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Physical context

• Radiation hydrodynamics : Interaction between the gas modeled by Euler
equations and radiation, modeled by a transport equation.

• Valid method on unstructured meshes is necessary for lagrangian radiative
hydrodynamics simulation.

• Grey transport equation : I (t, x, Ω) ≥ 0 the distribution function
associated to particles located in x and with a direction Ω. We consider the
following equation of the form :

1
c
∂t I (t, x, Ω) + Ω.∇I (t, x, Ω) = σS (E − I ) + σaS(T , I )

where E =
�
S2 I (t, x, Ω

′
)dΩ

′
the energy, σS , σa the matter opacity and

S(T , I ) a coupling term with the matter.

• Diffusion limit : Where σS or σa are high, the transport equation tends to a
diffusion equation.

• Computation cost : The CPU very important, consequently one needs
simplified models.
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Model M1

The non-linear two moments M1 model, obtained by maximizing the photon
entropy, is : 8><>:

∂tE +
1

ε
∇.F = 0

∂tF +
1

ε
∇(bP) = −

σ

ε2
F,

(1)

E is the energy, F the radiative flux and

bP =
1

2
((1− χ(f))Id + (3χ(f)− 1)

f ⊗ f

‖ f ‖
)E ∈ R2×2

the radiative pressure. We define f =| F | /E and χ(f) =
3 + 4f2

5 + 2
√

4− 3f2
.

The M1 model satisfies
• the diffusion limit, ε → 0 : ∂tE − div( 1

3σ
∇E) = 0, First Tools : AP scheme

• the entropy property : ∂tS + 1
ε
div(Q) ≥ 0, Second Tools : Reformulation

• the maximum principle : E > 0, | f |< 1, like a dynamic gas system

with

S =
E3/4(1− | u |2)

(3+ | u |2)2
, u =

(3χ− 1)f

2 | f |2
, Q = uS
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Asymptotic Preserving schemes

• The classical Godunov scheme has a consistency error in O(∆x
ε

).
• It does not converge on coarse grids.

Asymptotic preserving (AP) scheme :
Convergence independently of ε

References in 1D or 2D Cartesian.
• C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve

the M1 model of radiative transfer in two space dimensions. J. Scie.
Comput.

• C. Buet, B. Després A gas dynamics scheme for a two moments
model of radiative tranfert, SMF.

Study :
Desing of asymptotic preserving schemes to capture the diffusion limit on
unstructured meshes

• Difficulty : The classical diffusion scheme is not consistent on unstructured
meshes.

• Method to obtain an AP scheme : We use the Jin-Levermore procedure
which consists in incorporating the steady state into the fluxes.

• This method is equivalent to modify the numerical viscosity.
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Reformulation like a dynamic gas system

We formulate the M1 model like a dynamic gas system :

• to use Lagrange+remap nodal scheme and obtain a consistent limit
diffusion scheme,

• to use the entropy to preserve the maximum principle.8>>>>>>><>>>>>>>:

∂tρ +
1

ε
div(ρu) = 0 mass conservation

∂tρv +
1

ε
div(ρu⊗ v) +

1

ε
∇q = −

σ

ε2
ρv momentum conservation

∂tρe +
1

ε
div(ρue + qu) = 0 total conservation energy

∂tρs +
1

ε
div(ρus) ≥ 0 Entropy inequality

F = ρv the radiative flux E = ρe the radiative energy S = ρs.

• q =
1− χ

2
E

• u =
3χ− 1

2

f

| f |2
with f =

| v |
e

• The M1 is independent of the density.

• F = uE + qu P̂ = u ⊗ F + qId
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Notation and AP schemes

We define the notations for the nodal scheme

x j

xr+1

xr−1

xr

Cell Ω j

Cell Ωk

l jrn jr

ljr and njr are the lenght and the normal associated to Xr

• Fr and Gjr fluxes associated to Xr .

• We define the GLACE viscosity matrix bαjr = ljrnjr ⊗ njr ,

• We define the AP viscosity matrix bβjr =
Vjr

Vr

P
j ljrnjr ⊗ (xr − xj ).

• Vr is the control volume associated to the node r . Vjr is the fragment of Vr

associated to the cell j .
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Lagrange+remap scheme

• We use a nodal scheme for the Lagrange step (GLACE scheme) and remap
step8>>>>>>>>><>>>>>>>>>:

| Ωj | ∂tρj +
1

ε

 X
r

ljr (ur , njr )ρjr

!
= 0

| Ωj | ∂tρjvj +
1

ε

 X
r

ljr (ur , njr )(ρv)jr

!
+

1

ε

X
r

Gjr = −
σ

ε2

X
r

krβjrur

| Ωj | ∂tρjej +
1

ε

 X
r

ljr (ur , njr )(ρe)jr

!
+

1

ε

X
r

(ur , Gjr ) = 0

The lagrangian fluxes8><>:
Gjr = ljrqjnjr + rj bαjr (uj − ur )−

σ

ε
kr β̂jrur

(
X

j

rjcαjr +
σ

ε
kr
bβjr )ur =

X
j

ljrqjnjr + rjr α̂jruj
(2)

