Physic-based Preconditioning and "multiscale" elliptic operators for fluid models

E. Franck¹, M. Gaja², M. Mazza², A. Ratnani², E. Sonnendrücker²

Canum 2016, Obernai

¹Inria Nancy Grand Est and IRMA Strasbourg, France
²Max-Planck-Institut für Plasmaphysik, Garching, Germany

E. Franck

Outline

Model and physical context

Preconditioning and Physic-Based PC

Application: Linearized Euler equation

Application: linearized 3D MHD

Model and physical context

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. A neutron and 17.6 MeV of free energy are released. At those energies, the atoms are ionized forming a plasma.
- Plasma: For very high temperature, the gas are ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- ITER: International project of fusion nuclear plant to validate the nuclear fusion as a power source.

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. A neutron and 17.6 MeV of free energy are released. At those energies, the atoms are ionized forming a plasma.
- Plasma: For very high temperature, the gas are ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- ITER: International project of fusion nuclear plant to validate the nuclear fusion as a power source.

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

ELM's simulation

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

ELM's simulation

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

ELM's simulation

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

ELM's simulation

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

ELM's simulation

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

ELM's simulation

Extended MHD: model

To simulate instabilities we solve the Extended MHD model (collisional and quasi-neutral limit of two species Vlasov-Maxwell equation.

Simplify Extended MHD

$$\begin{aligned} \partial_{t}\rho + \nabla \cdot (\rho \boldsymbol{u}) &= \boldsymbol{0}, \\ \rho \partial_{t}\boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p} + \nabla \cdot \overline{\boldsymbol{\Pi}} &= \boldsymbol{J} \times \boldsymbol{B}, \\ \partial_{t}\rho + \boldsymbol{u} \cdot \nabla \boldsymbol{p} + \rho \nabla \cdot \boldsymbol{u} + \nabla \cdot \boldsymbol{q} &= \frac{m_{i}}{\rho e} \nabla \left(\frac{\rho}{\rho}\right) + \eta \mid \boldsymbol{J} \mid^{2} \\ \partial_{t}\boldsymbol{B} &= -\nabla \times \left(-\boldsymbol{u} \times \boldsymbol{B} + \eta \boldsymbol{J} - \frac{m_{i}}{\rho e} \nabla \rho + \frac{m_{i}}{\rho e} (\boldsymbol{J} \times \boldsymbol{B})\right), \\ \nabla \times \boldsymbol{B} &= \mu_{0}\boldsymbol{J} \\ \nabla \cdot \boldsymbol{B} &= \boldsymbol{0} \end{aligned}$$

- with ρ the density, p the pressure, \mathbf{u} the velocity, \mathbf{B} the magnetic field, \mathbf{J} the current, $\overline{\mathbf{\Pi}}$ stress tensor and \mathbf{q} the heat flux. m_i the ion mass, e the charge, η the resistivity and μ_0 the permeability.
- In Black: ideal MHD. In Black and blue: Viscous-resistive MHD. All the term: Hall or extended MHD.

Wave structure of the MHD and time method

Wave Structure of the MHD

- We linearized the MHD around $\mathbf{B}_0 = \mathbf{B}\mathbf{e}_z$, ρ_0 , p_0 and $\mathbf{u}_0 = 0$.
- Alfvén velocity and Sound velocity :

$$V_{a}=\sqrt{rac{{f B}_{0}^{2}}{\mu_{0}
ho_{0}}}$$
 and $c=\sqrt{rac{\gamma
ho_{0}}{
ho_{0}}}$

Waves in plasma (toroidal B): V_a and

$$V_{\pm} = \left(\frac{1}{2}\left(V^2 \pm \sqrt{\left(V^4 - 4V_a^2 c^2 \cos^2\theta\right)}\right)^{\frac{1}{2}}$$

with $V^2 = V_a^2 + c^2$, θ the angle between **B**₀ and the direction of the wave.

• Tokamak regime: $V_a >> c >> \parallel u \parallel$.

