

œ

Introduction

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models

Asymptotic preserving finite volumes scheme for the M_1 model of radiative transfer on unstructured meshes

Emmanuel Franck

CEA/DAM/DIF/DSSI - UPMC/LJLL

06 June 2011

 $\label{eq:supervisors} \mbox{Supervisors}: \mbox{Christophe Buet (CEA/DAM) and Bruno Després (UPMC/LJLL)}$

Emmanuel Franck - Presentation

(1) Introduction, models

Introduction

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models **3** Properties of the scheme

2 Definition of the scheme

4 Numerical results

5 Other radiation models

Physical context

Introduction

- Definition of the scheme
- Properties of the scheme
- Numerical results
- Other radiation models

- Radiation hydrodynamics : Interaction between the gas modeled by Euler equations and radiation, modeled by a transport equation.
- Valid method on unstructured meshes is necessary for lagrangian radiative hydrodynamics simulation.
- Grey transport equation : *I*(*t*, x, Ω) ≥ 0 the distribution function associated to particles located in x and with a direction Ω. We consider the following equation of the form :

$$\frac{1}{c}\partial_t I(t,\mathbf{x},\mathbf{\Omega}) + \mathbf{\Omega} \cdot \nabla I(t,\mathbf{x},\mathbf{\Omega}) = \sigma_S(E-I) + \sigma_a S(T,I)$$

where $E = \int_{S^2} I(t, \mathbf{x}, \mathbf{\Omega}') d\mathbf{\Omega}'$ the energy, σ_S , σ_a the matter opacity and S(T, I) a coupling term with the matter.

- **Diffusion limit** : Where σ_S or σ_a are high, the transport equation tends to a diffusion equation.
- Computation cost : The CPU very important, consequently one needs simplified models.

Model M_1

The non-linear two moments M_1 model, obtained by maximizing the photon entropy, is :

$$\begin{cases} \partial_t \mathbf{E} + \frac{1}{\varepsilon} \nabla \cdot \mathbf{F} = \mathbf{0} \\ \partial_t \mathbf{F} + \frac{1}{\varepsilon} \nabla (\hat{\mathbf{P}}) = -\frac{\sigma}{\varepsilon^2} \mathbf{F}, \end{cases}$$
(1)

E is the energy, ${\boldsymbol{\mathsf{F}}}$ the radiative flux and

Introduction

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models

$$\widehat{P} = \frac{1}{2}((1-\chi(\mathbf{f}))Id + (3\chi(\mathbf{f})-1)\frac{\mathbf{f}\otimes\mathbf{f}}{\parallel\mathbf{f}\parallel})E \in \mathbb{R}^{2\times 2}$$

the radiative pressure. We define $\mathbf{f} = |\mathbf{F}| / E$ and $\chi(\mathbf{f}) = \frac{3 + 4\mathbf{f}^2}{5 + 2\sqrt{4 - 3\mathbf{f}^2}}$.

The M_1 model satisfies

• the diffusion limit, $\varepsilon \to 0$: $\partial_t E - div(\frac{1}{3\sigma}\nabla E) = 0$, First Tools : AP scheme

- the entropy property : $\partial_t S + \frac{1}{\varepsilon} div(\mathbf{Q}) \ge 0$, Second Tools : Reformulation
- the maximum principle : E > 0, $|\mathbf{f}| < 1$, like a dynamic gas system

with

$$S = \frac{E^{3/4}(1 - |\mathbf{u}|^2)}{(3 + |\mathbf{u}|^2)^2}, \, \mathbf{u} = \frac{(3\chi - 1)\mathbf{f}}{2 |\mathbf{f}|^2}, \, \mathbf{Q} = \mathbf{u}S$$

Asymptotic Preserving schemes

- The classical Godunov scheme has a consistency error in $O(\frac{\Delta x}{\epsilon})$.
- It does not converge on coarse grids.

Asymptotic preserving (AP) scheme :

Convergence independently of ε

Introduction

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models References in 1D or 2D Cartesian.

- C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M_1 model of radiative transfer in two space dimensions. J. Scie. Comput.
- C. Buet, B. Després A gas dynamics scheme for a two moments model of radiative tranfert, SMF.

Study :

Desing of asymptotic preserving schemes to capture the diffusion limit on unstructured meshes

- **Difficulty** : The classical diffusion scheme is not consistent on unstructured meshes.
- Method to obtain an AP scheme : We use the Jin-Levermore procedure which consists in incorporating the steady state into the fluxes.
- This method is equivalent to modify the numerical viscosity.

