Nodal finite volumes for hyperbolic systems with source terms on unstructured meshes

August 17, 2015

[^0]
Outline

Mathematical and physical context

AP scheme for the P_{1} model

Extension to the Euler model

Mathematic and physical context

Stiff hyperbolic systems

- Stiff hyperbolic system with source terms:

$$
\partial_{t} \mathbf{U}+\frac{1}{\varepsilon} \partial_{x} F(\mathbf{U})+\frac{1}{\varepsilon} \partial_{y} G(\mathbf{U})=\frac{1}{\varepsilon} S(\mathbf{U})-\frac{\sigma}{\varepsilon^{2}} R(\mathbf{U}), \mathbf{U} \in R^{n}
$$

with $\varepsilon \in[0,1]$ et $\sigma>0$.

- Subset of solutions given by the balance between the source terms and the convective part:
\square Diffusion solutions for $\varepsilon \rightarrow 0$ and $S(\mathbf{U})=0$:

$$
\partial_{t} \mathbf{V}-\operatorname{div}(K(\nabla \mathbf{V}, \sigma))=0, \quad \mathbf{V} \in \operatorname{Ker} R .
$$

\square Steady states for $\sigma=0$ et $\varepsilon \rightarrow 0$:

$$
\partial_{x} F(\mathbf{U})+\partial_{y} G(\mathbf{U})=S(\mathbf{U}) .
$$

- Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative hydrodynamic for inertial fusion (hydrodynamic + linear transport of photon).

Well-Balanced schemes

- Discretization of physical steady states is important (Lack at rest for Shallow water equations, hydrostatic equilibrium for astrophysical flows ..)
- Classical scheme: the physical steady states or a good discretization of the steady states are not the equilibriums of the scheme.
- Consequence: Spurious numerical velocities larger than physical velocities for nearly or exact uniform flows.

WB scheme: definitions

\square Exact Well-Balanced scheme: is a scheme exact for continuous steady-states.
\square Well-Balanced scheme: is a scheme exact for discrete steady-states at the interfaces.

- For shallow water model: in general the schemes are exact WB schemes.
- For Euler model: in general the schemes are WB schemes.

Schémas "Asymptotic preserving"

- P_{1} model:

$$
\left\{\begin{aligned}
\partial_{t} E+\frac{1}{\varepsilon} \partial_{x} F & =0 \\
\partial_{t} F+\frac{1}{\varepsilon} \partial_{x} E & =-\frac{\sigma}{\varepsilon^{2}} F
\end{aligned}\right.
$$

$$
\longrightarrow \partial_{t} E-\partial_{x}\left(\frac{1}{\sigma} \partial_{x} E\right)=0
$$

Figure: AP diagram

- Consistency of Godunov-type schemes: $O\left(\frac{\Delta x}{\varepsilon}+\Delta t\right)$.
- CFL condition: $\Delta t\left(\frac{1}{\Delta x \varepsilon}+\frac{\sigma}{\varepsilon^{2}}\right) \leq 1$.
- Consistency of AP schemes: $O(\Delta x+\Delta t)$.
- CFL condition:
$\Delta t\left(\frac{1}{\Delta x \varepsilon+\frac{\Delta x^{2}}{\sigma}}\right) \leq 1$.
- AP vs non AP schemes: Important reduction of CPU cost.
- AP schemes are obtained plugging the source term into the fluxes (WB technic).

AP Godunov schemes

■ Jin-Levermore scheme

- Principle: plug the balance law $\partial_{x} E=-\frac{\sigma}{\varepsilon} F+O\left(\varepsilon^{2}\right)$ in the fluxes.

AP Godunov schemes

■ Jin-Levermore scheme

- Principle: plug the balance law $\partial_{x} E=-\frac{\sigma}{\varepsilon} F+O\left(\varepsilon^{2}\right)$ in the fluxes.
we write the relations

$$
\left\{\begin{array}{l}
E\left(x_{j}\right)=E\left(x_{j+\frac{1}{2}}\right)+\left(x_{j}-x_{j+\frac{1}{2}}\right) \partial_{x} E\left(x_{j+\frac{1}{2}}\right), \\
E\left(x_{j+1}\right)=E\left(x_{j+\frac{1}{2}}\right)+\left(x_{j+1}-x_{j+\frac{1}{2}}\right) \partial_{x} E\left(x_{j+\frac{1}{2}}\right) .
\end{array}\right.
$$

AP Godunov schemes

■ Jin-Levermore scheme

- Principle: plug the balance law $\partial_{x} E=-\frac{\sigma}{\varepsilon} F+O\left(\varepsilon^{2}\right)$ in the fluxes.
we write the relations

$$
\left\{\begin{array}{l}
E\left(x_{j}\right)=E\left(x_{j+\frac{1}{2}}\right)-\left(x_{j}-x_{j+\frac{1}{2}}\right) \frac{\sigma}{\varepsilon} F\left(x_{j+\frac{1}{2}}\right), \\
E\left(x_{j+1}\right)=E\left(x_{j+\frac{1}{2}}\right)-\left(x_{j+1}-x_{j+\frac{1}{2}}\right) \frac{\sigma}{\varepsilon} F\left(x_{j+\frac{1}{2}}\right) .
\end{array}\right.
$$

AP Godunov schemes

■ Jin-Levermore scheme

- Principle: plug the balance law $\partial_{x} E=-\frac{\sigma}{\varepsilon} F+O\left(\varepsilon^{2}\right)$ in the fluxes.
we write the relations

$$
\left\{\begin{array}{l}
E\left(x_{j}\right)=E\left(x_{j+\frac{1}{2}}\right)-\left(x_{j}-x_{j+\frac{1}{2}}\right) \frac{\sigma}{\varepsilon} F\left(x_{j+\frac{1}{2}}\right), \\
E\left(x_{j+1}\right)=E\left(x_{j+\frac{1}{2}}\right)-\left(x_{j+1}-x_{j+\frac{1}{2}}\right) \frac{\sigma}{\varepsilon} F\left(x_{j+\frac{1}{2}}\right) .
\end{array}\right.
$$

