Uniform asymptotic preserving and well-balanced schemes for hyperbolic systems with source terms

E. Franck ${ }^{1}$, C. Buet ${ }^{2}$, B. Després ${ }^{3}$ T.Leroy ${ }^{23}$, L. Mendoza ${ }^{4}$

Applied mathematics seminar, Nantes University

22 october 2015
> ${ }^{1}$ INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France
> ${ }^{2}$ CEA DAM, Arpajon, France
> ${ }^{3}$ LJLL, UPMC, France
> ${ }^{4}$ IPP and TUM, Garching bei München, Germany

Outline

Mathematical and physical context

AP scheme for the P_{1} model

Extension to the Euler model

Mathematic and physical context

Stiff hyperbolic systems

- Stiff hyperbolic system with source terms:

$$
\partial_{t} \mathbf{U}+\frac{1}{\varepsilon} \partial_{x} F(\mathbf{U})+\frac{1}{\varepsilon} \partial_{y} G(\mathbf{U})=\frac{1}{\varepsilon} S(\mathbf{U})-\frac{\sigma}{\varepsilon^{2}} R(\mathbf{U}), \mathbf{U} \in \mathbb{R}^{n}
$$

with $\varepsilon \in] 0,1]$ et $\sigma>0$.

- Subset of solutions given by the balance between the source terms and the convective part:
\square Diffusion solutions for $\varepsilon \rightarrow 0$ and $S(\mathbf{U})=0$:

$$
\partial_{t} \mathbf{V}-\operatorname{div}(K(\nabla \mathbf{V}, \sigma))=0, \quad \mathbf{V} \in \operatorname{Ker} R
$$

\square Steady-state for $\sigma=0$ et $\varepsilon \rightarrow 0$:

$$
\partial_{x} F(\mathbf{U})+\partial_{y} G(\mathbf{U})=S(\mathbf{U})
$$

- Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative hydrodynamic (hydrodynamic + linear transport of photon).

Notion of WB and AP schemes

- Acoustic equation with damping and gravity:

$$
\left\{\begin{array}{l}
\partial_{t} p+\frac{1}{\varepsilon} \partial_{x} u=0, \\
\partial_{t} u+\frac{1}{\varepsilon} \partial_{x} p=-\frac{1}{\varepsilon} g-\frac{\sigma}{\varepsilon^{2}} u,
\end{array} \quad \longrightarrow \partial_{t} p-\partial_{\times}\left(\frac{1}{\sigma}\left(\partial_{x} p+g\right)\right)=0 .\right.
$$

- Steady-state: $u=0, \partial_{x} p=-g$.
- Godunov-type schemes give an error homogeneous to $O(\Delta x)$.
- For nearly uniform flows, spurious velocities larger that physical velocity.
- Important deviation of the steady-state.
- WB scheme: discretize the steady-state exactly of with high accuracy.
- Ref: S. Jin, A steady-state capturing method for hyperbolic method with geometrical source terms.
- Consistency of Godunov-type schemes: $O\left(\frac{\Delta x}{\varepsilon}+\Delta t\right)$.
- CFL condition: $\Delta t\left(\frac{1}{\Delta x \varepsilon}+\frac{\sigma}{\varepsilon^{2}}\right) \leq 1$.
- Consistency of AP schemes:
$O(\Delta x+\Delta t)$.
- CFL condition: degenerate on parabolic CFL at the limit.
- Ref: S. Jin, D. Levermore Numerical schemes for hyperbolic conservation laws with stiff relaxation.
- To construct WB and AP schemes: incorporate the source in the fluxes to capture the balance between source and convective terms.

Reduced bibliography

- 1D asymptotic preserving schemes
\square S. Jin, D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, (1996).
\square C. Berthon, R. Turpault, Asymptotic preserving HLL schemes, (2011).
\square L. Gosse, G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, (2002).
\square C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M_{1} model of radiative transfer in two space dimensions, (2007).
\square C. Chalons, M. Girardin, S. Kokh, Large time step asymptotic preserving numerical schemes for the gas dynamics equations with source terms, (2013).
- Well balanced schemes for chemotaxis and Euler equations
\square R. Natalini and M. Ribot, An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis, (2012).
\square V. Desveaux, M. Zenk, C. Berthon, C. Klingenberg, A well-balanced scheme to capture non-explicit steady states in the Euler equations with gravity, (2015).
\square J. Greenberg, A. Y. Leroux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations, (1996).
\square R. Kappeli, S. Mishra, Well-balanced schemes for the Euler equations with gravitation, (2013).
- 2D asymptotic preserving schemes
\square A. Duran, F. Marche, R.Turpault, C. Berthon, Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes, (2015).
\square C. Berthon, G. Moebs, C. Sarazin-Desbois and R. Turpault, An AP scheme for systems of conservation laws with source terms on 2D unstructured meshes,

Exemple of AP and WB Godunov schemes

■ Jin-Levermore (or Gosse-Toscani) scheme. Plug the balance law $\partial_{x} E p=-\frac{\sigma}{\varepsilon} u+O\left(\varepsilon^{2}\right)$ in the fluxes. We write

$$
\begin{aligned}
& p\left(x_{j}\right)=p\left(x_{j+\frac{1}{2}}\right)+\left(x_{j}-x_{j+\frac{1}{2}}\right) \partial_{x} p\left(x_{j+\frac{1}{2}}\right) \\
& p\left(x_{j}\right)=p\left(x_{j+\frac{1}{2}}\right)-\left(x_{j}-x_{j+\frac{1}{2}}\right) \frac{\sigma}{\varepsilon} u\left(x_{j+\frac{1}{2}}\right)
\end{aligned}
$$

Coupling the previous relation (and the same for x_{j+1}) with the fluxes

$$
\left\{\begin{array}{l}
u_{j}+p_{j}=u_{j+\frac{1}{2}}+p_{j+\frac{1}{2}}+\frac{\sigma \Delta x}{2 \varepsilon} u_{j+\frac{1}{2}}, \\
u_{j+1}-p_{j+1}=u_{j+\frac{1}{2}}-p_{j+\frac{1}{2}}+\frac{\sigma \Delta x}{2 \varepsilon} u_{j+\frac{1}{2}} .
\end{array}\right.
$$

- To finish, we take the following source term $\frac{1}{2}\left(u_{j+\frac{1}{2}}+u_{j-\frac{1}{2}}\right)$.

