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Magnetic Confinement Fusion

Fusion DT: At sufficiently high
energies, deuterium and tritium can
fuse to Helium. A neutron and 17.6
MeV of free energy are released. At
those energies, the atoms are ionized
forming a plasma.

Magnetic confinement: The charged
plasma particles can be confined in a
toroidal magnetic field configuration,
for instance a tokamak.
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Magnetic Confinement Fusion

Fusion DT: At sufficiently high
energies, deuterium and tritium can
fuse to Helium. A neutron and 17.6
MeV of free energy are released. At
those energies, the atoms are ionized
forming a plasma.

Magnetic confinement: The charged
plasma particles can be confined in a
toroidal magnetic field configuration,
for instance a tokamak. Figure : Tokamak
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Plasma instabilities

Edge localized modes (ELMs) are periodic instabilities occurring at the edge of
tokamak plasmas.

They are associated with strong heat and particle losses which could damage
wall components in ITER by large heat loads.

Aim: Detailed non-linear modeling and simuation (MHD models) can help to
understand and control ELMs better.

Initial Density Final Density
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MHD model

The full resistive MHD model is given by

∂tρ+∇ · (ρv) = ∇ · (D∇ρ) + Sp

ρ∂tv + ρv · ∇v +∇P = J× B + ν4v

∂tP + v · ∇P + γP∇v = ∇ · (K∇T ) + Sh

∂tB = −∇× E = ∇× (v × B)− η∇× J

∇ · B = 0

Magnetic quantities: B the magnetic field, E the electric field and J = ∇× B
the current.

Hydrodynamic quantities: ρ the density, v the velocity, T the temperature, and
P = ρT the pressure.

The terms K and D are anisotropic diffusion tensors.

Source terms: Sh is a heat source, Sp is a particle source.
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Reduced MHD: assumptions and principle of derivation

Aim: Reduce the number of variables and eliminate the fast magnetosonic
waves.

We consider the cylindrical coordinate (R,Z , φ) ∈ Ω× [0, 2π]

Reduced MHD: Assumptions

B =
F0

R
eφ +

1

R
∇ψ × eφ v = −R∇u × eφ + v||B

with u the electrical potential, ψ the magnetic poloidal flux, v|| the parallel velocity.

To avoid high order operators we introduce the vorticity w = 4polu and the

toroidal current j = 4∗ψ = R2∇ · ( 1
R2∇polψ).

Derivation: we plug B and v in the equations + some computations. For the
equations on u and v|| we use the following projections

eφ · ∇ × R2 (ρ∂tv + ρv · ∇v +∇P = J× B + ν4v)

and
B· (ρ∂tv + ρv · ∇v +∇P = J× B + ν4v) .

E. Franck and al. Nonlinear time solvers for Jorek MHD code



Physical context and models
JOREK code and time solvers

Preconditioning

Reduced MHD without v||: simple model

Example of model: case where v|| = 0.

∂tψ = R[ψ, u]− F0∂φu + η(T )( j +
1

R2
∂φφψ)

R∇ · (ρ̂∇pol (∂tu)) =
1

2
[R2||∇polu||2, ρ̂] + [R2ρ̂w , u] + [ψ, j]−

F0

R
∂φj − [R2,P]

+νR∇ · (∇polw)

1

R2
j −∇ · (

1

R2
∇polψ) = 0

w −∇ · (∇polu) = 0

∂tρ = R[ρ, u] + 2ρ∂Zu +∇ · (D∇ρ)

∂tT = R[T , u] + 2(γ − 1)T∂Zu +∇ · (K∇T )

with ρ̂ = R2ρ.

D and K are anisotropic diffusion tensors (in the direction parallel to B).

η(T ) is the physical resistivity. ν is the viscosity.
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Main result: energy estimate

Correct reduced model : estimation on the energy conservation or dissipation.

Model with parallel velocity:
We assume that the boundary conditions are correctly chosen. The fields are defined
by B = F0

R
eφ + 1

R
∇ψ × eφ and v = −R∇u × eφ + v||B.

