermore est

$$\begin{cases} \frac{E_{j}^{n+1}-E_{j}^{n}}{\Delta t} + M \frac{F_{j+1}^{n}-F_{j-1}^{n}}{2\varepsilon\Delta x} - M \frac{E_{j+1}^{n}-2E_{j}^{n}+E_{j-1}^{n}}{2\varepsilon\Delta x} = 0, \\ \frac{F_{j}^{n+1}-F_{j}^{n}}{\Delta t} + \frac{E_{j+1}^{n}-E_{j-1}^{n}}{2\varepsilon\Delta x} - \frac{F_{j+1}^{n}-2F_{j}^{n}+F_{j-1}^{n}}{2\varepsilon\Delta x} + \frac{\sigma}{\varepsilon^{2}}F_{j}^{n} = 0, \end{cases}$$
(2)

avec
$$M = \frac{2\varepsilon}{2\varepsilon + \sigma \Delta x}$$

Soutenance | PA GE 6/31

Schémas AP de type Godunov

Erreur de consistance du schéma de Jin-Levermore :

- **–** première équation : $O\left(\Delta x^2 + \varepsilon \Delta x + \Delta t\right)$,
- seconde équation : $O\left(\frac{\Delta x^2}{\varepsilon} + \Delta x + \Delta t\right)$.

• Condition CFL du schéma explicite : $\Delta t \left(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2}\right) \leq 1.$

Condition CFL du schéma semi-implicite : $\Delta t \left(\frac{1}{\Delta x \varepsilon}\right) \leq 1$.

Schémas AP de type Godunov

- Erreur de consistance du schéma de Jin-Levermore :
 - première équation $O\left(\Delta x^2 + \varepsilon \Delta x + \Delta t\right)$,
 - seconde équation : $O\left(\frac{\Delta x^2}{\varepsilon} + \Delta x + \Delta t\right)$.

• Condition CFL du schéma explicite : $\Delta t \left(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2} \right) \leq 1.$

- Condition CFL du schéma semi-implicite : $\Delta t \left(\frac{1}{\Delta x \varepsilon}\right) \le 1$. Schéma de Gosse-Toscani
- **Principe** : Le schéma de Jin-levermore (2) avec la discrétisation du terme source $\frac{1}{2}(F_{j+\frac{1}{2}} + F_{j-\frac{1}{2}})$ est égal au schéma de Gosse-Toscani.

$$\begin{cases} \frac{E_{j}^{n+1}-E_{j}^{n}}{\Delta t}+M\frac{F_{j+1}^{n}-F_{j-1}^{n}}{2\varepsilon\Delta x}-M\frac{E_{j+1}^{n}-2E_{j}^{n}+E_{j-1}^{n}}{2\varepsilon\Delta x}=0,\\ \frac{F_{j}^{n+1}-F_{j}^{n}}{\Delta t}+M\frac{E_{j+1}^{n}-E_{j-1}^{n}}{2\varepsilon\Delta x}-M\frac{F_{j+1}^{n}-2F_{j}^{n}+F_{j-1}^{n}}{2\varepsilon\Delta x}+M\frac{\sigma}{\varepsilon^{2}}F_{j}^{n}=0, \end{cases}$$
(3)

avec $M = rac{2arepsilon}{2arepsilon+\sigma\Delta x}$.

Schémas AP de type Godunov

- Erreur de consistance du schéma de Jin-Levermore :
 - **–** première équation $O\left(\Delta x^2 + \varepsilon \Delta x + \Delta t\right)$,
 - seconde équation : $O\left(\frac{\Delta x^2}{\varepsilon} + \Delta x + \Delta t\right)$.

Condition CFL du schéma explicite : $\Delta t \left(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2} \right) \leq 1.$

- Condition CFL du schéma semi-implicite : Δt (1/(Δxε)) ≤ 1. Schéma de Gosse-Toscani
- **Principe** : Le schéma de Jin-levermore (2) avec la discrétisation du terme source $\frac{1}{2}(F_{j+\frac{1}{2}} + F_{j-\frac{1}{2}})$ est égal au schéma de Gosse-Toscani.

$$\begin{cases} \frac{E_{j}^{n+1}-E_{j}^{n}}{\Delta t} + M \frac{F_{j+1}^{n}-F_{j-1}^{n}}{2\varepsilon\Delta x} - M \frac{E_{j+1}^{n}-2E_{j}^{n}+E_{j-1}^{n}}{2\varepsilon\Delta x} = 0, \\ \frac{F_{j}^{n+1}-F_{j}^{n}}{\Delta t} + M \frac{E_{j+1}^{n}-E_{j-1}^{n}}{2\varepsilon\Delta x} - M \frac{F_{j+1}^{n}-2F_{j}^{n}+F_{j-1}^{n}}{2\varepsilon\Delta x} + M \frac{\sigma}{\varepsilon^{2}} F_{j}^{n} = 0, \end{cases}$$
(3)

avec $M = rac{2arepsilon}{2arepsilon+\sigma\Delta x}$.

- Erreur de consistance du schéma de Gosse-Toscani : $O\left(\Delta x + \Delta t\right)$.
- **E** Condition CFL du schéma explicite : $\Delta t\left(rac{1}{\Delta x arepsilon}
 ight) \leq 1.$
- Condition CFL du schéma semi-implicite : $\Delta t \left(rac{1}{\Delta x \varepsilon + \sigma^{-1} \Delta x^2}
 ight) \leq 1.$

Soutenance | PA GE 7/31

On suppose que ||∂_{t^a,x^b}E|| ≤ C_{a,b} et ||∂_{t^a,x^b}F|| ≤ εC_{a,b}.
 L'équation modifiée associée au schéma de Godunov est

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \partial_x F - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E - \frac{\Delta x}{2\varepsilon} \partial_{xx} F = -\frac{\sigma}{\varepsilon^2} F. \end{cases}$$
(4)

On suppose que $||\partial_{t^a,x^b}E|| \leq C_{a,b}$ et $||\partial_{t^a,x^b}F|| \leq \varepsilon C_{a,b}$.

L'équation modifiée associée au schéma de Godunov est

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \partial_x F - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E - \frac{\Delta x}{2\varepsilon} \partial_{xx} F = -\frac{\sigma}{\varepsilon^2} F. \end{cases}$$
(4)

on incorpore $\varepsilon \partial_x E + O(\varepsilon^2) = -\sigma F$ dans la 1ère équation de (4) pour obtenir la limite de diffusion

$$\partial_t E - \frac{1}{\sigma} \partial_{xx} E - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0.$$

■ On suppose que $||\partial_{t^a,x^b}E|| \le C_{a,b}$ et $||\partial_{t^a,x^b}F|| \le \varepsilon C_{a,b}$. ■ L'équation modifiée associée au schéma de **Godunov** est

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \partial_x F - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E - \frac{\Delta x}{2\varepsilon} \partial_{xx} F = -\frac{\sigma}{\varepsilon^2} F. \end{cases}$$
(4)

- on incorpore $\varepsilon \partial_x E + O(\varepsilon^2) = -\sigma F$ dans la 1ère équation de (4) pour obtenir la limite de diffusion
- Sur grille fine $\frac{\Delta x}{\varepsilon} << 1$, la limite est

$$\partial_t E - \frac{1}{\sigma} \partial_{xx} E = 0.$$

■ On suppose que $||\partial_{t^a,x^b} E|| \le C_{a,b}$ et $||\partial_{t^a,x^b} F|| \le \varepsilon C_{a,b}$. ■ L'équation modifiée associée au schéma de **Godunov** est

 $\begin{cases} \partial_t E + \frac{1}{\varepsilon} \partial_x F - \frac{\Delta x}{2\varepsilon} \partial_x x E = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E - \frac{\Delta x}{2\varepsilon} \partial_x x F = -\frac{\sigma}{\varepsilon^2} F. \end{cases}$ (4)

- on incorpore $\varepsilon \partial_x E + O(\varepsilon^2) = -\sigma F$ dans la 1ère équation de (4) pour obtenir la limite de diffusion
- Sur grille grossière $\frac{\Delta x}{\varepsilon} >> 1$, la limite est

$$\partial_t E - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0.$$

• On suppose que $||\partial_{t^a,x^b}E|| \le C_{a,b}$ et $||\partial_{t^a,x^b}F|| \le \varepsilon C_{a,b}$.

L'équation modifiée associée au schéma de Godunov est

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \partial_x F - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E - \frac{\Delta x}{2\varepsilon} \partial_{xx} F = -\frac{\sigma}{\varepsilon^2} F. \end{cases}$$
(4)

on incorpore $\varepsilon \partial_x E + O(\varepsilon^2) = -\sigma F$ dans la 1ère équation de (4) pour obtenir la limite de diffusion

$$\partial_t E - \frac{1}{\sigma} \partial_{xx} E - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0.$$

- Le schéma ne capture pas la limite de diffusion.
- L'équation modifiée associée au schéma de Gosse-Toscani est

$$\begin{cases} \partial_t E + M \frac{1}{\varepsilon} \partial_x F - M \frac{\Delta x}{2\varepsilon} \partial_x x E = 0, \\ \partial_t F + M \frac{1}{\varepsilon} \partial_x E - M \frac{\Delta x}{2\varepsilon} \partial_x x F = -M \frac{\sigma}{\varepsilon^2} F. \end{cases}$$
(5)

• On suppose que $||\partial_{t^a,x^b}E|| \le C_{a,b}$ et $||\partial_{t^a,x^b}F|| \le \varepsilon C_{a,b}$.

