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Mathematical and physical problems
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Hyperbolic systems and explicit scheme
� We consider the general problem

∂tU + ∂x (F (U)) = ν∂x (D(U)∂xU)

� with U : Rn −→ Rn (idem for F (U)) and D a matrix.

� This system is parabolic and derivate on hyperbolic system when ν << 1.

� In the following we consider the limit ν << 1.

� Wave structure :

A(U) =
∂F

∂U
and A = P(U)Λ(U)P−1(U)

� The Riemann invariants given by P(U)U are propagated at the speed velocities
(eigenvalues of A) contained in the matrix Λ(U).

Explicit scheme

� CFL for explicit scheme: ∆t < min
(

∆x
λmax

, ∆x2

ν

)
.

Problem of Explicit scheme

� Problem: if V << λmax ( with V the characteristic velocity of the phenomena
studied), the CFL is too restrictive.
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Hyperbolic systems and explicit scheme

Implicit scheme
� Implicit scheme: allows to avoid the CFL condition filtering the fast phenomena.

� Problem of implicit scheme: need to invert large matrix. Direct solver not useful in
3D, we need iterative solvers.

� Conditioning of the implicit matrix: given by the ratio of the maximal and minimal
eigenvalues.

� Implicit scheme :

U + ∆t∂x (F (U))− ∆tν∂x (D(U)∂xU) = Un

� At the limit ν << 1 and ∆t >> 1 (large time step) we solve ∂xF (U) = 0

Problem of implicit scheme
� Conclusion: for ν << 1 and ∆t >> 1 the conditioning of the full system is closed to

conditioning of the steady system given by the ratio of the speed waves to the
hyperbolic system:

condi ≈ λmax

λmin

.
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Example of ill-conditioning systems

� Euler equation ∂tρ +∇ · (ρu) = 0,
∂t (ρu) +∇ · (ρu ⊗ u + pId ) = 0,
∂t (ρe) +∇ · (ρue + up) = 0

� Eigenvalues : (u, n)± c and (u, n) with c
the sound speed.

� Mach number : M = |u|
c

� Nondimensional eigenvalues :

M − 1,M,M + 1

� Conclusion: ill-conditioned system for

M << 1 and M = 1

� Same type of problem : Shallow - Water
with sedimentation transport.

� Ideal MHD
∂tρ +∇ · (ρu) = 0,
ρ∂tu + ρu · ∇u +∇p = J ×B,
∂tp + u · ∇p + p∇ · u = 0
∂tB = −∇× (−u ×B) ,
∇ ·B = 0, ∇×B = J.

� Eigenvalues : (u, n), (u, n)±Va,
(u, n)± φ(c,Va, θ) with c the sound speed,
Va the Alfven speed and θ the angle
between n and the B.

� Mach number : M = |u|
c and β-number :

β = c
Va

� Approximated Nondimensional eigenvalues
for β << 1 (Tokamak)

βM, βM ± 1, Mβ± (β + 1)

in the parallel direction of the magnetic field
(different in the perpendicular region).

� Conclusion: for example we have an
ill-conditioned system for

M << 1, β << 1
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Other problems of conditioning
� Simple model

νu − ∆u = f

� We define û(θ) with θ ∈ [−π, π]2 the Fourier transform of u.
� Applying the Fourier transform F we obtain

(ν+ ‖ θ ‖2)û = f̂

� After discretization more the mesh is fine more we have discrete low frequencies (
θ ≈ 0) −→ ill conditioned discrete system.

� For fluids models (for ν << 1 and ∆t >> 1) the solutions are given by
∂x (F x (U)) + ∂y (Fy (U)) = 0.

� Linearizing around a constant state we obtain A(U0)∂x δU +B(U0)∂y δU = 0.
Applying F we obtain

(A(U0, θ) +B(U0, θ)) Û = 0←→ Λ(U0, θ)(P−1(U0, θ)Û) = 0

� Example: eigenvalues of linearized Euler equation in Fourier space

(u, θ)− c, (u, θ), (u, θ) + c

� The Euler equations are ill-conditioned for the frequencies perp to the velocity.