We couple these relations with the fluxes

$$
\left\{\begin{array}{l}
F_{j}+E_{j}=F_{j+\frac{1}{2}}+E_{j+\frac{1}{2}}, \\
F_{j+1}-E_{j+1}=F_{j+\frac{1}{2}}-E_{j+\frac{1}{2}} .
\end{array}\right.
$$

AP Godunov schemes

■ Jin-Levermore scheme

- Principle: plug the balance law $\partial_{x} E=-\frac{\sigma}{\varepsilon} F+O\left(\varepsilon^{2}\right)$ in the fluxes.
we write the relations

$$
\left\{\begin{array}{l}
E\left(x_{j}\right)=E\left(x_{j+\frac{1}{2}}\right)-\left(x_{j}-x_{j+\frac{1}{2}}\right) \frac{\sigma}{\varepsilon} F\left(x_{j+\frac{1}{2}}\right), \\
E\left(x_{j+1}\right)=E\left(x_{j+\frac{1}{2}}\right)-\left(x_{j+1}-x_{j+\frac{1}{2}}\right) \frac{\sigma}{\varepsilon} F\left(x_{j+\frac{1}{2}}\right) . \\
\left\{\begin{array}{l}
F_{j}+E_{j}=F_{j+\frac{1}{2}}+E_{j+\frac{1}{2}}+\frac{\sigma \Delta x}{2 \varepsilon} F_{j+\frac{1}{2}}, \\
F_{j+1}-E_{j+1}=F_{j+\frac{1}{2}}-E_{j+\frac{1}{2}}+\frac{\sigma \Delta x}{2 \varepsilon} F_{j+\frac{1}{2}} .
\end{array}\right.
\end{array}\right.
$$

AP Godunov schemes

■ Jin-Levermore scheme

- Principle: plug the balance law $\partial_{x} E=-\frac{\sigma}{\varepsilon} F+O\left(\varepsilon^{2}\right)$ in the fluxes.

Jin Levermore scheme:

$$
\left\{\begin{array}{l}
\frac{E_{j}^{n+1}-E_{j}^{n}}{}+M \frac{F_{j+1}^{n}-F_{j-1}^{n}}{2 \varepsilon \Delta x}-M \frac{E_{j+1}^{n}-2 E_{j}^{n}+E_{j-1}^{n}}{2 \varepsilon \Delta x}=0, \\
\frac{F_{j}^{n+1}-F_{j}^{n}}{\Delta t}+\frac{E_{j+1}^{n}-E_{j-1}^{n}}{2 \varepsilon \Delta x}-\frac{F_{j+1}^{n}-2 F_{j}^{n}+F_{j-1}^{n}}{2 \varepsilon \Delta x}+\frac{\sigma}{\varepsilon^{2}} F_{j}^{n}=0,
\end{array}\right.
$$

with $M=\frac{2 \varepsilon}{2 \varepsilon+\sigma \Delta x}$.

AP Godunov schemes

- Jin-Levermore scheme
- Principle: plug the balance law $\partial_{x} E=-\frac{\sigma}{\varepsilon} F+O\left(\varepsilon^{2}\right)$ in the fluxes.

Gosse-Toscani scheme:

$$
\left\{\begin{array}{l}
\frac{E_{j}^{n+1}-E_{j}^{n}}{n}+M \frac{F_{j+1}^{n}-F_{j-1}^{n}}{22 \Delta x}-M \frac{E_{j+1}^{n}-2 E_{j}^{n}+E_{j-1}^{n}}{2 \varepsilon \Delta x}=0, \\
\frac{F_{j}^{n+1 t}-F_{j}^{n}}{\Delta t}+M \frac{E_{j+1}^{n}-E_{j-1}^{n}}{2 \varepsilon \Delta x}-M \frac{F_{j+1}^{n}-2 F_{j}^{n}+F_{j-1}^{n}}{2 \varepsilon \Delta x}+M \frac{\sigma}{\varepsilon^{2}} F_{j}^{n}=0,
\end{array}\right.
$$

avec $M=\frac{2 \varepsilon}{2 \varepsilon+\sigma \Delta x}$.

- consistency error for the

Jin-Levermore scheme:
\square first equation:

$$
O\left(\Delta x^{2}+\varepsilon \Delta x+\Delta t\right)
$$

\square second equation:

$$
O\left(\frac{\Delta x^{2}}{\varepsilon}+\Delta x+\Delta t\right)
$$

- Explicit CFL: $\Delta t\left(\frac{1}{\Delta x \varepsilon}+\frac{\sigma}{\varepsilon^{2}}\right) \leq 1$.
- Semi-implicit CFL: $\Delta t\left(\frac{1}{\Delta x \varepsilon}\right) \leq 1$.
- Principle of GT scheme:

JL-scheme with the source term
$\frac{1}{2}\left(F_{j+\frac{1}{2}}+F_{j-\frac{1}{2}}\right)$ gives the
Gosse-Toscani scheme.

- Consistency error of the Gosse-Toscani scheme:
$O(\Delta x+\Delta t)$.
- Explicit CFL: $\Delta t\left(\frac{1}{\Delta x \varepsilon}\right) \leq 1$.
- Semi-implicit CFL :

$$
\Delta t\left(\frac{1}{\Delta x \varepsilon+\Delta x^{2}}\right) \leq 1
$$

Numerical example

- Validation test for AP scheme: the data are $E(0, x)=G(x)$ with $G(x)$ a Gaussian $F(0, x)=0$ and $\sigma=1, \varepsilon=0.001$.