L'équation modifiée associée au schéma de Godunov est

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \partial_x F - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E - \frac{\Delta x}{2\varepsilon} \partial_{xx} F = -\frac{\sigma}{\varepsilon^2} F. \end{cases}$$
(4)

on incorpore $\varepsilon \partial_x E + O(\varepsilon^2) = -\sigma F$ dans la 1ère équation de (4) pour obtenir la limite de diffusion

$$\partial_t E - \frac{1}{\sigma} \partial_{xx} E - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0.$$

- Le schéma ne capture pas la limite de diffusion.
- L'équation modifiée associée au schéma de Gosse-Toscani est

$$\begin{cases} \partial_t E + M \frac{1}{\varepsilon} \partial_x F - M \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0, \\ \partial_t F + M \frac{1}{\varepsilon} \partial_x E - M \frac{\Delta x}{2\varepsilon} \partial_{xx} F = -M \frac{\sigma}{\varepsilon^2} F. \end{cases}$$
(5)

• on incorpore $M \varepsilon \partial_x E + O(\varepsilon^2) = -M \sigma F$ dans |a 2ème équation de (5)

$$\partial_t E - \frac{M}{\sigma} \partial_{xx} E - \frac{1 - M}{\sigma} \partial_{xx} E = 0$$

• On suppose que $||\partial_{t^a,x^b}E|| \le C_{a,b}$ et $||\partial_{t^a,x^b}F|| \le \varepsilon C_{a,b}$.

L'équation modifiée associée au schéma de Godunov est

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \partial_x F - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E - \frac{\Delta x}{2\varepsilon} \partial_{xx} F = -\frac{\sigma}{\varepsilon^2} F. \end{cases}$$
(4)

on incorpore $\varepsilon \partial_x E + O(\varepsilon^2) = -\sigma F$ dans la 1ère équation de (4) pour obtenir la limite de diffusion

$$\partial_t E - \frac{1}{\sigma} \partial_{xx} E - \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0.$$

- Le schéma ne capture pas la limite de diffusion.
- L'équation modifiée associée au schéma de Gosse-Toscani est

$$\begin{cases} \partial_t E + M \frac{1}{\varepsilon} \partial_x F - M \frac{\Delta x}{2\varepsilon} \partial_{xx} E = 0, \\ \partial_t F + M \frac{1}{\varepsilon} \partial_x E - M \frac{\Delta x}{2\varepsilon} \partial_{xx} F = -M \frac{\sigma}{\varepsilon^2} F. \end{cases}$$
(5)

• on incorpore $M \varepsilon \partial_x E + O(\varepsilon^2) = -M \sigma F$ dans la 2ème équation de (5)

$$\partial_t E - \frac{M}{\sigma} \partial_{xx} E - \frac{1 - M}{\sigma} \partial_{xx} E = 0$$

E Le schéma capture la limite de diffusion orallarepsilon (idem pour Jin-Levermore).

- Extension du schéma de Jin-Levermore en 2D
- Notations pour la formulation de volumes finis aux arêtes.

- Extension du schéma de Jin-Levermore en 2D
- Notations pour la formulation de volumes finis aux arêtes.

- l_{jk} et \mathbf{n}_{jk} sont la longueur et la normale associées à l'arête $\partial \Omega_{jk}$. ■ $\sum_k l_{jk} \mathbf{n}_{jk} = \mathbf{0}$.
- \blacksquare ($\mathbf{F}_{jk}, \mathbf{n}_{jk}$) et E_{jk} sont les flux associés à l'arête $\partial \Omega_{jk}$.

Extension 2D : difficultés

Méthode de Jin-Levermore : modifier les flux upwind en introduisant les états stationnaires. L'approximation du 1er ordre de Taylor donne

$$\begin{cases} E(\mathbf{x}_j) \simeq E(\mathbf{x}_{jk}) + (\mathbf{x}_j - \mathbf{x}_{jk}, \nabla E(\mathbf{x}_{jk})), \\ E(\mathbf{x}_k) \simeq E(\mathbf{x}_{jk}) + (\mathbf{x}_k - \mathbf{x}_{jk}, \nabla E(\mathbf{x}_{jk})). \end{cases}$$

Extension 2D : difficultés

Méthode de Jin-Levermore : modifier les flux upwind en introduisant les états stationnaires. L'approximation du 1er ordre de Taylor donne

$$\begin{cases} E(\mathbf{x}_j) \simeq E(\mathbf{x}_{jk}) - \frac{\sigma}{\varepsilon} (\mathbf{x}_j - \mathbf{x}_{jk}, \mathbf{F}(\mathbf{x}_{jk})), \\ E(\mathbf{x}_k) \simeq E(\mathbf{x}_{jk}) - \frac{\sigma}{\varepsilon} (\mathbf{x}_k - \mathbf{x}_{jk}, \mathbf{F}(\mathbf{x}_{jk})). \end{cases}$$

 Méthode de Jin-Levermore : modifier les flux upwind en introduisant les états stationnaires. L'approximation du 1er ordre de Taylor Équivalent discret

$$\begin{cases} E_j \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_j - \mathbf{x}_{jk}), \\ E_k \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_k - \mathbf{x}_{jk}). \end{cases}$$

Extension 2D : difficultés

 Méthode de Jin-Levermore : modifier les flux upwind en introduisant les états stationnaires. L'approximation du 1er ordre de Taylor Équivalent discret

$$\begin{cases} E_j \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_j - \mathbf{x}_{jk}), \\ E_k \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_k - \mathbf{x}_{jk}). \end{cases}$$

En incorporant ces relations dans les flux :

$$\begin{cases} (\mathbf{F}_j, \mathbf{n}_{jk}) + E_j = (\mathbf{F}_{jk}, \mathbf{n}_{jk}) + E_{jk}, \\ (\mathbf{F}_k, \mathbf{n}_{jk}) - E_k = (\mathbf{F}_{jk}, \mathbf{n}_{jk}) - E_{jk}. \end{cases}$$

 Méthode de Jin-Levermore : modifier les flux upwind en introduisant les états stationnaires. L'approximation du 1er ordre de Taylor Équivalent discret

$$\begin{cases} E_j \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_j - \mathbf{x}_{jk}), \\ E_k \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_k - \mathbf{x}_{jk}). \end{cases}$$

En incorporant ces relations dans les flux on obtient :

$$\begin{cases} (\mathbf{F}_j, \mathbf{n}_{jk}) + E_j = (\mathbf{F}_{jk}, \mathbf{n}_{jk}) + E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, (\mathbf{x}_j - \mathbf{x}_{jk})), \\ (\mathbf{F}_k, \mathbf{n}_{jk}) - E_k = (\mathbf{F}_{jk}, \mathbf{n}_{jk}) - E_{jk} + \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, (\mathbf{x}_k - \mathbf{x}_{jk})). \end{cases}$$

 Méthode de Jin-Levermore : modifier les flux upwind en introduisant les états stationnaires. L'approximation du 1er ordre de Taylor Équivalent discret

$$\begin{cases} E_j \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_j - \mathbf{x}_{jk}), \\ E_k \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_k - \mathbf{x}_{jk}). \end{cases}$$

En incorporant ces relations dans les flux on obtient :

$$\begin{cases} (\mathbf{F}_j, \mathbf{n}_{jk}) + E_j = (\mathbf{F}_{jk}, \mathbf{n}_{jk}) + E_{jk} - \frac{\sigma}{\epsilon} (\mathbf{F}_{jk}, (\mathbf{x}_j - \mathbf{x}_{jk})), \\ (\mathbf{F}_k, \mathbf{n}_{jk}) - E_k = (\mathbf{F}_{jk}, \mathbf{n}_{jk}) - E_{jk} + \frac{\sigma}{\epsilon} (\mathbf{F}_{jk}, (\mathbf{x}_k - \mathbf{x}_{jk})). \end{cases}$$

Hypothèse géométrique pour obtenir les flux.

Hypothèse : Le maillage satisfait l'hypothèse de Delaunay, donc :

$$(\mathbf{x}_{jk} - \mathbf{x}_j) = d_{jk}\mathbf{n}_{jk}$$
 et $(\mathbf{x}_{jk} - \mathbf{x}_k) = -d_{kj}\mathbf{n}_{jk}$.

 Méthode de Jin-Levermore : modifier les flux upwind en introduisant les états stationnaires. L'approximation du 1er ordre de Taylor Équivalent discret

$$\begin{cases} E_j \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_j - \mathbf{x}_{jk}), \\ E_k \simeq E_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{F}_{jk}, \mathbf{x}_k - \mathbf{x}_{jk}). \end{cases}$$

En incorporant ces relations dans les flux on obtient :

$$\begin{cases} (\mathbf{F}_j, \mathbf{n}_{jk}) + E_j = (\mathbf{F}_{jk}, \mathbf{n}_{jk}) + E_{jk} - \frac{\sigma}{\epsilon} (\mathbf{F}_{jk}, (\mathbf{x}_j - \mathbf{x}_{jk})), \\ (\mathbf{F}_k, \mathbf{n}_{jk}) - E_k = (\mathbf{F}_{jk}, \mathbf{n}_{jk}) - E_{jk} + \frac{\sigma}{\epsilon} (\mathbf{F}_{jk}, (\mathbf{x}_k - \mathbf{x}_{jk})). \end{cases}$$

Hypothèse géométrique pour obtenir les flux.

