Design and analysis of cell-centered finite volume schemes in the diffusion limit on distorted meshes

C. Buet¹ , B. Després², <u>E. Franck³</u>, T. Leroy⁴

NumHyp2013, Aachen, 26 September 2013

¹CEA, DAM, DIF, France ²LJLL, UMPC, Paris, France ³Max-Planck-Institut für Plasmaphysik, Garching, Germany ⁴CEA, DAM, DIF and LJLL, UPMC, Paris, France → (@→ (≧→ (≧→ (≧→)))

E. Franck and al. FV schemes in the diffusion regime on distorted meshes

Outline

2 AP schemes on unstructured meshes for the P_1 model

Nonlinear extension: M_1 and Euler models

・ロン ・回と ・ヨン ・ヨン

3

AP schemes on unstructured meshes for the P_1 model Nonlinear extension: M_1 and Euler models

Physical and mathematical context

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

AP schemes on unstructured meshes for the P_1 model Nonlinear extension: M_1 and Euler models

Stiff hyperbolic systems

Hyperbolic systems with stiff source terms:

$$\partial_t \mathbf{U} + \frac{1}{\varepsilon} \partial_x F(\mathbf{U}) + \frac{1}{\varepsilon} \partial_y G(\mathbf{U}) = -\frac{\sigma}{\varepsilon^2} R(\mathbf{U}), \ \mathbf{U} \in \mathbb{R}^n$$

with $\varepsilon \in]0,1]$ et $\sigma > 0$.

• Diffusion limit for $\varepsilon \to 0$:

$$\partial_t \mathbf{V} - \operatorname{div} \left(K(\nabla \mathbf{V}, \sigma) \right) = 0, \quad \mathbf{V} \in \operatorname{Ker} R.$$

 Applications: biology, neutronic, fluids dynamic, plasma physic, Radiative Hydrodynamics for IFC (Hydrodynamic + linear transport (talk of C. Hauck)).

イロン 不同と 不同と 不同と

AP schemes on unstructured meshes for the P_1 model Nonlinear extension: M_1 and Euler models

Asymptotic preserving schemes

• P₁ Model:

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \partial_x F = 0, \\ \partial_t F + \frac{1}{\varepsilon} \partial_x E = -\frac{\sigma}{\varepsilon^2} F, \end{cases}$$

Figure: The AP diagram

$$\longrightarrow \partial_t E - \partial_x \left(\frac{1}{\sigma} \partial_x E\right) = 0. \tag{1}$$

- Consistency of Godunov-type schemes: O(^{Δx}/_ε + Δt).
- CFL condition : $\Delta t(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2}) \leq 1.$
- Consistency of AP schemes: $O(\Delta x + \Delta t)$.
- CFL condition: $\Delta t \leq \Delta x^2 + \varepsilon \Delta x$
- AP vs non AP schemes: Very important reduction of CPU cost.
- Godunov-type AP schemes are obtained plugging the source terms in the fluxes (S. Jin-D. Levermore, L.Gosse and al, C. Berthon, R. Turpault and al ...).
- The problem of consistency for the Godunov-type schemes come from to the numerical viscosity homogeneous to $O(\frac{\Delta x}{\varepsilon})$.

AP schemes on unstructured meshes for the P_1 model Nonlinear extension: M_1 and Euler models

Why unstructured meshes ?

- Applications : coupling between radiation and hydrodynamic.
- Some hydrodynamic codes: multi-material Langrangian or ALE cell-centered schemes.
- Example of mesh obtained with ALE code (right).
- Aim: Design and analyze cell-centered AP schemes for linear transport on general meshes.

2D Asymptotic preserving schemes

 2D Classical extension Jin-Levermore scheme: modify the upwind fluxes (1D fluxes write in the normal direction) plugging the steady states into the fluxes (JL method).

• I_{jk} and \mathbf{n}_{jk} are the lenght and the normal associated to the edge $\partial \Omega_{jk}$.

