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Euler equations with friction and gravity

Euler equations with gravity and friction:
∂tρ+ 1

ε
div(ρu) = 0,

∂tρu + 1
ε

div(ρu⊗ u) + 1
ε
∇p = 1

ε
(ρg − σ

ε
ρu),

∂tρe + 1
ε

div(ρue) + div(pu) = 1
ε

(ρ(g, u)− σ
ε
ρ(u, u)).

Properties :

Entropy inequality: ∂tρS + 1
ε

div(ρuS) ≥ 0.

Steady states : {
u = 0,
∇p = ρg.

Diffusion limit: 
∂tρ+ div(ρu) = 0,
∂tρe + div(ρue) + p div u = 0,

u = 1
σ

(
g − 1

ρ
∇p
)
.
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Ap scheme

P1 model: {
∂tp + 1

ε
∂xu = 0,

∂tu + 1
ε
∂xp = − σ

ε2 u,
−→ ∂tp − ∂x

(
1

σ
∂xp

)
= 0.

Ap scheme
Consistency Godunov-type schemes:
O( ∆x

ε
+ ∆t).

CFL condition: ∆t( 1
∆xε

+ σ
ε2 ) ≤ 1.

Consistency AP schemes:
O (∆x + ∆t).

CFL condition: ∆t( 1

∆xε+ ∆x2

σ

) ≤ 1.

AP vs non AP schemes: Important
reduction of CPU cost.

Classical extension (1D fluxes in the normal direction) of AP schemes in 2D are not
convergent on general meshes ∀ε (limit diffusion scheme non convergent).
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Well Balanced schemes

Discretization of physical steady states is important (Lack at rest for Shallow water
equations, hydrostatic equilibrium for astrophysical flows ..)

Classical scheme: the physical steady states or a good discretization of the steady
states are not the equilibrium of the schemes.

Consequence: Spurious numerical velocities larger than physical velocities for nearly or
exact uniform flows.

WB scheme: definitions

Exact Well-Balanced scheme: scheme exact for continuous steady states.

Well-Balanced scheme: scheme exact for discrete steady states at the
interfaces.

For shallow water model: in general the schemes are exact WB schemes.
For Euler model: in general the schemes are WB schemes.
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Nodal scheme : principle for linear case

Linear case : P1:
∂tp + 1

ε
div(u) = 0,

∂tu + 1
ε
∇p = − σ

ε2 u.
−→ ∂tp − div

(
1

σ
∇p
)

= 0.

Idea: nodal Finite Volume method for the P1

model + AP method.

Nodal scheme: fluxes at the node and not at
the middle of the edge (Bruno talk).
Introduced for Lagrangian scheme.

Notations

where the pentagon is split into subtriangles in two different ways.
On each of these subtriangles the barycentric functions are easily
defined as P1 linear functions. By continuity it defines over the
whole pentagon two different sets of barycentric functions. It
means that barycentric functions are not intrinsic objects, even if
the volume Vj is uniquely defined in this case.

Let us define Vj > 0 the volume of the cell Xj

V j ¼
Z

bXq

detðrXxÞdX ¼
Z

bXq

det
Xnvq

r¼1

rXkq
r $ xrjðqÞ

 !
dX; ð7Þ

where bXq is of course the unique reference cell that corresponds to
Xj. This formula defines a mapping from the vertices x = (x1, . . .) to
Vj. Therefore the volume Vj of the cell can be easily defined as a
function of the cell vertices. We can write with natural notations
Vj = Vj(x). In dimension d = 3 the situation may be more complicated
in case the faces are warped, because even the volume Vj is not un-
iquely defined on the geometrical standpoint. On the contrary the
volume is well-defined through the formula (7) for a given choice
of the barycentric functions. This is why we rely on (7) in the rest
of this paper.