The upwind flux is defined by fjr = 1((ur ,njr )>0)fj + 1((ur ,njr )<0)

P
j ljr (ur ,njr )fjP
j ljr (ur ,njr )

.

kr =
2Er | fr |2

(3χ− 1)
rj = 4√

3

Ej

3+|uj |2
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Limit regime

• Using a Hilbert expansion we obtain the following non-linear positive limit
diffusion scheme8>>>><>>>>:

∂tEj (t) +
X

r

1

12σ
((ljrEjnjr − σbβjr

ũr

Er
)ũr , njr ) +

1

4σ

X
r

ljr (
ũr

Er
, njr )Ejr = 0

σ

0@X
j

β̂jr

1A ũr =
X

j

ljrEjnjr .

(3)

• Ejr is given by the upwind flux, Er is a mean of Ej around r .

• the vector ũ(xr ) defined by

σ

0@X
j

β̂jr

1A ũ(xr ) =
X

j

ljrE(xj )njr

is a first order approximation to − 1
σ
∇E(xr ).

• the second term of (3) is homogeneous to

(E(xj )− (xr − xj ,∇E(xr )))(
∇E(xr )
E(xr )

, ljrnjr ) ' E(xr )(
∇E(xr )
E(xr )

, ljrnjr ) =

(∇E(xr ), ljrnjr ).

Emmanuel Franck – Presentation 9/19



Introduction

Definition of
the scheme

Properties of
the scheme

Numerical
results

Other
radiation
models

Limit regime and spurious modes

• Remark : In the reformulation like a dynamic gas system, we obtain a
non-linear equation on E .

• Therefore we obtain a non-linear positive diffusion scheme

• The limit diffusion scheme is first order.

• To obtain a second order scheme, we use a MUSCL procedure with flux
limiter for keeping the positivity.

• Remark : We can use other advection scheme (classical edge upwind
scheme, anti-dissipative scheme, etc.).

• This scheme exhibits spurious modes (non convergence for Dirac initial
data) on Cartesian mesh.

• With an other definition of the njr and ljr we keep the convergence and kill
the spurious modes.
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Entropy and maximum principle

Lemma
Assuming

Ej (t = 0) > 0, ‖ fj (t = 0) ‖< 1 (4)

the semi-discrete scheme is entropic

∂t(ρj sj )(t) +
1

ε

 X
r

ljr (ur , njr )(ρs)jr

!
≥ 0, for all time (5)

Sketch of proof :

• A classical calculus shows that the scheme is entropic if bβjr is positive.

• S = ρs = E3/4(1−|u|2)

(3+|u|2)2
> 0, we show that E and (1− | u |2) are positive and

bounded.

• With initial data (4), using classical results for the dynamics system, we
prove the lemma for all time.

Remark : bβjr is positive on a lot of meshes.
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Numerical results for diffusion scheme

The initial condition is the fundamental solution of the heat equation at t=0.001.
The final time is Tf = 0.011.
K is a deformation coefficient for the Kershaw mesh.

Scheme Non-linear VF5 Linear
Mesh order Nb Ej < 0 order Ej < 0 order Ej < 0

Cartesian 1.92 0 2 0 2 0
Rand. quad 1.9 0 0.31 0 1.98 4
Cartesian tri. 2.23 0 2 0 2. 0

Rand tri. 2.16 0 0.96 0 1.32 4453
Kershaw K=1 1.93 0 0 0 2 96664

Kershaw K=1.5 2.02 0 0 0 1.94 224403

Tab.: Order of convergence for the limit diffusion scheme.

We compare the numerical solution of the M1 scheme with the diffusion solution
for different random meshes. ε = 0.0001.

number of cell 40 50 80 100
Error 0.0328 0.02228 0.00901 0.00610

Tab.: Error for different mesh. Order ' 1.85
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Numerical results for M1 model

• To test the maximum principle, we propose a transport test, σ = 0
E(0) = Fx (0) = 1[0.4:0.6]2 and Fy (0) = 0. The solution is

E(t) = Fx (t) = 1[0.4+t:0.6+t]2 and Fy (t) = 0.

• The order is computed with two meshes 100*100 and 200*200.

Mesh order Nb coef E < 0 Nb coef ‖ f ‖> 1
Cartesian mesh 0.45 0 0

Rand. quad mesh 0.43 0 0
Kershaw K=1 0.4 0 0

Tab.: Order of convergence for the M1 scheme.

• The theoretical order for discontinous solution is 0.5.