Asymptotic limit of AP scheme:
$$|\Omega_j| \partial_t E_j(t) - \frac{1}{\sigma} \sum_k l_{jk} \frac{E_k^n - E_j^n}{d(\mathbf{x}_j, \mathbf{x}_k)} = 0.$$

- $||P_h^0 P_h|| \rightarrow 0$ only under very strong geometrical conditions.
- Non convergence of 2D AP schemes on general meshes ∀ε.

イロト イヨト イヨト イヨト

AP schemes on unstructured meshes for the P_1 model Nonlinear extension: M_1 and Euler models

Examples of unstructured meshes

Random mesh

< E

Smooth mesh

AP schemes on unstructured meshes for the P_1 model

・ロン ・回 と ・ヨン ・ヨン

æ

2D AP schemes: Principle and notations

Idea: Nodal formulation of finite volume methods (fluxes localized at the node) for the P_1 model + the Jin-Levermore method.

- Geometrical quantities defined by $I_{jr}\mathbf{n}_{jr} = \nabla_{\mathbf{x}_r}|\Omega_j|$ (Left).
- $\sum_{j} l_{jr} \mathbf{n}_{jr} = \sum_{r} l_{jr} \mathbf{n}_{jr} = \mathbf{0}.$
- V_r control volume (right).

(4回) (4回) (4回)

2D AP schemes

Nodal AP schemes:

$$\begin{bmatrix} | \Omega_j | \partial_t E_j(t) + \frac{1}{\underline{f}} \sum_r I_{jr}(\mathbf{F}_r, \mathbf{n}_{jr}) = 0, \\ | \Omega_j | \partial_t \mathbf{F}_j(t) + \frac{1}{\underline{\epsilon}} \sum_r I_{jr} \mathbf{E} \mathbf{n}_{jr} = \mathbf{S}_j. \end{bmatrix}$$

Classical nodal fluxes:

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr}E_{j}\mathbf{n}_{jr} = \widehat{\alpha}_{jr}(\mathbf{F}_{j} - \mathbf{F}_{r}), \\ \sum_{j} \mathbf{E}\mathbf{n}_{jr} = \mathbf{0}, \end{cases}$$

with $\widehat{\alpha}_{jr} = I_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr}$.

• New fluxes obtained plugging the steady state $\nabla E = -\frac{\sigma}{\varepsilon}F$:

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr}E_{j}\mathbf{n}_{jr} = \widehat{\alpha}_{jr}(\mathbf{F}_{j} - \mathbf{F}_{r}) - \frac{\sigma}{\varepsilon}\widehat{\beta}_{jr}\mathbf{F}_{r}, \\ \left(\sum_{j}\widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\sum_{j}\widehat{\beta}_{jr}\right)\mathbf{F}_{r} = \sum_{j}l_{jr}E_{j}\mathbf{n}_{jr} + \sum_{j}\widehat{\alpha}_{jr}\mathbf{F}_{j} \end{cases}$$

with $\widehat{\beta}_{jr} = l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j)$. • Source term: (1) $\mathbf{S}_j = -\frac{\sigma}{\varepsilon^2} | \Omega_j | \mathbf{F}_j$, (2) $\mathbf{S}_j = -\frac{\sigma}{\varepsilon^2} \sum_r \widehat{\beta}_{jr} \mathbf{F}_r$, $\sum_r \widehat{\beta}_{jr} = \hat{l}_d |\Omega_j|$.

