Physic-based Preconditioning and B-Splines finite elements method for Tokamak MHD

<u>E. Franck</u>¹, M. Gaja², M. Mazza², A. Ratnani², S. Serra Capizzano³, E. Sonnendrücker²

ECCOMAS Congress 2016, 5 - 10 JUNE 2016 Crete Island, Greece

¹Inria Nancy Grand Est and IRMA Strasbourg, France ²Max-Planck-Institut für Plasmaphysik, Garching, Germany ²University of Insubria, Como, Italy

E. Franck

IsoGeo and Physic-Based pc for MHD

Outline

Model and physical context

Preconditioning and Physic-Based PC

Application: Linearized Euler equation

Application: linearized 3D MHD

Mathematical and physical context

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. A neutron and 17.6 MeV of free energy are released. At those energies, the atoms are ionized forming a plasma.
- Plasma: For very high temperature, the gas are ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- ITER: International project of fusion nuclear plant to validate the nuclear fusion as a power source.

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. A neutron and 17.6 MeV of free energy are released. At those energies, the atoms are ionized forming a plasma.
- Plasma: For very high temperature, the gas are ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- ITER: International project of fusion nuclear plant to validate the nuclear fusion as a power source.

IsoGeo and Physic-Based pc for MHD

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

IsoGeo and Physic-Based pc for MHD

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

IsoGeo and Physic-Based pc for MHD

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

- In the tokamak some instabilities can appear in the plasma.
- The simulation of these instabilities is an important subject for ITER.
- Exemple of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

ELM's simulation

IsoGeo and Physic-Based pc for MHD

Extended MHD: model

To simulate instabilities we solve the Extended MHD model.

Simplify Extended MHD

$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) &= 0, \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p} + \nabla \cdot \overline{\mathbf{n}} &= \boldsymbol{J} \times \boldsymbol{B}, \\ \partial_t \rho + \boldsymbol{u} \cdot \nabla \boldsymbol{p} + \rho \nabla \cdot \boldsymbol{u} + \nabla \cdot \mathbf{q} &= \frac{m_i}{\rho e} \nabla \left(\frac{\rho}{\rho}\right) + \eta \mid \boldsymbol{J} \mid^2 \\ \partial_t \boldsymbol{B} &= -\nabla \times \left(-\boldsymbol{u} \times \boldsymbol{B} + \eta \boldsymbol{J} - \frac{m_i}{\rho e} \nabla \boldsymbol{p} + \frac{m_i}{\rho e} (\boldsymbol{J} \times \boldsymbol{B}) \right), \\ \nabla \times \boldsymbol{B} &= \mu_0 \boldsymbol{J} \\ \nabla \cdot \boldsymbol{B} &= 0 \end{aligned}$$

- with ρ the density, p the pressure, \mathbf{u} the velocity, \mathbf{B} the magnetic field, \mathbf{J} the current, $\overline{\overline{\Pi}}$ stress tensor and \mathbf{q} the heat flux.
- In black: ideal MHD. In black and blue: Viscous-resistive MHD. All the terms: Hall or extended MHD.

JOREK code and spatial discretization

Spatial method

- Mixed Parabolic-Hyperbolic problem : Finite element method + Stabilization.
- Strong anisotropic problem: Aligned grids + High-order method ===> lsoGeometric / lsoParametric analysis.

JOREK

- **Jorek code** : (physical code for MHD simulations).
- IsoParametric approach for Flux Surface Aligned mesh (Hermite-Bézier element) + Fourier.

DJANGO

- Django : (New code for MHD simulations).
- IsoGeometric approach for Flux Surface/Field Aligned meshes (Arbitrary order B-Splines).

Figure: Flux-Surface Aligned grid

Time Numerical methods for MHD

Wave Structure of the MHD

- We linearized the MHD around $\mathbf{B}_0 = \mathbf{B}\mathbf{e}_z$, ρ_0 , p_0 and $\mathbf{u}_0 = 0$.
- Alfvén velocity and Sound velocity :

$$V_{a}=\sqrt{rac{{f B}_{0}^{2}}{\mu_{0}
ho_{0}}}$$
 and $c=\sqrt{rac{\gamma
ho_{0}}{
ho_{0}}}$

Waves in plasma (toroidal B): V_a and

$$V_{\pm} = \left(\frac{1}{2}\left(V^2 \pm \sqrt{(V^4 - 4V_a^2 c^2 \cos^2\theta}\right)\right)$$

with $V^2 = V_a^2 + c^2$, θ the angle between **B**₀ and the direction of the wave.