For the model associated with these fields we obtain

d

dt

∫
Ω
E (t) = −

∫
Ω
η
|4∗ψ|2

R2
−
∫

Ω
η|∇pol (

∂φψ

R2
)|2 −

∫
Ω
ν|4polu|2

with E(t) = |B|2
2

+ ρ
|v|2

2
+ 1
γ−1

P the total energy.

The implemented models approximately conserve energy. For exact energy
conservation, some neglected cross-terms between poloidal and parallel velocity
have to be added which might be important in the non-linear phase.

Theoretical and numerical stability for the reduced MHD models in JOREK
code, E. Franck, M. Hölzl, A. Lessig, E. Sonnendrücker, in redaction

E. Franck and al. Nonlinear time solvers for Jorek MHD code



Physical context and models
JOREK code and time solvers

Preconditioning

Jorek code and time solvers
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Description of the JOREK code I

JOREK: Fortran 90 code, parallel
(MPI+OpenMP) + algebraic libraries (Pastix,
MUMPS ...)

Initialization

Determine the equilibrium

Define the boundary of the computational
domain
Create a first grid which is used to compute
the aligned grid
Compute ψ(R,Z) in the new grid.

Compute equilibrium

Solve the Grad-Shafranov equation

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= −R2 ∂p

∂ψ
− F

∂F

∂ψ Figure : unaligned grid
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Description of the JOREK code II

Computation of aligned grid

Identification of the magnetic flux surfaces
Create the aligned grid (with X-point)
Interpolate ψ(R,Z) in the new grid.

Recompute equilibrium of the new grid.

Perturbation of the equilibrium (small
perturbations of non principal harmonics).

Time-stepping (full implicit)

Poloidal discretization: 2D Cubic Bezier
finite elements.
Toroidal discretization: Fourier expansion.

Construction of the matrix and some
profiles (diffusion tensors, sources terms).
Solve linear system.
Update solutions. Figure : Aligned grid
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Time scheme in JOREK code

The model is ∂tA(U) = B(U, t)

For time stepping we use a Crank Nicholson or Gear scheme :

(1 + ζ)A(Un+1)− ζA(Un) + ζA(Un−1) = θ∆tB(Un+1) + (1− θ)∆tB(Un)

Defining G(U) = (1 + ζ)A(U)− θ∆tB(U) and

b(Un,Un−1) = (1 + 2ζ)A(Un)− ζA(Un−1) + (1− θ)∆tB(Un)

we obtain the nonlinear problem

G(Un+1) = b(Un,Un−1)

First order linearization(
∂G(Un)

∂Un

)
δUn = −G(Un) + b(Un,Un−1) = R(Un)

with δUn = Un+1 − Un, and Jn = ∂G(Un)
∂Un the Jacobian matrix of G(Un).

E. Franck and al. Nonlinear time solvers for Jorek MHD code



Physical context and models
JOREK code and time solvers

Preconditioning

Linear Solvers

Linear solver in JOREK: Left Preconditioning + GMRES iterative solver.

Principle of the preconditioning step:

Replace the problem JkδUk = R(Un) by Pk (P−1
k Jk )δUk = R(Un).

Solve the new system with two steps PkδU∗k = R(Un) and

(P−1
k Jk )δUk = δU∗k

If Pk is easier to invert than Jk and Pk ≈ Jk the linear solving step is more
robust and efficient.

Construction and inversion of Pk

Pk : diagonal block matrix where the sub-matrices are associated with
each toroidal harmonic.
Inversion of Pk : We use a LU factorization and invert exactly each
subsystem.

This preconditioning is based on the assumption that the coupling between the
toroidal harmonics is weak.

In practice for some test cases this coupling is strong in the nonlinear phase.
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JOREK code: convergence issues

Problem :

For some test cases the linear solver does not converge in the nonlinear phase
even for small time steps.

Why ?

Because some violent numerical instabilities appear in the nonlinear phase
and generate ill-conditioned matrices.

Critical time for simulation: the beginning of nonlinear phase. It is necessary to
capture correctly the stabilization of ∇P and J.