(本間) (本語) (本語)

Time discretization for AP schemes

• Formulation of the scheme with the source term (2) and local semi-implicit scheme:

$$\begin{cases} |\Omega_j| \frac{E_j^{n+1} - E_j^n}{\Delta t} + \frac{1}{\varepsilon} \sum_r l_{jr} (M_r \mathbf{F}_r, \mathbf{n}_{jr}) = 0, \\ |\Omega_j| \frac{\mathbf{F}_j^{n+1} - \mathbf{F}_j^n}{\Delta t} + \frac{1}{\varepsilon} \sum_r \mathbf{E} \mathbf{n}_{jr} = -\frac{1}{\varepsilon} \left(\sum_r \widehat{\alpha}_{jr} (\widehat{l}_d - M_r) \right) \mathbf{F}_j^{n+1}. \end{cases}$$

with

$$\begin{cases} \mathbf{E}\mathbf{n}_{jr} - l_{jr} \mathcal{E}_{j} \mathbf{n}_{jr} = \widehat{\alpha}_{jr} M_{r} (\mathbf{F}_{j} - \mathbf{F}_{r}), \\ \left(\sum_{j} \widehat{\alpha}_{jr}\right) \mathbf{F}_{r} = \sum_{j} l_{jr} \mathcal{E}_{j} \mathbf{n}_{jr} + \sum_{j} \widehat{\alpha}_{jr} \mathbf{F}_{j}. \end{cases}$$
$$M_{r} = \left(\sum_{j} \widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon} \sum_{j} \widehat{\beta}_{jr}\right)^{-1} \left(\sum_{j} \widehat{\alpha}_{jr}\right)$$

- The semi-implicit scheme is stable on a CFL condition independent to ε (numerically).
- The implicite scheme is stable.

イロト イヨト イヨト イヨト

Assumptions for the proof

Geometrical assumptions

•
$$(\mathbf{u}, \left(\sum_{j} l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j)\right) \mathbf{u}) \geq \alpha V_r(\mathbf{u}, \mathbf{u}),$$

•
$$(\mathbf{u}, (\sum_{r} l_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr}) \mathbf{u}) \geq \beta h(\mathbf{u}, \mathbf{u}).$$

•
$$(\mathbf{u}, \left(\sum_{j} I_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr}\right) \mathbf{u}) \geq \gamma h(\mathbf{u}, \mathbf{u}).$$

Sufficient condition for triangles: all the angles must be bigger than 12 degrees.

Regularity assumptions and initial data

•
$$\mathbf{F}(t=0,\mathbf{x}) = -\frac{\varepsilon}{\sigma} \nabla E(t=0,\mathbf{x})$$

- Regularity for exact solutions: $V(t, x) \in W^{3,\infty}(\Omega)$ and $V(t = 0, x) \in H^3(\Omega)$
- Regularity for numerical initial solutions: $\mathbf{V}_h(t=0,\mathbf{x}) \in L^2(\Omega)$

イロン イヨン イヨン イヨン

Uniform convergence: principle

• Naive convergence estimate : $||P_h^{\varepsilon} - P^{\varepsilon}||_{naive} \leq C \varepsilon^{-b} h^c$

• Idea: Use intermediate estimates and triangular inequality (Jin-Levermore-Golse).

$$||P_h^{\varepsilon} - P^{\varepsilon}||_{L^2} \leq \min(||P_h^{\varepsilon} - P^{\varepsilon}||_{\textit{naive}}, ||P_h^{\varepsilon} - P_h^0|| + ||P_h^0 - P^0|| + ||P^{\varepsilon} - P^0||)$$

We obtain:

$$||P_h^{\varepsilon} - P^{\varepsilon}||_{L^2} \leq \min(\varepsilon^{-b}h^c, \varepsilon^a + Ch^d + C\varepsilon^e))$$

• Comparing ε and $\varepsilon_{threshold} = h^{\frac{ac}{a+b}}$ we obtain the final estimate:

$$||P_h^{\varepsilon} - P^{\varepsilon}||_{L^2} \le h^{\frac{ac}{a+b}}$$

(ロ) (同) (E) (E) (E)