Godunov scheme

Scheme	L^{1} error	CPU time
Godunov, 10000 cells	0.0366	1485 m 4.26 s
Godunov, 500 cells	0.445	0 m 24.317 s
AP, 500 cells	0.0001	0 m 15.22 s
AP, 50 cells	0.0065	0 m 0.054 s

Non complete state of art

- S. Jin, D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, (1996).
- C. Berthon, R. Turpault, Asymptotic preserving HLL schemes, (2012).
- L. Gosse, G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, (2002).
- C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M_{1} model of radiative transfer in two space dimensions, (2007).
- C. Chalons, M. Girardin, S. Kokh, Large time step asymptotic preserving numerical schemes for the gas dynamics equations with source terms, (2013).
- C. Chalons, F. Coquel, E. Godlewski, P-A. Raviart, N. Seguin, Godunov-type schemes for hyperbolic systems with parameter dependent source, (2010).
- R. Natalini and M. Ribot, An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis, (2012).
- M. Zenk, C. Berthon et C. Klingenberg, A well-balanced scheme for the Euler equations with a gravitational potential, (2014).
■ J. Greenberg, A. Y. Leroux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations, (1996).
- R. Kappeli, S. Mishra, Well-balanced schemes for the Euler equations with gravitation, (2013).

Why unstructured meshes ?

- Applications: coupling between radiation and hydrodynamic
- In some hydrodynamic codes:

Lagrangian or ALE scheme cell-centered for multi-material problems.

- Example of meshes obtained using a ALE code.
- Aim: Design and analyze AP cell-centered for linear transport on general meshes.

Schémas "Asymptotic preserving" 2D

- Classical extension in 2D of the Jin-Levermore scheme : modify the upwind fluxes (1D fluxes write in the normal direction) plugging the steady states in the fluxes.

■ $l_{j k}$ and $\mathbf{n}_{j k}$ the normal and length associated with the edge $\partial \Omega_{j k}$.

Asymptotic limit of the scheme:

$$
\left|\Omega_{j}\right| \partial_{t} E_{j}(t)-\frac{1}{\sigma} \sum_{k} I_{j k} \frac{E_{k}^{n}-E_{j}^{n}}{d\left(\mathbf{x}_{j}, \mathbf{x}_{k}\right)}=0 .
$$

- $\left\|P_{h}^{0}-P_{h}\right\| \rightarrow 0$ only on strong geometrical conditions.

■ These AP schemes do not converge on 2D general meshes $\forall \varepsilon$.

Example of unstructured meshes

Random triangular mesh

Collela mesh

Kershaw mesh

AP scheme for the P_{1} model

Nodal scheme: linear case

- Linear case: P_{1} model

$$
\left\{\begin{array}{l}
\partial_{t} E+\frac{1}{\varepsilon} \operatorname{div}(\mathbf{F})=0, \\
\partial_{t} \mathbf{F}+\frac{1}{\varepsilon} \nabla E=-\frac{\sigma}{\varepsilon^{2}} \mathbf{F} .
\end{array} \quad \longrightarrow \partial_{t} E-\operatorname{div}\left(\frac{1}{\sigma} \nabla E\right)=0 .\right.
$$

Idea:

Nodal finit evolume methods for P_{1} model + AP and WB method.

Nodal schemes:

The fluxes are localized at the nodes of the mesh (for the classical scheme this is at the edge).

Notations

■ Nodal geometrical quantities $\mathbf{C}_{j r}=\nabla_{\mathbf{x}_{r}}\left|\Omega_{j}\right|$.

- $\sum_{j} \mathbf{C}_{j r}=\sum_{r} \mathbf{C}_{j r}=\mathbf{0}$.

2D AP schemes

Nodal AP scheme

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} E_{j}(t)+\frac{1}{\varepsilon} \sum_{r}\left(\mathbf{F}_{r}, \mathbf{C}_{j r}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \mathbf{F}_{j}(t)+\frac{1}{\varepsilon} \sum_{r} \mathbf{E c}_{j r}=\mathrm{S}_{j} .
\end{array}\right.
$$

- Classical nodal fluxes:

$$
\left\{\begin{array}{l}
\mathbf{E c}_{j r}-E_{j} \mathbf{C}_{j r}=\widehat{\alpha}_{j r}\left(\mathbf{F}_{j}-\mathbf{F}_{r}\right) \\
\sum_{j} \mathbf{E c}_{j r}=\mathbf{0}
\end{array}\right.
$$

with $\widehat{\alpha}_{j r}=\frac{\mathbf{C}_{j r} \otimes \mathbf{C}_{j r}}{\left\|\mathbf{C}_{j r}\right\|}$.

- New fluxes obtained plugging steady-state $\nabla E=-\frac{\sigma}{\varepsilon} \mathbf{F}$ in the fluxes:

$$
\left\{\begin{array}{l}
\mathbf{E c} \mathbf{c}_{j r}-E_{j} \mathbf{C}_{j r}=\widehat{\alpha}_{j r}\left(\mathbf{F}_{j}-\mathbf{F}_{r}\right)-\frac{\sigma}{\varepsilon} \widehat{\beta}_{j r} \mathbf{F}_{r}, \\
\left(\sum_{j} \widehat{\alpha}_{j r}+\frac{\sigma}{\varepsilon} \sum_{j} \widehat{\beta}_{j r}\right) \mathbf{F}_{r}=\sum_{j} E_{j} \mathbf{C}_{j r}+\sum_{j} \widehat{\alpha}_{j r} \mathbf{F}_{j}
\end{array}\right.
$$

with $\widehat{\beta}_{j r}=\mathbf{C}_{j r} \otimes\left(\mathbf{x}_{r}-\mathbf{x}_{j}\right)$.
■ Source term: (1) $\mathrm{S}_{j}=-\frac{\sigma}{\varepsilon^{2}}\left|\Omega_{j}\right| \mathrm{F}_{j}$ ou (2) $\mathrm{S}_{j}=-\frac{\sigma}{\varepsilon^{2}} \sum_{r} \widehat{\beta}_{j r} \mathrm{~F}_{r}, \quad \sum_{r} \widehat{\beta}_{j r}=\hat{I}_{d}\left|\Omega_{j}\right|$.

Time AP scheme

- New formulation of the scheme + semi discrete scheme.