Hypothèse : Le maillage satisfait l'hypothèse de Delaunay, donc :

$$(\mathbf{x}_{jk} - \mathbf{x}_j) = d_{jk}\mathbf{n}_{jk}$$
 et $(\mathbf{x}_{jk} - \mathbf{x}_k) = -d_{kj}\mathbf{n}_{jk}$.

Limite asymptotique du schéma Jin-Levermore : schéma trèfle

$$\mid \Omega_j \mid \partial_t E_j(t) - \frac{1}{\sigma} \sum_k l_{jk} \frac{E_k - E_j}{d(\mathbf{x}_j, \mathbf{x}_k)} = 0.$$

- Le schéma trèfle ne converge pas sur maillages vraiment déformés Cas test : $E(t, \mathbf{x}) = G(\mathbf{x})$ avec G une Gaussienne, temps final t_f =0.010.
- Résultats de convergence sur maillages Cartésien et aléatoire.

- Le schéma trèfle ne converge pas sur maillages vraiment déformés Cas test : E(t, x) = G(x) avec G une Gaussienne, temps final t_f=0.010.
- Résultats de convergence sur maillages Cartésien et aléatoire.

 Le schéma de Jin-Levermore 2D n'est pas convergent en régime de diffusion.
 À notre connaissance il n'existe pas de schéma AP convergent sur maillages non structurés Soutenance LPAGE 11/31

Idée :

Utiliser une formulation aux noeuds des méthodes de volumes finis introduite en hydrodynamique Lagrangienne, discrétiser l'équation des ondes et coupler avec la méthode de Jin-Levermore.

ldée :

Utiliser une formulation aux noeuds des méthodes de volumes finis introduite en hydrodynamique Lagrangienne, discrétiser l'équation des ondes et coupler avec la méthode de Jin-Levermore.

Notations associées aux volumes finis aux noeuds

Soutenance | PAGE 12/31

$$\begin{cases} &| \Omega_j | \partial_t E_j(t) + \frac{1}{\varepsilon} \sum_r l_{jr} (\mathbf{F}_r, \mathbf{n}_{jr}) = 0, \\ &| \Omega_j | \partial_t \mathbf{F}_j(t) + \frac{1}{\varepsilon} \sum_r l_{jr} \mathbf{E} \mathbf{n}_{jr} = \mathbf{S}_j. \end{cases}$$

📕 Solveur nodal classique :

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr}E_{j}\mathbf{n}_{jr} = \widehat{\alpha}_{jr}(\mathbf{F}_{j} - \mathbf{F}_{r}), \\ \sum_{j} \mathbf{E}\mathbf{n}_{jr} = \mathbf{0}, \end{cases}$$

with $\widehat{\alpha}_{jr} = l_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr}$

$$\begin{cases} &| \Omega_j | \partial_t E_j(t) + \frac{1}{\varepsilon} \sum_r l_{jr} (\mathbf{F}_r, \mathbf{n}_{jr}) = 0, \\ &| \Omega_j | \partial_t \mathbf{F}_j(t) + \frac{1}{\varepsilon} \sum_r l_{jr} \mathbf{E} \mathbf{n}_{jr} = \mathbf{S}_j. \end{cases}$$

📕 Solveur nodal classique :

$$\begin{cases} \mathbf{En}_{jr} - l_{jr}E_j\mathbf{n}_{jr} = \widehat{\alpha}_{jr}(\mathbf{F}_j - \mathbf{F}_r), \\ \sum_{j} \mathbf{En}_{jr} = \mathbf{0}, \end{cases}$$

with $\widehat{\alpha}_{jr} = l_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr}$

Solveur nodal modifié en incorporant $\nabla E = -\frac{\sigma}{\varepsilon}F$ dans les flux :

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr}E_{j}\mathbf{n}_{jr} = \widehat{\alpha}_{jr}(\mathbf{F}_{j} - \mathbf{F}_{r}), \\ \left(\sum_{j}\widehat{\alpha}_{jr}\right)\mathbf{F}_{r} = \sum_{j}l_{jr}E_{j}\mathbf{n}_{jr} + \sum_{j}\widehat{\alpha}_{jr}\mathbf{F}_{j}. \end{cases}$$

$$|\Omega_{j}| \partial_{t} E_{j}(t) + \frac{1}{\varepsilon} \sum_{r} l_{jr}(\mathbf{F}_{r}, \mathbf{n}_{jr}) = 0,$$

$$|\Omega_{j}| \partial_{t} \mathbf{F}_{j}(t) + \frac{1}{\varepsilon} \sum_{r} l_{jr} \mathbf{E} \mathbf{n}_{jr} = \mathbf{S}_{j}.$$

Solveur nodal classique :

$$\mathbf{E}\mathbf{n}_{jr} - l_{jr}E_{j}\mathbf{n}_{jr} = \widehat{\alpha}_{jr}(\mathbf{F}_{j} - \mathbf{F}_{r}),$$
$$\sum_{j} \mathbf{E}\mathbf{n}_{jr} = \mathbf{0},$$

with $\widehat{\alpha}_{jr} = l_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr}$.

Solveur nodal modifié en incorporant $\nabla E = -\frac{\sigma}{\varepsilon}F$ dans les flux :

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr}E_{j}\mathbf{n}_{jr} = \widehat{\alpha}_{jr}(\mathbf{F}_{j} - \mathbf{F}_{r}) - \frac{\sigma}{\varepsilon}\widehat{\beta}_{jr}\mathbf{F}_{r}, \\ \left(\sum_{j}\widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\sum_{j}\widehat{\beta}_{jr}\right)\mathbf{F}_{r} = \sum_{j}l_{jr}E_{j}\mathbf{n}_{jr} + \sum_{j}\widehat{\alpha}_{jr}\mathbf{F}_{j}, \end{cases}$$

avec $\widehat{\beta}_{jr} = l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j).$

Soutenance | PAGE 13/31

$$|\Omega_j| \partial_t E_j(t) + \frac{1}{\varepsilon} \sum_r l_{jr} (\mathbf{F}_r, \mathbf{n}_{jr}) = 0,$$

$$|\Omega_j| \partial_t \mathbf{F}_j(t) + \frac{1}{\varepsilon} \sum_r l_{jr} \mathbf{E} \mathbf{n}_{jr} = \mathbf{S}_j.$$

Solveur nodal classique :

$$\sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j$$

with $\widehat{lpha}_{jr} = l_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr}$.

Solveur nodal modifié en incorporant $abla E = -rac{\sigma}{arepsilon} F$ dans les flux :

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr}E_{j}\mathbf{n}_{jr} = \widehat{\alpha}_{jr}(\mathbf{F}_{j} - \mathbf{F}_{r}) - \frac{\sigma}{\varepsilon}\widehat{\beta}_{jr}\mathbf{F}_{r}, \\ \left(\sum_{j}\widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\sum_{j}\widehat{\beta}_{jr}\right)\mathbf{F}_{r} = \sum_{j}l_{jr}E_{j}\mathbf{n}_{jr} + \sum_{j}\widehat{\alpha}_{jr}\mathbf{F}_{j}, \end{cases}$$

avec $\widehat{\beta}_{jr} = l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j)$. Terme source : (1) $\mathbf{S}_j = -\frac{\sigma}{\varepsilon^2} \mid \Omega_j \mid \mathbf{F}_j$, (2) $\mathbf{S}_j = -\frac{\sigma}{\varepsilon^2} \sum_r \widehat{\beta}_{jr} \mathbf{F}_r$

Soutenance | PAGE 13/31

- En 1D, le schéma avec le terme source (1) est égal au schéma Jin-Levermore,
- le schéma avec le terme source (2) est égal au schéma Gosse-Toscani.

Discrétisations temporelles

- En 1D, le schéma avec le terme source (1) est égal au schéma Jin-Levermore,
- le schéma avec le terme source (2) est égal au schéma Gosse-Toscani.
- Reformulation du schéma avec le terme source (2) et implicitation du terme source :

$$\begin{cases} |\Omega_j| \frac{E_j^{n+1} - E_j^n}{\Delta t} + \frac{1}{\varepsilon} \sum_r l_{jr} (M_r \mathbf{F}_r, \mathbf{n}_{jr}) = 0, \\ |\Omega_j| \frac{\mathbf{F}_j^{n+1} - \mathbf{F}_j^n}{\Delta t} + \frac{1}{\varepsilon} \sum_r \mathbf{E} \mathbf{n}_{jr} = -\frac{1}{\varepsilon} \left(\sum_r \widehat{\alpha}_{jr} (\widehat{I}_d - M_r) \right) \mathbf{F}_j^{n+1}. \end{cases}$$

avec

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr}E_j\mathbf{n}_{jr} = \widehat{\alpha}_{jr}M_r(\mathbf{F}_j - \mathbf{F}_r), \\ \left(\sum_j \widehat{\alpha}_{jr}\right)\mathbf{F}_r = \sum_j l_{jr}E_j\mathbf{n}_{jr} + \sum_j \widehat{\alpha}_{jr}\mathbf{F}_j. \\ M_r = \left(\sum_j \widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\sum_j \widehat{\beta}_{jr}\right)^{-1} \left(\sum_j \widehat{\alpha}_{jr}\right). \end{cases}$$