• Tokamak regime: $V_a >> c >> \parallel u \parallel$.

Numerical context for time discretization

- Stiff fast wave + diffusion (resistivity and viscosity) ====> Implicit or semi-implicit methods.
- Nonlinear 3D problem ====> Iterative nonlinear implicit methods.
- $\lambda_{max} >> \lambda_{min} ===>$ Preconditioning.

(nría-

24

Linear Solvers and preconditioning

We solve a nonlinear problem $G(U^{n+1}) = b(U^n, U^{n-1})$. First order linearization

$$\left(\frac{\partial G(\boldsymbol{U}^n)}{\partial \boldsymbol{U}^n}\right)\delta\boldsymbol{U}^n = -G(\boldsymbol{U}^n) + b(\boldsymbol{U}^n, \boldsymbol{U}^{n-1}) = R(\boldsymbol{U}^n),$$

with $\delta U^n = U^{n+1} - U^n$, and $J_n = \frac{\partial G(U^n)}{\partial U^n}$ the Jacobian matrix of $G(U^n)$.

- Principle of the preconditioning step:
 - □ Replace the problem $J_k \delta U_k = R(U^n)$ by $P_k(P_k^{-1}J_k)\delta U_k = R(U^n)$.
 - □ Solve the new system with two steps $P_k \delta U_k^* = R(U^n)$ and $(P_k^{-1}J_k)\delta U_k = \delta U_k^*$
- If P_k is easier to invert than J_k and $P_k \approx J_k$ the solving step is more robust and efficient.

Physic-based Preconditioning

- In the GMRES context if we have a algorithm to solve $P_k U = b$, we have a preconditioning.
- Principle: construct an algorithm to solve P_kU = b (not necessary to construct the matrix)

Preconditioning for Linearized Euler and MHD models

Physic-based: operator splitting

Idea:

- Coupled hyperbolic problems are ill-conditioned contrary to simple diffusion and advection operators.
- Idea: Use operator splitting and a reformulation to approximate the Jacobian by a series of suitable simple problems (advection or diffusion).
- For each subproblem we use an adapted solver as Multigrid solver.

Implicit scheme for wave equation: we solve

$$\left(\begin{array}{c} \partial_t u = \partial_x v \\ \partial_t v = \partial_x u \end{array} \right) \longrightarrow \left\{ \begin{array}{c} u^{n+1} = u^n + \Delta t \partial_x v^{n+1} \\ v^{n+1} = v^n + \Delta t \partial_x u^{n+1} \end{array} \right.$$

which is strictly equivalent to solving one parabolic problem

$$\begin{cases} (1 - \Delta t^2 \partial_{xx}) u^{n+1} = u^n + \Delta t \partial_x v^n \\ v^{n+1} = v^n - \Delta t \partial_x u^{n+1} \end{cases}$$

Conclusion

This algorithm gives a very good preconditioning, which is easy to invert (just one elliptic operator to invert).

Linearized Euler equation

We consider the 2D Euler equation in the conservative form,

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p &= 0\\ \partial_t \rho + \nabla \cdot (p \mathbf{u}) &= 0 \end{cases}$$

Due to the isothermal assumption, we have $p = c^2 \rho$ with $c = \sqrt{T_0}$.

• Linearization: $\boldsymbol{u} = \boldsymbol{u}_0 + \delta \boldsymbol{u}$, $\rho = \rho_0 + \delta \rho$, $\boldsymbol{p} = \boldsymbol{p}_0 + \delta \boldsymbol{p}$ with $\boldsymbol{p}_0 = c^2 \rho_0$.