Aim: minimize the numerical error and numerical spurious behaviours at this
time to avoid critical numerical instabilities and non convergence issues.
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Inexact Newton scheme

For nonlinear problem is not necessary to solve each linear system with high
accuracy.

Inexact Newton method: The convergence criterion for linear solver depends of
the nonlinear convergence. Minimization of the number of GMRES iteration for
each linear step.

We choose U0 = Un and ε0.

Step k of the Newton procedure

We solve the linear system with GMRES(
∂G(Uk )

∂Uk

)
δUk = R(Uk ) = b(Un,Un−1)− G(Uk )

and the following convergence criterion

||
(
∂G

∂Uk

)
δUk + R(Uk )|| ≤ εk ||R(Uk )||, εk = γ

(
||R(Uk )||
||R(Uk−1)||

)α
We iterate with Uk+1 = Uk + δUk .
We apply the convergence test (for example ||R(Uk )|| < εa + εr ||R(Un)||)

If the Newton procedure stop we define Un+1 = Uk+1.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.
Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure : Reference solution: kinetic and magnetic energies for ∆t = 5 gives by
the Newton method.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.

Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure : Kinetic and magnetic energies for Linearization method for ∆t = 30.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.

Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure : Kinetic and magnetic energies for Linearization method for ∆t = 40.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.

Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure : Kinetic and magnetic energies for Linearization method for ∆t = 50.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.

Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure : Kinetic and magnetic energies for Newton method for ∆t = 30.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.

Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure : Kinetic and magnetic energies for Newton method for ∆t = 40.
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First test case: model without parallel velocity

First test case: simplified equilibrium configuration for the reactor JET.

Additional cost with Inexact Newton procedure (in comparison to linearization) :
between 1.5 and 2.
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Figure : Kinetic and magnetic energies for Newton method for ∆t = 60.
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Second test case

Second test case: realistic equilibrium configuration for ASDEX Upgrade with
large resistivity which generate strong instabilities.
Reduction of the cost with Inexact Newton procedure (in comparison to
linearization): around 1.5.
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Figure : Reference solution: kinetic and magnetic energies for ∆t = 1 gives by
the Linearization method.
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Second test case

Second test case: realistic equilibrium configuration for ASDEX Upgrade with
large resistivity which generate strong instabilities.
Reduction of the cost with Inexact Newton procedure (in comparison to
linearization): around 1.5.
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Figure : Kinetic and magnetic energies for Linearization method for ∆t = 2.
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Second test case

Second test case: realistic equilibrium configuration for ASDEX Upgrade with
large resistivity which generate strong instabilities.
Reduction of the cost with Inexact Newton procedure (in comparison to
linearization): around 1.5.
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Figure : Kinetic and magnetic energies for Newton method for initial ∆t = 10.
Final time step around 2.
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Preconditioning: Principle

An optimal, parallel fully implicit Newton-Krylov solver for 3D viscoresistive
Magnetohydrodynamics, L. Chacon, Phys. of plasma, 2008.

Right preconditioning: We solve JkP
−1
k Pk = R(Uk ).

Aim: Find Pk easy to invert with Pk ≈ P−1
k and more efficient in the nonlinear

phase as the preconditioning used.

Idea: Operator splitting + parabolic formulation of the MHD + multigrid
methods.

Example {
∂tu = ∂xv
∂tv = ∂xu

−→
{

un+1 = un + ∆t∂xvn+1

vn+1 = vn + ∆t∂xun+1

We obtain (1−∆t2∂xx )un+1 = un + ∆t∂xvn.

The matrix associated to (1−∆t2∂xx ) is a diagonally dominant matrix and well
conditioned.

This type of operator is easy to invert with algebraic preconditioning as
multigrid methods.
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Simple example: Low β model

We assume that the profile of ρ is given, the pressure is small, and the fields are
B = F0

R
eφ + 1

R
∇ψ × eφ and v = −R∇u × eφ.

The model is
∂tψ = R[ψ, u] + η4∗ψ − F0∂φu

∂t4polu = 1
R

[R24polu, u] + 1
R

[ψ,4∗ψ]− F0
R2 ∂φ4∗ψ + ν4pol (4polu)

with w = 4polu and j = 4∗ψ.

