Modified finite volume nodal for hyperbolic equations with external forces on unstructured meshes

E. Franck

Max-Planck-Institut für Plasmaphysik (IPP), Germany

Co workers : C. Buet (CEA), B. Després (UPMC), T. Leroy (CEA-UPMC), L. Mendoza (IPP)

FVCA7, Berlin, 15 June 2014

- 4 同 6 4 日 6 4 日 6

Outline

3 Euler equations with friction and gravity

Mathematical context Linear case

Euler equations with friction and gravity Ongoing works and conclusion

Mathematical context

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Euler equations with friction and gravity

• Euler equations with gravity and friction:

$$\begin{cases} \partial_t \rho + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t \rho \mathbf{u} + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{\varepsilon} \nabla \rho = \frac{1}{\varepsilon} (\rho \mathbf{g} - \frac{\sigma}{\varepsilon} \rho \mathbf{u}), \\ \partial_t \rho \mathbf{e} + \frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u}) = \frac{1}{\varepsilon} (\rho (\mathbf{g}, \mathbf{u}) - \frac{\sigma}{\varepsilon} \rho (\mathbf{u}, \mathbf{u})). \end{cases}$$

Properties :

- Entropy inequality: $\partial_t \rho S + \frac{1}{\varepsilon} \operatorname{div}(\rho u S) \ge 0$.
- Steady states :

$$\begin{cases} \mathbf{u} = \mathbf{0}, \\ \nabla \mathbf{p} = \rho \mathbf{g}. \end{cases}$$

Oiffusion limit:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t \rho e + \operatorname{div}(\rho \mathbf{u} e) + \rho \operatorname{div} \mathbf{u} = 0, \\ \mathbf{u} = \frac{1}{\sigma} \left(\mathbf{g} - \frac{1}{\rho} \nabla \rho \right). \end{cases}$$

イロン 不同と 不同と 不同と

Э

Mathematical context

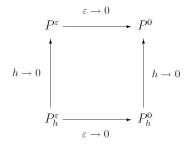
Linear case Euler equations with friction and gravity Ongoing works and conclusion

Ap scheme

•
$$P_1$$
 model:

$$\begin{cases} \partial_t p + \frac{1}{\varepsilon} \partial_x u = 0, \\ \partial_t u + \frac{1}{\varepsilon} \partial_x p = -\frac{\sigma}{\varepsilon^2} u, \end{cases}$$

Ap scheme



$$\longrightarrow \partial_t \boldsymbol{p} - \partial_x \left(\frac{1}{\sigma} \partial_x \boldsymbol{p} \right) = 0.$$

- Consistency **Godunov-type** schemes: $O(\frac{\Delta x}{\varepsilon} + \Delta t).$
- CFL condition: $\Delta t(\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2}) \leq 1.$
- Consistency AP schemes: $O(\Delta x + \Delta t)$.
- CFL condition: $\Delta t(\frac{1}{\Delta x \varepsilon + \frac{\Delta x^2}{\sigma}}) \leq 1.$
- AP vs non AP schemes: Important reduction of CPU cost.

<ロ> (四) (四) (三) (三) (三)

 Classical extension (1D fluxes in the normal direction) of AP schemes in 2D are not convergent on general meshes ∀ε (limit diffusion scheme non convergent).

Well Balanced schemes

- Discretization of physical steady states is important (Lack at rest for Shallow water equations, hydrostatic equilibrium for astrophysical flows ..)
- Classical scheme: the physical steady states or a good discretization of the steady states are not the equilibrium of the schemes.
- Consequence: Spurious numerical velocities larger than physical velocities for nearly or exact uniform flows.

WB scheme: definitions

- Exact Well-Balanced scheme: scheme exact for continuous steady states.
- Well-Balanced scheme: scheme exact for discrete steady states at the interfaces.
- For shallow water model: in general the schemes are exact WB schemes.
- For Euler model: in general the schemes are WB schemes.

イロト イポト イヨト イヨト

Linear case

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

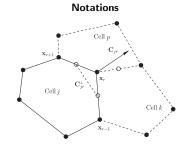
Nodal scheme : principle for linear case

Linear case : P_1 :

$$\begin{cases} \partial_t p + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{u}) = 0, \\ \partial_t \mathbf{u} + \frac{1}{\varepsilon} \nabla p = -\frac{\sigma}{\varepsilon^2} \mathbf{u}. \end{cases} \longrightarrow \partial_t p - \operatorname{div}\left(\frac{1}{\sigma} \nabla p\right) = 0. \end{cases}$$

Idea: nodal Finite Volume method for the P_1 model + AP method.