Gosse-Toscani scheme:

$$
\left\{\begin{array}{l}
\frac{p_{j}^{n+1}-p_{j}^{n}}{n}+M \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \varepsilon \Delta x}-M \frac{p_{j+1}^{n}-2 p_{j}^{n}+p_{j-1}^{n}}{2 \varepsilon \Delta x}=0, \\
\frac{u_{j}^{n+1}-u_{j}^{t}}{\Delta t}+M \frac{p_{j+1}^{n}-p_{j-1}^{n}}{2 \varepsilon \Delta x}-M \frac{u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}}{2 \varepsilon \Delta x}+M \frac{\sigma}{\varepsilon^{2}} u_{j}^{n}=0,
\end{array}\right.
$$

with $M=\frac{2 \varepsilon}{2 \varepsilon+\sigma \Delta x}$.

- Consistency error of the Gosse-Toscani scheme: $O(\Delta x+\Delta t)$.
- Explicit CFL: $\Delta t\left(\frac{1}{\Delta x \varepsilon}\right) \leq 1$, Semi-implicit CFL : $\Delta t\left(\frac{1}{\Delta x \varepsilon+\Delta x^{2}}\right) \leq 1$.

Numerical example

- Validation test for the AP scheme: the data are $p(0, x)=G(x)$ with $G(x)$ a Gaussian $u(0, x)=0$ and $\sigma=1, \varepsilon=0.001$.

Scheme	L^{1} error	CPU time
Godunov, 10000 cells	0.0366	1485 m 4.26 s
Godunov, 500 cells	0.445	0 m 24.317 s
AP, 500 cells	0.0001	0 m 15.22 s
AP, 50 cells	0.0065	0 m 0.054 s

Schémas "Asymptotic preserving" 2D

- Classical extension in 2D of the Jin-Levermore scheme: modify the upwind fluxes (1D fluxes write in the normal direction) plugging the steady-state in the fluxes.

- $l_{j k}$ and $\mathbf{n}_{j k}$ the normal and length associated with the edge $\partial \Omega_{j k}$.

Asymptotic limit of the hyperbolic scheme:

$$
\left|\Omega_{j}\right| \partial_{t} p_{j}(t)-\frac{1}{\sigma} \sum_{k} \iota_{j k} \frac{p_{k}^{n}-p_{j}^{n}}{d\left(\mathbf{x}_{j}, \mathbf{x}_{k}\right)}=0 .
$$

- $\left\|P_{h}^{0}-P_{h}\right\| \rightarrow 0$ only on strong geometrical conditions.
- Additional difficulty in 2D: The basic extension of AP schemes do not converge on 2D general meshes $\forall \varepsilon$.

Example of unstructured meshes

Random mesh

Random triangular mesh

Collela mesh

AP scheme for the P_{1} model

Nodal scheme: linear case

- Linear case: P_{1} model

$$
\left\{\begin{array}{l}
\partial_{t} p+\frac{1}{\varepsilon} \operatorname{div}(\mathbf{u})=0, \\
\partial_{t} \mathbf{u}+\frac{1}{\varepsilon} \nabla p=-\frac{\sigma}{\varepsilon^{2}} \mathbf{u} .
\end{array} \quad \longrightarrow \partial_{t} p-\operatorname{div}\left(\frac{1}{\sigma} \nabla p\right)=0 .\right.
$$

Idea:

Nodal finite volume methods for P_{1} model + AP and WB method.

Nodal schemes:

The fluxes are localized at the nodes of the mesh (for the classical scheme this is at the edge).

Notations

■ Nodal geometrical quantities $\mathbf{C}_{j r}=\nabla_{\mathbf{x}_{r}}\left|\Omega_{j}\right|$.

- $\sum_{j} \mathbf{C}_{j r}=\sum_{r} \mathbf{C}_{j r}=\mathbf{0}$.

2D AP schemes

Nodal AP schemes

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} p_{j}(t)+\frac{1}{\varepsilon} \sum_{r}\left(\mathbf{u}_{r}, \mathbf{C}_{j r}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \mathbf{u}_{j}(t)+\frac{1}{\varepsilon} \sum_{r} \mathbf{p c}_{j r}=S_{j}
\end{array}\right.
$$

- Classical nodal fluxes:

$$
\left\{\begin{array}{l}
\mathbf{p c}_{j r}-p_{j} \mathbf{C}_{j r}=\widehat{\alpha}_{j r}\left(\mathbf{u}_{j}-\mathbf{u}_{r}\right) \\
\sum_{j} \mathbf{p \mathbf { c } _ { j r }}=\mathbf{0}
\end{array}\right.
$$

with $\widehat{\alpha}_{j r}=\frac{\mathbf{C}_{j r} \otimes \mathbf{C}_{j r}}{\left\|\mathbf{C}_{j r}\right\|}$.

- New fluxes obtained plugging steady-state $\nabla p=-\frac{\sigma}{\varepsilon} \mathbf{u}$ in the fluxes:

$$
\left\{\begin{array}{l}
\mathbf{p c _ { j r }}-p_{j} \mathbf{C}_{j r}=\widehat{\alpha}_{j r}\left(\mathbf{u}_{j}-\mathbf{u}_{r}\right)-\frac{\sigma}{\varepsilon} \widehat{\beta}_{j r} \mathbf{u}_{r}, \\
\left(\sum_{j} \widehat{\alpha}_{j r}+\frac{\sigma}{\varepsilon} \sum_{j} \widehat{\beta}_{j r}\right) \mathbf{u}_{r}=\sum_{j} p_{j} \mathbf{C}_{j r}+\sum_{j} \widehat{\alpha}_{j r} \mathbf{u}_{j} .
\end{array}\right.
$$

with $\widehat{\beta}_{j r}=\mathbf{C}_{j r} \otimes\left(\mathrm{x}_{r}-\mathrm{x}_{j}\right)$.
■ Source term: (1) $\mathrm{S}_{j}=-\frac{\sigma}{\varepsilon^{2}}\left|\Omega_{j}\right| \mathrm{u}_{j}$ ou (2) $\mathrm{S}_{j}=-\frac{\sigma}{\varepsilon^{2}} \sum_{r} \widehat{\beta}_{j r} \mathbf{u}_{r}, \quad \sum_{r} \widehat{\beta}_{j r}=\hat{I}_{d}\left|\Omega_{j}\right|$.