Limit diffusion scheme

Limit diffusion scheme (P_h^0) :

$$\mid \Omega_j \mid \partial_t E_j(t) - \sum_r l_{jr}(\mathbf{F}_r, \mathbf{n}_{jr}) = 0,$$

$$\sum_r l_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr} \mathbf{F}_j = \sum_r l_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr} \mathbf{F}_r,$$

$$\sigma A_r \mathbf{F}_r = \sum_j l_{jr} E_j \mathbf{n}_{jr}, \quad A_r = -\sum_j l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j).$$

• **Problem** for the estimation of $||P_h^{\varepsilon} - P_h^{0}||.$

• We obtain
$$||P_h^{\varepsilon} - P_h^0|| \le C \frac{\varepsilon}{h}$$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Limit diffusion scheme

Limit diffusion scheme
$$(P_h^0)$$

$$| \Omega_j | \partial_t E_j(t) - \sum_r l_{jr}(\mathbf{F}_r, \mathbf{n}_{jr}) = 0,$$

$$\sum_r l_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr} \mathbf{F}_j = \sum_r l_{jr} \mathbf{n}_{jr} \otimes \mathbf{n}_{jr} \mathbf{F}_r,$$

$$\sigma A_r \mathbf{F}_r = \sum_j l_{jr} E_j \mathbf{n}_{jr}, \quad A_r = -\sum_j l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j).$$

- **Problem** for the estimation of $||P_h^{\varepsilon} P_h^{0}||.$
- We obtain $||P_h^{\varepsilon} P_h^0|| \leq C \frac{\varepsilon}{h}$.
- Introduction of a intermediate diffusion scheme called DA^ε_h.
- DA_h^{ε} scheme: P_h^{ε} with $\partial_t \mathbf{F}_j = \mathbf{0}$.
- In the estimates introduced for the proof we replace P⁰_h by DA^ε_h.

Condition H and final result

Condition H: The discrete Hessian matrix of the solution of P_h^0 can be bounded, or the error estimate $||P_b^\varepsilon - P_h^0||$ can be made independent of this discrete Hessian.

- Condition H respected : we use P⁰_h in the estimates.
- Condition H non respected : we use DA_h^{ε} in the estimates
- Condition H respected in Cartesian grids or on non uniform grids in 1D.

Final result: Assuming the geometrical and regularity assumptions are verified, there exist C(T) > 0 independent of ε , such that the following estimate holds:

$$\|\mathbf{V}^{\varepsilon} - \mathbf{V}_{h}^{\varepsilon}\|_{L^{2}([0,T]\times\Omega)} \leq C \min\left(\sqrt{\frac{h}{\varepsilon}}, \varepsilon \max\left(1, \sqrt{\frac{\varepsilon}{h}}\right) + h + (h+\varepsilon) + \varepsilon\right) \leq Ch^{\frac{1}{4}}.$$
(2)

case ε ≤ h: ||**V**^ε - **V**^ε_h|| ≤ C₁ min(√^ε/_h, 1) ≤ C₁h
case ε ≥ h: ||**V**^ε - **V**^ε_h|| ≤ C₁ min(√^h/_ε, √^{ε³}/_h)
Introducing ε_{thresh} = h^{1/2} we obtain that the worst case is ||**V**^ε - **V**^ε_h|| ≤ C₂h^{1/4}.
E. Franck and al.

Intermediary results I

V^ε exact solution of P^ε, V^ε_h numerical solution of P^ε_h.

Estimate $||\mathbf{V}^{\varepsilon} - \mathbf{V}_{h}^{\varepsilon}||$:

We assume that the geometrical and regularity assumptions are verified. There exist a constant C > 0 such that the following estimate holds:

$$\|\mathbf{V}_{h}^{\varepsilon}-\mathbf{V}^{\varepsilon}\|_{L^{\infty}((0,T):L^{2}(\Omega))}\leq C\sqrt{\frac{h}{\varepsilon}}.$$

- Technical proof. Ideas:
 - Control the stability of the discrete quantities \mathbf{u}_r and \mathbf{u}_i by ε
 - We define E(t) = ||V^ε − V^ε_h||_{L²} and estimate E'(t) using Young and Cauchy-Schwartz inequalities, stability estimates, geometrical properties and a lot of calculus.
 - Integration in time of the estimate on E'(t).