Reformulation like a dynamic gas system

We formulate the M_1 model like a dynamic gas system :

- to use Lagrange+remap nodal scheme and obtain a consistent limit diffusion scheme,
- to use the entropy to preserve the maximum principle.

Introduction

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models $\begin{cases} \partial_t \rho + \frac{1}{\varepsilon} div(\rho \mathbf{u}) = 0 & \text{mass conservation} \\ \partial_t \rho \mathbf{v} + \frac{1}{\varepsilon} div(\rho \mathbf{u} \otimes \mathbf{v}) + \frac{1}{\varepsilon} \nabla q = -\frac{\sigma}{\varepsilon^2} \rho \mathbf{v} & \text{momentum conservation} \\ \partial_t \rho \mathbf{e} + \frac{1}{\varepsilon} div(\rho \mathbf{u} \mathbf{e} + q \mathbf{u}) = 0 & \text{total conservation energy} \\ \partial_t \rho \mathbf{s} + \frac{1}{\varepsilon} div(\rho \mathbf{u} \mathbf{s}) \ge 0 & \text{Entropy inequality} \end{cases}$

 $\mathbf{F} = \rho \mathbf{v}$ the radiative flux $E = \rho e$ the radiative energy $S = \rho s$.

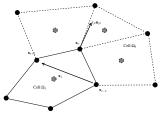
•
$$q = \frac{1-\chi}{2}E$$

• $\mathbf{u} = \frac{3\chi - 1}{2}\frac{\mathbf{f}}{|\mathbf{f}|^2}$ with $\mathbf{f} = \frac{|\mathbf{v}|}{e}$

- The *M*₁ is independent of the density.
- $\mathbf{F} = uE + qu$ $\hat{P} = u \otimes \mathbf{F} + qI_d$

Notation and AP schemes

We define the notations for the nodal scheme



 l_{jr} and n_{jr} are the lenght and the normal associated to X_r

- \mathbf{F}_r and \mathbf{G}_{jr} fluxes associated to X_r .
- We define the GLACE viscosity matrix α̂_{jr} = I_{jr}n_{jr} ⊗ n_{jr},
- We define the AP viscosity matrix $\widehat{\beta}_{jr} = \frac{V_{jr}}{V_r} \sum_j l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r \mathbf{x}_j)$.
- *V_r* is the control volume associated to the node *r*. *V_{jr}* is the fragment of *V_r* associated to the cell *j*.

Properties of the scheme

Numerical results

Other radiation models

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models

Lagrange+remap scheme

• We use a nodal scheme for the Lagrange step (GLACE scheme) and remap step

$$|\Omega_{j}| \partial_{t}\rho_{j} + \frac{1}{\varepsilon} \left(\sum_{r} l_{jr}(\mathbf{u}_{r}, \mathbf{n}_{jr})\rho_{jr} \right) = 0$$

$$|\Omega_{j}| \partial_{t}\rho_{j}\mathbf{v}_{j} + \frac{1}{\varepsilon} \left(\sum_{r} l_{jr}(\mathbf{u}_{r}, \mathbf{n}_{jr})(\rho\mathbf{v})_{jr} \right) + \frac{1}{\varepsilon} \sum_{r} \mathbf{G}_{jr} = -\frac{\sigma}{\varepsilon^{2}} \sum_{r} k_{r}\beta_{jr}\mathbf{u}_{r}$$

$$|\Omega_{j}| \partial_{t}\rho_{j}\mathbf{e}_{j} + \frac{1}{\varepsilon} \left(\sum_{r} l_{jr}(\mathbf{u}_{r}, \mathbf{n}_{jr})(\rho\mathbf{e})_{jr} \right) + \frac{1}{\varepsilon} \sum_{r} (\mathbf{u}_{r}, \mathbf{G}_{jr}) = 0$$

The lagrangian fluxes

ł

$$\begin{cases} \mathbf{G}_{jr} = l_{jr}q_{j}\mathbf{n}_{jr} + r_{j}\widehat{\alpha}_{jr}(\mathbf{u}_{j} - \mathbf{u}_{r}) - \frac{\sigma}{\varepsilon}k_{r}\widehat{\beta}_{jr}\mathbf{u}_{r} \\ (\sum_{j}r_{j}\widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}k_{r}\widehat{\beta}_{jr})\mathbf{u}_{r} = \sum_{j}l_{jr}q_{j}\mathbf{n}_{jr} + r_{jr}\widehat{\alpha}_{jr}\mathbf{u}_{j} \end{cases}$$
(2)