- Using the second source term and rewriting the scheme we obtain an local semi implicit scheme with a CFL independent of ε.

Assumptions for the convergence proof

Geometrical assumptions

■ $\left(\mathbf{u},\left(\sum_{r} \frac{\mathbf{c}_{j r} \otimes \mathbf{C}_{j r}}{\left|\mathbf{C}_{j r}\right|}\right) \mathbf{u}\right) \geq \beta h(\mathbf{u}, \mathbf{u})$,
■ $\left(\mathbf{u},\left(\sum_{j} \frac{\mathbf{c}_{j r} \otimes \mathbf{C}_{j r}}{\left|\mathbf{C}_{j r}\right|}\right) \mathbf{u}\right) \geq \gamma h(\mathbf{u}, \mathbf{u})$,
■ $\left(\mathbf{u},\left(\sum_{j} \mathbf{C}_{j r} \otimes\left(\mathbf{x}_{r}-\mathbf{x}_{j}\right)\right) \mathbf{u}\right) \geq \alpha h^{2}(\mathbf{u}, \mathbf{u})$.

- First and second assumptions: true on all non degenerated meshes.

■ Last assumption: we have obtained sufficient but not necessary conditions on the meshes to satisfy this assumption.

- Example for triangles: all the angles must be larger that 12 degrees.

Assumption on regularity and initial data

■ $\mathbf{u}(t=0, \mathbf{x})=-\frac{\varepsilon}{\sigma} \nabla p(t=0, \mathbf{x})$

- Regularity for exact data: $\mathbf{V}(t, \mathbf{x}) \in H^{4}(\Omega)$
- Regularity for initial data of the scheme: $\mathbf{V}_{h}(t=0, \mathbf{x}) \in L^{2}(\Omega)$

Uniform convergence in space

- Naive convergence estimate: $\left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{\text {naive }} \leq C \varepsilon^{-b} h^{c}$
- Idea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

$$
\begin{aligned}
& \left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{L^{2}} \leq \min \left(\left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{\text {naive }},\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\|+\left\|P_{h}^{0}-P^{0}\right\|+\left\|P^{\varepsilon}-P^{0}\right\|\right) \\
& \left.{ }_{P \rightarrow 0}{ }_{P}^{P_{h}^{\varepsilon}} \xrightarrow[\varepsilon \rightarrow 0]{\varepsilon \rightarrow 0}\right|_{P_{0}} ^{P_{h}^{0}}{ }_{h \rightarrow 0}^{0} \\
& \text { - Intermediary estimations: } \\
& \square\left\|P^{\varepsilon}-P^{0}\right\| \leq C_{a} \varepsilon^{a} \text {, } \\
& \square\left\|P_{h}^{0}-P^{0}\right\| \leq C_{d} h^{d} \text {, } \\
& \square\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\| \leq C_{e} \varepsilon^{e} \text {, } \\
& \square d \leq c, e \geq a \text {. }
\end{aligned}
$$

- We obtain:

$$
\left.\left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{L^{2}} \leq C \min \left(\varepsilon^{-b} h^{c}, \varepsilon^{a}+h^{d}+\varepsilon^{e}\right)\right)
$$

- Comparing ε and $\varepsilon_{\text {threshold }}=h^{\frac{a c}{a+b}}$ we obtain the final estimation:

$$
\left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{L^{2}} \leq h^{\frac{a c}{a+b}}
$$

Diffusion scheme

Limit diffusion scheme (P_{h}^{0})

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} p_{j}(t)-\sum_{r}\left(\mathbf{u}_{r}, \mathbf{C}_{j r}\right)=0, \\
\sum_{r} \hat{\alpha}_{j r} \mathbf{u}_{j}=\sum_{r} \hat{\alpha}_{j r} \mathbf{u}_{r}, \\
\sigma A_{r} \mathbf{u}_{r}=\sum_{j} p_{j} \mathbf{c}_{j r}, \quad A_{r}=-\sum_{j} \mathbf{c}_{j r} \otimes\left(\mathbf{x}_{r}-\mathbf{x}_{j}\right) .
\end{array}\right.
$$

- Problem: estimate $\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\|$.
- In practice, we have obtained $\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\| \leq C \frac{\varepsilon}{h}$.

Condition H:

The discrete Hessian of P_{h}^{0} can be bounded or the error estimate $\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\|$ can be obtained independently of the discrete Hessian.

Diffusion scheme

Limit diffusion scheme (P_{h}^{0})

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} p_{j}(t)-\sum_{r}\left(\mathbf{u}_{r}, \mathbf{c}_{j r}\right)=0, \\
\sum_{r} \hat{\alpha}_{j r} \mathbf{u}_{j}=\sum_{r} \hat{\alpha}_{j r} \mathbf{u}_{r}, \\
\sigma A_{r} \mathbf{u}_{r}=\sum_{j} p_{j} \mathbf{c}_{j r}, \quad A_{r}=-\sum_{j} \mathbf{c}_{j r} \otimes\left(\mathbf{x}_{r}-\mathbf{x}_{j}\right) .
\end{array}\right.
$$

In practice, we have obtained $\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\| \leq C \frac{\varepsilon}{h}$.

- Introduction of an intermediary diffusion scheme $D A_{h}^{\varepsilon}$.
- $D A_{h}^{\varepsilon}: P_{h}^{\varepsilon}$ scheme with $\partial_{t} \mathbf{F}_{j}=\mathbf{0}$.
- In the previous estimation we replace P_{h}^{0} by $D A_{h}^{\varepsilon}$.