Definition 2. The gradient of the volume with respect to the
vertices is

Cjr ¼ rxr V j 2 Rd: ð8Þ
The expression of Cjr is easy to compute in dimension d = 2. Con-

sider the typical situation of Fig. 4. By convention the vertices are
listed counterclockwise xr%1,xr,xr+1, . . . with coordinates xr = (xr,yr).
The quantity 1

2 ðxryrþ1 % yrxrþ1Þis the oriented area of the triangle
with vertices xr, xr+1 and O = (0,0). The sum of these oriented areas
is the total area Vj ¼

P
r

1
2 ðxryrþ1 % yrxrþ1Þ. The formula (8) implies

the formula used in [10]

Cjr ¼
1
2
%yr%1 þ yrþ1

xr%1 % xrþ1

! "
: ð9Þ

Next we consider the dimension d = 3. The reference cell is denoted
bX ¼ bXqðjÞ. One has the general formula that we deduce from (7)

Cjr ¼
X

s

X

t

xs ^ xt

Z

bX
det rkr ;rks;rktð ÞdX

! "
: ð10Þ

The characterization of Cjr for tetrahedrons and for hexahedrons
with warped faces is given in [7].

The scheme that we consider in the following is based on a very
specific nodal solver that we describe now. At the beginning of the
time step one computes the geometrical vectors Cjr for all cell Xj as
a function of the vertices xr.

Definition 3 (The nodal solver). Let us assume that we know the
values of some cell pressures pj and some cell velocities uj for all

cells around a certain vertex xr. The nodal solver at vertex xr is
defined by the following set of linear equations

pjr % pj þ qjcj !ur % uj;
Cjr

Cjrj j

! "
¼ 0;

P
j

Cjrpjr ¼ 0:

8
>><

>>:
ð11Þ

The unknowns are ðpjr; !urÞ. All other quantities are given. Here
qjcj > 0 is the positive acoustic impedance, and cj is the local speed
of sound.

The solution of the nodal solver is computed by elimination of
pjr in the second equation. One gets the linear equation Ar !ur ¼ br

where the matrix is

Ar ¼
X

j

qjcj
Cjr $ Cjr

jCjrj
2 Rd'd

and the right hand side is

br ¼
X

j

Cjr pj þ qjcj uj;
Cjr

jCjr j

! "! "
2 Rd:

In general the linear system that we have to solve is well posed
since the matrix on the left hand side is symmetric non-negative.
It is possible to show that it is a positive (thus invertible) matrix
Ar ¼ At

r > 0 provided the vectors (Cjr)j span Rd. This is the case in
practice [7]. See also a particular proof in dimension d = 2 [10].
The result of Proposition 25 can be interpreted as a new proof of
this well posedness of the nodal solver.

The GLACE scheme is a cell-centered Godunov like Lagrangian
scheme that has been recently proposed in [7]. As detailed in
Eqs. (11)–(15), this scheme is implemented using explicit Euler
time integration with time step Dt > 0.

Definition 4 (The GLACE scheme). At the beginning of the time step
tk = kDt one computes the geometrical vectors Ck

jr . Then one
computes the nodal pressures pk

jr and the nodal velocities !uk
r using

the nodal solver (11). With these quantities one updates the total
momentum and the total energy as follows. For the momentum
one uses

Mj
ukþ1

j % uk
j

Dt
¼ %

X

r

Ck
jrp

k
jr : ð12Þ

The total energy is updated with

Fig. 3. Non-uniqueness of the definition of the barycentric functions in dimension
d = 2. The pentagon is viewed as the union of 5 triangles on the left and as the union
of 3 triangles on the right. On each of the subtriangles the barycentric functions are
the standard linear P1 functions.

Fig. 4. A mesh in dimension d = 2. Notice that C?jr is the vector that joins the middle
of the edges.

B. Després / Comput. Methods Appl. Mech. Engrg. 199 (2010) 2669–2679 2671

Geometrical quantities defined by Cjr = ∇xr |Ωj |.∑
j Cjr =

∑
r Cjr = 0.
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2D AP schemes

Nodal AP schemes: {
| Ωj | ∂tpj (t) + 1

ε

∑
r (ur ,Cjr ) = 0,

| Ωj | ∂tuj (t) + 1
ε

∑
r pCjr = Sj .

Classical nodal fluxes: {
pCjr − pjCjr = α̂jr (uj − ur ),∑

j pCjr = 0,

with α̂jr =
Cjr⊗Cjr

|Cjr |
.