Using the linear relation between p_0 and ho_0 we obtain

$$\begin{cases} \partial_t \delta \boldsymbol{u} + \boldsymbol{u}_0 \cdot \nabla \delta \boldsymbol{u} + \frac{1}{\rho_0} \nabla \delta \boldsymbol{p} &= 0\\ \partial_t \delta \boldsymbol{p} + \boldsymbol{u}_0 \cdot \nabla \delta \boldsymbol{p} + \boldsymbol{c}^2 \rho_0 \nabla \cdot \delta \boldsymbol{u} &= 0 \end{cases}$$

To simplify, we assume that $\rho_0 = \frac{1}{c}$. Defining a normalized velocity **a** and Mach number $M = \frac{|u_0|}{c}$ we obtain the final model

Final model

$$\begin{cases} \partial_t \boldsymbol{u} + c\boldsymbol{M}\boldsymbol{a} \cdot \nabla \boldsymbol{u} + c\nabla p &= 0\\ \partial_t \boldsymbol{p} + c\boldsymbol{M}\boldsymbol{a} \cdot \nabla \boldsymbol{p} + c\nabla \cdot \boldsymbol{u} &= 0 \end{cases}$$

with $M \in]0, 1]$, and $|\mathbf{a}| = 1$.

²/24

First preconditioning

Implicit scheme:

$$\begin{pmatrix} I_d + M\lambda \mathbf{a} \cdot \nabla & \lambda \nabla \cdot \\ \lambda \nabla & I_d + M\lambda \mathbf{a} \cdot \nabla \end{pmatrix} \begin{pmatrix} p^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} I_d - M\lambda_e \mathbf{a} \cdot \nabla & \lambda_e \nabla \cdot \\ \lambda_e \nabla & I_d - M\lambda_e \mathbf{a} \cdot \nabla \end{pmatrix} \begin{pmatrix} p^n \\ \mathbf{u}^n \end{pmatrix}$$

• with $\lambda = \theta c \Delta t$ and λ_e the numerical acoustic length.

Idea for preconditioning: split the systems between some triangular problems to decouple the variables

$$A = \begin{pmatrix} I_d + \lambda A D_p & \lambda Div \\ \lambda Grad & I_d + \lambda A D_u \end{pmatrix} \approx (I_d + \lambda L_1)(I_d + \lambda L_2)(I_d + \lambda L_3)$$

First choice SPC(1): $L_1 = L_1^0$, $L_1 = L_2^0$ and $L_1 = L_3^0$ with

$$\mathcal{L}_1^0 = \begin{pmatrix} \mathsf{M} \mathsf{A} D_p & 0\\ 0 & 0 \end{pmatrix}, \quad \mathcal{L}_2^0 = \begin{pmatrix} 0 & 0\\ \mathsf{Grad} & \mathsf{M} \mathsf{A} D_u \end{pmatrix}, \quad \mathcal{L}_3^0 = \begin{pmatrix} 0 & \mathsf{Div}\\ 0 & 0 \end{pmatrix}$$

Using the previous decomposition, we can approximate the wave solution solving the following algorithm:

$$\begin{array}{ll} \text{Predictor}: & (I_d + M\lambda AD_p)p^* = R_p\\ \text{Velocity evolution}: & (I_d + M\lambda AD_u)\mathbf{u}^{n+1} = (-\lambda \operatorname{Grad} p^* + R_{\mathbf{u}})\\ \text{Corrector}: & p^{n+1} = p^* - \lambda \operatorname{Div} \mathbf{u}_{n+1} \end{array}$$

Others preconditoning

Formal analysis of SPC(1) approximation:

$$E = A - (I_d + \lambda L_1)(I_d + \lambda L_2)(I_d + \lambda L_3) = O\left(\lambda^2 (1 + M)\right)$$

- In the explicit splitting theory we kill the second order terms in λ (2 order differential operators) in the error adding step.
- However the 2nd order operators are easy to invert consequently we propose.
- Second choice SPC(1): $L_1 = L_1^0$, $L_1 = L_2^0 \lambda L_2^0 L_3^0$ and $L_1 = L_3^0$ with

$$L_{1}^{0} = \begin{pmatrix} \mathsf{M}\mathsf{A}\mathsf{D}_{\mathsf{p}} & 0\\ 0 & 0 \end{pmatrix}, \quad L_{2}^{0} = \begin{pmatrix} 0 & 0\\ \mathsf{Grad} & \mathsf{M}\mathsf{A}\mathsf{D}_{u} - \lambda \mathsf{Grad}\mathsf{Div} \end{pmatrix}, \quad L_{3}^{0} = \begin{pmatrix} 0 & \mathsf{Div}\\ 0 & 0 \end{pmatrix}$$