Condition H:

The discrete Hessian of P_{h}^{0} can be bounded or the error estimate $\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\|$ can be obtained independently of the discrete Hessian.

Final results

Space result:

We assume that the assumptions are verified. There exist $C(T)>0$ such that:

$$
\left\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\right\|_{L^{2}([0, T] \times \Omega)} \leq C f(h, \varepsilon)\left\|p_{0}\right\|_{H^{4}(\Omega)} \leq C h^{\frac{1}{4}}\left\|p_{0}\right\|_{H^{4}(\Omega)}
$$

with

$$
f(h, \varepsilon)=\min \left(\sqrt{\frac{h}{\varepsilon}}, \varepsilon \max \left(1, \sqrt{\frac{\varepsilon}{h}}\right)+h+(h+\varepsilon)+\varepsilon\right)
$$

■ Case $\varepsilon \leq h:\left\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\right\| \leq C_{1} \min \left(\sqrt{\frac{\varepsilon}{h}}, 1\right) \leq C_{1} h$

- Case $\varepsilon \geq h:\left\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\right\| \leq C_{1} \min \left(\sqrt{\frac{h}{\varepsilon}}, \sqrt{\frac{\varepsilon^{3}}{h}}\right)$
- Introducing $\varepsilon_{\text {thresh }}=h^{\frac{1}{2}}$ we prove that the worst case is $\left\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\right\| \leq C_{2} h^{\frac{1}{4}}$.

Space-time result:

Wa assume that the assumptions are verified. There exist $C>0$ such that:

$$
\left\|\mathbf{V}^{\varepsilon}\left(t_{n}\right)-\mathbf{V}_{h}^{\varepsilon}\left(t_{n}\right)\right\|_{L^{2}(\Omega)} \leq C\left(f(h, \varepsilon)+\Delta t^{2}\right)\left\|p_{0}\right\|_{H^{4}(\Omega)}
$$

Remark: The condition H is not satisfied. The diffusion scheme used is $D A_{\varepsilon}$.

Intermediary results I

Estimation of $\left\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\right\|$:

We assume that assumptions are verified. There exist $C>0$ such that:

$$
\left\|\mathbf{V}_{h}^{\varepsilon}-\mathbf{V}^{\varepsilon}\right\|_{L^{\infty}\left((0, T): L^{2}(\Omega)\right)} \leq C \sqrt{\frac{h}{\varepsilon}}
$$

- Principle of proof:
\square Control the stability of the discrete quantities \mathbf{u}_{r} and \mathbf{u}_{j} by ε
\square We define the error $E(t)=\left\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\right\|_{L^{2}}$ and we estimate $E^{\prime}(t)$ using Young and Cauchy-Schwartz inequalities, stability estimates and integration in time.

Estimation of ||DA $A_{h}^{\epsilon}-P^{0} \|$:

Wa assume that the assumptions are verified. There exist $C_{1}>0$ such that:

$$
\left\|\mathbf{V}_{h}^{0}-\mathbf{V}^{0}\right\|_{L^{2}(\Omega)} \leq C_{1}(T)(h+\varepsilon), \quad 0<t \leq T
$$

- Principle of proof:
\square Control the stability of the discrete quantities $\nabla_{r} E$ and E_{j}.
\square Consistance study of Div and Grad discrete operators.
$\square L^{2}$ estimate using consistency error and Gronwall lemma.

Intermediary results II

Estimate $\left\|P_{h}^{\varepsilon}-D A_{h}^{\varepsilon}\right\|:$

We assume that the assumptions are verified. There exist $C_{2}(T)>0$ such that:

$$
\left\|\mathbf{V}_{h}^{\varepsilon}-\mathbf{V}_{h}\right\|_{L^{2}(\Omega)} \leq C_{2}(T) \varepsilon \max \left(1, \sqrt{\varepsilon h^{-1}}\right)+C h, \quad 0<t \leq T
$$

Estimate $\left\|P^{\varepsilon}-P^{0}\right\|$:

We assume that the assumptions are verified. There exist $C_{3}(T)>0$ such that:

$$
\left\|\mathbf{V}^{\varepsilon}-\mathbf{V}^{0}\right\|_{L^{2}(\Omega)} \leq C_{3}(T) \varepsilon, \quad 0<t \leq T
$$

- Principe of proof:
\square Write $P^{0}=P^{\varepsilon}+R\left(\right.$ resp $\left.D A_{h}^{\varepsilon}=P_{h}^{\varepsilon}+R\right)$ with R a residue.
\square Find a bound with ε of the residue.
$\square L^{2}$ estimate of the difference between the two models and between the two schemes.

Analysis of AP schemes: modified equations

- To understand the behavior of the scheme, we use the modified equations method.
- The modified equation associated with the Upwind scheme is

$$
\left\{\begin{aligned}
\partial_{t} p+\frac{1}{\varepsilon} \partial_{x} u-\frac{\Delta x}{2 \varepsilon} \partial_{x x} p & =0, \\
\partial_{t} u+\frac{1}{\varepsilon} \partial_{x} p-\frac{\Lambda_{x}}{2 \varepsilon} \partial_{x x} u & =-\frac{\sigma}{\varepsilon^{2}} u .
\end{aligned}\right.
$$

- Plugging $\varepsilon \partial_{x} p+O\left(\varepsilon^{2}\right)=-\sigma u$ in the first equation, we obtain the diffusion limit

$$
\partial_{t} p-\frac{1}{\sigma} \partial_{x x} p-\frac{\Delta x}{2 \varepsilon} \partial_{x x} p=0 .
$$

- Conclusion: the regime is captured only on fine grids.
- The modified equation associated to the Gosse-Toscani scheme is

$$
\left\{\begin{aligned}
\partial_{t} p+M \frac{1}{\varepsilon} \partial_{x} u-M \frac{\Delta x}{2^{\varepsilon}} \partial_{x x} p & =0, \\
\partial_{t} u+M \frac{1}{\varepsilon} \partial_{x} p-M \frac{\Delta x}{2 \varepsilon} \partial_{x x} u & =-M \frac{\sigma}{\varepsilon^{2}} u .
\end{aligned}\right.
$$

- Plugging $M \varepsilon \partial_{x} p+O\left(\varepsilon^{2}\right)=-M \sigma u$ in the first equation, we obtain the diffusion limit

$$
\partial_{t} p-\frac{M}{\sigma} \partial_{x x} p-\frac{1-M}{\sigma} \partial_{\chi x} p=0
$$

- Conclusion: the regime is capture only on all grids.