Modified fluxes obtained plugging the balance equation ∇p = −σ
ε

u:

{
pCjr − pjCjr = α̂jr (uj − ur )− σ

ε
β̂jrur ,(∑

j α̂jr + σ
ε

∑
j β̂jr

)
ur =

∑
j pjCjr +

∑
j α̂jrpj .

with β̂jr = Cjr ⊗ (xr − xj ).

Source term: Sj = − σ
ε2

∑
r β̂jrur ,

∑
r β̂jr = Îd |Ωj |.
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Uniform convergence in space: idea of proof

Naive convergence estimate : ||Pεh − Pε||naive ≤ Cε−bhc .
Idea: intermediary estimates and triangle inequalities (Jin-Levermore-Golse).

||Pεh − Pε||L2 ≤ min(||Pεh − Pε||naive , ||Pεh − P0
h ||+ ||P

0
h − P0||+ ||Pε − P0||)

ε → 0
P0
h

Pε

h → 0

P0

ε → 0

h → 0

Pε
h

Intermediary estimates :

||Pε − P0|| ≤ Caεa,
||P0

h − P0|| ≤ Cdh
d ,

||Pεh − P0
h || ≤ Ceεe ,

d > c, e = a.

Final result: We assume that some assumptions about regularity and meshes are
satisfied. There exist a constant C(T ) > 0 such that:

‖Vε − Vεh‖L2([0,T ]×Ω) ≤ C min

(√
h

ε
, εmax

(
1,

√
ε

h

)
+ h + (h + ε) + ε

)
≤ Ch

1
4 .
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Design of new finite volume nodal scheme I

Idea: Modify the classic one step Lagrangian+remap scheme with the Jin-Levermore
AP method

The classic Lagrange+remap scheme (LR scheme) is
| Ωj | ∂tρj + 1

ε

(∑
R+

ujrρj +
∑

R−
ujrρk(r)

)
= 0

| Ωj | ∂tρjuj + 1
ε

(∑
R+

ujr (ρu)j +
∑

R−
ujr (ρu)k(r) +

∑
r pCjr

)
= 0

| Ωj | ∂tρjej + 1
ε

(∑
R+

ujr (ρe)j +
∑

R−
ujr (ρe)k(r) +

∑
r (pCjr , ur )

)
= 0

with the Lagrangian fluxes
Gjr = pjCjr + ρjcj α̂jr (uj − ur )∑
j

ρjcj α̂jrur =
∑
j

pjCjr +
∑
j

ρjcj α̂jruj

Advection fluxes: ujr = (Cjr , ur ), R+ = (r/ujr > 0), R− = (r/ujr < 0) and

ρk(r) =

∑
j/ujr>0 ujrρj∑
j/ujr>0 ujr

.
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Design of new finite volume nodal scheme II

Jin Levermore method: plug the balance equation ∇p + O(ε2) = ρg − σ
ε
ρu in the

Lagrangian fluxes

The modified scheme is

| Ωj | ∂tρj + 1
ε

(∑
R+

ujrρj +
∑

R−
ujrρk(r)

)
= 0

| Ωj | ∂tρjuj + 1
ε

(∑
R+

ujr (ρu)j +
∑

R−
ujr (ρu)k(r) +

∑
r pCjr

)
= 1

ε

(∑
r ρr β̂jrg −

∑
r ρr β̂jr

σ
ε

ur

)
| Ωj | ∂tρjej + 1

ε

(∑
R+

ujr (ρe)j +
∑

R−
ujr (ρe)k(r) +

∑
r (pCjr , ur )

)
= 1

ε

(∑
r ρr (β̂jrg, ur )− σ

ε

∑
r ρr (ur , β̂jrur )

)
with the new Lagrangian fluxes

pCjr = pjCjr + ρjcj α̂jr (uj − ur ) + ρr β̂jrg − ρr β̂jr
σ

ε
ur∑

j

ρjcj α̂jr +
σ

ε
ρr
∑
j

β̂jr

 ur =
∑
j

pjCjr +
∑
j

ρjcj α̂jruj + ρr (
∑
j

β̂jr )g
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AP properties

Limit diffusion scheme: If the local matrices are invertibles then the scheme LR-AP
tends formally to the following diffusion scheme

| Ωj | ∂tρj +
(∑

R+
ujrρj +

∑
R−

ujrρk(r)

)
= 0

| Ωj | ∂tρjej +
(∑

R+
ujr (ρe)j +

∑
R−

ujr (ρe)k(r) + pj
∑

r (Cjr , ur )
)

= 0

σρr
(∑

j β̂jr

)
ur =

∑
j pjCjr + ρr

(∑
j β̂jr

)
g

Remarks about limit diffusion scheme.