Local semi-implicit scheme

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \frac{E_{j}^{n+1}-E_{j}^{n}}{\triangle t}+\frac{1}{\varepsilon} \sum_{r}\left(M_{r} \mathbf{F}_{r}, \mathbf{C}_{j r}\right)=0, \\
\left|\Omega_{j}\right| \frac{\mathbf{F}_{j}^{n+1}-\mathbf{F}_{j}^{n}}{\triangle t}+\frac{1}{\varepsilon} \sum_{r} \mathbf{E}_{j r}=-\frac{1}{\varepsilon}\left(\sum_{r} \widehat{\alpha}_{j r}\left(\widehat{I}_{d}-M_{r}\right)\right) \mathbf{F}_{j}^{n+1} .
\end{array}\right.
$$

with

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathbf{E c}_{j r}-E_{j} \mathbf{C}_{j r}=\widehat{\alpha}_{j r} M_{r}\left(\mathbf{F}_{j}-\mathbf{F}_{r}\right), \\
\left(\sum_{j} \widehat{\alpha}_{j r}\right) \mathbf{F}_{r}=\sum_{j} E_{j} \mathbf{C}_{j r}+\sum_{j} \widehat{\alpha}_{j r} \mathbf{F}_{j} .
\end{array}\right. \\
& M_{r}=\left(\sum_{j} \widehat{\alpha}_{j r}+\frac{\sigma}{\varepsilon} \sum_{j} \widehat{\beta}_{j r}\right)^{-1}\left(\sum_{j} \widehat{\alpha}_{j r}\right)
\end{aligned}
$$

- The scheme is stable under a CFL condition which is the sum to the parabolic and hyperbolic CFL conditions (verified numerically).
- The full implicit version is unconditionally stable.

Assumptions for the convergence proof

Geometrical assumptions

- $\left(\mathbf{u},\left(\sum_{r} \frac{\mathbf{C}_{j r} \otimes \mathbf{C}_{j r}}{\left|\mathbf{C}_{j r}\right|}\right) \mathbf{u}\right) \geq \beta h(\mathbf{u}, \mathbf{u})$,
$\square\left(\mathbf{u},\left(\sum_{j} \frac{\mathbf{C}_{j r} \otimes \mathbf{C}_{j r}}{\left|\mathbf{C}_{j r}\right|}\right) \mathbf{u}\right) \geq \gamma h(\mathbf{u}, \mathbf{u})$,
$\square\left(\mathbf{u},\left(\sum_{j} \mathbf{C}_{j r} \otimes\left(\mathbf{x}_{r}-\mathbf{x}_{j}\right)\right) \mathbf{u}\right) \geq \alpha h^{2}(\mathbf{u}, \mathbf{u})$.
- First and second assumptions: true on all non degenerated meshes.
- Last assumption: sufficient (not necessary) conditions on the meshes obtained.
- Example for triangles: all the angles must be larger that 12 degrees.

Assumption on regularity and initial data

- $\mathbf{F}(t=0, \mathbf{x})=-\frac{\varepsilon}{\sigma} \nabla E(t=0, \mathbf{x})$
- Regularity for exact data: $\mathbf{V}(t, \mathbf{x}) \in H^{4}(\Omega)$
- Regularity for initial data of the scheme: $\mathbf{V}_{h}(t=0, \mathbf{x}) \in L^{2}(\Omega)$

Uniform convergence in space

■ Naive convergence estimate: $\left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{\text {naive }} \leq C \varepsilon^{-b} h^{c}$

- Idea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

$$
\begin{aligned}
& \left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{L^{2}} \leq \min \left(\left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{\text {naive }},\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\|+\left\|P_{h}^{0}-P^{0}\right\|+\left\|P^{\varepsilon}-P^{0}\right\|\right) \\
& \left.h \rightarrow 0{ }_{P^{\varepsilon}}^{P_{h}^{\varepsilon}} \xrightarrow{\varepsilon \rightarrow 0}\right|_{h \rightarrow 0} ^{P_{h}^{0}}{ }_{h \rightarrow 0} \\
& \text { - Intermediary estimations : } \\
& \square\left\|P^{\varepsilon}-P^{0}\right\| \leq C_{a} \varepsilon^{a} \text {, } \\
& \begin{array}{l}
\square\left\|P_{h}^{0}-P^{0}\right\| \leq C_{d} h^{d}, \\
\square\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\| \leq C_{e} \varepsilon^{e},
\end{array} \\
& \square d \leq c, e \geq a \text {. }
\end{aligned}
$$

- We obtain:

$$
\left.\left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{L^{2}} \leq C \min \left(\varepsilon^{-b} h^{c}, \varepsilon^{a}+h^{d}+\varepsilon^{e}\right)\right)
$$

- Comparing ε and $\varepsilon_{\text {threshold }}=h^{\frac{a c}{a+b}}$ we obtain the final estimation:

$$
\left\|P_{h}^{\varepsilon}-P^{\varepsilon}\right\|_{L^{2}} \leq h^{\frac{a c}{a+b}}
$$

Limit diffusion scheme

Limit diffusion scheme $\left(P_{h}^{0}\right)$:

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} E_{j}(t)-\sum_{r}\left(\mathbf{F}_{r}, \mathbf{C}_{j r}\right)=0, \\
\sum_{r} \hat{\alpha}_{j r} \mathbf{F}_{j}=\sum_{r} \hat{\alpha}_{j r} \mathbf{F}_{r}, \\
\sigma A_{r} \mathbf{F}_{r}=\sum_{j}^{r} E_{j} \mathbf{C}_{j r}, \quad A_{r}=-\sum_{j} \mathbf{C}_{j r} \otimes\left(\mathbf{x}_{r}-\mathbf{x}_{j}\right) .
\end{array}\right.
$$

- Problem: estimation on $\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\|$.
- In practice we obtain $\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\| \leq C \frac{\varepsilon}{h}$ (not sufficient for the proof).

H Condition:

The Hessian matrix of the scheme P_{h}^{0} can be upper-bounded or the error estimate $\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\|$ can be obtained independently of the discrete Hessian matrix.