Discrétisations temporelles

- En 1D, le schéma avec le terme source (1) est égal au schéma Jin-Levermore,
- le schéma avec le terme source (2) est égal au schéma Gosse-Toscani.
- Reformulation du schéma avec le terme source (2) et implicitation du terme source :

$$\begin{cases} |\Omega_j| \frac{E_j^{n+1} - E_j^n}{\Delta t} + \frac{1}{\varepsilon} \sum_r l_{jr} (M_r \mathbf{F}_r, \mathbf{n}_{jr}) = 0, \\ |\Omega_j| \frac{\mathbf{F}_j^{n+1} - \mathbf{F}_j^n}{\Delta t} + \frac{1}{\varepsilon} \sum_r \mathbf{E} \mathbf{n}_{jr} = -\frac{1}{\varepsilon} \left(\sum_r \widehat{\alpha}_{jr} (\widehat{I}_d - M_r) \right) \mathbf{F}_j^{n+1}. \end{cases}$$

avec

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr}E_{j}\mathbf{n}_{jr} = \widehat{\alpha}_{jr}M_{r}(\mathbf{F}_{j} - \mathbf{F}_{r}), \\ \left(\sum_{j}\widehat{\alpha}_{jr}\right)\mathbf{F}_{r} = \sum_{j}l_{jr}E_{j}\mathbf{n}_{jr} + \sum_{j}\widehat{\alpha}_{jr}\mathbf{F}_{j}. \\ M_{r} = \left(\sum_{j}\widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\sum_{j}\widehat{\beta}_{jr}\right)^{-1}\left(\sum_{j}\widehat{\alpha}_{jr}\right). \end{cases}$$

La matrice M_r généralise le coefficient M introduit en 1D.

Discrétisations temporelles

- \blacksquare En 1D, le schéma avec le terme source (1) est égal au schéma Jin-Levermore,
- le schéma avec le terme source (2) est égal au schéma Gosse-Toscani.
- Reformulation du schéma avec le terme source (2) et implicitation du terme source :

$$\begin{cases} |\Omega_j| \frac{E_j^{n+1} - E_j^n}{\Delta t} + \frac{1}{\varepsilon} \sum_r l_{jr} (M_r \mathbf{F}_r, \mathbf{n}_{jr}) = 0, \\ |\Omega_j| \frac{\mathbf{F}_j^{n+1} - \mathbf{F}_j^n}{\Delta t} + \frac{1}{\varepsilon} \sum_r \mathbf{E} \mathbf{n}_{jr} = -\frac{1}{\varepsilon} \left(\sum_r \widehat{\alpha}_{jr} (\widehat{I}_d - M_r) \right) \mathbf{F}_j^{n+1}. \end{cases}$$

avec

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr}E_j\mathbf{n}_{jr} = \widehat{\alpha}_{jr}M_r(\mathbf{F}_j - \mathbf{F}_r), \\ \left(\sum_j \widehat{\alpha}_{jr}\right)\mathbf{F}_r = \sum_j l_{jr}E_j\mathbf{n}_{jr} + \sum_j \widehat{\alpha}_{jr}\mathbf{F}_j. \\ M_r = \left(\sum_j \widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\sum_j \widehat{\beta}_{jr}\right)^{-1} \left(\sum_j \widehat{\alpha}_{jr}\right). \end{cases}$$

- La matrice M_r généralise le coefficient M introduit en 1D.
- Le schéma semi-implicite est stable sous condition CFL indépendante de ε (numériquement).
- 🔳 Le schéma implicite est inconditionnellement stable.

Limite de diffusion

Schéma limite de diffusion :

$$|\Omega_j| \partial_t E_j(t) - \sum_r l_{jr}(\mathbf{F}_r, \mathbf{n}_{jr}) = 0,$$

$$\sigma A_r \mathbf{F}_r = \sum_j l_{jr} E_j \mathbf{n}_{jr}, \quad A_r = -\sum_j l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j).$$

- A_r inversible sous condition de maillages. Condition suffisante pour des maillages triangulaires : tous les angles > 12°.
- On définit les erreurs numériques :

Limite de diffusion

Schéma limite de diffusion :

$$| \Omega_j | \partial_t E_j(t) - \sum_r l_{jr} (\mathbf{F}_r, \mathbf{n}_{jr}) = 0,$$

$$\sigma A_r \mathbf{F}_r = \sum_j l_{jr} E_j \mathbf{n}_{jr}, \quad A_r = -\sum_j l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j).$$

■ A_r inversible sous condition de maillages. Condition suffisante pour des maillages triangulaires : tous les angles > 12°.

On définit les erreurs numériques :

$$\| e(t) \|_{L^{2}(\Omega)}^{2} = \sum_{j} | \Omega_{j} | (E_{j}(t) - E(\mathbf{x}_{j}, t))^{2}.$$
$$| \mathbf{f}(t) \|_{L^{2}([0,t] \times \Omega)}^{2} = \int_{0}^{t} \sum_{r} | V_{r} | (\mathbf{F}_{r}(t) - \nabla E(\mathbf{x}_{r}, t))^{2}.$$

Théorème

Si $E(t) \in W^{3,\infty}$ et la matrice A_r^S satisfait $A_r^S \ge \alpha V_r$ avec α une constante alors le schéma semi-discret de diffusion est convergent $\forall T > 0$ avec l'estimation :

 $|| e(t) ||_{L^2(\Omega)} + || \mathbf{f}(t) ||_{L^2([0,t] \times \Omega)} \le C(T)h.$

Soutenance | PAGE 15/31

$$\begin{cases} a_j(t) = \partial_t E(t, \mathbf{x}_j) - \frac{1}{|\Omega_j|} \sum_r l_{jr} \left(\nabla E(t, \mathbf{x}_r), \mathbf{n}_{jr} \right), \\ \mathbf{b}_r(t) = \frac{1}{V_r} \left(A_r \nabla E(t, \mathbf{x}_r) - \sum_j l_{jr} E(t, \mathbf{x}_j) \mathbf{n}_{jr} \right). \end{cases}$$
(6)

$$\begin{cases} a_j(t) = \partial_t E(t, \mathbf{x}_j) - \frac{1}{|\Omega_j|} \sum_r l_{jr} \left(\nabla E(t, \mathbf{x}_r), \mathbf{n}_{jr} \right), \\ \mathbf{b}_r(t) = \frac{1}{V_r} \left(A_r \nabla E(t, \mathbf{x}_r) - \sum_j l_{jr} E(t, \mathbf{x}_j) \mathbf{n}_{jr} \right). \end{cases}$$
(6)

Résultat intermédiaire

Il existe une constante C > 0 telle que les estimations suivantes soit vérifiées

$$|a_j| \le Ch$$
 pour tout j , et $||\mathbf{b}_r|| \le Ch$, pour tout r . (7)

$$\begin{cases} a_j(t) = \partial_t E(t, \mathbf{x}_j) - \frac{1}{|\Omega_j|} \sum_r l_{jr} \left(\nabla E(t, \mathbf{x}_r), \mathbf{n}_{jr} \right), \\ \mathbf{b}_r(t) = \frac{1}{V_r} \left(A_r \nabla E(t, \mathbf{x}_r) - \sum_j l_{jr} E(t, \mathbf{x}_j) \mathbf{n}_{jr} \right). \end{cases}$$
(6)

Résultat intermédiaire

Il existe une constante C > 0 telle que les estimations suivantes soit vérifiées

$$|a_j| \le Ch$$
 pour tout j , et $||\mathbf{b}_r|| \le Ch$, pour tout r . (7)

- Pour estimer a_j(t) : décomposition de _{jr}n_{jr} en fonction des normales et longueurs aux arêtes et formule de trapèze.
- Pour estimer $\mathbf{b}_r(t)$: développement de Taylor (possible pour notre choix de A_r).

$$\begin{cases} a_j(t) = \partial_t E(t, \mathbf{x}_j) - \frac{1}{|\Omega_j|} \sum_r l_{jr} \left(\nabla E(t, \mathbf{x}_r), \mathbf{n}_{jr} \right), \\ \mathbf{b}_r(t) = \frac{1}{V_r} \left(A_r \nabla E(t, \mathbf{x}_r) - \sum_j l_{jr} E(t, \mathbf{x}_j) \mathbf{n}_{jr} \right). \end{cases}$$
(6)

Résultat intermédiaire

ll existe une constante C>0 telle que les estimations suivantes soit vérifiées

$$|a_j| \le Ch$$
 pour tout j , et $||\mathbf{b}_r|| \le Ch$, pour tout r .