The upwind flux is defined by $f_{jr} = \mathbf{1}_{((\mathbf{u}_r, \mathbf{n}_{jr}) > 0)} f_j + \mathbf{1}_{((\mathbf{u}_r, \mathbf{n}_{jr}) < 0)} \frac{\sum_j l_{jr} (\mathbf{u}_r, \mathbf{n}_{jr}) f_j}{\sum_j l_{jr} (\mathbf{u}_r, \mathbf{n}_{jr})}$

$$k_r = \frac{2E_r |\mathbf{f}_r|^2}{(3\chi - 1)} r_j = \frac{4}{\sqrt{3}} \frac{E_j}{3 + |\mathbf{u}_j|^2}$$

Limit regime

œ

Introduction

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models • Using a Hilbert expansion we obtain the following non-linear positive limit diffusion scheme

$$\begin{cases} \partial_t E_j(t) + \sum_r \frac{1}{12\sigma} ((l_{jr} E_j \mathbf{n}_{jr} - \sigma \widehat{\beta}_{jr} \frac{\widetilde{\mathbf{u}}_r}{E_r}) \widetilde{\mathbf{u}}_r, \mathbf{n}_{jr}) + \frac{1}{4\sigma} \sum_r l_{jr} (\frac{\widetilde{\mathbf{u}}_r}{E_r}, \mathbf{n}_{jr}) E_{jr} = 0\\ \sigma \left(\sum_j \widehat{\beta}_{jr}\right) \widetilde{\mathbf{u}}_r = \sum_j l_{jr} E_j \mathbf{n}_{jr}. \end{cases}$$
(3)

- E_{jr} is given by the upwind flux, E_r is a mean of E_j around r.
- the vector ũ(x_r) defined by

$$\tau\left(\sum_{j}\hat{\beta}_{jr}\right)\tilde{\mathbf{u}}(\mathbf{x}_{r})=\sum_{j}l_{jr}E(\mathbf{x}_{j})\mathbf{n}_{jr}$$

is a first order approximation to $-\frac{1}{\sigma}\nabla E(\mathbf{x}_r)$.

(

• the second term of (3) is homogeneous to $(E(\mathbf{x}_j) - (\mathbf{x}_r - \mathbf{x}_j, \nabla E(\mathbf{x}_r)))(\frac{\nabla E(\mathbf{x}_r)}{E(\mathbf{x}_r)}, l_{jr}\mathbf{n}_{jr}) \simeq E(\mathbf{x}_r)(\frac{\nabla E(\mathbf{x}_r)}{E(\mathbf{x}_r)}, l_{jr}\mathbf{n}_{jr}) = (\nabla E(\mathbf{x}_r), l_{jr}\mathbf{n}_{jr}).$

Definition of the scheme

Properties of the scheme

results

radiation

- **Remark** : In the reformulation like a dynamic gas system, we obtain a non-linear equation on E.
- Therefore we obtain a non-linear positive diffusion scheme
- The limit diffusion scheme is first order

Limit regime and spurious modes

- To obtain a second order scheme, we use a MUSCL procedure with flux limiter for keeping the positivity.
- Remark : We can use other advection scheme (classical edge upwind scheme, anti-dissipative scheme, etc.).
- This scheme exhibits spurious modes (non convergence for Dirac initial data) on Cartesian mesh.
- With an other definition of the \mathbf{n}_{ir} and l_{ir} we keep the convergence and kill the spurious modes.

Entropy and maximum principle

Lemma

Assuming

$$E_j(t=0) > 0, \parallel \mathbf{f}_j(t=0) \parallel < 1$$
 (4)

the semi-discrete scheme is entropic

Introduction

Definition of the scheme

Properties of the scheme

Numerica results

Other radiation models

$$\partial_t(\rho_j s_j)(t) + \frac{1}{\varepsilon} \left(\sum_r l_{jr}(\mathbf{u}_r, \mathbf{n}_{jr})(\rho s)_{jr} \right) \ge 0, \text{ for all time}$$
(5)

Sketch of proof :

- A classical calculus shows that the scheme is entropic if $\widehat{\beta}_{jr}$ is positive.
- $S = \rho s = \frac{E^{3/4}(1-|\mathbf{u}|^2)}{(3+|\mathbf{u}|^2)^2} > 0$, we show that E and $(1-|\mathbf{u}|^2)$ are positive and bounded.
- With initial data (4), using classical results for the dynamics system, we prove the lemma for all time.