(ロ) (同) (E) (E) (E)

Intermediary result II

• \mathbf{V}_{h}^{0} solution of DA_{h}^{ε} , \mathbf{V}^{0} exact solution of P^{0} .

Estimate $||DA_h^{\varepsilon} - P^0||$:

We assume that the geometrical and regularity assumptions are verified. There exist non negative constant for all time T > 0 C(T) such that

$$||\mathbf{V}_h^0 - \mathbf{V}^0||_{L^2(\Omega)} \le C_1(T)(h + \varepsilon), \qquad 0 < t \le T.$$
(3)

- Ideas of proof:
 - Stability estimates on the discrete quantities *E_j* and the discrete gradiants at the node.
 - Consistency of the different discrete operators: divergence and gradient.
 - L^2 estimates using the consistency errors + Gronwall Lemma.

(ロ) (同) (E) (E) (E)

Intermediary result III

• $\mathbf{V}_{h}^{\varepsilon}$ solution of P_{h}^{ε} , \mathbf{V}_{h} numerical solution of DA_{h}^{ε} .

Estimate $||P_h^{\varepsilon} - DA_h^{\varepsilon}||$:

We assume that the geometrical and regularity assumptions are verified. There exist a constant for all time T > 0, C(T) such that

$$||\mathbf{V}_{h}^{\varepsilon} - \mathbf{V}_{h}||_{L^{2}(\Omega)} \leq C(T)\varepsilon \max\left(1, \sqrt{\varepsilon h^{-1}}\right) + Ch, \qquad 0 < t \leq T.$$
(4)

• \mathbf{V}^{ε} solution of P^{ε} , \mathbf{V}^{0} numerical solution of P^{0} .

Estimate $||P^{\varepsilon} - P^{0}||$:

We assume that the geometrical and regularity assumptions are verified. There exist a constant for all time T > 0, C(T) such that

$$||\mathbf{V}^{\varepsilon} - \mathbf{V}^{0}||_{L^{2}(\Omega)} \leq C(T)\varepsilon, \qquad 0 < t \leq T.$$
 (5)

Idea of Proof

- Write $P^0 = P^{\varepsilon} + R$ (resp $DA_h^{\varepsilon} = P_h^{\varepsilon} + R$) with R a residue.
- Obtain a upper bound of the residue by ε.
- L² estimate of the difference between the two models or two schemes.

AP scheme vs non AP scheme

• Test case: Heat fundamental solution, $\varepsilon = 0.001$. Results given by hyperbolic P_1 schemes on Kershaw mesh. non-AP scheme

Diffusion solution

E. Franck and al.

FV schemes in the diffusion regime on distorted meshes

Convergence for P_1 system

• Periodic solution of the P_1 system dependant of ε .

•
$$E(t,x) = (\alpha(t) + \frac{\varepsilon^2}{\sigma} \alpha'(t)) \cos(\pi x) \cos(\pi y)$$

- $\mathbf{F}(t,x) = \left(-\frac{\varepsilon}{\sigma}\alpha(t)\sin(\pi x)\cos(\pi y), -\frac{\varepsilon}{\sigma}\alpha(t)\sin(\pi y)\cos(\pi x)\right)$
- Mesh: random quadrangular mesh.

h/arepsilon	1	0.01	0.001	0.00001
40-80	1.0	1.3	1.9	2.0
80-160	1.05	1.05	1.85	2.0
100-200	1.05	0.8	1.75	2.0
150-300	1.05	0.5	1.65	2.0
240-480	1.05	0.45	1.5	2.0

- Hyperbolic regime $h \ll \varepsilon$: order 1 (theoretically $\frac{1}{2}$).
- Diffusion regime $h >> \varepsilon$: order 2 (theoretically 1).
- Intermidiate regime $h = O(\varepsilon)$: between $\frac{1}{2}$ and $\frac{1}{4}$.
- Future convergence analysis: ε = h and ε = h^{1/2}.