 $\left\{ \begin{array}{l} {\rm Predictor}: \quad (I_d + M\lambda AD_p)p^* = R_p \\ {\rm Velocity\ evolution}: \quad (I_d + M\lambda AD_u - \lambda^2 GradDiv) {\bf u}^{n+1} = (-\lambda Gradp^* + R_{\bf u}) \\ {\rm Corrector}: \quad p^{n+1} = p^* - \lambda Div {\bf u}_{n+1} \end{array} \right.$

Formal analysis of SPC(2) approximation:

$$E = A - (I_d + \lambda L_1)(I_d + \lambda L_2)(I_d + \lambda L_3) = O(\lambda^2 M))$$

Remarks:

- The SPC(2): the method corresponds to the physic-based PC of L. Chacon
- Spatial discretization gives additional error between the PC and A depending of h.
- We can construct SPC(3) with $E = O(\lambda^3(M + M^2))$

/24

Results

- **Test case**: propagation of pressure perturbation (order 10^{-3}).
- The explicit time step is approximatively between 10^{-3} and 10^{-4} .
- We fixe the Mach number $M = 10^{-3}$ and we compare different PC for GMRES

	$\Delta t PC$	Jacobi	ILU(4)	MG(2)	SP(1)	SP(2)
	32*32 P3	1.1E+2	1	20	2	1
$\Delta t = 0.01$	32 * 32 <i>P</i> 5	1.3E+2	1	60	2	1
	32*32 P3	5.0E+2	3	2.0E+3	9	6
$\Delta t = 0.1$	32 * 32 <i>P</i> 5	1.4E+3	3	nc	9	6
	32*32 P3	4.0E+3	nc	nc	85	42
$\Delta t = 1$	32 * 32 <i>P</i> 5	3.5E+4	nc	nc	86	43

Secondly we compare the effect on the mesh on the SPC methods.

	Δt mesh	16*16	32*32	64*64
SPC(1)	$\Delta t = 0.1$	5	8	14
	$\Delta t = 1$	40	90	>100
SPC(2)	$\Delta t = 0.1$	4	5	2
	$\Delta t = 1$	30	42	27

Same effect with Hermite-Bézier scheme. The SP(2) method is better on fine grids.

Results

- **Test case**: propagation of pressure perturbation (order 10^{-3}).
- The explicit time step is approximatively between 10^{-3} and 10^{-4} .
- We fixe the Mach number $M = 10^{-3}$ and we compare different PC for GMRES

	$\Delta t PC$	Jacobi	ILU(4)	MG(2)	SP(1)	SP(2)
	32*32 P3	1.1E+2	1	20	2	1
$\Delta t = 0.01$	32 * 32 <i>P</i> 5	1.3E+2	1	60	2	1
	32*32 P3	5.0E+2	3	2.0E+3	9	6
$\Delta t = 0.1$	32 * 32 <i>P</i> 5	1.4E+3	3	nc	9	6
	32*32 P3	4.0E+3	nc	nc	85	42
$\Delta t = 1$	32 * 32 <i>P</i> 5	3.5E+4	nc	nc	86	43

• To finish we consider the dependency of the Mach Number.

	PC mesh	<i>M</i> = 0	$M = 10^{-4}$	$M = 10^{-2}$	$M = 10^{-1}$	M = 1
SPC(1)	$\Delta t = 0.1$	15	15	15	22	80
SPC(2)	$\Delta t = 0.1$	2	2	2	4	10
	$\Delta t = 0.5$	15	15	17	40	>200
SPC(3)	$\Delta t = 0.1$	2	2	2	4	11
	$\Delta t = 0.5$	15	15	17	42	> 200

Same effect with Hermite-Bézier scheme. The SP(2) method is better on fine grids.

Elliptic operators

Operators of the PB-PC

$$I_d + (M\lambda) \mathbf{a} \cdot \nabla I_d, \quad I_d + M\lambda \mathbf{a} \cdot \nabla I_d - \beta \lambda^2 \nabla (\nabla \cdot I_d)$$

with | a | = 1, M << 1.

- When $M\lambda = O(1)$ the transport operator is ill-conditioned. To invert this operator we can add stabilization terms, or design a specific preconditioning.
- We will focus on the low-mach regime and the elliptic operator.