Nodal scheme: fluxes at the node and not at the middle of the edge (Bruno talk). Introduced for Lagrangian scheme.



イロト イヨト イヨト イヨト

• Geometrical quantities defined by $\mathbf{C}_{jr} = \nabla_{\mathbf{x}_r} |\Omega_j|$. • $\sum_i \mathbf{C}_{jr} = \sum_r \mathbf{C}_{jr} = \mathbf{0}$.

2D AP schemes

Nodal AP schemes:

$$\left(\begin{array}{c} \mid \Omega_j \mid \partial_t p_j(t) + \frac{1}{\underline{\epsilon}} \sum_r (\mathbf{u}_r, \mathbf{C}_{jr}) = 0, \\ \mid \Omega_j \mid \partial_t \mathbf{u}_j(t) + \frac{1}{\underline{\epsilon}} \sum_r \mathbf{p} \mathbf{C}_{jr} = \mathbf{S}_j. \end{array} \right.$$

Classical nodal fluxes:

$$\begin{cases} \mathbf{p}\mathbf{C}_{jr} - p_j\mathbf{C}_{jr} = \widehat{\alpha}_{jr}(\mathbf{u}_j - \mathbf{u}_r), \\ \sum_j \mathbf{p}\mathbf{C}_{jr} = \mathbf{0}, \end{cases}$$

with $\widehat{\alpha}_{jr} = \frac{\mathbf{C}_{jr} \otimes \mathbf{C}_{jr}}{|\mathbf{C}_{jr}|}.$

• Modified fluxes obtained plugging the balance equation $\nabla p = -\frac{\sigma}{\varepsilon} \mathbf{u}$:

$$\begin{cases} \mathbf{p}\mathbf{C}_{jr} - p_j\mathbf{C}_{jr} = \widehat{\alpha}_{jr}(\mathbf{u}_j - \mathbf{u}_r) - \frac{\sigma}{\varepsilon}\widehat{\beta}_{jr}\mathbf{u}_r, \\ \left(\sum_j \widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\sum_j \widehat{\beta}_{jr}\right)\mathbf{u}_r = \sum_j p_j\mathbf{C}_{jr} + \sum_j \widehat{\alpha}_{jr}\mathbf{p}_j \end{cases}$$

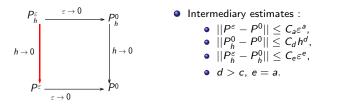
with $\widehat{\beta}_{jr} = \mathbf{C}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j)$. • Source term: $\mathbf{S}_j = -\frac{\sigma}{\varepsilon^2} \sum_r \widehat{\beta}_{jr} \mathbf{u}_r$, $\sum_r \widehat{\beta}_{jr} = \widehat{l}_d |\Omega_j|$.

・ロト ・回ト ・ヨト ・ヨト

Uniform convergence in space: idea of proof

- Naive convergence estimate : $||P_h^{\varepsilon} P^{\varepsilon}||_{naive} \leq C\varepsilon^{-b}h^c$.
- Idea: intermediary estimates and triangle inequalities (Jin-Levermore-Golse).

$$||P_h^{\varepsilon} - P^{\varepsilon}||_{L^2} \leq \min(||P_h^{\varepsilon} - P^{\varepsilon}||_{\textit{naive}}, ||P_h^{\varepsilon} - P_h^0|| + ||P_h^0 - P^0|| + ||P^{\varepsilon} - P^0||)$$



Final result: We assume that some assumptions about regularity and meshes are satisfied. There exist a constant C(T) > 0 such that:

$$\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\|_{L^{2}([0,T]\times\Omega)}\leq C\min\left(\sqrt{\frac{h}{\varepsilon}},\varepsilon\max\left(1,\sqrt{\frac{\varepsilon}{h}}\right)+h+(h+\varepsilon)+\varepsilon\right)\leq Ch^{\frac{1}{4}}.$$

Euler equations with friction and gravity

・ロト ・日本 ・モト ・モト

3

Design of new finite volume nodal scheme I

Idea: Modify the classic one step Lagrangian+remap scheme with the Jin-Levermore AP method