� This type of problem existes for lot of fluid models and generate ill-conditioned
matrices at the discrete level.
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Idea

Limit of the classical method
� High memory consumption to store Jacobian and perhaps preconditioning.

� CPU time does not increase linearly comparing to the size problem ( effect of the
ill-condiitoning link to the physic).

Future of scientific computing
� Machines able to make lot of parallel computing.

� Small memory by node.

Idea: Divise and Conquer
� Propose algorithm with approximate the full problems by a collection of more simple

one.

� Perform the resolution of the simple problems.

� Avoid memory consumption using matrix-free.
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Physic-Based preconditioning and semi-implicit scheme
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Linearized Euler equation
� We consider the 2D Euler equation in the conservative form, ∂tρ +∇ · (ρu) = 0

ρ∂tu + ρu · ∇u +∇p = 0
ρ∂tT + ρu · ∇T + γρT∇ · u = 0

� Linearization: u = u0 + δu, ρ = ρ0 + δρ, T = T0 + δT and
√

γT0 ∂tδρ + u0 · ∇δρ + ρ0∇ · δu = 0
ρ0∂tδu + ρ0u0 · ∇δu + ρ0∇δT +T0∇δρ = 0
ρ0∂tδT + ρ0u0 · ∇δT + γρ0T0∇ · δu = 0

� We multiply the first equation by T0 and sum the first and third equations. After that
we define δp = ρ0δT +T0δρ{

∂tδp + u0 · ∇δp + ρ0c
2∇ · δu = 0

∂tδu + u0 · ∇δu + 1
ρ0
∇δp = 0

� After normalization we obtain the final model.

Final model {
∂tu +Ma · ∇u +∇p = 0
∂tp +Ma · ∇p +∇ · u = 0

with M ∈ ]0, 1], and ‖ a ‖= 1.
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Schur preconditioning method
� Implicit problem after time discretization:(

Id +Mλa · ∇ λ∇·
λ∇ Id +Mλa · ∇

)(
pn+1

un+1

)
=

(
Id −Mλa · ∇ λe∇·

λ∇ Id −Mλea · ∇

)(
pn

un

)
� with λ = θ∆t and λe = (1− θ)∆t.
� The implicit system after linearization is given by(

pn+1

un+1

)
=

(
A λ∇·
λ∇ A

)−1 (
Rp

Ru

)
, with A = Id +Mλa · ∇.

� Applying the Schur decomposition we obtain(
pn+1

un+1

)
=

(
Id A−1λ∇·
0 Id

)(
A−1 0
0 P−1

schur

)(
Id 0
−λ∇A−1 Id

)(
Rp

Ru

)
� Using the previous Schur decomposition, we obtain the following algorithm:

Predictor : Ap∗ = Rp

Velocity evolution : Pschurun+1 =
(
−λ∇pn+1 + Ru

)
Corrector : Apn+1 = Ap∗ − λ∇ · un+1

Approximation (PC)

� Pschur = A− λ2∇((A−1)∇· ≈ A− λ2∇(∇·) and A ≈ Id in the third equation. The
approximation is valid in the low Mach regime.
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Results on PC

� Firstly we consider the low Mach regime(M ≈ 0) with ∆t = 0.1. We study the
efficiency depending of the mesh.

PC n cells 16 ∗ 16 32 ∗ 32 64 ∗ 64 128 ∗ 128
no pc 250 90 20 25
PCu 5 5 2 1
PCp 7 6 2 2

� We call PCp (resp PCu) the case where the elliptic operator in on p (resp u).

� Secondly, we consider the low Mach regime M ≈ 0 with h = 1/64. We study the
efficiency depending of the time step.

Preconditioning ∆t ∆t = 0.1 ∆t = 0.2 ∆t = 0.5 ∆t = 1 ∆t = 2
no pc 20 35 70 130 230
PCu 2 2 2 2 3
PCp 2 2 2 3 3

Conclusion

� In the low Mach regime more the mesh is fine and the time step large more the PC is
efficient.