Limit diffusion scheme

Limit diffusion scheme $\left(P_{h}^{0}\right)$:

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} E_{j}(t)-\sum_{r}\left(\mathbf{F}_{r}, \mathbf{C}_{j r}\right)=0, \\
\sum_{r} \hat{\alpha}_{j r} \mathbf{F}_{j}=\sum_{r} \hat{\alpha}_{j r} \mathbf{F}_{r}, \\
\sigma A_{r} \mathbf{F}_{r}=\sum_{j}^{r} E_{j} \mathbf{C}_{j r}, \quad A_{r}=-\sum_{j} \mathbf{C}_{j r} \otimes\left(\mathbf{x}_{r}-\mathbf{x}_{j}\right) .
\end{array}\right.
$$

H Condition:

The Hessian matrix of the scheme P_{h}^{0} can be upper-bounded or the error estimate $\left\|P_{h}^{\varepsilon}-P_{h}^{0}\right\|$ can be obtained independently of the discrete Hessian matrix.

Final result in space

- H condition obtained : we use P_{h}^{0} in the estimates.
- H condition not obtained : we use $D A_{h}^{\varepsilon}$ in the estimates.
- The H condition is obtained in 1D (grid uniform or not) and in 2D Cartesian grids.

Final result:

We assume that the assumptions are verified. There are some constant $C>0$ such that
$\square\left\|P^{\varepsilon}-P_{h}^{\varepsilon}\right\|_{\text {naive }} \leq C_{0} \sqrt{\frac{h}{\varepsilon}}\left\|p_{0}\right\|_{H^{4}(\Omega)}$,
$\square\left\|D A_{h}^{\varepsilon}-P^{0}\right\| \leq C_{1}(h+\varepsilon)\left\|p_{0}\right\|_{H^{4}(\Omega)}$,
$\square\left\|P_{h}^{\varepsilon}-D A_{h}^{\varepsilon}\right\| \leq C_{2}\left(h^{2}+\varepsilon \max \left(1, \sqrt{\varepsilon h^{-1}}\right)\right)\left\|p_{0}\right\|_{H^{4}(\Omega)}$,
$\square\left\|P^{\varepsilon}-P^{0}\right\| \leq C_{3} \varepsilon, \quad 0<t \leq T$.
and

$$
\left\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\right\|_{L^{2}([0, T] \times \Omega)} \leq C \min \left(\sqrt{\frac{h}{\varepsilon}}, h^{2}+\varepsilon \max \left(1, \sqrt{\frac{\varepsilon}{h}}\right)+(h+\varepsilon)+\varepsilon\right)\left\|p_{0}\right\|_{H^{4} \leq C h^{\frac{1}{4}} .} .
$$

■ Using $\varepsilon_{\text {thresh }}=h^{\frac{1}{2}}$ we prove that the worst case is $\left\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\right\| \leq C_{2} h^{\frac{1}{4}}$.

Time estimation

■ Time scheme: implicit scheme (the estimate for explicit scheme is an open question). We obtain

$$
\frac{\mathbf{U}_{h}^{n+1}-\mathbf{U}_{h}^{n}}{\Delta t}=A_{h} \mathbf{U}_{h}^{n+1}
$$

with A_{h} the matrix which discretized the space scheme.
■ Discrete stability: We have $\left(\mathbf{U}_{h}, A_{h} \mathbf{U}_{h}\right) \leq 0$. Consequently $\left\|\mathbf{U}_{h}^{n+1}\right\| \leq\left\|\mathbf{U}_{h}^{n}\right\|$

Final result for the full discrete scheme

We assume that the regularity and geometrical assumptions are verified. There is a constant $C(T)>0$ such that:

$$
\left\|\mathbf{V}^{\varepsilon}\left(t_{n}\right)-\mathbf{V}_{h}^{\varepsilon}\left(t_{n}\right)\right\|_{L^{2}(\Omega)} \leq C\left(f(h, \varepsilon)+\Delta t^{\frac{1}{2}}\right)\left\|p_{0}\right\|_{H^{4}(\Omega)} .
$$

- Idea of proof: Stability result + Duhamel formula (B. Després).

AP scheme vs classical scheme

- Test case: heat fundamental solution. Results for different P_{1} scheme with $\varepsilon=0.001$ on Kershaw mesh.

Diffusion solution

Standard AP scheme

Non AP scheme

Uniform convergence for the P_{1} model

- Periodic solution for the P_{1} which depend of ε.
- $E(t, \mathbf{x})=\left(\alpha(t)+\frac{\varepsilon^{2}}{\sigma} \alpha^{\prime}(t)\right) \cos (\pi x) \cos (\pi y)$
- $\mathbf{F}(t, \mathbf{x})=\left(-\frac{\varepsilon}{\sigma} \alpha(t) \sin (\pi x) \cos (\pi y), \quad-\frac{\varepsilon}{\sigma} \alpha(t) \sin (\pi y) \cos (\pi x)\right)$
- Convergence study for $\varepsilon=h^{\gamma}$ on random mesh.

- Numerical results show that the error is homogenous to $O\left(h \varepsilon+h^{2}\right)$.
- Theoretical estimate that we can hope: $O\left((h \varepsilon)^{\frac{1}{2}}+h\right)$.
- Non optimal estimation in the intermediary regime.

Uniform convergence for the P_{1} model

- Periodic solution for the P_{1} which depend of ε.
- $E(t, \mathbf{x})=\left(\alpha(t)+\frac{\varepsilon^{2}}{\sigma} \alpha^{\prime}(t)\right) \cos (\pi x) \cos (\pi y)$
- $\mathbf{F}(t, \mathbf{x})=\left(-\frac{\varepsilon}{\sigma} \alpha(t) \sin (\pi x) \cos (\pi y), \quad-\frac{\varepsilon}{\sigma} \alpha(t) \sin (\pi y) \cos (\pi x)\right)$
- Convergence study for $\varepsilon=h^{\gamma}$ on random mesh.

- Numerical results show that the error is homogenous to $O\left(h \varepsilon+h^{2}\right)$.
- Theoretical estimate that we can hope: $O\left((h \varepsilon)^{\frac{1}{2}}+h\right)$.
- Non optimal estimation in the intermediary regime.