• The classic Lagrange+remap scheme (LR scheme) is

$$\begin{cases} | \Omega_j | \partial_t \rho_j + \frac{1}{\varepsilon} \left(\sum_{R_+} \mathbf{u}_{jr} \rho_j + \sum_{R_-} \mathbf{u}_{jr} \rho_{k(r)} \right) = 0 \\ | \Omega_j | \partial_t \rho_j \mathbf{u}_j + \frac{1}{\varepsilon} \left(\sum_{R_+} \mathbf{u}_{jr} (\rho \mathbf{u})_j + \sum_{R_-} \mathbf{u}_{jr} (\rho \mathbf{u})_{k(r)} + \sum_r \mathbf{pC}_{jr} \right) = 0 \\ | \Omega_j | \partial_t \rho_j \mathbf{e}_j + \frac{1}{\varepsilon} \left(\sum_{R_+} \mathbf{u}_{jr} (\rho \mathbf{e})_j + \sum_{R_-} \mathbf{u}_{jr} (\rho \mathbf{e})_{k(r)} + \sum_r (\mathbf{pC}_{jr}, \mathbf{u}_r) \right) = 0 \end{cases}$$

with the Lagrangian fluxes

$$\begin{cases} \mathbf{G}_{jr} = p_j \mathbf{C}_{jr} + \rho_j c_j \widehat{\alpha}_{jr} (\mathbf{u}_j - \mathbf{u}_r) \\ \sum_j \rho_j c_j \widehat{\alpha}_{jr} \mathbf{u}_r = \sum_j p_j \mathbf{C}_{jr} + \sum_j \rho_j c_j \widehat{\alpha}_{jr} \mathbf{u}_j \end{cases}$$

• Advection fluxes: $\mathbf{u}_{jr} = (\mathbf{C}_{jr}, \mathbf{u}_r), R_+ = (r/\mathbf{u}_{jr} > 0), R_- = (r/\mathbf{u}_{jr} < 0)$ and $\rho_{k(r)} = \frac{\sum_{j/\mathbf{u}_{jr} > 0} \mathbf{u}_{jr} \rho_j}{\sum_{j/\mathbf{u}_{jr} > 0} \mathbf{u}_{jr}}.$

Design of new finite volume nodal scheme II

Jin Levermore method: plug the balance equation $\nabla p + O(\varepsilon^2) = \rho \mathbf{g} - \frac{\sigma}{\varepsilon} \rho \mathbf{u}$ in the Lagrangian fluxes

• The modified scheme is

$$\begin{cases} |\Omega_{j}| \partial_{t}\rho_{j} + \frac{1}{\varepsilon} \left(\sum_{R_{+}} \mathbf{u}_{jr}\rho_{j} + \sum_{R_{-}} \mathbf{u}_{jr}\rho_{k(r)} \right) = 0 \\ |\Omega_{j}| \partial_{t}\rho_{j}\mathbf{u}_{j} + \frac{1}{\varepsilon} \left(\sum_{R_{+}} \mathbf{u}_{jr}(\rho\mathbf{u})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho\mathbf{u})_{k(r)} + \sum_{r} \mathbf{pC}_{jr} \right) \\ = \frac{1}{\varepsilon} \left(\sum_{r} \rho_{r}\hat{\beta}_{jr}\mathbf{g} - \sum_{r} \rho_{r}\hat{\beta}_{jr}\frac{\sigma}{\varepsilon} \mathbf{u}_{r} \right) \\ |\Omega_{j}| \partial_{t}\rho_{j}\mathbf{e}_{j} + \frac{1}{\varepsilon} \left(\sum_{R_{+}} \mathbf{u}_{jr}(\rho\mathbf{e})_{j} + \sum_{R_{-}} \mathbf{u}_{jr}(\rho\mathbf{e})_{k(r)} + \sum_{r} (\mathbf{pC}_{jr}, \mathbf{u}_{r}) \right) \\ = \frac{1}{\varepsilon} \left(\sum_{r} \rho_{r}(\hat{\beta}_{jr}\mathbf{g}, \mathbf{u}_{r}) - \frac{\sigma}{\varepsilon} \sum_{r} \rho_{r}(\mathbf{u}_{r}, \hat{\beta}_{jr}\mathbf{u}_{r}) \right) \end{cases}$$