� For Mach between 0.1 and 1 the efficiency for large time step is bad.
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Interpretation of PB-PC as splitting scheme
� Splitting scheme:{

∂tp +Ma · ∇p = 0
∂tu = 0

,

{
∂tp +∇ · u = 0
∂tu +Ma · ∇u +∇p = 0

(1)

� Discretization each subsystem with a θ scheme and using a Lie Splitting we obtain

(Id +Ap)(Id +Au + C )

(
pn+1

un+1

)
=

(
Rp

Ru

)
(2)

� with

Ap =

(
Id +Mλa · ∇ 0
0 0

)
,Au =

(
0 0
0 Id +Mλa · ∇

)
,C =

(
0 λ∇·
λ∇ Id

)
� The first step correspond to the predictor step

(Id +Ap)

(
p∗

u∗

)
=

(
Rp

Ru

)
� The second step can be rewritten ( which correspond to update-corrector step of

PBPC)

(Id +Au + C )

(
pn+1

un+1

)
=

(
p∗

u∗

)
⇐⇒

{
Pschurun+1 =

(
−λ∇pn+1 + u∗

)
pn+1 = p∗ − λ∇ · un+1

� Conclusion: The PB-PC is equivalent to a first order implicit splitting scheme.
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Splitting schemes and numerical results
� Problem of PC :

� Less accurate for Mach closed to one.
� Discretization effect which limited the extension of the classical PC.

� Proposition : use directly splitting schemes.

� Different splitting schemes (first or second order version can be used):

Schemes Formula
Ap-AuC (Id +Ap)(Id +Au + C )

A-C (Id +Ap +Au)(Id + C )
Au-ApC (Id +Au)(Id +Ap + C )

� Splitting error: Splitting error E= O(Mach).

� Numerical results (for Mach=0.5) :

Ap-AuC A-C Au-ApC
Order 1 Order 2 Order 1 Order 2 Order 1 Order 2

∆t = 0.5 0.9 1.1 0.9 9E−2 1.4 1.1
∆t = 0.25 0.5 0.5 0.4 0.18 0.8 0.21

∆t = 0.125 0.3 1.2E−1 0.45 5.9E−2 0.55 6.7E−2

∆t = 0.0625 0.15 3.3E−2 0.18 1.5E−2 0.28 1.7E−2

∆t = 0.03125 7.2E−2 8.5E−3 8.2E−2 3.6E−3 0.14 4.5E−3

∆t = 0.015625 3.5E−2 2.1E−3 4.0E−2 9.0E−4 7.0E−2 1.1E−3

� Results: expected order for the different splitting.
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Numerical results
� We compare the CPU time for different simulation, changing the Mach number. Test:

acoustic wave.

M = 10−4 M = 10−2 M = 10−1 M = 0.5
PC 1 101.6 145 240 5200
PC 2 98.9 125.8 208 5000

Sp Ap −AuC 101.7 102.8 103 115.2
Sp Au −ApC 98.2 99.6 99.6 111.4

Sp A− Cu 90.4 92.1 92.7 102.3
Sp A− CpC 93 94.3 95 104.5

� Comparison of the numerical solution (pressure). Test: acoustic wave with M=0.5.
� Implicit time step : ∆t = 0.01 ( 2 CFL time step)

Figure: Left: solution for implicit scheme, Right: solution for Sp scheme Au −ApC
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Compressible Navier-Stokes equation splitting

� Compressible Navier-Stokes equation. Extension of previous method: three-step
splitting: ∂tρ +∇ · (ρu) = 0

ρ∂tu + ρu · ∇u +∇p = ν∆u + (ν + λ)∇(∇ · u)− ρg
ρ∂tT + ρu · ∇T + γρT∇ · u = ν(∇u)2 + (ν + λ)(∇ · u)2 +∇ · (η∇T )

(3)