- (7)
- Pour estimer $a_j(t)$: décomposition de ${}_{jr}\mathbf{n}_{jr}$ en fonction des normales et longueurs aux arêtes et formule de trapèze.
- Pour estimer $\mathbf{b}_r(t)$: développement de Taylor (possible pour notre choix de A_r).
- En utilisant l'équation satisfaite par $e_j(t)$ et $\mathbf{f}_r(t)$ ainsi qu'une inégalité de Young on obtient

$$\frac{d}{dt} \| e(t) \|_{L^{2}(\Omega)}^{2} \leq \frac{1}{2} \| e(t) \|_{L^{2}(\Omega)}^{2} -\beta \| \mathbf{f}(t) \|_{L^{2}(\Omega)}^{2} + ||a(t)||^{2} + \frac{1}{\beta} ||\mathbf{b}(t)||^{2}$$
(8)

On conclut à l'aide du Lemme de Grönwall.

$$\begin{cases} a_j(t) = \partial_t E(t, \mathbf{x}_j) - \frac{1}{|\Omega_j|} \sum_r l_{jr} \left(\nabla E(t, \mathbf{x}_r), \mathbf{n}_{jr} \right), \\ \mathbf{b}_r(t) = \frac{1}{V_r} \left(A_r \nabla E(t, \mathbf{x}_r) - \sum_j l_{jr} E(t, \mathbf{x}_j) \mathbf{n}_{jr} \right). \end{cases}$$
(6)

Résultat intermédiaire

ll existe une constante C>0 telle que les estimations suivantes soit vérifiées

$$|a_j| \le Ch$$
 pour tout j , et $||\mathbf{b}_r|| \le Ch$, pour tout r . (7)

- Pour estimer $a_j(t)$: décomposition de ${}_{jr}\mathbf{n}_{jr}$ en fonction des normales et longueurs aux arêtes et formule de trapèze.
- Pour estimer $\mathbf{b}_r(t)$: développement de Taylor (possible pour notre choix de A_r).
- En utilisant l'équation satisfaite par $e_j(t)$ et $\mathbf{f}_r(t)$ ainsi qu'une inégalité de Young on obtient

$$\frac{d}{dt} \| e(t) \|_{L^{2}(\Omega)}^{2} \leq \frac{1}{2} \| e(t) \|_{L^{2}(\Omega)}^{2} + Ch^{2},$$
(8)

On conclut à l'aide du Lemme de Grönwall.

lacksquare L'hypothèse $||A_r|| > lpha V_r$ se ramène à une hypothèse sur le maillage.

Systèmes de Friedrichs avec termes sources

$$\partial_t \mathbf{U} + rac{1}{arepsilon} A \partial_x \mathbf{U} + rac{1}{arepsilon} B \partial_y \mathbf{U} = -rac{\sigma}{arepsilon^2} R \mathbf{U}, \ \mathbf{U} \in \mathbb{R}^n$$

■ *A*, *B*, *R* matrices symétriques et *R* symétrique positive.

Systèmes de Friedrichs avec termes sources

$$\partial_t \mathbf{U} + rac{1}{arepsilon} A \partial_x \mathbf{U} + rac{1}{arepsilon} B \partial_y \mathbf{U} = -rac{\sigma}{arepsilon^2} R \mathbf{U}, \ \mathbf{U} \in \mathbb{R}^n$$

■ A, B, R matrices symétriques et R symétrique positive.

Théorème

On note \mathbf{E}_i les vecteurs propres de R avec $\operatorname{Ker} R = \operatorname{vect}(\mathbf{E}_1,...,\mathbf{E}_p)$. On suppose qu'il existe deux vecteurs particuliers indépendants associés aux valeurs propres λ_{p+1} , λ_{p+2} de R satisfaisant

$$\begin{cases} A\mathbf{E}_i = \gamma_i \mathbf{E}_{p+1}, \forall i \in \{1..p\}, \\ B\mathbf{E}_i = \delta_i \mathbf{E}_{p+2}, \forall i \in \{1..p\}, \end{cases} (H_1)$$

alors $((\mathbf{U},\mathbf{E}_1),...,(\mathbf{U},\mathbf{E}_p))$ tend vers $\mathbf{V}\in\mathbb{R}^p$ quand arepsilon tend vers zéro avec

$$\partial_t \mathbf{V} - \frac{1}{\lambda_{p+1}\sigma} K_1 \partial_{xx} \mathbf{V} - \frac{1}{\lambda_{p+2}\sigma} K_2 \partial_{yy} \mathbf{V} = \mathbf{0},$$

et K_1 , K_2 des matrices symétriques définies positives.

- Modèles S_n : (méthode des ordonnées discrètes) obtenus par approximation de l'opérateur intégrale à l'aide d'une formule de quadrature.
- **Propriétés du modèles** S_n : A, B matrices diagonales, dim Ker R = 1 et R symétrique positive

- Modèles S_n : (méthode des ordonnées discrètes) obtenus par approximation de l'opérateur intégrale à l'aide d'une formule de quadrature.
- **Propriétés du modèles** S_n : A, B matrices diagonales, dim Ker R = 1 et R symétrique positive
- Modèles P_n : obtenus par projection de l'équation de transport sur les harmoniques sphériques.
- **Propriétés du modèles** P_n : système symétrisable, R matrice diagonale définie par $R_{11} = 0$ et $R_{ii} = 1$ $(i \neq 0)$.

- Modèles S_n : (méthode des ordonnées discrètes) obtenus par approximation de l'opérateur intégrale à l'aide d'une formule de quadrature.
- **Propriétés du modèles** S_n : A, B matrices diagonales, dim Ker R = 1 et R symétrique positive
- Modèles P_n : obtenus par projection de l'équation de transport sur les harmoniques sphériques.
- **Propriétés du modèles** P_n : système symétrisable, R matrice diagonale définie par $R_{11} = 0$ et $R_{ii} = 1$ $(i \neq 0)$.

Proposition

Les modèles P_n et S_n satisfont l'hypothèse de structure (H_1) .

Proposition

Lorsqu'on écrit les modèles P_n ou S_n dans la base des vecteurs propres de R, on obtient

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} A' \partial_x \mathbf{V} + \frac{1}{\varepsilon} B' \partial_y \mathbf{V} = -\frac{\sigma}{\varepsilon^2} D \mathbf{V}$$
(9)

avec D diagonale, définie par $D_{11} = 0$ et $D_{ii} = 1$ $(i \neq 0)$. Si l'hypothèse (H_1) est satisfaite

$$A' = P_{1,x} + A'', B' = P_{1,y} + B'',$$

avec $A_{0,j}^{\prime\prime}=0,\,A_{i,0}^{\prime\prime}=0,\,B_{0,j}^{\prime\prime}=0,\,B_{i,0}^{\prime\prime}=0.$

Les matrices $P_{1,x}$, $P_{1,y}$ sont les matrices associées au modèle P_1 .

Proposition

Lorsqu'on écrit les modèles P_n ou S_n dans la base des vecteurs propres de R, on obtient

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} A' \partial_x \mathbf{V} + \frac{1}{\varepsilon} B' \partial_y \mathbf{V} = -\frac{\sigma}{\varepsilon^2} D \mathbf{V}$$
(9)

avec D diagonale, définie par $D_{11} = 0$ et $D_{ii} = 1$ $(i \neq 0)$. Si l'hypothèse (H_1) est satisfaite

$$A' = P_{1,x} + A'', B' = P_{1,y} + B'',$$

avec $A_{0,j}^{\prime\prime}=0,\,A_{i,0}^{\prime\prime}=0,\,B_{0,j}^{\prime\prime}=0,\,B_{i,0}^{\prime\prime}=0.$

- Les matrices $P_{1,x}$, $P_{1,y}$ sont les matrices associées au modèle P_1 .
- **Conclusion** : Les modèles P_n et S_n peuvent être décomposés entre le modèle P_1 et un système qui n'intervient pas en régime de diffusion.
- Méthode numérique (micro-macro décomposition?) : Diagonalisation du système, décomposition du système, discrétisation du modèle P₁ avec un schéma AP et l'autre système avec un schéma classique.

• On considère le système : $\partial_t \mathbf{U} + \frac{1}{\varepsilon} A_1 \partial_x \mathbf{U} + \frac{1}{\varepsilon} A_2 \partial_y \mathbf{U} = -\frac{\sigma}{\varepsilon^2} R \mathbf{U}.$

 $\blacksquare \text{ On considère le système } : \partial_t \mathbf{U} + \frac{1}{\varepsilon} A_1 \partial_x \mathbf{U} + \frac{1}{\varepsilon} A_2 \partial_y \mathbf{U} = -\frac{\sigma}{\varepsilon^2} R \mathbf{U}.$

Étape 1 On écrit le système dans la base de R pour obtenir

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} A_1' \partial_x \mathbf{V} + \frac{1}{\varepsilon} A_2' \partial_y \mathbf{V} = -\frac{\sigma}{\varepsilon^2} D \mathbf{V}, \tag{10}$$

avec $\mathbf{V} = Q^t \mathbf{U}$, $A_1^{'} = Q^t A_1 Q$ et $A_2^{'} = Q^t A_2 Q$.