・ 同 ト ・ ヨ ト ・ ヨ ト

Nonlinear extension: M_1 and Euler models

・ロン ・回 と ・ ヨン ・ ヨン

æ

Euler equations with friction and gravity

- Work in progress.
- Euler equations with gravity and friction:

$$\begin{cases} \partial_t \rho + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t \rho \mathbf{u} + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{\varepsilon} \nabla \rho = \frac{1}{\varepsilon} (\rho \mathbf{g} - \frac{\sigma}{\varepsilon} \rho \mathbf{u}), \\ \partial_t \rho e + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u}) = \frac{1}{\varepsilon} (\rho (\mathbf{g}, \mathbf{u}) - \frac{\sigma}{\varepsilon} \rho (\mathbf{u}, \mathbf{u})). \end{cases}$$

Properties :

- Entropy inequality: $\partial_t \rho S + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{u}S) \ge 0.$
- Steady states :

$$(E_1) \begin{cases} \mathbf{u} = \mathbf{0}, \\ \nabla p = \rho \mathbf{g}. \end{cases} (E_2) \begin{cases} \mathbf{u} = \mathbf{0}, \quad \rho = \rho_c, \\ \nabla p = \rho_c \mathbf{g} \end{cases} \text{ (simple case)}.$$

Diffusion limit:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t \rho e + \operatorname{div}(\rho \mathbf{u}e) + \rho \operatorname{div} \mathbf{u} = 0, \\ \mathbf{u} = \frac{1}{\sigma} \left(\mathbf{g} - \frac{1}{\rho} \nabla \rho \right). \end{cases}$$

AP scheme for Euler equations

Idea :

Lagrangian + remap nodal scheme coupled with the Jin-Levermore method.

Discretization :

- Lagrangian part: GLACE scheme (B. Després) or EUCCLYD scheme (P H. Maire).
- Modification of the fluxes plugging the relation $\nabla p = \rho \mathbf{g} \frac{\sigma}{\varepsilon} \rho \mathbf{u}$.
- Discretization of the source term using the nodal fluxes.
- Nodal advection scheme for remap step.

Properties :

- AP scheme with a first order limit diffusion scheme (order verified in the isothermal case with linear pressure).
- Well Balanced for the simple steady state.
- Positivity of the density on a CFL condition independent to ε.
- Entropy inequality preserved ???
- Well Balanced for the general steady states modifying the scheme ???

・ロン ・回と ・ヨン・

Well balanced property

Result :

If the initial data satisfy the discrete steady state $\nabla_r p = \rho_r \mathbf{g}$ the steady state is preserved exactly

- ρ_r is a mean at the node of the density
- Continuous steady state: $\rho(\mathbf{x})$, $\mathbf{u}(\mathbf{x})$ and $e(\mathbf{x})$.
- Question : if $\rho_j^0 = \rho(\mathbf{x}_j)$, $\mathbf{u}_j^0 = \mathbf{u}(\mathbf{x}_j)$ and $e_j^0 = e(\mathbf{x}_j)$ the discrete steady state is satisfied ?
 - for ρ constant : yes.
 - for ρ variable : probably not.
- Text case with steady state as initial data: $\mathbf{u}_j = \mathbf{0}$, $\rho_j = 1$ and $e_j = \frac{1}{\gamma 1} (\mathbf{x}_j, \mathbf{g})$.

Meshes		Random				
Schemes/cells	40	80	120	40	80	120
LP-AP Ex	0	0	0	0	0	0
LP-AP SI	0	0	0	0	0	0
LP	1×10^{-8}	$\times 10^{-9}$	3×10^{-9}	0.50	0.26	0.17

L¹ error associated to the differents schemes.