� First solution:
� Step 1: ∂tρ = 0

ρ∂tu = ν∆u + (ν + λ)∇(∇ · u)
ρ∂tT = ν(∇u)2 + (ν + λ)(∇ · u)2 +∇ · (η∇T )

Diffusion −→ CN + finit element

� Step 2:  ∂tρ + u · ∇ρ = 0
ρ∂tu + ρu · ∇u = 0
ρ∂tT + ρu · ∇T = 0

Transport −→ Semi Lagrangian

� Step 3: ∂tρ + ρ∇ · u = 0
ρ∂tu +∇p = −ρg
ρ∂tT + γρT∇ · u = 0

Acoustic + gravity −→ CN + parabolization + FE

� Splitting Error: O(Mach + Diffusion)
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Compressible Navier-Stokes equation splitting
� Compressible Navier-Stokes equation. Extension of previous method: three-step

splitting: ∂tρ +∇ · (ρu) = 0
ρ∂tu + ρu · ∇u +∇p = ν∆u + (ν + λ)∇(∇ · u)− ρg
ρ∂tT + ρu · ∇T + γρT∇ · u = ν(∇u)2 + (ν + λ)(∇ · u)2 +∇ · (η∇T )

(3)

� Second solution:
� Step 1: ∂tρ = 0

ρ∂tu + ρu · ∇u = ν∆u + (ν + λ)∇(∇ · u)
ρ∂tT = 0

Burgers −→ CN + FE or ?? (next part))

� Step 2: ∂tρ + u · ∇ρ = 0
ρ∂tu = 0
ρ∂tT + ρu · ∇T = ν(∇u)2 + (ν + λ)(∇ · u)2 +∇ · (η∇T )

Convection diffusion −→ CN + FE

� Step 3: ∂tρ + ρ∇ · u = 0
ρ∂tu +∇p = −ρg
ρ∂tT + γρT∇ · u = 0

Acoustic + gravity −→ CN + parabolization + FE

� Splitting Error: O(Mach + Diffusion)
� Assumption: First solution better for low diffusion (opposite for large diffusion).
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Implicit scheme for linear MHD equation

Final model


∂tu + (M

√
βVa)a · ∇u +∇p = V 2

a
|B0 |

((∇×B)× b0)

∂tp + (M
√

βVa)a · ∇p + βV 2
a∇ · u = 0

∂tB + (M
√

βVa)a · ∇B+ | B0 | ∇ × (b0 × u) =
M
√

βVa

Rm
∇× (∇×B)

with M ∈ ]0, 1], β ∈
]
10−6, 10−1

]
, | a |=| b0 |= 1.

� We use a implicit scheme.

� We propose to apply PB-PC or splitting Ap −AuC method. At the end we must
invert three operators

Operators of the PB-PC

Id + (M
√

βλ)a · ∇Id −
M
√

βλ

Rm
∆Id , Id + (M

√
βλ)a · ∇Id

P =
(
Id +M

√
βλa · ∇Id − βλ2∇(∇ · Id )− λ2 (b0 × (∇×∇× (b0 × Id ))

)
with | a |= 1, M << 1, β ∈

]
10−4, 10−1

]
and λ = Va∆t.
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Relaxation methods

E. Franck 18/41

18/41



General principle
� We consider the following nonlinear system

∂tU + ∂xF (U) = ν∂x (D(U)∂xU) +G (U)

� Aim: Find a way to approximate this systemwith a suite of simple systems.

� Idea: Xin-Jin relaxation method (finite volume method).{
∂tU + ∂xV = G (U)

∂tV + α2∂xU =
1

ε
(F (U)−V ) +H(U)

Limit of relaxation scheme

� The limit scheme of the relaxation system is

∂tU + ∂xF (U) = G (U) + ε∂x ((α
2− | A(U) |2)∂xU) + ε∂xG (U)− ε∂xH(U) + o(ε2)

� with A(U) the Jacobian of F (U).

� Conclusion: the relaxation system is an approximation of the hyperbolic original
system (error in ε).