On considère le système : $\partial_t \mathbf{U} + \frac{1}{\varepsilon} A_1 \partial_x \mathbf{U} + \frac{1}{\varepsilon} A_2 \partial_y \mathbf{U} = -\frac{\sigma}{\varepsilon^2} R \mathbf{U}.$

Étape 1 On écrit le système dans la base de R pour obtenir

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} A_1' \partial_x \mathbf{V} + \frac{1}{\varepsilon} A_2' \partial_y \mathbf{V} = -\frac{\sigma}{\varepsilon^2} D \mathbf{V}, \tag{10}$$

avec $\mathbf{V} = Q^t \mathbf{U}$, $A'_1 = Q^t A_1 Q$ et $A'_2 = Q^t A_2 Q$. **Étape 2** : On décompose le système diagonalisé (10). On obtient

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} \left(P_{1,x} \partial_x \mathbf{V} + P_{1,y} \partial_y \mathbf{V} \right) + \frac{1}{\varepsilon} \left(A_1^{\prime\prime} \partial_x \mathbf{V} + A_2^{\prime\prime} \partial_y \mathbf{V} \right) = -\frac{\sigma}{\varepsilon^2} D \mathbf{v}.$$
(11)

On considère le système : $\partial_t \mathbf{U} + \frac{1}{\varepsilon} A_1 \partial_x \mathbf{U} + \frac{1}{\varepsilon} A_2 \partial_y \mathbf{U} = -\frac{\sigma}{\varepsilon^2} R \mathbf{U}.$

Étape 1 On écrit le système dans la base de R pour obtenir

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} A_1' \partial_x \mathbf{V} + \frac{1}{\varepsilon} A_2' \partial_y \mathbf{V} = -\frac{\sigma}{\varepsilon^2} D \mathbf{V}, \tag{10}$$

avec $\mathbf{V} = Q^t \mathbf{U}, A'_1 = Q^t A_1 Q$ et $A'_2 = Q^t A_2 Q$. **Étape 2** : On décompose le système diagonalisé (10). On obtient

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} \left(P_{1,x} \partial_x \mathbf{V} + P_{1,y} \partial_y \mathbf{V} \right) + \frac{1}{\varepsilon} \left(A_1^{\prime\prime} \partial_x \mathbf{V} + A_2^{\prime\prime} \partial_y \mathbf{V} \right) = -\frac{\sigma}{\varepsilon^2} D \mathbf{v}.$$
(11)

Étape 3 Le système (12) est discrétisé avec un schéma AP :

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} \left(P_{1,x} \partial_x \mathbf{V} + P_{1,y} \partial_y \mathbf{V} \right) = -\frac{\sigma}{\varepsilon^2} D' \mathbf{V}, \tag{12}$$

avec $D^{'}$ définie par $D^{'}_{22}=D^{'}_{33}=1$ et $D^{'}_{ii\neq 22,ii\neq 33}=0.$

On considère le système : $\partial_t \mathbf{U} + \frac{1}{\varepsilon} A_1 \partial_x \mathbf{U} + \frac{1}{\varepsilon} A_2 \partial_y \mathbf{U} = -\frac{\sigma}{\varepsilon^2} R \mathbf{U}$.

Étape 1 : On écrit le système dans la base de R pour obtenir

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} A_1' \partial_x \mathbf{V} + \frac{1}{\varepsilon} A_2' \partial_y \mathbf{V} = -\frac{\sigma}{\varepsilon^2} D \mathbf{V}, \tag{10}$$

avec $\mathbf{V} = Q^t \mathbf{U}, A'_1 = Q^t A_1 Q$ et $A'_2 = Q^t A_2 Q$. **Étape 2** : On décompose le système diagonalisé (10). On obtient

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} \left(P_{1,x} \partial_x \mathbf{V} + P_{1,y} \partial_y \mathbf{V} \right) + \frac{1}{\varepsilon} \left(A_1^{\prime\prime} \partial_x \mathbf{V} + A_2^{\prime\prime} \partial_y \mathbf{V} \right) = -\frac{\sigma}{\varepsilon^2} D \mathbf{v}.$$
(11)

Étape 3 Le système (12) est discrétisé avec un schéma AP :

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} \left(P_{1,x} \partial_x \mathbf{V} + P_{1,y} \partial_y \mathbf{V} \right) = -\frac{\sigma}{\varepsilon^2} D' \mathbf{V}, \tag{12}$$

avec $D^{'}$ définie par $D^{'}_{22}=D^{'}_{33}=1$ et $D^{'}_{ii\neq 22,ii\neq 33}=0.$

Étape 4 : Le système (13) est discrétisé avec un schéma classique (upwind, Rusanov) :

$$\partial_t \mathbf{V} + \frac{1}{\varepsilon} \left(A_1^{''} \partial_x \mathbf{V} + A_2^{''} \partial_y \mathbf{V} \right) = -\frac{\sigma}{\varepsilon^2} D^{''} \mathbf{V}, \tag{13}$$

avec $D^{''}$ définie par $D_{11}^{''} = D_{22}^{''} = D_{33}^{''} = 0$ et $D_{ii}^{''} = 1$ $i \ge 4$.

Soutenance | PAGE 20/31

 \blacksquare Le modèle à deux moments non linéaire M_1 est :

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \operatorname{div} \mathbf{F} = 0\\ \partial_t \mathbf{F} + \frac{1}{\varepsilon} \nabla(\hat{P}) = -\frac{\sigma}{\varepsilon^2} \mathbf{F}, \end{cases}$$
(14)

avec E l'énergie, \mathbf{F} le flux et

$$\widehat{P} = \frac{1}{2} \left((1 - \chi(\mathbf{f})) \widehat{I}_d + (3\chi(\mathbf{f}) - 1) \frac{\mathbf{f} \otimes \mathbf{f}}{\|\mathbf{f}\|^2} \right) E \in \mathbb{R}^{2 \times 2}$$

la pression. On définit $\mathbf{f} = \frac{||\mathbf{F}||}{E}$ et $\chi(\mathbf{f}) = \frac{3 + 4\mathbf{f}^2}{5 + 2\sqrt{4 - 3\mathbf{f}^2}}.$

Le modèle à deux moments non linéaire M_1 est :

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \operatorname{div} \mathbf{F} = 0\\ \partial_t \mathbf{F} + \frac{1}{\varepsilon} \nabla(\hat{P}) = -\frac{\sigma}{\varepsilon^2} \mathbf{F}, \end{cases}$$
(14)

avec E l'énergie, F le flux et

$$\widehat{P} = \frac{1}{2} \left((1 - \chi(\mathbf{f})) \widehat{I}_d + (3\chi(\mathbf{f}) - 1) \frac{\mathbf{f} \otimes \mathbf{f}}{\|\mathbf{f}\|^2} \right) E \in \mathbb{R}^{2 \times 2}$$

la pression. On définit $\mathbf{f} = \frac{||\mathbf{F}||}{E}$ et $\chi(\mathbf{f}) = \frac{3 + 4\mathbf{f}^2}{5 + 2\sqrt{4 - 3\mathbf{f}^2}}$

Le modèle M_1 satisfait :

- la diffusion limite, $\varepsilon \to 0$: $\partial_t E \operatorname{div}(\frac{1}{3\sigma}\nabla E) = 0$, 1er outil : schéma AP
- la propriété d'entropie : $\partial_t S + rac{1}{arepsilon} \operatorname{div}(\mathbf{Q}) \geq 0$, 2ème outil : Reformulation
- \blacksquare le principe du maximum : $E>0, ||\mathbf{f}||<1,$ comme un système de la dynamique des gaz

avec $TdS = dE - (\mathbf{U}, \mathbf{F})$ et

$$S = \frac{E^{3/4}(1 - ||\mathbf{u}||^2)}{(3 + ||\mathbf{u}||^2)^2}, \ \mathbf{u} = \frac{(3\chi - 1)\mathbf{f}}{2||\mathbf{f}||^2}, \ \mathbf{Q} = \mathbf{u}S$$

Soutenance | PAGE 21/31

- pour utiliser un schéma aux noeuds Lagrange+projection nécessaire pour obtenir un schéma limite consistant,
- pour preserver le principe du maximum à l'aide de l'inégalité d'entropie.

- pour utiliser un schéma aux noeuds Lagrange+projection nécessaire pour obtenir un schéma limite consistant,
- pour preserver le principe du maximum à l'aide de l'inégalité d'entropie.

$$\begin{cases} \partial_t \mathbf{F} + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{u} \otimes \mathbf{F}) + \frac{1}{\varepsilon} \nabla q = -\frac{\sigma}{\varepsilon^2} \mathbf{F}, \\ \partial_t E + \frac{1}{\varepsilon} \operatorname{div}(E\mathbf{u} + q\mathbf{u}) = 0, \\ \partial_t S + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{u}S) \ge 0, \end{cases} \iff \begin{cases} \partial_t \rho + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t \rho \mathbf{v} + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{v}) + \frac{1}{\varepsilon} \nabla q = -\frac{\sigma}{\varepsilon^2} \rho \mathbf{v}, \\ \partial_t \rho e + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u}e + q\mathbf{u}) = 0, \\ \partial_t \rho s + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u}s) \ge 0, \end{cases}$$

avec

 $F = \rho v$ le flux, $E = \rho e$ l'énergie et $S = \rho s$ l'entropie.

$$\mathbf{q} = \frac{1-\chi}{2}E, \ \mathbf{u} = \frac{3\chi - 1}{2}\frac{\mathbf{f}}{||\mathbf{f}||^2} \text{ avec } \mathbf{f} = \frac{||\mathbf{v}||}{e}$$

$$\mathbf{E} \text{ Le modèle } M_1 \text{ est indépendant de la densité.}$$

$$\mathbf{F} = \mathbf{u}E + q\mathbf{u} \qquad \hat{P} = \mathbf{u} \otimes \mathbf{F} + q\hat{I}_d.$$

Soutenance | PAGE 22/31

On utilise un schéma Lagrangien aux noeuds et un schéma d'advection aux noeuds

$$\begin{cases} | \Omega_j | \partial_t \mathbf{F}_j + \frac{1}{\varepsilon} \left(\sum_r l_{jr} (\mathbf{u}_r, \mathbf{n}_{jr}) \mathbf{F}_{jr} \right) + \frac{1}{\varepsilon} \sum_r \mathbf{G}_{jr} = -\frac{\sigma}{\varepsilon^2} \sum_r k_r \widehat{\beta}_{jr} \mathbf{u}_r, \\ | \Omega_j | \partial_t E_j + \frac{1}{\varepsilon} \left(\sum_r l_{jr} (\mathbf{u}_r, \mathbf{n}_{jr}) E_{jr} \right) + \frac{1}{\varepsilon} \sum_r (\mathbf{u}_r, \mathbf{G}_{jr}) = 0. \end{cases}$$