Numerical context for time discretization

- Stiff fast wave + diffusion (resistive and viscous) ====> Implicit or semi-implicit methods.
- Nonlinear 3D problem ====> Iterative nonlinear implicit methods.
- $\lambda_{max} >> \lambda_{min} ===>$ Preconditioning.

JOREK code and typical test case

JOREK

- A reduced MHD (full MHD in the future) code which simulate instabilities with 2 numerical blocks:
 - Computation of the equilibrium and the aligned grid
 - Computation of the MHD instabilities perturbing equilibrium.
- Spatial discretization: 2D Cubic Bezier finite elements + Fourier expansion.
- Time discretization: implicit + Gmres with Fourier Block Jacobi.
- Problems with the JOREK code:
 - We need new numerical methods to solve huge cases.

grids2.pdf

Figure: Aligned grid

New code : DJANGO

 Modular code based of general finite elements (B-Splines, Lagrange, Powel-Sabin) and Physic-Based preconditioning

Preconditioning and Physic-Based PC

Linear Solvers and preconditioning

We solve a nonlinear problem $G(U^{n+1}) = b(U^n, U^{n-1})$. First order linearization

$$\left(\frac{\partial G(\boldsymbol{U}^n)}{\partial \boldsymbol{U}^n}\right)\delta\boldsymbol{U}^n = -G(\boldsymbol{U}^n) + b(\boldsymbol{U}^n, \boldsymbol{U}^{n-1}) = R(\boldsymbol{U}^n),$$

with $\delta U^n = U^{n+1} - U^n$, and $J_n = \frac{\partial G(U^n)}{\partial U^n}$ the Jacobian matrix of $G(U^n)$.

- Principle of the preconditioning step:
 - □ Replace the problem $J_k \delta U_k = R(U^n)$ by $P_k(P_k^{-1}J_k)\delta U_k = R(U^n)$.
 - Solve the new system with two steps $P_k \delta U_k^* = R(U^n)$ and $(P_k^{-1}J_k) \delta U_k = \delta U_k^*$
- If P_k is easier to invert than J_k and $P_k \approx J_k$ the solving step is more robust and efficient.

Physic-based Preconditioning

- In the GMRES context if we have a algorithm to solve $P_k U = \mathbf{b}$, we have a Preconditioning.
- Principle: construct an algorithm to solve $P_k U = b$ approximating and splitting the equations and approximating the discretizations.

Physic-based: operator splitting

Idea:

- Coupled hyperbolic problems are ill-conditioned contrary to simple diffusion and advection operators.
- Idea: Use operator splitting and a reformulation to approximate the Jacobian by a suitability of simple problems (advection or diffusion).
- For each subproblem we use an adapted solver as multi-grid solver.
- Implicit scheme for wave : we solve

$$\begin{cases} \partial_t u = \partial_x v \\ \partial_t v = \partial_x u \end{cases} \longrightarrow \begin{cases} u^{n+1} = u^n + \Delta t \partial_x v^{n+1} \\ v^{n+1} = v^n + \Delta t \partial_x u^{n+1} \end{cases}$$

which is strictly equivalent to solve one parabolic problem

$$\begin{cases} (1 - \Delta t^2 \partial_{xx}) u^{n+1} = u^n + \Delta t \partial_x v^n \\ v^{n+1} = v^n - \Delta t \partial_x u^{n+1} \end{cases}$$

Conclusion

This algorithm gives a very good preconditioning, that is easy to invert (just one elliptic operator to invert).

Application: Linearized Euler equation

Linearized Euler equation

• We consider the 3D MHD equation in the conservative form,

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p &= 0\\ \partial_t \rho + \nabla \cdot (p \mathbf{u}) &= 0 \end{cases}$$

Due to the isothermal assumption, we have $p = c^2 \rho$ with $c = \sqrt{T_0}$.

Linearization: $\boldsymbol{u} = \boldsymbol{u}_0 + \delta \boldsymbol{u}$, $\rho = \rho_0 + \delta \rho$, $\boldsymbol{p} = \boldsymbol{p}_0 + \delta \boldsymbol{p}$ with $\boldsymbol{p}_0 = c^2 \rho_0$.