with the new Lagrangian fluxes

$$\left(\begin{array}{c} \mathbf{p}\mathbf{C}_{jr} = \rho_{j}\mathbf{C}_{jr} + \rho_{j}c_{j}\widehat{\alpha}_{jr}(\mathbf{u}_{j} - \mathbf{u}_{r}) + \rho_{r}\widehat{\beta}_{jr}\mathbf{g} - \rho_{r}\widehat{\beta}_{jr}\frac{\sigma}{\varepsilon}\mathbf{u}_{r} \\ \left(\sum_{j} \rho_{j}c_{j}\widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\rho_{r}\sum_{j}\widehat{\beta}_{jr} \right)\mathbf{u}_{r} = \sum_{j} p_{j}\mathbf{C}_{jr} + \sum_{j} \rho_{j}c_{j}\widehat{\alpha}_{jr}\mathbf{u}_{j} + \rho_{r}(\sum_{j}\widehat{\beta}_{jr})\mathbf{g} \\ \sum_{j} \rho_{j}c_{j}\widehat{\alpha}_{jr}\mathbf{u}_{j} + \rho_{r}(\sum_{j}\widehat{\beta}_{jr})\mathbf{g} \right)$$

AP properties

Limit diffusion scheme: If the local matrices are invertibles then the scheme LR-AP tends formally to the following diffusion scheme

$$\begin{cases} | \Omega_j | \partial_t \rho_j + \left(\sum_{R_+} \mathbf{u}_{jr} \rho_j + \sum_{R_-} \mathbf{u}_{jr} \rho_{k(r)} \right) = 0 \\ | \Omega_j | \partial_t \rho_j e_j + \left(\sum_{R_+} \mathbf{u}_{jr} (\rho e)_j + \sum_{R_-} \mathbf{u}_{jr} (\rho e)_{k(r)} + p_j \sum_r (\mathbf{C}_{jr}, \mathbf{u}_r) \right) = 0 \\ \sigma \rho_r \left(\sum_j \widehat{\beta}_{jr} \right) \mathbf{u}_r = \sum_j p_j \mathbf{C}_{jr} + \rho_r \left(\sum_j \widehat{\beta}_{jr} \right) \mathbf{g} \end{cases}$$

- Remarks about limit diffusion scheme.
 - We obtain a nonlinear positive diffusion scheme.
 - For $p = K\rho$, we observe that the scheme converge with the first order.
 - Open question: Verify these properties for the full Euler scheme.
- Remarks about time scheme.
 - Another formulation gives a local source term for the momentum equation.
 - Using an implicit discretization of the local term source we verify numerically that the CFL is independent of ε.

WB properties

Result:

- We define $\nabla_r p = -(\sum_j \hat{\beta}_{jr})^{-1} \sum_j p_j$ and ρ_r a mean of ρ_j around the node \mathbf{x}_r .

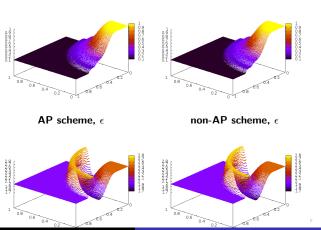
Conclusion:

- The numerical error is governed only by the error between discrete and continuous steady states.
- Question: what is the error between the discrete steady states and the real steady states ?
 - for ρ constant: the discrete steady state is exact.
 - for ρ variable: the discrete steady state is not exact, but the error is homogeneous to $O(h^2)$.

イロン スポン イヨン イヨン

Numerical results : short time limit

Test case: Sod problem with σ > 0, ε = 1 and g = 0 (short time limit).
σ = 1
AP scheme, ρ
non-AP scheme, ρ

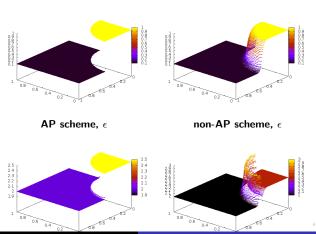


E. Franck

Modified FV scheme for hyperbolic equations

Numerical results : short time limit

• Test case: Sod problem with $\sigma > 0$, $\varepsilon = 1$ and g = 0 (short time limit). • $\sigma = 10^6$ AP scheme, ρ non-AP scheme, ρ

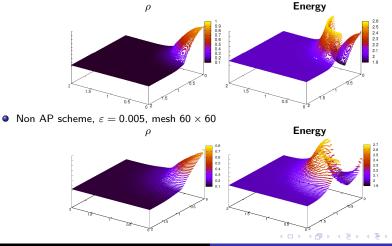


E. Franck

Modified FV scheme for hyperbolic equations

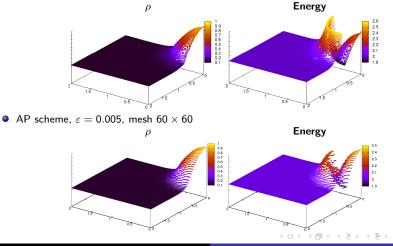
Numerical results : long time limit

- Test case: Sod problem with $\sigma > 0$, and g = 0 (non longer time limit).
- Non AP scheme, $\varepsilon = 0.005$, mesh 480 \times 480