Les flux Lagrangiens

$$\begin{cases} \mathbf{G}_{jr} = l_{jr}q_{j}\mathbf{n}_{jr} + r_{jr}\widehat{\alpha}_{jr}(\mathbf{u}_{j} - \mathbf{u}_{r}) - \frac{\sigma}{\varepsilon}k_{r}\widehat{\beta}_{jr}\mathbf{u}_{r}, \\ \left(\sum_{j}r_{jr}\widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}k_{r}\widehat{\beta}_{jr}\right)\mathbf{u}_{r} = \sum_{j}l_{jr}q_{j}\mathbf{n}_{jr} + \sum_{j}r_{jr}\widehat{\alpha}_{jr}\mathbf{u}_{j}. \end{cases}$$

On utilise un schéma Lagrangien aux noeuds et un schéma d'advection aux noeuds

$$\left(\begin{array}{c} | \Omega_j | \partial_t \mathbf{F}_j + \frac{1}{\varepsilon} \left(\sum_r l_{jr} (\mathbf{u}_r, \mathbf{n}_{jr}) \mathbf{F}_{jr} \right) + \frac{1}{\varepsilon} \sum_r \mathbf{G}_{jr} = -\frac{\sigma}{\varepsilon^2} \sum_r k_r \widehat{\beta}_{jr} \mathbf{u}_r, \\ | \Omega_j | \partial_t E_j + \frac{1}{\varepsilon} \left(\sum_r l_{jr} (\mathbf{u}_r, \mathbf{n}_{jr}) E_{jr} \right) + \frac{1}{\varepsilon} \sum_r (\mathbf{u}_r, \mathbf{G}_{jr}) = 0. \end{array} \right)$$

Les flux Lagrangiens

$$\begin{cases} \mathbf{G}_{jr} = l_{jr}q_{j}\mathbf{n}_{jr} + r_{jr}\widehat{\alpha}_{jr}(\mathbf{u}_{j} - \mathbf{u}_{r}) - \frac{\sigma}{\varepsilon}\mathbf{k}_{r}\widehat{\beta}_{jr}\mathbf{u}_{r}, \\ \left(\sum_{j}r_{jr}\widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\mathbf{k}_{r}\widehat{\beta}_{jr}\right)\mathbf{u}_{r} = \sum_{j}l_{jr}q_{j}\mathbf{n}_{jr} + \sum_{j}r_{jr}\widehat{\alpha}_{jr}\mathbf{u}_{j}. \end{cases}$$

Les flux d'advection sont $E_{jr} = 1_{((\mathbf{u}_r, \mathbf{n}_{jr}) > 0)} E_j + 1_{((\mathbf{u}_r, \mathbf{n}_{jr}) < 0)} \frac{\sum_j l_{jr}(\mathbf{u}_r, \mathbf{n}_{jr}) E_j}{\sum_j l_{jr}(\mathbf{u}_r, \mathbf{n}_{jr})}$ (idem pour \mathbf{F}_{jr}).

Les coefficients sont
$$k_r = \frac{2E_r||\mathbf{f}_r||^2}{(3\chi - 1)}$$
 et $r_{jr} = \frac{4}{\sqrt{3}} \frac{E_j}{3+||\mathbf{u}_j||^2}$

Soutenance | PAGE 23/31

- La formulation comme un système de la dynamique des gaz donne une équation non linéaire sur E.
- On obtient un schéma limite positif, non linéaire, d'ordre un.
- **Schéma positif d'ordre deux** : ajout d'une procédure MUSCL dans les flux d'advection.

- La formulation comme un système de la dynamique des gaz donne une équation non linéaire sur E.
- On obtient un schéma limite positif, non linéaire, d'ordre un.
- **Schéma positif d'ordre deux** : ajout d'une procédure MUSCL dans les flux d'advection.

Lemme

On suppose $E_j(t=0), \mathbf{F}_j(t=0) \in \Omega = \{E > 0, ||\mathbf{f}|| < 1\}$ alors le schéma semi-discret est entropique :

$$\partial_t S_j(t) + \frac{1}{\varepsilon} \left(\sum_r l_{jr}(\mathbf{u}_r, \mathbf{n}_{jr}) S_{jr} \right) \ge 0$$
(15)

et préverse le principe du maximum $\forall t > 0$.

- La formulation comme un système de la dynamique des gaz donne une équation non linéaire sur E.
- On obtient un schéma limite positif, non linéaire, d'ordre un.
- Schéma positif d'ordre deux : ajout d'une procédure MUSCL dans les flux d'advection.

Lemme

On suppose $E_j(t=0), \mathbf{F}_j(t=0) \in \Omega = \{E > 0, ||\mathbf{f}|| < 1\}$ alors le schéma semi-discret est entropique :

$$\partial_t S_j(t) + \frac{1}{\varepsilon} \left(\sum_r l_{jr}(\mathbf{u}_r, \mathbf{n}_{jr}) S_{jr} \right) \ge 0$$
(15)

et préverse le principe du maximum $\forall t > 0$.

- Principe de preuve :
 - **–** On commence par montrer que le schéma est entropique si \widehat{eta}_{jr} est positif.

- La formulation comme un système de la dynamique des gaz donne une équation non linéaire sur E.
- On obtient un schéma limite positif, non linéaire, d'ordre un.
- Schéma positif d'ordre deux : ajout d'une procédure MUSCL dans les flux d'advection.

Lemme

On suppose $E_j(t=0), \mathbf{F}_j(t=0) \in \Omega = \{E > 0, ||\mathbf{f}|| < 1\}$ alors le schéma semi-discret est entropique :

$$\partial_t S_j(t) + \frac{1}{\varepsilon} \left(\sum_r l_{jr}(\mathbf{u}_r, \mathbf{n}_{jr}) S_{jr} \right) \ge 0$$
(15)

et préverse le principe du maximum $\forall t > 0$.

- 📕 Principe de preuve 🗆
 - On commence par montrer que le schéma est entropique si \widehat{eta}_{jr} est positif.
 - En montrant que \mathbf{u}_r est bornée et $S = \frac{E^{3/4}(1-||\mathbf{u}||^2)}{(3+||\mathbf{u}||^2)^2}$ est minoré sur [0, T[, on obtient que E et $(1 ||\mathbf{u}||^2)$ sont positifs et bornés sur [0, T[.

- La formulation comme un système de la dynamique des gaz donne une équation non linéaire sur E.
- On obtient un schéma limite positif, non linéaire, d'ordre un.
- **Schéma positif d'ordre deux** : ajout d'une procédure MUSCL dans les flux d'advection.

Lemme

On suppose $E_j(t=0), \mathbf{F}_j(t=0) \in \Omega = \{E > 0, ||\mathbf{f}|| < 1\}$ alors le schéma semi-discret est entropique :

$$\partial_t S_j(t) + \frac{1}{\varepsilon} \left(\sum_r l_{jr}(\mathbf{u}_r, \mathbf{n}_{jr}) S_{jr} \right) \ge 0$$
(15)

et préverse le principe du maximum $\forall t > 0$.

Principe de preuve :

- $_$ On commence par montrer que le schéma est entropique si \widehat{eta}_{jr} est positif.
- En montrant que \mathbf{u}_r est bornée et $S = \frac{E^{3/4}(1-||\mathbf{u}||^2)}{(3+||\mathbf{u}||^2)^2}$ est minoré sur [0, T[, on obtient que E et $(1 ||\mathbf{u}||^2)$ sont positifs et bornés sur [0, T[.
- = En utilisant des résultats classiques des systèmes dynamiques on obtient le résultat $\forall T>0.$

- La formulation comme un système de la dynamique des gaz donne une équation non linéaire sur E.
- On obtient un schéma limite positif, non linéaire, d'ordre un.
- **Schéma positif d'ordre deux** : ajout d'une procédure MUSCL dans les flux d'advection.

Lemme

On suppose $E_j(t=0), \mathbf{F}_j(t=0) \in \Omega = \{E > 0, ||\mathbf{f}|| < 1\}$ alors le schéma semi-discret est entropique :

$$\partial_t S_j(t) + \frac{1}{\varepsilon} \left(\sum_r l_{jr}(\mathbf{u}_r, \mathbf{n}_{jr}) S_{jr} \right) \ge 0$$
(15)

et préverse le principe du maximum $\forall t > 0$.

Principe de preuve :

- \blacksquare On commence par montrer que le schéma est entropique si \widehat{eta}_{jr} est positif.
- En montrant que \mathbf{u}_r est bornée et $S = \frac{E^{3/4}(1-||\mathbf{u}||^2)}{(3+||\mathbf{u}||^2)^2}$ est minoré sur [0, T[, on obtient que E et $(1 ||\mathbf{u}||^2)$ sont positifs et bornés sur [0, T[.
- = En utilisant des résultats classiques des systèmes dynamiques on obtient le résultat $\forall T>0.$
- **Remarque** :On a définit un tenseur \widehat{eta}_{jr} positif sur les maillages testés.

En régime de transport ($\varepsilon = 1$ et $\sigma = O(1)$), le schéma converge avec le premier ordre.