• Using the linear relation between p_0 and ρ_0 we obtain

$$\begin{cases} \partial_t \delta \boldsymbol{u} + \boldsymbol{u}_0 \cdot \nabla \delta \boldsymbol{u} + \frac{1}{\rho_0} \nabla \delta \boldsymbol{p} &= 0\\ \partial_t \delta \boldsymbol{p} + \boldsymbol{u}_0 \cdot \nabla \delta \boldsymbol{p} + \boldsymbol{c}^2 \rho_0 \nabla \cdot \delta \boldsymbol{u} &= 0 \end{cases}$$

To simplify, we assume that $\rho_0 = \frac{1}{c}$. Defining a normalized velocity **a** and Mach number $M = \frac{|u_0|}{c}$ we obtain the final model

Final model

$$\begin{cases} \partial_t \boldsymbol{u} + c\boldsymbol{M}\boldsymbol{a} \cdot \nabla \boldsymbol{u} + c\nabla p &= 0\\ \partial_t \boldsymbol{p} + c\boldsymbol{M}\boldsymbol{a} \cdot \nabla \boldsymbol{p} + c\nabla \cdot \boldsymbol{u} &= 0 \end{cases}$$

with $M \in]0, 1]$, and $|\mathbf{a}| = 1$.

Implicit scheme for wave equation

Implicit scheme:

$$\begin{pmatrix} I_d + \mathbf{M}\lambda \mathbf{a} \cdot \nabla & \lambda^2 \nabla \cdot \\ \lambda^2 \nabla & I_d + \mathbf{M}\lambda \mathbf{a} \cdot \nabla \end{pmatrix} \begin{pmatrix} p^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} I_d - \mathbf{M}\lambda_e \mathbf{a} \cdot \nabla & \lambda_e^2 \nabla \cdot \\ \lambda_e^2 \nabla & I_d - \mathbf{M}\lambda_e \mathbf{a} \cdot \nabla \end{pmatrix} \begin{pmatrix} p^n \\ \mathbf{u}^n \end{pmatrix}$$

- with $\lambda = \theta c \Delta t$ and λ_e the numerical acoustic length.
- The implicit system is given by

$$\left(\begin{array}{c}p^{n+1}\\\mathbf{u^{n+1}}\end{array}\right) = \left(\begin{array}{cc}AD_p & Div\\Grad & AD_u\end{array}\right)^{-1} \left(\begin{array}{c}R_p\\R_u\end{array}\right)$$

The solution of the system is given by

$$\begin{pmatrix} p^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} I & AD_p^{-1}Div \\ 0 & I \end{pmatrix} \begin{pmatrix} AD_p^{-1} & 0 \\ 0 & P_{schur}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -GradAD_p^{-1} & I \end{pmatrix} \begin{pmatrix} R_p \\ R_u \end{pmatrix}$$

with $P_{schur} = AD_u - Grad(AD_p^{-1})Div$.

Using the previous Schur decomposition, we can solve the implicit wave equation with the following algorithm:

$$\left(\begin{array}{ll} \mathsf{Predictor}: & AD_p p^* = R_p \\ \mathsf{Velocity \ evolution}: & P \mathbf{u}^{n+1} = (-\mathit{Grad} p^* + R_\mathbf{u}) \\ \mathsf{Corrector}: & AD_p p^{n+1} = AD_p p^* - \mathit{Div} \mathbf{u}_{n+1} \end{array} \right)$$

PC for linearized Euler equations

The preconditioning is given by the algorithm of L. Chacon (2007-2008)

Low Mach approximation:

 \square We assume that $M \ll 1$, therefore we use the approximation

$$AD_p^{-1} = (I_d + M\lambda \mathbf{a} \cdot \nabla)^{-1} \approx I_d$$

in the second and third step.