Construction of the AP scheme in 2D

- We must modify the viscosity to a consistent diffusion scheme with the good coefficient on coarse grids.
- We must also discretize correctly the source term and the gradient of pressure to obtain a consistent diffusion scheme on fine grids (WB schemes).

AP scheme vs classical scheme

- Test case: heat fundamental solution. Results for different hyperbolic scheme with $\varepsilon=0.001$ on Kershaw mesh.

Diffusion solution

Standard AP scheme

Non AP scheme

Uniform convergence

- ε dependent periodic solution for the P_{1} model.
- $p(t, \mathbf{x})=\left(\alpha(t)+\frac{\varepsilon^{2}}{\sigma} \alpha^{\prime}(t)\right) \cos (\pi x) \cos (\pi y)$
$\square \mathbf{u}(t, \mathbf{x})=\left(-\frac{\varepsilon}{\sigma} \alpha(t) \sin (\pi x) \cos (\pi y), \quad-\frac{\varepsilon}{\sigma} \alpha(t) \sin (\pi y) \cos (\pi x)\right)$
- Convergence study for $\varepsilon=h^{\gamma}$ on random mesh.

- Numerical results show that the error is homogenous to $O\left(h \varepsilon+h^{2}\right)$.
- Theoretical estimate that we can hope: $O\left((h \varepsilon)^{\frac{1}{2}}+h\right)$.
- Non optimal estimation in the intermediary regime.

Uniform convergence

- ε dependent periodic solution for the P_{1} model.
- $p(t, \mathbf{x})=\left(\alpha(t)+\frac{\varepsilon^{2}}{\sigma} \alpha^{\prime}(t)\right) \cos (\pi x) \cos (\pi y)$
$\square \mathbf{u}(t, \mathbf{x})=\left(-\frac{\varepsilon}{\sigma} \alpha(t) \sin (\pi x) \cos (\pi y), \quad-\frac{\varepsilon}{\sigma} \alpha(t) \sin (\pi y) \cos (\pi x)\right)$
- Convergence study for $\varepsilon=h^{\gamma}$ on random mesh.

- Numerical results show that the error is homogenous to $O\left(h \varepsilon+h^{2}\right)$.
- Theoretical estimate that we can hope: $O\left((h \varepsilon)^{\frac{1}{2}}+h\right)$.
- Non optimal estimation in the intermediary regime.

Extension to the Euler model

Euler equation with external forces

- Euler equation with gravity and friction:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\frac{1}{\varepsilon^{\alpha}} \operatorname{div}(\rho \mathbf{u})=0 \\
\partial_{t} \rho \mathbf{u}+\frac{1}{\varepsilon^{\alpha}} \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})+\frac{1}{\varepsilon^{\alpha}} \nabla p=-\frac{1}{\varepsilon^{\alpha}}\left(\rho \nabla \phi+\frac{\sigma}{\varepsilon^{\beta}} \rho \mathbf{u}\right) \\
\partial_{t} \rho \mathbf{e}+\frac{1}{\varepsilon^{\alpha}} \operatorname{div}(\rho \mathbf{u e})+\operatorname{div}(p \mathbf{u})=-\frac{1}{\varepsilon^{\alpha}}\left(\rho(\nabla \phi, \mathbf{u})+\frac{\sigma}{\varepsilon^{\beta}} \rho(\mathbf{u}, \mathbf{u})\right)
\end{array}\right.
$$

- with ϕ the gravity potential, σ the friction coefficient.

Subset of solutions :

- Hydrostatic Steady-state ($\alpha=1, \beta=0$):

$$
\left\{\begin{array}{l}
\mathbf{u}=\mathbf{0} \\
\nabla p=-\rho \nabla \phi
\end{array}\right.
$$

- High friction limit ($\alpha=0, \beta=1$), no gravity: $\mathbf{u}=\mathbf{0}$
- Diffusion limit $(\alpha=1, \beta=1)$:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0 \\
\partial_{t} \rho e+\operatorname{div}(\rho \mathbf{u e})+p \operatorname{div} \mathbf{u}=0 \\
\mathbf{u}=-\frac{1}{\sigma}\left(\nabla \phi+\frac{1}{\rho} \nabla p\right)
\end{array}\right.
$$

Design of AP nodal scheme I

Idea:

Modify the Lagrange+remap classical scheme with the Jin-Levermore method

- Classical Lagrange+remap scheme (LP scheme):

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\frac{1}{\varepsilon^{\alpha}}\left(\sum_{R_{+}} \mathbf{u}_{j r} \rho_{j}+\sum_{R_{-}} \mathbf{u}_{j r} \rho_{k(r)}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j} \mathbf{u}_{j}+\frac{1}{\varepsilon^{\alpha}}\left(\sum_{R_{+}} \mathbf{u}_{j r}(\rho \mathbf{U})_{j}+\sum_{R_{-}} \mathbf{u}_{j r}(\rho \mathbf{U})_{k(r)}+\sum_{r} \mathbf{p} \mathbf{C}_{j r}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j} e_{j}+\frac{1}{\varepsilon^{\alpha}}\left(\sum_{R_{+}} \mathbf{u}_{j r}(\rho e)_{j}+\sum_{R_{-}} \mathbf{u}_{j r}(\rho e)_{k(r)}+\sum_{r}\left(\mathbf{p} C_{j r}, \mathbf{u}_{r}\right)\right)=0
\end{array}\right.
$$

with Lagrangian fluxes

$$
\left\{\begin{array}{l}
\mathbf{G}_{j r}=p_{j} \mathbf{C}_{j r}+\rho_{j} c_{j} \hat{\alpha}_{j r}\left(\mathbf{u}_{j}-\mathbf{u}_{r}\right) \\
\sum_{j} \rho_{j} c_{j} \hat{\alpha}_{j r} \mathbf{u}_{r}=\sum_{j} p_{j} \mathbf{C}_{j r}+\sum_{j} \rho_{j} c_{j} \hat{\alpha}_{j r} \mathbf{u}_{j}
\end{array}\right.
$$