• The numerical viscosity involves the Lagrangian part.
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M1 model with coupling matter

• we introduce the M1 model coupled with an energy matter equation.8>>>><>>>>:
∂tE +

1

ε
∇.F =

σa

ε2
(aT 4 − E)

∂tF +
1

ε
∇(P̂) = −

σa

ε2
F

ρCv∂tT =
σa

ε2
(E − aT 4)

(6)

• We define the radiative temperature E = aT 4
r with a the Stefan-Boltzmann

constant.

• To treat this model, we use a splitting strategy. The M1 part is solved with
the previous scheme.

• The absorption/emission coupling is solved with an implicit fixed point
procedure.

• This strategy preserves E > 0 but not | f |< 1.

Emmanuel Franck – Presentation 14/19



Introduction

Definition of
the scheme

Properties of
the scheme

Numerical
results

Other
radiation
models

Numerical results for M1 model with coupling

• We consider a test case described by Berthon, Turpault and co workers, We
consider a material initially cold and at radiative equilibrium. A heat wave
enters the domain and we observe this evolution.

Fig.: At left, the material and radiative temperature for the three times.
At right the final solution on Cartesian (cross and point) and random
meshes (square and circle) with 10 cells.

• In the first figure we plot the solution on cartesian mesh with 500 cells at
the time t = 1.333× 10−9, 1.333× 10−8, 1.333× 10−7.
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Conclusion

• The reformulation like a dynamics gas system gives a scheme which
preserves the maximum principle.

• The scheme is valid for all regimes.

• We obtain a new positive second order non-linear diffusion scheme.

• Nodal asymptotic preserving scheme

• For the linear P1 model the classical finite volume scheme is not
consistent in the diffusion regime.

• With a nodal scheme it is easy to obtain AP scheme because the
viscosity is consistent.

• The extension in 3D is natural for the GLACE scheme.
• Future works Find a semi-implicit or implicit time discretization

independent to ε.

• Edge asymptotic preserving scheme

• Modifying the viscosity of the classical upwind we can obtain AP
edge schemes for the P1 model (works with G. Samba and P. Hoch)

• Future works : Construction of edge schemes for the M1 models for
any Eddington tensors.

• Using nodal scheme we haved design asymptotic preserving scheme for
other radiation models (P1, Pn, Sn)
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The P1 model

• This is a two moments linear model for radiation transport8><>:
∂tE(t) +

1

ε
∇.F = 0

∂tF(t) +
1

ε
∇E = −

σS

ε2
F

,

(
| Ωj | ∂tEj (t) + 1

ε

P
r ljr (Fr .njr ) = 0

| Ωj | ∂tFj (t) + 1
ε

P
r Gjr = − σ

ε2

P
r
bβjrFr

with fluxes 8>><>>:
Gjr = ljrEjnjr + bαjr (Fj − Fr )− σ

ε
bβjrFr

(
X

j

bαjr +
σ

ε
bβjr )Fr =

X
j

ljrEjnjr + bαjrFj

• The nodal matrix is positive under sufficiently condition (all the angles
inferior to 11 degrees for the triangles)

• We prove that the limit diffusion scheme converges with order one

• The limit diffusion scheme is convergent numerically with order two

• We prove that the implicit scheme is L2 stable and tends at ∆x fixed to the
diffusion scheme

• A reformulation gives a semi-implicit local scheme with the CFL condition

∆t < ∆x2

σ
+ ε∆x (The CFL condition to the upwind scheme is

∆t < ε2

σ
+ ε∆x)
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The Pn model

• The Pn model is obtained by projection of the transport equation on the
harmonics spherical base.

• We rewrite these models as a Friedrich’s system

∂tu +
1

ε
A∂xu +

1

ε
B∂yu = −

σ

ε2
Ru

• For all the Pn models, R is diagonal with R11 = 0 et Rii = 1 (i 6= 0)

• We can split the matrix A and B as

A = P1,x + A
′
, B = P1,y + B

′

with A
′
0,j = 0, A

′
i,0 = 0,B

′
0,j = 0, B

′
i,0 = 0.

• To obtain an AP scheme for the Pn equation, we use the asymptotic
preserving scheme for the P1 part and classical scheme for the other part
(Rusanov, upwind scheme).

• Theoretically : the first moment is in (1), second moment in O(ε) and the
other moment O(ε2).

• Numerically : the first moment is in (1), second moment in O(∆x) and the
other moment O(∆xε).
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Numerical results for the P3 model

• Results for diffusion limit. Same test case that for the diffusion scheme

Mesh 0.001 0.0001
Cartesian 1.81 1.97

Random quad. 1.85 1.98
Triang reg. 1.9 1.99

Random trig. 1.37 1.37
Kershaw K=1 1.85 1.97

• Fundamental solution for the P3 equation.

Fig.: Solution fundamental
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