Acoustic elliptic operator

Here we consider the elliptic operator

$$\left\{ \begin{array}{c} \boldsymbol{u} - \boldsymbol{\lambda}^2 \nabla(\nabla \cdot \boldsymbol{u}) = \mathbf{f} & \longrightarrow \\ \boldsymbol{M}(\mathbf{n}) \boldsymbol{u} = \mathbf{0}, & \partial \Omega \end{array} \right. \xrightarrow{\boldsymbol{\lambda} \to \infty} \left\{ \begin{array}{c} -\nabla(\nabla \cdot \boldsymbol{u}) = \mathbf{0} \\ \boldsymbol{M}(\mathbf{n}) \boldsymbol{u} = \mathbf{0}, & \partial \Omega \end{array} \right.$$

Problem

The limit operator is non-coercive. Indeed we can find $|| \boldsymbol{u} || \neq 0$ (with the good BC) such that

$$\int_{\Omega} |\nabla \cdot \boldsymbol{u}|^2 = 0$$

• Numerical problem: conditioning number in $O(\lambda)$ (and also of h and the order).

⁶/₂₄

Results

Test case: Solution for the following operator with homogeneous Dirichlet on mesh 32*32

$$u - \lambda^2 \Delta u = f$$

	Colle	Cells HB		Spli	nes O3	Splines O5	
	Cells	32	64	32	64	32	64
$\lambda = 0.1$	Jacobi	3	4	29	55	110	100
	ILU(8)	5	7	2	3	1	2
	MG(2)	8	9	8	7	20	19
$\lambda = 1$	Jacobi	3	4	30	35	120	110
$\lambda = 1$	ILU(8)	7	11	2	5	1	4
	MG(2)	10	11	8	9	20	21
$\lambda = 10$	Jacobi	3	4	30	34	120	110
$\lambda = 10$	ILU(8)	7	12	3	5	1	4
	MG(2)	10	12	8	9	20	21

Strategy to solve acoustic operator

- Step 1: R. Hiptmair, J. Xu Using discrete B-Splines H(Div) space + Auxiliary space pc, split the kernel to the rest
- □ Step 2: We treat the orthogonal of the kernel with multi-grids+GLT method
- GLT: Generalized locally Toeplitz (S. Serra Capizzano) method which allows by a generalized Fourier analysis to modify the multi-grid method in the high-frequency.

Results

Test case: Solution for the following operator with homogeneous Dirichlet on mesh 32*32

$$\boldsymbol{u} - \boldsymbol{\lambda}^2 \nabla (\nabla \cdot \boldsymbol{u}) = \mathbf{f}$$

	Cells		HB		Splines O3		Splines O5	
	Cells	32	64	32	64	32	64	
$\lambda = 0.1$	Jacobi	300	750	110	230	290	520	
	ILU(8)	10	nc	3	6	1	nc	
	MG(2)	45	80	15	25	45	55	
$\lambda = 1$	Jacobi	nc	nc	6.3E+2	1.2E+3	1.7E+3	3.6E+3	
n = 1	ILU(8)	nc	nc	nc	nc	nc	nc	
	MG(2)	300	600	1.0E+2	2.0E+2	1.8E+2	3.5E+2	
$\lambda = 10$	Jacobi	nc	nc	1.2E+5	5.0E+5	1.7E+5	6.6E+5	
$\lambda = 10$	ILU(8)	nc	nc	nc	nc	nc	nc	
	MG(2)	3.0E+3	1.5E+4	6.8E+2	1.8E+3	2.2E+3	3.8E+3	

Strategy to solve acoustic operator

- □ **Step 1**: R. Hiptmair, J. Xu Using discrete B-Splines H(Div) space + Auxiliary space pc, split the kernel to the rest
- □ **Step 2**: We treat the orthogonal of the kernel with multi-grids+GLT method
- GLT: Generalized locally Toeplitz (S. Serra Capizzano) method which allows by a generalized Fourier analysis to modify the multi-grid method in the high-frequency.

/24

Linearized 3D MHD

• We consider the 3D Isothermal MHD equation in the non-conservative form,

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) &= 0\\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \otimes \boldsymbol{u} + \nabla \rho &= \frac{1}{\mu_0} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B}\\ \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho + \gamma \rho \nabla \cdot \boldsymbol{u} &= 0\\ \partial_t \boldsymbol{B} + \nabla \times (\boldsymbol{B} \times \boldsymbol{u}) &= \frac{\eta}{\mu_0} \nabla \times \boldsymbol{B}\\ \nabla \cdot \boldsymbol{B} = 0 \end{cases}$$

Linearization: u = u₀ + δu, ρ = ρ₀ + δρ, p = p₀ + δp with p₀ = c²ρ₀, B = B₀ + δB.
 We define three important parameters: the Mach number M, the pressure ratio of the plasma β = c²/V_a², the Alfvén speed V_a² = |B_{0|²}/ρμ₀ and the magnetic Reynolds R_m = μ₀L|U₀|/η|.