- Advection fluxes: $\mathbf{u}_{j r}=\left(\mathbf{C}_{j r}, \mathbf{u}_{r}\right), R_{+}=\left(r / \mathbf{u}_{j r}>0\right), R_{-}=\left(r / \mathbf{u}_{j r}<0\right)$ et $\rho_{k(r)}=\frac{\sum_{j / \mathbf{u}_{j r}>0} \mathbf{u}_{j r} \rho_{j}}{\sum_{j / \mathbf{u}_{j r}>0} \mathbf{u}_{j r}}$.

Design of AP nodal scheme II

Jin Levermore method:

Plug the relation $\nabla p+O\left(\varepsilon^{2}\right)=-\rho \nabla \phi-\frac{\sigma}{\varepsilon} \rho \mathbf{u}$ in the Lagrangian fluxes

- The modified scheme is given by

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\frac{1}{\varepsilon^{\alpha}}\left(\sum_{R_{+}} \mathbf{u}_{j r} \rho_{j}+\sum_{R_{-}} \mathbf{u}_{j r} \rho_{k(r)}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j} \mathbf{u}_{j}+\frac{1}{\varepsilon^{\alpha}}\left(\sum_{R_{+}} \mathbf{u}_{j r}(\rho \mathbf{u})_{j}+\sum_{R_{-}} \mathbf{u}_{j r}(\rho \mathbf{u})_{k(r)}+\sum_{r} \mathbf{p} \mathbf{C}_{j r}\right) \\
=-\frac{1}{\varepsilon^{\alpha}}\left(\sum_{r} \hat{\beta}_{j r}(\rho \nabla \phi)_{r}+\frac{\sigma}{\varepsilon^{\beta}} \sum_{r} \rho_{r} \hat{\beta}_{j r} \mathbf{u}_{r}\right) \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\frac{1}{\varepsilon^{\alpha}}\left(\sum_{R_{+}} \mathbf{u}_{j r}(\rho e)_{j}+\sum_{R_{-}} \mathbf{u}_{j r}(\rho e)_{k(r)}+\sum_{r}\left(\mathbf{p} \mathbf{C}_{j r}, \mathbf{u}_{r}\right)\right) \\
=-\frac{1}{\varepsilon^{\alpha}}\left(\sum_{r}\left(\hat{\beta}_{j r}(\rho \nabla \phi)_{r}, \mathbf{u}_{r}\right)+\frac{\sigma}{\varepsilon^{\beta}} \sum_{r} \rho_{r}\left(\mathbf{u}_{r}, \hat{\beta}_{j r} \mathbf{u}_{r}\right)\right)
\end{array}\right.
$$

with the new Lagrangian fluxes

$$
\left\{\begin{array}{l}
\mathbf{p} \mathbf{C}_{j r}=p_{j} \mathbf{C}_{j r}+\rho_{j} c_{j} \hat{\alpha}_{j r}\left(\mathbf{u}_{j}-\mathbf{u}_{r}\right)-\hat{\beta}_{j r}(\rho \nabla \phi)_{r}-\frac{\sigma}{\varepsilon^{\beta}} \rho_{r} \hat{\beta}_{j r} \mathbf{u}_{r} \\
\left(\sum_{j} \rho_{j} c_{j} \hat{\alpha}_{j r}+\frac{\sigma}{\varepsilon^{\beta}} \rho_{r} \sum_{j} \hat{\beta}_{j r}\right) \mathbf{u}_{r}=\sum_{j} p_{j} \mathbf{C}_{j r}+\sum_{j} \rho_{j} c_{j} \hat{\alpha}_{j r} \mathbf{u}_{j}-\left(\sum_{j} \hat{\beta}_{j r}\right)(\rho \nabla \phi)_{r}
\end{array}\right.
$$

■ and $(\rho \nabla \phi)_{r}$ a discretization of $\rho \nabla \phi$ at the interface.

Properties

Limit diffusion scheme:

If the local matrices are invertible then the LR-AP scheme tends to the following scheme

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\left(\sum_{R_{+}}\left(\mathbf{C}_{j r}, \mathbf{u}_{r}\right) \rho_{j}+\sum_{R_{-}}\left(\mathbf{C}_{j r}, \mathbf{u}_{r}\right) \rho_{k(r)}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\left(\sum_{R_{+}}\left(\mathbf{C}_{j r}, \mathbf{u}_{r}\right)(\rho e)_{j}+\sum_{R_{-}}\left(\mathbf{C}_{j r}, \mathbf{u}_{r}\right)(\rho e)_{k(r)}+p_{j} \sum_{r}\left(\mathbf{C}_{j r}, \mathbf{u}_{r}\right)\right)=0 \\
\sigma \rho_{r}\left(\sum_{j} \hat{\beta}_{j r}\right) \mathbf{u}_{r}=\sum_{j} p_{j} \mathbf{C}_{j r}-\left(\sum_{j} \hat{\beta}_{j r}\right)(\rho \nabla \phi)_{r}
\end{array}\right.
$$

- The nodal gradient formula $\nabla_{r} p=\left(\sum_{j} \hat{\beta}_{j r}\right)^{-1}\left(\sum_{j} p_{j} \mathbf{C}_{j r}\right)$ is a consistent and convergent approximation of the gradient on unstructured meshes (Consistency study+Gronwall's lemma).
- For $p=K \rho$, numerically the schemes converge at the first scheme.
- If we use a second order advection scheme for the remap part. The full scheme converges with the second order.
- Open question: Verify this for a non isothermal pressure law as perfect gas law.