En régime de transport ($\varepsilon = 1$ et $\sigma = O(1)$), le schéma converge avec le premier ordre.

Régime de diffusion : les données sont $E(0, \mathbf{x}) = G(\mathbf{x})$ avec $G(\mathbf{x})$ une Gaussienne, $F(0, \mathbf{x}) = \mathbf{0}$ et $\sigma = 1$.

Maillages/ $arepsilon$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-6}$	$\varepsilon = 10^{-7}$
Cartésien 60-120 mailles	1.8	2	2.	2.
Cartésien 80-160 mailles	1.75	1.97	2	2
Cartésien 120-240 mailles	1.7	1.95	2	2
Aléa. quad. 60-120 mailles	1.83	2.	2	2
Aléa quad 80-160 mailles	1.96	2.2	2.2	2.2
Aléa. quad. 120-240 mailles	1.73	1.92	2	2
Kershaw 60-120 mailles	2	2.1	2.1	2.1
Kershaw 80-160 mailles	1.87	1.97	2	2
Kershaw 120-240 mailles	1.83	1.97	2	2

En régime de transport ($\varepsilon = 1$ et $\sigma = O(1)$), le schéma converge avec le premier ordre.

Régime de diffusion : les données sont $E(0, \mathbf{x}) = G(\mathbf{x})$ avec $G(\mathbf{x})$ une Gaussienne, $F(0, \mathbf{x}) = \mathbf{0}$ et $\sigma = 1$.

Maillages/ $arepsilon$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-6}$	$\varepsilon = 10^{-7}$
Cartésien 60-120 mailles	1.8	2	2.	2.
Cartésien 80-160 mailles	1.75	1.97	2	2
Cartésien 120-240 mailles	1.7	1.95	2	2
Aléa. quad. 60-120 mailles	1.83	2.	2	2
Aléa. quad. 80-160 mailles	1.96	2.2	2.2	2.2
Aléa. quad. 120-240 mailles	1.73	1.92	2	2
Kershaw 60-120 mailles	2	2.1	2.1	2.1
Kershaw 80-160 mailles	1.87	1.97	2	2
Kershaw 120-240 mailles	1.83	1.97	2	2

- E Le schéma converge aussi sur maillages triangulaires avec un ordre entre 1 et 2.
- lacksquare L'erreur entre la solution de diffusion et la solution du modèle P_1 est homogène à O(arepsilon).
- Pour $\frac{\Delta x}{\varepsilon} = O(1)$ l'ordre décroît. On compare la solution numérique du modèle P_1 et la solution exacte de diffusion.

On utilise le précédent cas test avec $\varepsilon = 0.001$. Les résultats des schémas hyperboliques sont calculés sur maillage de Kershaw. Solution de diffusion

Schéma non-AP

0.5

1 1.5 2

0

0

з

-1

-2 -3

📕 Régime de diffusion 🛛 cas test précédent					
Maillages/ $arepsilon$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$			
Cartésien	1.8	1.95			
Aléa. quad.	1.85	2			
Triang reg	1.9	2			
Aléa triang	1.35	1.35			
Kershaw	1.85	1.95			

Maillages/ $arepsilon$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$
Cartésien	1.80	1.95
Aléa. quad.	1.85	2
Triang reg	1.9	2
Aléa triang	1.35	1.35
Kershaw	1.85	1.95

TABLE: Ordre de convergence. Modèle P_3 TABLE: Ordre de convergence. Modèle S_2

📕 Régime de diffusion : cas test précédent						
Maillages/ ε	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$				
Cartésien	1.8	1.95				
Aléa. quad.	1.85	2				
Triang reg	1.9	2				
Aléa triang	1.35	1.35				
Kershaw	1.85	1.95				

Maillages/ $arepsilon$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$
Cartésien	1.80	1.95
Aléa. quad.	1.85	2
Triang reg	1.9	2
Aléa triang	1.35	1.35
Kershaw	1.85	1.95

TABLE: Ordre de convergence. Modèle P_3 TABLE: Ordre de convergence. Modèle S_2

2

1.5

0.5

0.5

0

Cas test de transport : solution fondamentale

Solution fondamentale du modèle P_3

Solution fondamentale du modèle S_2

Résultats numériques pour le schéma limite de diffusion du modèle M_1

Cas test de diffusion : les données sont $E(0, \mathbf{x}) = G(\mathbf{x})$ avec $G(\mathbf{x})$ une Gaussienne et $\sigma = 1$. Le temps final est $T_f = 0.011$.

Schémas		NL	Trèfle		Linéaire		M_1	
Maillages	ordre	$E_j > 0$	ordre	$E_j > 0$	ordre	$E_j > 0$	ordre	$E_j > 0$
Cartésien	1.92	oui	2	oui	2	oui	1.98	oui
Aléa. quad	1.9	oui	0.31	oui	1.98	non	2.	oui
Régutri.	2.23	oui	2	oui	2.	oui	2.05	oui
Aléa tri	2.16	oui	0.96	oui	1.32	non	1.94	oui
Kershaw	1.93	oui	0	oui	2	non	1.9	oui

TABLE: Ordre de convergence. NL correspond au schéma limite du schéma M_1 . M_1 correspond au schéma aux noeuds pour M_1 avec $\varepsilon = 10^{-3}$.

Résultats numériques pour le schéma limite de diffusion du modèle M_1

Cas test de diffusion : les données sont $E(0, \mathbf{x}) = G(\mathbf{x})$ avec $G(\mathbf{x})$ une Gaussienne et $\sigma = 1$. Le temps final est $T_f = 0.011$.

Schémas		NL	Trèfle		Linéaire		M_1	
Maillages	ordre	$E_j > 0$	ordre	$E_j > 0$	ordre	$E_j > 0$	ordre	$E_j > 0$
Cartésien	1.92	oui	2	oui	2	oui	1.98	oui
Aléa. quad	1.9	oui	0.31	oui	1.98	non	2.	oui
Régu tri	2.23	oui	2	oui	2.	oui	2.05	oui
Aléa tri	2.16	oui	0.96	oui	1.32	non	1.94	oui
Kershaw	1.93	oui	0	oui	2	non	1.9	oui

TABLE: Ordre de convergence. NL correspond au schéma limite du schéma M_1 . M_1 correspond au schéma aux noeuds pour M_1 avec $\varepsilon = 10^{-3}$.

Principe du maximum discret : les données sont $\sigma = 0$, $E(0, \mathbf{x}) = F_x(0, \mathbf{x}) = \mathbf{1}_{[0.4:0.6]^2}$ et $F_y(0, \mathbf{x}) = 0$. La solution est $E(t, \mathbf{x}) = F_x(t, \mathbf{x}) = \mathbf{1}_{[0.4+t:0.6+t]^2}$ et $F_y(t, \mathbf{x}) = 0$.

Maillages	ordre	$E_j > 0$	$\parallel \mathbf{f}_j \parallel < 1$
Cartésien	0.5	oui	oui
Aléa. quad	0.5	oui	oui
Kershaw	0.49	oui	oui

TABLE: Ordre approximatif de convergence.

Soutenance | PAGE 29/31

Principales contributions :

- Construction et analyse numérique (convergence, stabilité) de schémas AP pour le modèle P₁, valides sur maillages non structurés [1]-[2].
- Construction de discrétisations AP pour les modèles S_n et P_n [3].
- Construction d'un schéma AP, entropique et préservant le principe du maximum pour le modèle M₁ basé sur un schéma Lagrange+projection [4].
- Validation à l'aide de cas test classiques sur maillages non structurés divers.

Publications

- 1 C. Buet, B. Després, E. Franck Design of asymptotic preserving schemes fore hyperbolic heat equation on unstructured meshes. Numerish Mathematik, En ligne.
- 2 E. Franck, P. Hoch, G. Samba, P. Navarro An asymptotic preserving scheme for P₁ model using classical diffusion schemes on unstructured polygonal meshes. ESAIM : Proceedings.
- 3 C. Buet, B. Després, E. Franck AP schemes for Friedrichs systems with stiff relaxation on unstructured meshes. Applications to the angular discretization in transport. En rédaction.
- 4 C. Buet, B. Després, E. Franck An asymptotic preserving scheme with the maximum principle for the M₁ model on distorted meshes. Note Cras 2012.

Travaux en cours

- Construction de schémas AP positif pour les modèles S_n sur maillages non structurés en couplant une formulation pair-impair avec un schéma de diffusion non linéaire.
- La discrétisation sur grilles 1D non uniformes est finie. Reste l'extension 2D.
- Schémas AP, well-balanced et positifs pour les équations d'Euler et de Saint Venant avec friction et gravité en utilisant une approche Lagrange+projection.

Travaux en cours

- Construction de schémas AP positif pour les modèles S_n sur maillages non structurés en couplant une formulation pair-impair avec un schéma de diffusion non linéaire.
- La discrétisation sur grilles 1D non uniformes est finie. Reste l'extension 2D.
- Schémas AP, well-balanced et positifs pour les équations d'Euler et de Saint Venant avec friction et gravité en utilisant une approche Lagrange+projection.

Perspectives

- Preuve de convergence uniforme en ε du schéma aux noeuds pour le modèle P1 (avec C. Buet, B. Després).
- Extension des schémas AP aux noeuds sur maillages coniques (P. Hoch, G. Samba).
- Extension aux modèles multi-groupes (C. Buet, B. Després, T. Leroy).