Final model

$$\begin{cases} \partial_t \boldsymbol{u} + (M\sqrt{\beta}\boldsymbol{V}_a)\boldsymbol{a} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p} &= \frac{V_a^2}{|\boldsymbol{B}_0|} \left((\nabla \times \boldsymbol{B}) \times \boldsymbol{b}_0 \right) \\ \partial_t \boldsymbol{p} + (M\sqrt{\beta}\boldsymbol{V}_a)\boldsymbol{a} \cdot \nabla \boldsymbol{p} + \gamma\beta V_a^2 \nabla \cdot \boldsymbol{u} &= 0 \\ \partial_t \boldsymbol{B} + (M\sqrt{\beta}\boldsymbol{V}_a)\boldsymbol{a} \cdot \nabla \boldsymbol{B} + |\boldsymbol{B}_0| \nabla \times (\boldsymbol{b}_0 \times \boldsymbol{u}) &= \frac{M\sqrt{\beta}V_a}{R_m} \nabla \times (\nabla \times \boldsymbol{B}) \end{cases}$$

with $M \in [0, 1]$, $\beta \in [10^{-6}, 10^{-1}]$, $|\mathbf{a}| = |\mathbf{b_0}| = 1$.

2/₂₄

Implicit scheme for linear MHD equation

Implicit scheme:

$$\begin{split} \delta \boldsymbol{u}^n &+ (\boldsymbol{M}\sqrt{\beta}\lambda)\boldsymbol{a} \cdot \nabla \boldsymbol{u}^n + \nabla \boldsymbol{p} &= \frac{\lambda^2}{|\boldsymbol{B}_0|} \left((\nabla \times \boldsymbol{B}^n) \times \boldsymbol{b}_0 \right) \\ \delta \boldsymbol{p}^n &+ (\boldsymbol{M}\sqrt{\beta}\lambda)\boldsymbol{a} \cdot \nabla \boldsymbol{p}^n + \beta\lambda^2 \nabla \cdot \boldsymbol{u}^n &= 0 \\ \delta \boldsymbol{B}^n &+ (\boldsymbol{M}\sqrt{\beta}\lambda)\boldsymbol{a} \cdot \nabla \boldsymbol{B}^n + |\boldsymbol{B}_0| \nabla \times (\boldsymbol{b}_0 \times \boldsymbol{u}^n) &= \frac{\boldsymbol{M}\sqrt{\beta}\lambda}{R_m} \nabla \times (\nabla \times \boldsymbol{B}^n) \end{split}$$

• with $\lambda = V_a \Delta t$ the numerical Alfvén length, and $\delta \rho^n = \rho^{n+1} - \rho^n$.

We propose to apply the SPC(2) method splitting the velocity to the other variables.
In the end of the preconditioning we must invert three operators

Operators of the PB-PC

$$I_d + (M\sqrt{\beta}\lambda)\boldsymbol{a} \cdot \nabla I_d - \frac{M\sqrt{\beta}\lambda}{R_m}\Delta I_d, \quad I_d + (M\sqrt{\beta}\lambda)\boldsymbol{a} \cdot \nabla I_d$$

$$P = \left(I_d + M\sqrt{\beta}\lambda \boldsymbol{a} \cdot \nabla I_d - \beta\lambda^2 \nabla (\nabla \cdot I_d) - \lambda^2 \left(\boldsymbol{b}_0 \times (\nabla \times \nabla \times (\boldsymbol{b}_0 \times I_d))\right)\right)$$

with $\mid \pmb{a} \mid =$ 1, M << 1, $eta \in \left] 10^{-4}$, $10^{-1}
ight]$

⁹/₂₄

Remarks

First case: We consider the regime $M \ll 1$ and $\beta \ll 1$.