Extension to the Euler model

Euler equation with external forces

- Euler equation with gravity and friction:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u})=0, \\
\partial_{t} \rho \mathbf{u}+\frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})+\frac{1}{\varepsilon} \nabla p=-\frac{1}{\varepsilon}\left(\rho \nabla \phi+\frac{\sigma}{\varepsilon} \rho \mathbf{u}\right), \\
\partial_{t} \rho e+\frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u e})+\operatorname{div}(p \mathbf{u})=-\frac{1}{\varepsilon}\left(\rho(\nabla \phi, \mathbf{u})+\frac{\sigma}{\varepsilon} \rho(\mathbf{u}, \mathbf{u})\right) .
\end{array}\right.
$$

- with ϕ the gravity potential, σ the friction coefficient.

Properties :

- Entropy inequality $\partial_{t} \rho S+\frac{1}{\varepsilon} \operatorname{div}(\rho \mathbf{u S}) \geq 0$.
- Steady-state :

$$
\left\{\begin{array}{l}
\mathbf{u}=\mathbf{0}, \\
\nabla p=-\rho \nabla \phi .
\end{array}\right.
$$

- Diffusion limit:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0 \\
\partial_{t} \rho e+\operatorname{div}(\rho \mathbf{u e})+p \operatorname{div} \mathbf{u}=0 \\
\mathbf{u}=-\frac{1}{\sigma}\left(\nabla \phi+\frac{1}{\rho} \nabla p\right)
\end{array}\right.
$$

Design of AP nodal scheme I

Idea :

Modify the Lagrange+remap classical scheme with the Jin-Levermore method

- Classical Lagrange+remap scheme (LP scheme):

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\frac{1}{\varepsilon}\left(\sum_{R_{+}} \mathbf{u}_{j r} \rho_{j}+\sum_{R_{-}} \mathbf{u}_{j r} \rho_{k(r)}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j} \mathbf{u}_{j}+\frac{1}{\varepsilon}\left(\sum_{R_{+}} \mathbf{u}_{j r}(\rho \mathbf{U})_{j}+\sum_{R_{-}} \mathbf{u}_{j r}(\rho \mathbf{U})_{k(r)}+\sum_{r} \mathbf{p} \mathbf{C}_{j r}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\frac{1}{\varepsilon}\left(\sum_{R_{+}} \mathbf{u}_{j r}(\rho e)_{j}+\sum_{R_{-}} \mathbf{u}_{j r}(\rho e)_{k(r)}+\sum_{r}\left(\mathbf{p} \mathbf{C}_{j r}, \mathbf{u}_{r}\right)\right)=0
\end{array}\right.
$$

with Lagrangian fluxes

$$
\left\{\begin{array}{l}
\mathbf{G}_{j r}=p_{j} \mathbf{C}_{j r}+\rho_{j} c_{j} \hat{\alpha}_{j r}\left(\mathbf{u}_{j}-\mathbf{u}_{r}\right) \\
\sum_{j} \rho_{j} c_{j} \hat{\alpha}_{j r} \mathbf{u}_{r}=\sum_{j} p_{j} \mathbf{C}_{j r}+\sum_{j} \rho_{j} c_{j} \hat{\alpha}_{j r} \mathbf{u}_{j}
\end{array}\right.
$$

- Advection fluxes: $\mathbf{u}_{j r}=\left(\mathbf{C}_{j r}, \mathbf{u}_{r}\right), R_{+}=\left(r / \mathbf{u}_{j r}>0\right), R_{-}=\left(r / \mathbf{u}_{j r}<0\right)$ et $\rho_{k(r)}=\frac{\sum_{j / u_{j r}>0} \mathbf{u}_{j r} \rho_{j}}{\sum_{j / u_{j r}>0} \mathbf{u}_{j r}}$.

Design of AP nodal scheme II

Jin Levermore method:

Plug the relation $\nabla p+O\left(\varepsilon^{2}\right)=-\rho \nabla \phi-\frac{\sigma}{\varepsilon} \rho \mathbf{U}$ in the Lagrangian fluxes

- The modified scheme is given by

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\frac{1}{\varepsilon}\left(\sum_{R_{+}} \mathbf{u}_{j r} \rho_{j}+\sum_{R_{-}} \mathbf{u}_{j r} \rho_{k(r)}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j} \mathbf{u}_{j}+\frac{1}{\varepsilon}\left(\sum_{R_{+}} \mathbf{u}_{j r}(\rho \mathbf{U})_{j}+\sum_{R_{-}} \mathbf{u}_{j r}(\rho \mathbf{U})_{k(r)}+\sum_{r} \mathbf{p} \mathbf{C}_{j r}\right) \\
=-\frac{1}{\varepsilon}\left(\sum_{r} \hat{\beta}_{j r}(\rho \nabla \phi)_{r}+\frac{\sigma}{\varepsilon} \sum_{r} \rho_{r} \hat{\beta}_{j r} \mathbf{u}_{r}\right) \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\frac{1}{\varepsilon}\left(\sum_{R_{+}} \mathbf{u}_{j r}(\rho e)_{j}+\sum_{R_{-}} \mathbf{u}_{j r}(\rho e)_{k(r)}+\sum_{r}\left(\mathbf{p} \mathbf{C}_{j r}, \mathbf{u}_{r}\right)\right) \\
=-\frac{1}{\varepsilon}\left(\sum_{r}\left(\hat{\beta}_{j r}(\rho \nabla \phi)_{r}, \mathbf{u}_{r}\right)+\frac{\sigma}{\varepsilon} \sum_{r} \rho_{r}\left(\mathbf{u}_{r}, \hat{\beta}_{j r} \mathbf{u}_{r}\right)\right)
\end{array}\right.
$$

with the new Lagrangian fluxes

$$
\left\{\begin{array}{l}
\mathbf{p} \mathbf{C}_{j r}=p_{j} \mathbf{C}_{j r}+\rho_{j} c_{j} \hat{\alpha}_{j r}\left(\mathbf{u}_{j}-\mathbf{u}_{r}\right)-\hat{\beta}_{j r}(\rho \nabla \phi)_{r}-\frac{\sigma}{\varepsilon} \rho_{r} \hat{\beta}_{j r} \mathbf{u}_{r} \\
\left(\sum_{j} \rho_{j} c_{j} \hat{\alpha}_{j r}+\frac{\sigma}{\varepsilon} \rho_{r} \sum_{j} \hat{\beta}_{j r}\right) \mathbf{u}_{r}=\sum_{j} p_{j} \mathbf{C}_{j r}+\sum_{j} \rho_{j} c_{j} \hat{\alpha}_{j r} \mathbf{u}_{j}-\left(\sum_{j} \hat{\beta}_{j r}\right)(\rho \nabla \phi)_{r}
\end{array}\right.
$$