Numerical results : long time limit

- Test case: Sod problem with $\sigma > 0$, and g = 0 (non longer time limit).
- Non AP scheme, $\varepsilon = 0.005$, mesh 480 \times 480



E. Franck Modified FV scheme for hyperbolic equations

Numerical results: WB properties

- Validation of the Well-Balanced properties.
- The gravity vector is g = (0, -1).

• First test case is defined by $\rho_j = 1$, $\mathbf{u}_j = \mathbf{0}$ and $e_j = \frac{1}{\gamma - 1}(\mathbf{x}_j, \mathbf{g}) + C$ with C a constant.

Schemes	LP-AP			LP		
Meshes/cells	40	80	160	40	80	160
Cartesian	$\begin{vmatrix} 5.9 \\ 10^{-17} \end{vmatrix}$	$1 imes 10^{-16}$	7.1×10^{-17}	0.00470	0.00239	0.00121
Random	$egin{array}{ccc} 1.1 & imes \ 10^{-16} & \end{array}$	${1.5 \ imes 10^{-16}}$ $ imes$	$3 imes 10^{-16}$	0.01519	0.00947	0.00526
Kershaw	$egin{array}{ccc} 1.4 & imes \\ 10^{-16} & \end{array}$	$\begin{array}{cc} 2.2 & \times \\ 10^{-16} & \end{array}$	$\begin{array}{rrr} 3.2 & \times \\ 10^{-16} & \end{array}$	0.08503	0.050	0.02908

- Classical scheme: convergence with O(h).
- AP scheme: preserve exactly the steady states.

Numerical results: WB properties

- Validation of the Well-Balanced properties.
- The gravity vector is g = (0, -1).
- The initial data for the second test case are defined by $\rho_j(t, \mathbf{x}) = y + b$, $\mathbf{u}_j = \mathbf{0}$ and $p_j(t, \mathbf{x}) = -(\frac{y^2}{2} + by)g$.

Schemes	LP-AP			LP		
Meshes/cells	80	160	320	80	160	320
Cartesian	2.3×10^{-15}	$9.4 imes 10^{-15}$	$\begin{array}{ccc} 3.4 & imes \ 10^{-14} \end{array}$	0.003407	0.00167	0.00008
Random	$3.4 imes 10^{-5}$	$1 imes 10^{-5}$	$2.8 imes 10^{-6}$	0.00967	0.00529	0.00282
Kershaw	1.1×10^{-6}	$1.8 imes 10^{-7}$	$2.6 imes 10^{-8}$	0.03687	0.008363	0.00215

- Classical scheme: convergence with O(h).
- AP scheme: convergence with O(h²).

- 4 回 2 - 4 □ 2 - 4 □

Ongoing works and conclusion

・ロト ・日本 ・モト ・モト

3

Local Very high order scheme around equilibrium

- Aim: converse the classical properties of stability associated with the first order scheme and obtain a very high order discretization of the equilibrium.
- Method : construct a very high order discrete steady state.
- 1D Discrete steady state: $p_{j+1} p_j = -\Delta x_{j+\frac{1}{2}} (\rho g)_{j+\frac{1}{2}}$ with $(\rho g)_{j+\frac{1}{2}} = \frac{1}{2} (\rho_{j+1} + \rho_j) g$.

To begin we consider the following simple steady state

$$\partial_x p = -\rho g$$

Integrating on the diamond cell [x_j, x_{j+1}] we obtain

$$\Delta x_{j+\frac{1}{2}} \left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_j}^{x_{j+1}} \partial_x p(x) \right) = -g \Delta x_{j+\frac{1}{2}} \left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_j}^{x_{j+1}} \rho(x) \right)$$

Local Very high order scheme around equilibrium

- Aim: converse the classical properties of stability associated with the first order scheme and obtain a very high order discretization of the equilibrium.
- Method : construct a very high order discrete steady state.
- 1D Discrete steady state: $p_{j+1} p_j = -\Delta x_{j+\frac{1}{2}} (\rho g)_{j+\frac{1}{2}}$ with $(\rho g)_{j+\frac{1}{2}} = \frac{1}{2} (\rho_{j+1} + \rho_j) g$.