We obtain

Predictor :
$$AD_p p^* = R_p$$

Velocity evolution : $P\mathbf{u}^{n+1} = (-Grad p^* + R_u)$
Corrector : $p^{n+1} = p^* - Div\mathbf{u}_{n+1}$

with two small operators

PC-operators :

Advection

$$AD_p = I_d + M\lambda \mathbf{a} \cdot \nabla$$

Advection-Diffusion

$$P_{schur} = I_d + M\lambda \mathbf{a} \cdot \nabla - \lambda^2 \nabla (\nabla \cdot)$$

Results

Test case: propagation of pressure perturbation (not an easy test).

Capture of acoustic phenomena. We consider $\Delta t_{max} = 0.5 \frac{L}{c} = 0.5$.

	Δt /Mach	10^{-3}	10^{-2}	0.1	1
16*16	0.005	1	1	1	2
	0.05	2	2	3	6
	0.5	10	11	24	$O(10^2)$
32*32	0.005	1	1	1	2
	0.05	2	2	3	5
	0.5	7	9	23	$O(10^2)$
64*64	0.005	1	1	1	1
	0.05	1	2	2	4
	0.5	2	3	15	$O(10^2)$

Number of iterations for different PC with Mesh 32 × 32.

$\Delta t/PC$	Jacobi	ILU(0)	ILU(4)	Pb-PC
$\Delta t = 0.1$	x	70	20	1
$\Delta t = 1$	х	х	х	1

Results

- Test case: propagation of pressure perturbation (not an easy test).
- **Capture of material wave**. We consider $\Delta t_{max} = O(\frac{L}{|\mathbf{u}_0|})$

	Δt /Mach	10^{-4}	10^{-3}
16*16	$\Delta t = 2$	15-25	20-30
10.10	$\Delta t = 10$	60-70	90-110
32*32	$\Delta t = 2$	10-15	10-15
	$\Delta t = 10$	15-25	15-25
61*61	$\Delta t = 2$	2	3
04 04	$\Delta t = 10$	8	11

• Number of iterations for different PC with Mesh 32×32 .

$\Delta t/PC$	Jacobi	ILU(0)	ILU(4)	Pb-PC
$\Delta t = 0.1$	x	70	20	1
$\Delta t = 1$	x	х	х	1

Elliptic operators

- When $M\lambda = O(1)$ the transport operator is ill-conditioned. To invert this operator we can
 - add stabilization terms,
 - $\hfill\square$ design a specific preconditioning.
- We will focus on low-mach regime and the elliptic operator.

Acoustic elliptic operator

Here we consider the elliptic operator

$$\begin{cases} \mathbf{u} - \mathbf{\lambda}^2 \nabla (\nabla \cdot \mathbf{u}) = \mathbf{f} & \xrightarrow{\lambda \to \infty} \begin{cases} -\nabla (\nabla \cdot \mathbf{u}) = \mathbf{0} \\ M(\mathbf{n})\mathbf{u} = \mathbf{0}, & \partial \Omega \end{cases}$$

Problem

□ The limit operator is non-coercive. Indeed we can find $|| u || \neq 0$ (with the good BC) such that

$$\int_{\Omega} \mid \nabla \cdot \boldsymbol{u} \mid^{2} = 0$$

- For exemple: $\boldsymbol{u} = \nabla \times \boldsymbol{\psi}$.
- **Numerical problem**: conditioning number in $O(\lambda)$ (which depend also of *h* and the order).

Results

Test case: Solution for the

$$\boldsymbol{u} - \boldsymbol{\lambda}^2 \Delta \boldsymbol{u} = \mathbf{f}$$

• operator with homogeneous Dirichlet on mesh 32*32

$\Delta t/PC$	Jacobi	ILU(4)	ILU(8)	MG(2)
$\lambda = 0.05$	3 ma	5	3	8
$\lambda = 0.1$	3	7	5	8
$\lambda = 0.5$	3	11	7	10
$\lambda = 1$	3	11	7	10
$\lambda = 2$	3	11	7	10
$\lambda = 5$	3	11	7	10

Strategy to solve acoustic operator

- □ **Step 1**: Hiptmair, Xu Using discrete B-Splines H(Div) space + Auxiliary space pc, split the kernel to the rest
- □ **Step 2:** We treat the orthogonal of the kernel with multi-grids+GLT method
- GLT: Generalized locally Toeplitz method which allows by a generalized Fourier analysis to correct the multi grid method in the high-frequency (problem for high order discretization).