Results for Euler equations

• Test case: Sod problem with $\sigma > 0$, $\varepsilon = 1$ and g = 0 (non longer time limit). • $\sigma = 1$

AP scheme, ρ

non-AP scheme, ρ

Results for Euler equations

• Test case: Sod problem with $\sigma > 0$, $\varepsilon = 1$ and g = 0 (non longer time limit). • $\sigma = 10^3$

AP scheme, ρ

non-AP scheme, ρ

E. Franck and al.

FV schemes in the diffusion regime on distorted meshes

Results for Euler equations

• Test case: Sod problem with $\sigma > 0$, $\varepsilon = 1$ and g = 0 (non longer time limit). • $\sigma = 10^6$

AP scheme, ρ

non-AP scheme, ρ

FV schemes in the diffusion regime on distorted meshes

M_1 model and link with Euler equations

• Moment model in radiative transfer : M_1 model.

$$\left\{ \begin{array}{l} \partial_t E + \frac{1}{\varepsilon} \operatorname{div} \mathbf{F} = \mathbf{0}, \\ \\ \partial_t \mathbf{F} + \frac{1}{\varepsilon} \nabla(\widehat{P}) = -\frac{\sigma}{\varepsilon^2} \mathbf{F}, \end{array} \right.$$

• E energy, **F** the flux and
$$\widehat{P} = \frac{1}{2}((1 - \chi(\mathbf{f}))Id + (3\chi(\mathbf{f}) - 1)\frac{\mathbf{f} \otimes \mathbf{f}}{\|\mathbf{f}\|})E$$
 the pressure.
• $\mathbf{f} = ||\mathbf{F}||/E$ and $\chi(\mathbf{f}) = \frac{3+4f^2}{5+2\sqrt{4-3f^2}}$.

Properties :

- Diffusion limit, $\varepsilon \to 0$: $\partial_t E \operatorname{div}(\frac{1}{3\sigma}\nabla E) = 0$,
- Entropy inequality: $\partial_t S + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{Q}) \ge 0$,
- Maximum principle: E > 0, $||\mathbf{f}|| < 1$.

・ロト ・回ト ・ヨト ・ヨト

(6)

M_1 model and link with Euler equations

• Moment model in radiative transfer : *M*₁ model.

$$\begin{cases} \partial_t E + \frac{1}{\varepsilon} \operatorname{div} \mathbf{F} = 0, \\ \partial_t \mathbf{F} + \frac{1}{\varepsilon} \nabla(\widehat{P}) = -\frac{\sigma}{\varepsilon^2} \mathbf{F}, \end{cases} \iff \begin{cases} \partial_t E + \frac{1}{\varepsilon} \operatorname{div}(E\mathbf{u} + q\mathbf{u}) = 0, \\ \partial_t \mathbf{F} + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{u} \otimes \mathbf{F}) + \frac{1}{\varepsilon} \nabla q = -\frac{\sigma}{\varepsilon^2} \mathbf{F}. \end{cases}$$
(6)

• E energy, **F** the flux and
$$\widehat{P} = \frac{1}{2}((1 - \chi(\mathbf{f}))Id + (3\chi(\mathbf{f}) - 1)\frac{\mathbf{f}\otimes\mathbf{f}}{\|\mathbf{f}\|})E$$
 the pressure.
• $\mathbf{f} = ||\mathbf{F}||/E$ and $\chi(\mathbf{f}) = \frac{3+4f^2}{5+2\sqrt{4-3f^2}}$.

Properties :

- Diffusion limit, $\varepsilon \to 0$: $\partial_t E \operatorname{div}(\frac{1}{3\sigma}\nabla E) = 0$,
- Entropy inequality: $\partial_t S + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{Q}) \ge 0$,
- Maximum principle: E > 0, $||\mathbf{f}|| < 1$.

• Formulation like dynamic gas system: • $\mathbf{F} = \mathbf{u}E + q\mathbf{u}$, $\hat{P} = \mathbf{u} \otimes \mathbf{F} + q\hat{I}_d$, $q = \frac{1-\chi}{2}E$, $\mathbf{u} = \frac{3\chi-1}{2}\frac{\mathbf{f}}{||\mathbf{f}||^2}$.