Well balanced property

Well balanced property

- We define the discrete gradient $\nabla_{r} p=-\left(\sum_{j} \hat{\beta}_{j r}\right)^{-1} \sum_{j} p_{j} \mathbf{C}_{j r}$ and ρ_{r} an average of ρ_{j} around \mathbf{x}_{r}.
- If the initial data are given by the discrete steady-state $\nabla_{r} p=-(\rho \nabla \phi)_{r}, \rho_{j}^{n+1}=\rho_{j}^{n}$, $\mathbf{u}_{j}^{n+1}=\mathbf{u}_{j}^{n}$ and $e_{j}^{n+1}=e_{j}^{n}$,
- Remark: The spatial error for a steady-state is only governed by the error between discrete steady-state and the continuous steady-state

High order reconstruction of steady-state

- Aim: Conserve the stability property of the first order scheme, but discretize the steady-state with a high order accuracy or exactly.
- Method: design high order discrete steady-state

■ The discrete steady-state is given $\left(\sum_{j} \hat{\beta}_{j r}\right)^{-1} \sum_{j} p_{j} \mathbf{C}_{j r}=-\rho_{r}\left(\sum_{j} \hat{\beta}_{j r}\right)^{-1} \sum_{j} \phi_{j} \mathbf{C}_{j r}$.

- If ρ_{r} is an arithmetic average around a node r, this discrete steady-state is a second order approximation of the continuous one.

High order discretization of the steady-state

- To begin we consider the steady-state $\nabla p=-\rho \nabla \phi$
- we integrate on the dual cell Ω_{r}^{*} (volume V_{r}) to obtain

$$
V_{r}\left(\frac{1}{V_{r}} \int_{\Omega_{r}^{*}} \nabla p(\mathbf{x})\right)=-V_{r}\left(\frac{1}{V_{r}} \int_{\Omega_{r}^{*}} \rho(\mathbf{x}) \nabla \phi(\mathbf{x})\right) .
$$

- We introduce 3 polynomials $\bar{\rho}_{r}(\mathbf{x})$ (order q$)$, $\bar{p}_{r}(\mathbf{x})$ and $\bar{\phi}_{r}(\mathbf{x})$ ($\mathrm{q}+1$ order) with

$$
\int_{\Omega_{r}^{*}} \bar{\rho}_{r}(\mathrm{x})=\left|\Omega_{l}\right| \rho_{l}, \quad \int_{\Omega_{r}^{*}} \bar{p}_{r}(\mathrm{x})=\left|\Omega_{l}\right| p_{l}, \quad \int_{\Omega_{r}^{*}} \bar{\phi}_{r}(\mathrm{x})=\left|\Omega_{l}\right| \phi_{l}
$$

and $I \in S(r)(S(r)$ a subset of cell around the node $r)$.

- Now we incorporate this high-order reconstruction in the scheme. For this we need to have a pressure gradient which corresponds to the viscosity of the scheme.
- We obtain a q-order steady-state:

$$
-\underbrace{\left(\sum_{j} \hat{\beta}_{j r}\right)^{-1} \sum_{j} p_{j} \mathbf{C}_{j r}}_{\nabla p_{r}}=-(\rho \nabla \phi)_{r}^{H O}
$$

with

$$
(\rho \nabla \phi)_{r}^{H O}=\frac{1}{V_{r}}\left(\left(\int_{\Omega_{r}^{*}} \nabla p(\mathbf{x})\right)+\left(\int_{\Omega_{r}^{*}} \rho(\mathbf{x}) \nabla \phi(\mathbf{x})\right)\right)+\left(\sum_{j} \hat{\beta}_{j r}\right)^{-1} \sum_{j} p_{j} \mathbf{C}_{j r}
$$

Numerical result : large opacity

- Test case: sod problem with $\sigma>0, \varepsilon=1$ and $\nabla \phi=\mathbf{0}$.
- $\sigma=1$

AP scheme, ρ
non-AP scheme, ρ

AP scheme, ϵ

non-AP scheme, ϵ

Numerical result : large opacity

- Test case: sod problem with $\sigma>0, \varepsilon=1$ and $\nabla \phi=\mathbf{0}$.

■ $\sigma=10^{6}$

AP scheme, ρ

non-AP scheme, ρ

Result for steady-state

- 1D Steady-state: $\rho(t, x)=3+2 \sin (2 \pi x), u(t, x)=0$

■ $p(t, x)=3+3 \sin (2 \pi x)-\frac{1}{2} \cos (4 \pi x)$ and $\phi(x)=-\sin (2 \pi x)$. Random 1D Grid.

Cells	LR		LR-AP(2)		LR-AP O(3)		LR-AP O(4)	
	Error	Q	Error	Qror	Error	Error	q	
20	0.8335	-	0.0102	-	0.0079	-	0.0067	-
40	0.4010	1.05	0.0027	1.91	$8.4 \mathrm{E}-4$	3.23	$1.5 \mathrm{E}-4$	5.48
80	0.2065	0.96	$7.0 \mathrm{E}-4$	1.95	$7.7 \mathrm{E}-5$	3.45	$4.1 \mathrm{E}-6$	5.19
160	0.1014	1.02	$1.7 \mathrm{E}-4$	2.04	$7.0 \mathrm{E}-6$	3.46	$1.0 \mathrm{E}-7$	5.36

- 2D Steady-state: $\rho(t, \mathbf{x})=e^{-\mathbf{x}, \mathbf{g}}, u(t, \mathbf{x})=0, p(t, \mathbf{x})=e^{-\mathbf{x}, \mathbf{g}}$ ans $\phi=(\mathbf{x}, \mathbf{g})$.