Remark : $\hat{\beta}_{jr}$ is positive on a lot of meshes.

Introduction Definition of the scheme Properties of the scheme Numerical results

radiation

models

Numerical results for diffusion scheme

The initial condition is the fundamental solution of the heat equation at t=0.001. The final time is $T_f = 0.011$.

K is a deformation coefficient for the Kershaw mesh.

Scheme	Non-linear		VF5		Linear	
Mesh	order	Nb $E_j < 0$	order	$E_j < 0$	order	$E_j < 0$
Cartesian	1.92	Ő	2	0	2	0
Rand. quad	1.9	0	0.31	0	1.98	4
Cartesian tri.	2.23	0	2	0	2.	0
Rand tri.	2.16	0	0.96	0	1.32	4453
Kershaw K=1	1.93	0	0	0	2	96664
Kershaw K=1.5	2.02	0	0	0	1.94	224403

 $T\!AB.:$ Order of convergence for the limit diffusion scheme.

We compare the numerical solution of the M_1 scheme with the diffusion solution for different random meshes. $\varepsilon = 0.0001$.

number of cell	40	50	80	100
Error	0.0328	0.02228	0.00901	0.00610

TAB.: Error for different mesh. Order $\simeq 1.85$

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models Numerical results for M_1 model

- To test the maximum principle, we propose a transport test, $\sigma = 0$ $E(0) = F_x(0) = \mathbf{1}_{[0.4:0.6]^2}$ and $F_y(0) = 0$. The solution is $E(t) = F_x(t) = \mathbf{1}_{[0.4+t:0.6+t]^2}$ and $F_y(t) = 0$.
- The order is computed with two meshes 100*100 and 200*200.

Mesh	order	Nb coef $E < 0$	Nb coef $\parallel f \parallel > 1$
Cartesian mesh	0.45	0	0
Rand. quad mesh	0.43	0	0
Kershaw K=1	0.4	0	0

TAB.: Order of convergence for the M_1 scheme.

- The theoretical order for discontinous solution is 0.5.
- The numerical viscosity involves the Lagrangian part.

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models • we introduce the M_1 model coupled with an energy matter equation.

$$\partial_{t}E + \frac{1}{\varepsilon}\nabla.\mathbf{F} = \frac{\sigma_{a}}{\varepsilon^{2}}(aT^{4} - E)$$
$$\partial_{t}\mathbf{F} + \frac{1}{\varepsilon}\nabla(\hat{P}) = -\frac{\sigma_{a}}{\varepsilon^{2}}\mathbf{F}$$
$$\rho C_{v}\partial_{t}T = \frac{\sigma_{a}}{\varepsilon^{2}}(E - aT^{4})$$
(6)

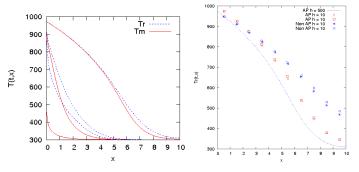
- We define the radiative temperature $E = aT_r^4$ with *a* the Stefan-Boltzmann constant.
- To treat this model, we use a splitting strategy. The *M*₁ part is solved with the previous scheme.
- The absorption/emission coupling is solved with an implicit fixed point procedure.
- This strategy preserves E > 0 but not | f |< 1.

 M_1 model with coupling matter

- Introduction
- Definition of the scheme
- Properties of the scheme
- Numerical results
- Other radiation models

Numerical results for M_1 model with coupling

• We consider a test case described by Berthon, Turpault and co workers, We consider a material initially cold and at radiative equilibrium. A heat wave enters the domain and we observe this evolution.



 $F{\rm IG.:}$ At left, the material and radiative temperature for the three times. At right the final solution on Cartesian (cross and point) and random meshes (square and circle) with 10 cells.

• In the first figure we plot the solution on cartesian mesh with 500 cells at the time $t = 1.333 \times 10^{-9}, 1.333 \times 10^{-8}, 1.333 \times 10^{-7}$.

- Introduction
- Definition of the scheme
- Properties of the scheme

Numerical results

Other radiation models

- The reformulation like a dynamics gas system gives a scheme which preserves the maximum principle.
- The scheme is valid for all regimes.