• We introduce two polynomials $\overline{\rho}_{j+\frac{1}{2}}(x) = \sum_{k=1}^{q} r_k x^k$ and $\overline{p}_{j+\frac{1}{2}}(x) = \sum_{k=1}^{q+1} p_k x^k$ with

$$\int_{x_{l-\frac{1}{2}}}^{x_{l+\frac{1}{2}}} \overline{\rho}_{j+\frac{1}{2}}(x) = \Delta x_l \rho_l, \quad \int_{x_{l-\frac{1}{2}}}^{x_{l+\frac{1}{2}}} \overline{p}_{j+\frac{1}{2}}(x) = \Delta x_l \rho_l$$

and $l \in S(j)$ (S(j) is a subset of cell around j). Using these polynomials we obtain the new discrete steady states

$$\Delta x_{j+\frac{1}{2}} \left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_j}^{x_{j+1}} \partial_x \overline{\rho}_{j+\frac{1}{2}}(x) \right) = -g \Delta x_{j+\frac{1}{2}} \left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_j}^{x_{j+1}} \overline{\rho}_{j+\frac{1}{2}}(x) \right)$$

소리가 소문가 소문가 소문가

Local Very high order scheme around equilibrium

- Aim: converse the classical properties of stability associated with the first order scheme and obtain a very high order discretization of the equilibrium.
- Method : construct a very high order discrete steady state.
- 1D Discrete steady state: $p_{j+1} p_j = -\Delta x_{j+\frac{1}{2}} (\rho g)_{j+\frac{1}{2}}$ with $(\rho g)_{j+\frac{1}{2}} = \frac{1}{2} (\rho_{j+1} + \rho_j) g$.
- To obtain a scheme which preserves the discrete steady state, it is necessary to have the numerical pressure viscosity is the discrete steady state.
- We obtain following the q-order steady state:

$$p_{j+1} - p_j = -\Delta x_{j+\frac{1}{2}} (\rho g)_{j+\frac{1}{2}}^{HO}$$

with

$$(\rho g)_{j+\frac{1}{2}}^{HO} = \left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \left(\int_{x_{j}}^{x_{j+1}} \partial_{x} \overline{p}_{j+\frac{1}{2}}(x)\right) + g\left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_{j}}^{x_{j+1}} \overline{\rho}_{j+\frac{1}{2}}(x)\right) - \frac{p_{j+1} - p_{j}}{\Delta x_{j+\frac{1}{2}}}\right)$$

- 4 同 6 4 日 6 4 日 6

Results for local Very high order WB scheme

• Test case:
$$\rho(x) = p(x) = e^{-gx}$$
, $u(x) = 0$.

• AP scheme with three order equilibrium

Meshes	Cartesian		Random	
cells	error	order	error	order
40	$\begin{vmatrix} 3\times 10^{-6} \\ 5\times 10^{-7} \end{vmatrix}$		$4.1 imes10^{-6}$	
80	$5 imes 10^{-7}$	2.6	$5 imes 10^{-7}$	3
160	$6.3 imes 10^{-8}$	3	$6 imes 10^{-8}$	3.1

AP scheme with fourth order equilibrium

Meshes	Cartesian		Random	
cells	error	order	error	order
40	$1 imes 10^{-7} \ 5.5 imes 10^{-9}$		$\begin{array}{c} 8.74 \times 10^{-8} \\ 4.6 \times 10^{-9} \end{array}$	
80	$5.5 imes10^{-9}$	4.17	$4.6 imes10^{-9}$	4.25
160	2.85×10^{-10}	4.25	$2.6 imes10^{-10}$	4.15

イロト イポト イヨト イヨト

Conclusion and future works

Conclusion:

- P_1 model: AP nodal scheme on distorted meshes with CFL independent of ε .
- *P*₁ **model**: Uniform convergence for the semi discrete scheme on unstructured meshes.
- Euler equations with friction : AP scheme with a CFL independent to ε .
- Euler equations with friction : Well-Balanced scheme which converges with the second order.
- All models : Spurious mods in few cases (Cartesian mesh + initial Dirac data).

Future works:

- Validation of the LR-AP scheme with analytical test cases.
- Analysis of the Euler AP discretization: entropy stability.
- Local high order Well-Balanced scheme for hydrostatic equilibrium in 2D
- Generic stabilization procedure for the nodal schemes.

Danke Schön

Danke Schön

・ロン ・四と ・ヨン ・ヨン

æ