	Cells	LR		LR-AP O(2)		LR-AP O(3)	
		Error	q	Error	q	Error	q
Cartesian	16×16	0.04132	1.07	0.00147	2.34	$5.47 \mathrm{E}-6$	3.8
Mesh	32×32	0.02013	1.04	$3.28 \mathrm{E}-4$	2.16	$3.67 \mathrm{E}-7$	3.9
	64×64	0.00993	1.02	$7.65 \mathrm{E}-5$	2.1	$2.38 \mathrm{E}-8$	3.95
	128×128	0.00493	1.01	$1.90 \mathrm{E}-5$	2.1	$1.52 \mathrm{E}-9$	3.96
	16×16	0.05465	0.86	0.00155	2.7	$8.25 \mathrm{E}-6$	3.47
Random	12×32	0.02940	0.89	$3.4 \mathrm{E}-4$	2.18	$7.55 \mathrm{E}-7$	3.45
Cartesian	32×32						
Mesh	64×64	0.01488	0.98	$7.98 \mathrm{E}-5$	2.09	$8.5 \mathrm{E}-8$	3.15
	128×128	0.00742	1.00	$2.06 \mathrm{E}-5$	1.95	$2.37 \mathrm{E}-8$	1.84

Result for steady-state

- 1D Steady-state: $\rho(t, x)=3+2 \sin (2 \pi x), u(t, x)=0$

■ $p(t, x)=3+3 \sin (2 \pi x)-\frac{1}{2} \cos (4 \pi x)$ and $\phi(x)=-\sin (2 \pi x)$. Random 1D Grid.

Cells	LR		LR-AP(2)		LR-AP O(3)		LR-AP O(4)	
	Error	Q	Error	Qror	Error	Error	q	
20	0.8335	-	0.0102	-	0.0079	-	0.0067	-
40	0.4010	1.05	0.0027	1.91	$8.4 \mathrm{E}-4$	3.23	$1.5 \mathrm{E}-4$	5.48
80	0.2065	0.96	$7.0 \mathrm{E}-4$	1.95	$7.7 \mathrm{E}-5$	3.45	$4.1 \mathrm{E}-6$	5.19
160	0.1014	1.02	$1.7 \mathrm{E}-4$	2.04	$7.0 \mathrm{E}-6$	3.46	$1.0 \mathrm{E}-7$	5.36

- 2D Steady-state: $\rho(t, \mathbf{x})=e^{-\mathbf{x}, \mathbf{g}}, u(t, \mathbf{x})=0, p(t, \mathbf{x})=e^{-\mathbf{x}, \mathbf{g}}$ ans $\phi=(\mathbf{x}, \mathbf{g})$.

	Cells	LR		LR-AP O(2)		LR-AP O(3)	
		q	Error	q	Error	q	
Collela	16×16	0.08902	0.45	0.00197	2.44	$2.97 \mathrm{E}-5$	1.9
Mesh	32×32	0.05725	0.63	$5.9 \mathrm{E}-4$	1.74	$5.43 \mathrm{E}-6$	2.45
	64×64	0.03232	0.82	$1.6 \mathrm{E}-4$	1.88	$5.93 \mathrm{E}-7$	3.19
	128×128	0.01711	0.92	$4.5 \mathrm{E}-5$	1.86	$4.68 \mathrm{E}-8$	3.66
	16×16	0.08376	0.83	$3.38 \mathrm{E}-4$	2.36	$6.13 \mathrm{E}-6$	3.84
Kershaw	32×32	0.04253	0.98	$7.29 \mathrm{E}-5$	2.24	$3.97 \mathrm{E}-7$	3.95
Mesh	64×64	0.02060	1.05	$7.87 \mathrm{E}-5$	2.13	$2.03 \mathrm{E}-8$	4.3
	128×128	0.00988	1.06	$4.34 \mathrm{E}-6$	1.9	$1.77 \mathrm{E}-9$	3.52

Conclusion and perspectives

- Conclusion
$\square P_{1}$ model: First AP scheme on unstructured meshes (now other schemes have been developed).
$\square P_{1}$ model: Uniform proof of convergence on unstructured meshes in 1D and 2D for the implicit scheme.
\square An extension for general Friedrich's systems have been also studied (algebraic micro-macro decomposition)
\square Euler model with external force: AP schemes for the high friction regime.
\square Euler model with external force: new high-order reconstruction of the hydrostatic steady-state.
\square Problem for all the schemes : spurious mods in few cases (example: Cartesian mesh + Dirac Initial data).
- Possible perspectives
$\square P_{1}$ model: Theoretical study of the explicit and semi-implicit scheme (CFL independent of ε).
\square Euler model: Entropy study for the AP-WB scheme.
\square Euler model: Validate on analytic case the convergence of the diffusion scheme for nonlinear pressure law.
\square Find a generic procedure to stabilize the nodal schemes (B. Després and E. Labourasse for the Lagrangian Euler equations).

Stage CEA DAM

- Project: "implicit scheme and preconditioning for radiative transfer" models" with Xavier Blanc, Emmanuel Labourasse + Master student ?

Transport equation (photonics neutronic):

\square The distribution function $f(t, \mathbf{x}, \boldsymbol{\Omega})$ with $\boldsymbol{\Omega}$ the direction, c the light speed satisfy

$$
\partial_{t} f+c \Omega \cdot \nabla f=c \sigma\left(\int_{S^{2}} f d \Omega-f\right)
$$

\square The kinetic equations are approximated by linear hyperbolic P_{n} systems:

$$
\partial_{t} \mathbf{U}+c A_{x} \partial_{x} \mathbf{U}+c A_{y} \partial_{y} \mathbf{U}+c A_{z} \partial_{z} \mathbf{U}=-c \sigma R \mathbf{U}
$$

- Important regimes: free transport regime $(\sigma \rightarrow 0)$: exact transport of the solution and diffusion regime ($\sigma \rightarrow \infty$).
- Problems for explicit scheme: Very large and stiff hyperbolic systems. Stiff hyperbolic CFL for explicit schemes, Stiff parabolic CFL condition for the AP schemes.
- Problems for implicit scheme: the large hyperbolic system (bad structure) and the large ratio between wave velocities $\left(\left\{\lambda_{\min } c, \ldots, \lambda_{\max } c\right\}\right.$ with $\left.\lambda_{\min } \approx-1, \lambda_{\max } \approx 1\right)$.
- Aim: Test a physic-based preconditioning + GMRES for the P_{1} model. Extend this preconditioning to the P_{n} models and the transport regime.

Thanks

Thank you