Conclusion

- We obtain a new positive second order non-linear diffusion scheme.
- Nodal asymptotic preserving scheme
 - For the linear *P*₁ model the classical finite volume scheme is not consistent in the diffusion regime.
 - With a nodal scheme it is easy to obtain AP scheme because the viscosity is consistent.
 - The extension in 3D is natural for the GLACE scheme.
 - Future works Find a semi-implicit or implicit time discretization independent to ε .
- Edge asymptotic preserving scheme
 - Modifying the viscosity of the classical upwind we can obtain AP edge schemes for the P₁ model (works with G. Samba and P. Hoch)
 - Future works : Construction of edge schemes for the *M*₁ models for any Eddington tensors.
- Using nodal scheme we haved design asymptotic preserving scheme for other radiation models (*P*₁, *P*_n, *S*_n)

The P_1 model

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models • This is a two moments linear model for radiation transport

$$\partial_{t} E(t) + \frac{1}{\varepsilon} \nabla \cdot \mathbf{F} = 0$$

$$\partial_{t} \mathbf{F}(t) + \frac{1}{\varepsilon} \nabla E = -\frac{\sigma_{S}}{\varepsilon^{2}} \mathbf{F} \quad , \quad \begin{cases} |\Omega_{j}| \partial_{t} E_{j}(t) + \frac{1}{\varepsilon} \sum_{r} I_{jr}(\mathbf{F}_{r} \cdot \mathbf{n}_{jr}) = 0 \\ |\Omega_{j}| \partial_{t} \mathbf{F}_{j}(t) + \frac{1}{\varepsilon} \sum_{r} G_{jr} = -\frac{\sigma}{\varepsilon^{2}} \sum_{r} \widehat{\beta}_{jr} F_{r} \end{cases}$$

with fluxes

$$G_{jr} = l_{jr}E_{j}\mathbf{n}_{jr} + \widehat{\alpha}_{jr}(\mathbf{F}_{j} - \mathbf{F}_{r}) - \frac{\sigma}{\varepsilon}\widehat{\beta}_{jr}\mathbf{F}_{r}$$
$$(\sum_{j}\widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\widehat{\beta}_{jr})\mathbf{F}_{r} = \sum_{j}l_{jr}E_{j}\mathbf{n}_{jr} + \widehat{\alpha}_{jr}\mathbf{F}_{j}$$

- The nodal matrix is positive under sufficiently condition (all the angles inferior to 11 degrees for the triangles)
- We prove that the limit diffusion scheme converges with order one
- The limit diffusion scheme is convergent numerically with order two
- We prove that the implicit scheme is L^2 stable and tends at Δx fixed to the diffusion scheme
- A reformulation gives a semi-implicit local scheme with the CFL condition $\Delta t < \frac{\Delta x^2}{\sigma} + \varepsilon \Delta x$ (The CFL condition to the upwind scheme is $\Delta t < \frac{\varepsilon^2}{\sigma} + \varepsilon \Delta x$)

The P_n model

- The *P_n* model is obtained by projection of the transport equation on the harmonics spherical base.
- We rewrite these models as a Friedrich's system

$$\partial_t \mathbf{u} + \frac{1}{\varepsilon} A \partial_x \mathbf{u} + \frac{1}{\varepsilon} B \partial_y \mathbf{u} = -\frac{\sigma}{\varepsilon^2} R \mathbf{u}$$

- For all the P_n models, R is diagonal with $R_{11} = 0$ et $R_{ii} = 1$ $(i \neq 0)$
- We can split the matrix A and B as

$$A = P_{1,x} + A', B = P_{1,y} + B'$$

with $A_{0,j}^{'} = 0$, $A_{i,0}^{'} = 0$, $B_{0,j}^{'} = 0$, $B_{i,0}^{'} = 0$.

- To obtain an AP scheme for the *P_n* equation, we use the asymptotic preserving scheme for the *P*₁ part and classical scheme for the other part (Rusanov, upwind scheme).
 - Theoretically : the first moment is in (1), second moment in O(ε) and the other moment O(ε²).
- Numerically : the first moment is in (1), second moment in O(Δx) and the other moment O(Δxε).

18/19

Introduction

Definition of the scheme

Properties of the scheme

Numerical results

Other radiation models

• Results for diffusion limit. Same test case that for the diffusion scheme

Mesh	0.001	0.0001	
Cartesian	1.81	1.97	
Random quad.	1.85	1.98	
Triang reg.	1.9	1.99	
Random trig.	1.37	1.37	
Kershaw K=1	1.85	1.97	

- Introduction
- Definition of the scheme
- Properties of the scheme
- Numerical results
- Other radiation models

• Fundamental solution for the P₃ equation.

Numerical results for the P_3 model