- and $(\rho \nabla \phi)_{r}$ a discretization of $\rho \nabla \phi$ at the interface.

Properties

Limit diffusion scheme:

If the local matrices are invertible then the LR-AP scheme tends to the following scheme

$$
\left\{\begin{array}{l}
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\left(\sum_{R_{+}} \mathbf{u}_{j r} \rho_{j}+\sum_{R_{-}} \mathbf{u}_{j r} \rho_{k(r)}\right)=0 \\
\left|\Omega_{j}\right| \partial_{t} \rho_{j}+\left(\sum_{R_{+}} \mathbf{u}_{j r}(\rho e)_{j}+\sum_{R_{-}} \mathbf{u}_{j r}(\rho e)_{k(r)}+p_{j} \sum_{r}\left(\mathbf{C}_{j r}, \mathbf{u}_{r}\right)\right)=0 \\
\sigma \rho_{r}\left(\sum_{j} \hat{\beta}_{j r}\right) \mathbf{u}_{r}=\sum_{j} p_{j} \mathbf{C}_{j r}-\left(\sum_{j} \hat{\beta}_{j r}\right)(\rho \nabla \phi)_{r}
\end{array}\right.
$$

- For $p=K \rho$, numerically the scheme converge at the order of the advection scheme.
- Open question: Verify this for a non isothermal pressure law as perfect gas law.

Well balanced property

- We define the discrete gradient $\nabla_{r} p=-\left(\sum_{j} \hat{\beta}_{j r}\right)^{-1} \sum_{j} p_{j} \mathbf{C}_{j r}$ and ρ_{r} an average of ρ_{j} around \mathbf{x}_{r}.
- If the initial data are given by the discrete steady-state $\nabla_{r} p=-(\rho \nabla \phi)_{r}, \rho_{j}^{n+1}=\rho_{j}^{n}$, $\mathbf{u}_{j}^{n+1}=\mathbf{u}_{j}^{n}$ and $e_{j}^{n+1}=e_{j}^{n}$,
- Remark: if you initialize your scheme with a continuous steady-state the final space error is given by the consistency error between the continuous and discrete steady-state.

High order discretization of the steady-state

High order reconstruction of steady-state

- Aim: Conserve the stability property of the first order scheme but discretize the steady-state with a high order accuracy or exactly.

■ Method : construct high order discrete steady-state

■ 1D discrete steady state: $p_{j+1}-p_{j}=-\Delta x_{j+\frac{1}{2}}\left(\rho \partial_{x} \phi\right)_{j+\frac{1}{2}}$ with $\left(\rho \partial_{x} \phi\right)_{j+\frac{1}{2}}=\frac{1}{2}\left(\rho_{j+1}+\rho_{j}\right)\left(\phi_{j+1}-\phi_{j}\right)$.

- To begin we consider the steady state

$$
\partial_{x} p=-\rho \partial_{x} \phi
$$

- we integrate on the dual cell $\left[x_{j}, x_{j+1}\right]$ to obtain

$$
\Delta x_{j+\frac{1}{2}}\left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_{j}}^{x_{j+1}} \partial_{x} p(x)\right)=-\Delta x_{j+\frac{1}{2}}\left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_{j}}^{x_{j+1}} \rho(x) \partial_{x} \phi(x)\right) .
$$

High order discretization of the steady-state

High order reconstruction of steady-state

- Aim: Conserve the stability property of the first order scheme but discretize the steady-state with a high order accuracy or exactly.
- Method : construct high order discrete steady-state
- We introduce 3 polynomials $\bar{\rho}_{j+\frac{1}{2}}(x)=\sum_{k=1}^{q} r_{k} x^{k}$ et $\bar{p}_{j+\frac{1}{2}}(x)=\sum_{k=1}^{q+1} p_{k} x^{k}, \bar{\phi}_{j+\frac{1}{2}}(x)=\sum_{k=1}^{q+1} \phi_{k} x^{k}$ with

$$
\int_{x_{l-\frac{1}{2}}}^{x_{l+\frac{1}{2}}} \bar{\rho}_{j+\frac{1}{2}}(x)=\Delta x_{\mid} \rho_{l}, \quad \int_{x_{l-\frac{1}{2}}}^{x_{l+\frac{1}{2}}} \bar{p}_{j+\frac{1}{2}}(x)=\Delta x_{\mid} p_{l}, \quad \int_{x_{l-\frac{1}{2}}}^{x_{l+\frac{1}{2}}} \bar{\phi}_{j+\frac{1}{2}}(x)=\Delta x_{\mid} \phi_{l}
$$

and $I \in S(j)(S(j)$ a subset of cell around $j)$. Using these polynomials we obtain the new discrete steady-state

$$
\Delta x_{j+\frac{1}{2}}\left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_{j}}^{x_{j+1}} \partial_{x} \bar{p}_{j+\frac{1}{2}}(x)\right)=-\Delta x_{j+\frac{1}{2}}\left(\frac{1}{\Delta x_{j+\frac{1}{2}}} \int_{x_{j}}^{x_{j+1}} \bar{\rho}_{j+\frac{1}{2}}(x) \partial_{x} \bar{\phi}_{j+\frac{1}{2}}(x)\right)
$$

High order discretization of the steady-state

High order reconstruction of steady-state

- Aim: Conserve the stability property of the first order scheme but discretize the steady-state with a high order accuracy or exactly.
- Method : construct high order discrete steady-state
- To incorporate the discrete steady state in the scheme we need to have a pressure gradient which correspond to the viscosity of the scheme.