We obtain a nonlinear positive diffusion scheme.

For p = Kρ, we observe that the scheme converge with the first order.

Open question: Verify these properties for the full Euler scheme.

Remarks about time scheme.

Another formulation gives a local source term for the momentum equation.

Using an implicit discretization of the local term source we verify numerically that
the CFL is independent of ε.
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WB properties

Result:

We define ∇rp = −(
∑

j β̂jr )−1
∑

j pj and ρr a mean of ρj around the node xr .

If the initial data are given by the discrete steady state ∇rp = ρrg there are
preserved exactly by the time scheme.

Conclusion:

The numerical error is governed only by the error between discrete and
continuous steady states.

Question: what is the error between the discrete steady states and the real steady states

?

for ρ constant: the discrete steady state is exact.
for ρ variable: the discrete steady state is not exact, but the error is homogeneous
to O(h2).

E. Franck Modified FV scheme for hyperbolic equations



Mathematical context
Linear case

Euler equations with friction and gravity
Ongoing works and conclusion

Numerical results : short time limit

Test case: Sod problem with σ > 0, ε = 1 and g = 0 (short time limit).
σ = 1

AP scheme, ρ non-AP scheme, ρ

AP scheme, ε non-AP scheme, ε
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Numerical results : short time limit

Test case: Sod problem with σ > 0, ε = 1 and g = 0 (short time limit).
σ = 106

AP scheme, ρ non-AP scheme, ρ

AP scheme, ε non-AP scheme, ε

E. Franck Modified FV scheme for hyperbolic equations



Mathematical context
Linear case

Euler equations with friction and gravity
Ongoing works and conclusion

Numerical results : long time limit

Test case: Sod problem with σ > 0, and g = 0 (non longer time limit).
Non AP scheme, ε = 0.005, mesh 480× 480

ρ Energy

Non AP scheme, ε = 0.005, mesh 60× 60
ρ Energy
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Numerical results : long time limit

Test case: Sod problem with σ > 0, and g = 0 (non longer time limit).
Non AP scheme, ε = 0.005, mesh 480× 480

ρ Energy

AP scheme, ε = 0.005, mesh 60× 60
ρ Energy
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Numerical results: WB properties

Validation of the Well-Balanced properties.

The gravity vector is g = (0,−1).

First test case is defined by ρj = 1, uj = 0 and ej = 1
γ−1

(xj , g) + C with C a constant.

Schemes LP-AP LP

Meshes/cells 40 80 160 40 80 160

Cartesian 5.9 ×
10−17

1× 10−16 7.1 ×
10−17

0.00470 0.00239 0.00121

Random 1.1 ×
10−16

1.5 ×
10−16

3× 10−16 0.01519 0.00947 0.00526

Kershaw 1.4 ×
10−16

2.2 ×
10−16

3.2 ×
10−16

0.08503 0.050 0.02908

Classical scheme: convergence with O(h).

AP scheme: preserve exactly the steady states.
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Numerical results: WB properties

Validation of the Well-Balanced properties.

The gravity vector is g = (0,−1).

The initial data for the second test case are defined by ρj (t, x) = y + b, uj = 0 and

pj (t, x) = −( y2

2
+ by)g .

Schemes LP-AP LP

Meshes/cells 80 160 320 80 160 320

Cartesian 2.3 ×
10−15

9.4 ×
10−15

3.4 ×
10−14

0.003407 0.00167 0.00008

Random 3.4×10−5 1× 10−5 2.8×10−6 0.00967 0.00529 0.00282
Kershaw 1.1×10−6 1.8×10−7 2.6×10−8 0.03687 0.008363 0.00215

Classical scheme: convergence with O(h).