Scheme and properties

Idea :

Use the proximity between the new formulation (previous slide) and the Euler equations to use a Lagrange+remap AP scheme.

Link with the Euler equations:

- Introduction of artificial density ρ
- Introduction of Thermodynamics quantities: $E = \rho e$, $\mathbf{F} = \rho \mathbf{v}$ and $\mathbf{S} = \rho s$.
- We apply the AP scheme for hydrodynamics equations obtained and after we obtain a scheme for the quantities *E* and **F**.

Properties :

- AP scheme with a first order nonlinear limit diffusion scheme.
- Numerical stability independent to ε (verified numerically).
- Second order limit diffusion scheme using a MUSCL procedure in the remap step.
- Entropy inequality preserved by the semi-discrete scheme.
- Maximum principle preserved by the scheme without MUSCL in the transport regime ($\varepsilon = O(1)$).

・ロン ・回 と ・ 回 と ・ 回 と

Results for M_1 model

• Diffusion test case: The data are $E(0, \mathbf{x}) = G(\mathbf{x})$ with $G(\mathbf{x})$ a Gaussian and $\sigma = 1$. Final time $T_f = 0.011$.

Schemes]	NL	VF5		Linear		M1	
Meshes	order	$E_j > 0$	order	$E_j > 0$	order	$E_j > 0$	order	$E_{j} > 0$
Cartesian	1.9	yes	2	yes	2	yes	2.0	yes
Rand. quad	1.9	yes	0.3	yes	1.98	no	2.	yes
Regular. tri.	2.2	yes	2	yes	2.	yes	2.0	yes
Rand. tri.	2.15	yes	1.	yes	1.32	no	1.9	yes
Kershaw	1.9	yes	0	yes	2	no	1.9	yes

- NL : Limit diffusion scheme of M_1 scheme. M_1 : AP scheme for M_1 model with $\varepsilon = 10^{-3}$.
- Discrete Maximum principle: the data are $\sigma = 0$, $E(0, \mathbf{x}) = F_x(0, \mathbf{x}) = \mathbf{1}_{[0.4:0.6]^2}$ et $F_y(0, \mathbf{x}) = 0$. The solution is $E(t, \mathbf{x}) = F_x(t, \mathbf{x}) = \mathbf{1}_{[0.4+t:0.6+t]^2}$ and $F_y(t, \mathbf{x}) = 0$.

Meshes	order	$E_j > 0$	$\parallel \mathbf{f}_{j} \parallel < 1$
Cartesian	0.5	yes	yes
Rand. quad	0.5	yes	yes
Kershaw	0.49	yes	yes

・ロト ・回ト ・ヨト ・ヨト

Conclusion and future works

- Conclusion
 - P_1 model: AP nodal scheme on distorted meshes with a stability independant of ε .
 - *P*₁ **model**: Uniform convergence for the semi discrete scheme on unstructured meshes.
 - Non linear model : AP scheme with maximum principle for the M_1 and extension for the Euler equations.
 - All models : Spurious mods in few cases (example: Cartesian mesh + initial Dirac data).
- Future works
 - Numerical convergence analysis for test cases with nonlinear diffusion limit (full Euler and isothermal Euler equations).
 - Analysis of the P₁ AP discretization: Time convergence, CFL condition.
 - Analysis of the Euler AP discretization: entropy stability.
 - Extension to Euler scheme for non constant gravity and more complicated steady states.
 - Generic stabilization procedure the for nodal schemes.
- Others works
 - AP schemes for generic linear systems with source terms (P_N , S_N models) using "micro-macro" decomposition.
 - AP scheme for P_1 model based on the MPFA diffusion scheme.

Thank you

Thank you for your attention

・ロン ・回と ・ヨン・

æ