In this formulation we separate the evolution and elliptic equations

The Jacobian associated with the evolution equations is

∂G(Un)

∂Un
δUn = JnδUn =

(
M U
L D

)
δUn

with δUn = (δψn, δun)

M and D the matrices of the diffusion and advection operators for ψ et 4polu.

L and U the matrices of the coupling operators between ψ and u.
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Preconditioning : Algorithm

The final system with Schur decomposition is given by

δUn = J−1
k R(Un) =

(
M U
L D

)−1

R(Un)

=

(
I M−1U
0 I

)(
M−1 0

0 P−1
schur

)(
I 0
−LM−1 I

)
R(Un)

with Pschur = D − LM−1U.

We obtain the following algorithm which solve JkδUk = R(Un) + elliptic
equations:


Predictor : Mδψn

p = Rψ
potential update : Pschur δu

n =
(
−Lδψn

p + Ru)
)

Corrector : Mδψn = Mδψn
p − Uδun

Current update : δznj = D∗δψn

Vorticity update : δwn = Dpolδu
n

with Rψ and Ru are the right hand side associated with the equations on ψ and
u. D∗ and Dpol the elliptic operators.
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An example of Schur complement approximation

To compute Pschur = D − LM−1U we must compute M−1.

An approximation of the Schur complement gives the preconditioning Pn.

”Small flow” approximation

In Pschur we assume that M−1 ≈ ∆t

Pschur =
4polδu

∆t
−ρvn·∇(

1

ρ
4polδu)−ρδv·∇(

1

ρ
4polu

n)−θν42
polδu−θ

2∆tLU

Operator LU = Bn · ∇(4∗( 1
ρ

Bn · ∇δu)) + ∂jn

∂ψn Bn
⊥ · ∇( 1

ρ
Bn · ∇δu) with ρ = 1

R2

Bn · ∇δu = − 1
R

[ψn, δu] + F0
R
∂φδu,

vn · ∇δu = −R[δu, un] et δv · ∇un = −R[un, δu].

Remark: the LU operator is the parabolization of coupling hyperbolic terms.
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LU operator: properties

For this reduced model the magnetosonic waves are filtered, it contains only the
Aflvén waves (rigorous proof missing).
Idem for the LU operator introduced previously.

Properties of LU operator

We consider the L2 space. The operator LU is not positive for all δu

< LUδu, δu >L2 =

∫
ρ|∇(

1

ρ
Bn.∇δu)|2 −

∫
1

ρ

∂jn

∂ψn
(Bn
⊥.∇δu)(Bn .∇δu)

The LU operator is not self-adjoint : < LUδu, δv >L2 6=< δu, LUδv >L2

LU approximation

We propose the following approximation LUapprox = Bn · ∇(4∗( 1
ρ

Bn · ∇δu))

The operator LUapprox is positive an self-adjoint.

Remark in physical books and papers: the spectrums of LUapprox and LU are
essentially close (not rigorous proof).
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Conclusion and Outlook

Models :

Conclusion: rigorous derivation of single fluid reduced MHD and energy
estimate.

Future works:

Rigorous derivation with an energy estimate of diamagnetic (generalized
Ohm’s law) and two fluids reduced MHD.
Design of time schemes which preserve the energy estimates.

Nonlinear solvers:

Conclusion: nonlinear inexact Newton solver + adaptive time stepping allows to
capture easier the nonlinear phase and avoid some numerical instabilities.

Advantages : larger time step and efficient adaptive time stepping.

Possible future works: Globalization technics to obtain more robust nonlinear
solvers.
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Conclusion and Outlook

Preconditioning:

Conclusion: preconditioning based on approximations to the MHD operators.

Question: new preconditioning more efficient than the old one in the nonlinear
phase where the coupling between harmonics is strong ?

Compatible with Jacobian-free method to reduce memory consumption and
increase scalability. This will allow to use higher grid resolutions and more
toroidal harmonics.

Future works: validate the algorithm for models without parallel velocity and
write the preconditioning for the single and bi-fluid models.
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Thanks

Thanks for your attention
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