Results

• Test case: Solution for the

$$\boldsymbol{u} - \boldsymbol{\lambda}^2 \nabla (\nabla \cdot \boldsymbol{u}) = \mathbf{f}$$

• operator with homogeneous Dirichlet on mesh 32*32

$\Delta t/PC$	Jacobi	ILU(4)	ILU(8)	MG(2)
$\lambda = 0.05$	135	8	5	22
$\lambda = 0.1$	310	20	10	44
$\lambda = 0.5$	1800	nc	nc	135
$\lambda = 1$	nc	nc	nc	300
$\lambda = 2$	nc	nc	nc	500
$\lambda = 5$	nc	nc	nc	2100

Strategy to solve acoustic operator

- □ **Step 1**: Hiptmair, Xu Using discrete B-Splines H(Div) space + Auxiliary space pc, split the kernel to the rest
- □ **Step 2:** We treat the orthogonal of the kernel with multi-grids+GLT method
- □ **GLT**: Generalized locally Toeplitz method which allows by a generalized Fourier analysis to correct the multi grid method in the high-frequency (problem for high order discretization).

Application: Linearized 3D MHD

Linearized 3D MHD

¹ We consider the 3D Isothermal MHD equation in the non-conservative form,

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p &= \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B}\\ \partial_t p + \mathbf{u} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{u} &= 0\\ \partial_t \mathbf{B} + \nabla \times (\mathbf{B} \times \mathbf{u}) &= \frac{\eta}{\mu_0} \nabla \times \mathbf{B}\\ \nabla \cdot \mathbf{B} = 0 \end{cases}$$

- Linearization: $\boldsymbol{u} = \boldsymbol{u}_0 + \delta \boldsymbol{u}$, $\rho = \rho_0 + \delta \rho$, $\boldsymbol{p} = p_0 + \delta p$ with $p_0 = c^2 \rho_0$, $\boldsymbol{B} = \boldsymbol{B}_0 + \delta \boldsymbol{B}$.
- We define three important parameters: the Mach number *M*, the pressure ratio of the plasma $\beta = \frac{c^2}{V_a^2}$, the Alfvén speed $V_a^2 = \frac{|B_0|^2}{\rho_0\mu_0}$ and the magnetic Reynolds $R_m = \frac{\mu_0 L |\mathbf{u}_0|}{\eta}$.

Final model

$$\begin{cases} \partial_t \boldsymbol{u} + (M\sqrt{\beta}V_a)\boldsymbol{a} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p} &= \frac{V_a^2}{|\boldsymbol{B}_0|} \left((\nabla \times \boldsymbol{B}) \times \boldsymbol{b}_0 \right) \\ \partial_t \boldsymbol{p} + (M\sqrt{\beta}V_a)\boldsymbol{a} \cdot \nabla \boldsymbol{p} + \gamma \beta V_a^2 \nabla \cdot \boldsymbol{u} &= 0 \\ \partial_t \boldsymbol{B} + (M\sqrt{\beta}V_a)\boldsymbol{a} \cdot \nabla \boldsymbol{B} + |\boldsymbol{B}_0| \nabla \times (\boldsymbol{b}_0 \times \boldsymbol{u}) &= \frac{M\sqrt{\beta}V_a}{Rm} \nabla \times (\nabla \times \boldsymbol{B}) \end{cases}$$

with $M \in [0, 1]$, $\beta \in [10^{-6}, 10^{-1}]$, $|\mathbf{a}| = |\mathbf{b_0}| = 1$.