AP scheme: convergence with O(h2).
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Local Very high order scheme around equilibrium

Aim: converse the classical properties of stability associated with the first order
scheme and obtain a very high order discretization of the equilibrium.

Method : construct a very high order discrete steady state.

1D Discrete steady state: pj+1 − pj = −∆xj+ 1
2

(ρg)j+ 1
2

with (ρg)j+ 1
2

= 1
2

(ρj+1 + ρj )g .

To begin we consider the following simple steady state

∂xp = −ρg

Integrating on the diamond cell [xj , xj+1] we obtain

∆xj+ 1
2

 1

∆xj+ 1
2

∫ xj+1

xj

∂xp(x)

 = −g∆xj+ 1
2

 1

∆xj+ 1
2

∫ xj+1

xj

ρ(x)
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Local Very high order scheme around equilibrium

Aim: converse the classical properties of stability associated with the first order
scheme and obtain a very high order discretization of the equilibrium.

Method : construct a very high order discrete steady state.

1D Discrete steady state: pj+1 − pj = −∆xj+ 1
2

(ρg)j+ 1
2

with (ρg)j+ 1
2

= 1
2

(ρj+1 + ρj )g .

We introduce two polynomials ρj+ 1
2

(x) =
∑q

k=1 rkx
k and pj+ 1

2
(x) =

∑q+1
k=1 pkx

k with∫ x
l+ 1

2

x
l− 1

2

ρj+ 1
2

(x) = ∆xlρl ,

∫ x
l+ 1

2

x
l− 1

2

pj+ 1
2

(x) = ∆xlpl

and l ∈ S(j) (S(j) is a subset of cell around j). Using these polynomials we obtain the
new discrete steady states

∆xj+ 1
2

 1

∆xj+ 1
2

∫ xj+1

xj

∂xpj+ 1
2

(x)

 = −g∆xj+ 1
2

 1

∆xj+ 1
2

∫ xj+1

xj

ρj+ 1
2

(x)
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Local Very high order scheme around equilibrium

Aim: converse the classical properties of stability associated with the first order
scheme and obtain a very high order discretization of the equilibrium.

Method : construct a very high order discrete steady state.

1D Discrete steady state: pj+1−pj = −∆xj+ 1
2

(ρg)j+ 1
2

with (ρg)j+ 1
2

= 1
2

(ρj+1 +ρj )g .

To obtain a scheme which preserves the discrete steady state, it is necessary to have the
numerical pressure viscosity is the discrete steady state.

We obtain following the q-order steady state:

pj+1 − pj = −∆xj+ 1
2

(ρg)HO
j+ 1

2

with

(ρg)HO
j+ 1

2

=

 1

∆xj+ 1
2

(∫ xj+1

xj

∂xpj+ 1
2

(x)

)
+ g

 1

∆xj+ 1
2

∫ xj+1

xj

ρj+ 1
2

(x)

− pj+1 − pj

∆xj+ 1
2
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Results for local Very high order WB scheme

Test case: ρ(x) = p(x) = e−gx , u(x) = 0.

AP scheme with three order equilibrium

Meshes Cartesian Random

cells error order error order

40 3× 10−6 4.1× 10−6

80 5× 10−7 2.6 5× 10−7 3
160 6.3× 10−8 3 6× 10−8 3.1

AP scheme with fourth order equilibrium

Meshes Cartesian Random

cells error order error order

40 1× 10−7 8.74× 10−8

80 5.5× 10−9 4.17 4.6× 10−9 4.25
160 2.85× 10−10 4.25 2.6× 10−10 4.15
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Conclusion and future works

Conclusion:
P1 model: AP nodal scheme on distorted meshes with CFL independent of ε.

P1 model: Uniform convergence for the semi discrete scheme on unstructured
meshes.

Euler equations with friction : AP scheme with a CFL independent to ε.

Euler equations with friction : Well-Balanced scheme which converges with the
second order.

All models : Spurious mods in few cases (Cartesian mesh + initial Dirac data).

Future works:

Validation of the LR-AP scheme with analytical test cases.

Analysis of the Euler AP discretization: entropy stability.

Local high order Well-Balanced scheme for hydrostatic equilibrium in 2D

Generic stabilization procedure for the nodal schemes.
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