Dominant Schur operator

□ The Schur operator in this regime is mainly

$$P = \left(I_d - \lambda^2 \left(\boldsymbol{b}_0 \times \left(\nabla \times \nabla \times \left(\boldsymbol{b}_0 \times I_d\right)\right)\right)\right)$$

 \Box The limit operator is non-coercive ($\lambda>>1$). Indeed we can find $\parallel m{u} \parallel
eq 0$ such that

$$\int_{\Omega} \mid \nabla \times (\boldsymbol{b}_0 \times \boldsymbol{u}) \mid^2 = 0$$

Example: all the velocity proportional to the magnetic field.

Second case: We consider the regime $M \ll 1$ and $\beta \ll 1$.

Multis-cale operator

- Using a Fourier analysis and Diagonalizing the operator in the Fourier space we denote that the eigenvalues are the MHD speed waves
- \Box When *M* and β is not so small, the different velocities (Alfvén, magneto-sonic slow and fast) have very different scales.

⁷/2⁴

Alfven elliptic operator

Magnetic field

- $\mathbf{B} = \frac{F_0}{R} \mathbf{e}_{\phi} + \frac{1}{R} \nabla \psi \times \mathbf{e}_{\phi}$
- Poloidal flux ψ satisfy equilibrium equation

$$\Delta^*\psi = -\mu R^2 \frac{dp}{d\psi} - F \frac{dF}{d\psi}$$

with F_0 an approximation of F.

• Test case: **b** given by equilibrium for $\beta \approx 10^{-4}$

Figure: Mesh

Example of convergence problem (Hermite-Bezier finite elements):

	Jacol	oi PC	MG(2)		
	32*32	64*64	32*32	64*64	
$\lambda = 0.5$	60	55	12	11	
$\lambda = 2$	nc	nc	nc	nc	

24

Alfven elliptic operator

Magnetic field

- $\mathbf{B} = \frac{F_0}{R} \mathbf{e}_{\phi} + \frac{1}{R} \nabla \psi \times \mathbf{e}_{\phi}$
- Poloidal flux ψ satisfy equilibrium equation

$$\Delta^*\psi = -\mu R^2 \frac{dp}{d\psi} - F \frac{dF}{d\psi}$$

with F_0 an approximation of F.

• Test case: **b** given by equilibrium for $\beta \approx 10^{-4}$

Figure: ψ equilibrum

Example of convergence problem (Hermite-Bezier finite elements):

	Jacobi PC		MG(2)	
	32*32	64*64	32*32	64*64
$\lambda = 0.5$	60	55	12	11
$\lambda = 2$	nc	nc	nc	nc

24

Other example Reduced Low beta MHD

- Current Hole : 2D reduced MHD in cartesian geometry in low β limit.
- We define ψ the poloidal magnetic flux and u the electrical potential. The model is given by

$$\begin{cases} \partial_t \psi = [\psi, u] + \eta (\Delta \psi - j_e) \\\\ \partial_t \Delta u = [\Delta u, u] + [\psi, \Delta \psi] + v \Delta^2 u \end{cases}$$

with the vorticity $w = \Delta u$ and the current $j = \Delta \psi$.

- After linearization we can use SPC method to design a preconditioning for the Jacobian.
- Test case Kink Instability: growth of a linear instability and non linear saturation phase.

Δt and mesh	iteration
$\Delta t = 1 \text{ Mesh} = 32^*32$	1-3
$\Delta t = 10$ Mesh=32*32	4-25
$\Delta t = 10$ Mesh=64*64	1-20

For this test case the GMRES tolerance is $\varepsilon = 10^{-9}$. Remark: The ILU(k), MG(2) and Jacobi PC tested are not able to treat this problem.

Conclusion

Physic-based pc

- If we are able to invert the sub-systems, then the physic-based pc is
 - □ very efficient in the Low-Mach regime for large time step.
 - less efficient in the sonic-regime, however we can treat large time step than the explicit one.
 - \Box The efficiency does not decrease when the *h* decreases.

Euler equation

- Euler equation: at the end the main difficulty is to invert quickly the div-div operator.
- Ongoing work: Construct and validate preconditioning for div-div using H(div) discrete space (R. Hiptmair, J. Xu) + GLT
- Future work: find a better version of the method for Mach close to one.

MHD equation

- In the low-Beta regime, the main difficulty is to invert quickly the curl-curl operator.
- Ongoing work: find a good preconditioning for curl-curl using compatible-space (difficulty: the dependance in the magnetic field).
- For β not so small, we have a multi-scale operator. Future work: find a strategy to separate the scales.

2/ 2/