Implicit scheme for linear MHD equation

Implicit scheme:

$$\begin{aligned} \delta \boldsymbol{u}^n &+ (\boldsymbol{M}\sqrt{\beta}\boldsymbol{\lambda})\boldsymbol{a} \cdot \nabla \boldsymbol{u}^n + \nabla \boldsymbol{p} &= \frac{\lambda^2}{|\boldsymbol{B}_0|} \left((\nabla \times \boldsymbol{B}^n) \times \boldsymbol{b}_0 \right) \\ \delta \boldsymbol{p}^n &+ (\boldsymbol{M}\sqrt{\beta}\boldsymbol{\lambda})\boldsymbol{a} \cdot \nabla \boldsymbol{p}^n + \beta \lambda^2 \nabla \cdot \boldsymbol{u}^n &= 0 \\ \delta \boldsymbol{B}^n &+ (\boldsymbol{M}\sqrt{\beta}\boldsymbol{\lambda})\boldsymbol{a} \cdot \nabla \boldsymbol{B}^n + |\boldsymbol{B}_0| \nabla \times (\boldsymbol{b}_0 \times \boldsymbol{u}^n) &= \frac{\boldsymbol{M}\sqrt{\beta}\lambda}{R_m} \nabla \times (\nabla \times \boldsymbol{B}^n) \end{aligned}$$

• with $\lambda = V_a \Delta t$ the numerical Alfvén length, and $\delta \rho^n = \rho^{n+1} - \rho^n$.

- As before we apply the preconditioning splitting between the velocity and the other variables with the low Mach approximation.
- In the end of the preconditioning we must invert three operators

Operators of the PB-PC

$$I_d + (M\sqrt{\beta}\lambda) \mathbf{a} \cdot \nabla I_d - \frac{M\sqrt{\beta}\lambda}{R} \Delta I_d, \quad I_d + (M\sqrt{\beta}\lambda) \mathbf{a} \cdot \nabla I_d$$

$$\mathbf{P} = \left(I_d + M\sqrt{\beta\lambda}\mathbf{a}\cdot\nabla I_d - \beta\lambda^2\nabla(\nabla\cdot I_d) - \lambda^2\left(\mathbf{b}_0\times(\nabla\times\nabla\times(\mathbf{b}_0\times I_d))\right)\right)$$

with $\mid \pmb{a} \mid = 1, \ M \in \]0,1], \ eta \in \]10^{-6},10^{-1}]$

Remarks

- As for the Euler equation we can solve the advection equation adding stabilization or using specific preconditioning.
- **First case**: We consider the regime $M \ll 1$ and $\beta \ll 1$.

Dominant Schur operator

□ The Schur operator in this regime is mainly

$$P = \left(I_d - \lambda^2 \left(\boldsymbol{b}_0 \times \left(\nabla \times \nabla \times \left(\boldsymbol{b}_0 \times I_d\right)\right)\right)\right)$$

 \Box The limit operator is non-coercive ($\lambda >> 1$). Indeed we can find $\parallel m{u} \parallel
eq 0$ such that

$$\int_{\Omega} \mid
abla imes (m{b}_0 imes m{u}) \mid^2 = 0$$

Second case: We consider the regime M < 1 and $\beta < 1$.

Multis-cale operator

- Using a Fourier analysis and Diagonalizing the operator in the Fourier space we denote that the eigenvalues are the MHD velocities
- \Box When *M* and β is not so small, the different velocities (Alfvén, magneto-sonic slow and fast) have very different scales.

Conclusion

Physic-based pc

- If we are able to invert the sub-systems, then the physic-based pc is
 - □ very efficient in the Low-Mach regime for large time step.
 - less efficient in the sonic-regime, however we can treat large time step than the explicit one.
 - \Box The efficiency does not decrease when the *h* decreases.

Euler equation

- For the Euler equation, in the end the main difficulty is to invert quickly the div-div operator.
- Ongoing work: find a good preconditioning for div-div using H(div) discrete space (Hiptmair, Xu +GLT)

MHD equation

- In the low-Beta regime, the main difficulty is to invert quickly the curl-curl operator.
- **Ongoing work:** find a good preconditioning for curl-curl using compatible-space (difficulty: the dependance in the magnetic field).
- When β is not so small, we have a multi-scale operator.
- **Future work**: find a strategy to separate the scales.