■ We obtain a q-order steady-state:

$$
p_{j+1}-p_{j}=-\Delta x_{j+\frac{1}{2}}\left(\rho \partial_{x} \phi\right)_{j+\frac{1}{2}}^{H O}
$$

with

$$
(\rho g)_{j+\frac{1}{2}}^{H O}=\frac{1}{\Delta x_{j+\frac{1}{2}}}\left(\left(\int_{x_{j}}^{x_{j+1}} \partial_{x} \bar{p}_{j+\frac{1}{2}}(x)\right)+\left(\int_{x_{j}}^{x_{j+1}} \bar{\rho}_{j+\frac{1}{2}}(x) \partial_{x} \bar{\phi}_{j+\frac{1}{2}}(x)\right)-\left(p_{j+1}-p_{j}\right)\right)
$$

High order discretization of the steady-state

High order reconstruction of steady-state

- Aim: Conserve the stability property of the first order scheme but discretize the steady-state with a high order accuracy or exactly.

■ Method : construct high order discrete steady-state

- To incorporate the discrete steady state in the scheme we need to have a pressure gradient which correspond to the viscosity of the scheme.

■ We obtain a q-order steady-state:

$$
p_{j+1}-p_{j}=-\Delta x_{j+\frac{1}{2}}\left(\rho \partial_{x} \phi\right)_{j+\frac{1}{2}}^{H O}
$$

with
$(\rho g)_{j+\frac{1}{2}}^{H O}=\frac{1}{\Delta x_{j+\frac{1}{2}}}\left(\left(\int_{x_{j}}^{x_{j+1}} \partial_{x} \bar{p}_{j+\frac{1}{2}}(x)\right)+\left(\int_{x_{j}}^{x_{j+1}} \bar{\rho}_{j+\frac{1}{2}}(x) \partial_{x} \bar{\phi}_{j+\frac{1}{2}}(x)\right)-\left(p_{j+1}-p_{j}\right)\right)$

2D extension

The method is the same. Just we use a constant stencil and a least square method to determinate the coefficient of the polynomials

Numerical result : large opacity

- Test case: sod problem with $\sigma>0, \varepsilon=1$ and $\nabla \phi=\mathbf{0}$.
- $\sigma=1$

AP scheme, ρ
non-AP scheme, ρ

AP scheme, ϵ

non-AP scheme, ϵ

Numerical result : large opacity

- Test case: sod problem with $\sigma>0, \varepsilon=1$ and $\nabla \phi=\mathbf{0}$.
- $\sigma=10^{6}$

AP scheme, ρ

non-AP scheme, ρ

Result for steady-state

■ Steady-state: $\rho(t, x)=3+2 \sin (2 \pi x), u(t, x)=0$

- $p(t, x)=3+3 \sin (2 \pi x)-\frac{1}{2} \cos (4 \pi x)$ and $\phi(x)=-\sin (2 \pi x)$. Random mesh.

Schemes	LR		LR-AP (2)	LR-AP (3)	LR-AP (4)			
cells	Err	q	Err	q	Err	q	Err	q
20	0.8335	-	0.0102	-	0.0079	-	0.0067	-
40	0.4010	1.05	0.0027	1.91	$8.4 \mathrm{E}-4$	3.23	$1.5 \mathrm{E}-4$	5.48
80	0.2065	0.96	$7.0 \mathrm{E}-4$	1.95	$7.7 \mathrm{E}-5$	3.45	$4.1 \mathrm{E}-6$	5.19
160	0.1014	1.02	$1.7 \mathrm{E}-4$	2.04	$7.0 \mathrm{E}-6$	3.46	$1.0 \mathrm{E}-7$	5.36

■ Steady-state: $\rho(t, x)=e^{-g x}, u(t, x)=0, p(t, x)=e^{-g x}$ et $\phi=g x$. Random mesh

Schemes	LR		LR-AP (2)	LR-AP (3)	LR-AP (4)			
cells	Err	q	Err	q	Err	q	Err	q
20	0.0280	-	$6.5 \mathrm{E}-4$	-	$1.8 \mathrm{E}-5$	-	$8.0 \mathrm{E}-7$	-
40	0.0152	0.88	$1.4 \mathrm{E}-4$	2.21	$2.0 \mathrm{E}-6$	3.17	$3.8 \mathrm{E}-8$	4.4
80	0.0072	1.08	$3.3 \mathrm{E}-5$	2.08	$2.0 \mathrm{E}-7$	3.32	$2.0 \mathrm{E}-9$	4.25
160	0.0038	0.92	$8.8 \mathrm{E}-6$	1.90	$2.8 \mathrm{E}-8$	2.84	$1.1 \mathrm{E}-10$	4.18

Conclusion and perspectives

- Conclusion
$\square P_{1}$ model: First AP scheme (time and space) on unstructured meshes (now other schemes have been developed).
$\square P_{1}$ model: Uniform proof of convergence on unstructured meshes in 1D and 2D.
\square AP schemes for general linear systems with source terms using previous schemes and "micro-macro" method.
\square Euler model with external force AP schemes with a new high order reconstruction of the steady states
\square Problem for all the schemes : spurious mods in few cases (example: Cartesian mesh + Dirac Initial data).
- Possible perspectives
$\square P_{1}$ model: Theoretical study of the explicit and semi implicit scheme.
\square Euler model: Entropy study for scheme.
\square Find a generic procedure to stabilize the nodal scheme (exist for the Lagrangian nodal scheme for the Euler equations).

Thanks

Thank you

[^0]: ${ }^{1}$ INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France
 ${ }^{2}$ CEA DAM, Arpajon, France
 ${ }^{3}$ LJLL, UPMC, France
 ${ }^{4}$ IPP, Garching bei München, Germany