� Stability: the limit system is dissipative if (α2− | ρ |2) > 0.
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General principle II

Generalization
� Replacing 1

ε Id by E−1 with

E = νD(U)(α2− | ρ |2)−1

� and taking H(U) = A(U)G (U): we obtain the following limit system

∂tU + ∂xF (U) = G (U) + ν∂x (DU∂xU) + o(ν2)

� Relaxation system: ”the nonlinearity is local and the non locality is linear”.

� Key method: Splitting between source and linear hyperbolic part.

Solver for linear part
� The system {

∂tU + ∂xV = 0
∂tV + α2∂xU = 0

� can be rewritten as N independent wave systems.

� Wave solver: Schur complement. We solve two mass matrices and one Laplacian to
obtain the solution of the implicit wave problem.
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Exemple 1 : 1D Burgers equation
� Model : Viscous Burgers equation

∂tρ + ∂x

(
1

2
ρ2

)
= ∂x (ν∂xρ) + f

� Classical implicit scheme : Cranck-Nicholson + linearization + Newton.

� Relaxation system: 
∂tρ + ∂xu = f

∂tu + α2∂xρ =
1

ε

(
ρ2

2
− u

)

Limit of relaxation scheme

� The limit scheme is given by

∂tρ + ∂x

(
1

2
ρ2

)
= ε∂x ((α

2− | ρ |2)∂xρ) + f + o(ε2)

� taking ε = ν
α2−|ρ|2 we recover the initial equation.

� Stability condition: α >| u |.
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Exemple 1 : Time scheme for Burgers

Step:
� Transport step (T (∆t)):(

Id θ∆t∂x
α2θ∆t∂x Id

)(
ρ∗

u∗

)
=

(
Id −(1− θ)∆t∂x
−α2(1− θ)∆t∂x Id

)(
ρn

un

)
� Relaxation step (R(∆t)): ρ∗ = ρn + ∆tf

u∗ =
∆t

ε + θ∆t

ρ2

2
+

ε− (1− θ)∆t

ε + θ∆t
u

� First order time scheme: T (∆t) ◦ R(∆t) with θ = 1

� Second order time scheme: T
(

∆t
2

)
◦ R(∆t) ◦T

(
∆t
2

)
or inverse with θ = 0.5.

Consistency at the limit
� The first order scheme at the limit is consistent with

∂tρ+ ∂x

(
1

2
ρ2

)
= (ε +

∆t

2
)∂x ((α

2− | ρ |2)∂xρ)+
∆t

2
∂x (α

2∂xu)+ f +o(ε2 +∆t2 + ε∆t)
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Results I

� Model : We consider the Burgers equation without viscosity with source term.

� We choose as source term f = gρ to obtain a steady solution given by

ρ(t, x) = 1.0 + 0.1e−
x2
σ , g (t, x) = − 2x

σ
e−

x2
σ

� We consider the final time T = 0.1 and a fine mesh (10000 cells with third order
polynomials). The first and second order schemes are compared for different time step.

Order 1 Order 2
Error Order Error Order

∆t = 0.02 1.58E−2 - 3.1E−4 -
∆t = 0.01 9.47E−3 0.74 7.75E−5 2.0

∆t = 0.005 5.18E−3 0.87 1.95E−5 2.0
∆t = 0.0025 2.7E−3 0.94 4.86E−6 2.0

∆t = 0.00125 1.38E−3 0.97 1.21E−6 2.0

Table: Error and order for the test 1 one with the relaxation scheme.

� The splitting scheme allows to obtain first and second order scheme without CFL
condition.
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Results II
� Model : Viscous - Burgers model.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.
� Explicit time step : stable if for ∆t = 1.0E−5.
� Implicit time step : ∆t = 1.0E−3

Figure: Left: numerical solution for first order and second order schemes for
∆t = 0.001, Right: Zoom

� Remark: for discontinuous solution ( or strong gradient solution) the scheme admits
high numerical dispersion and instabilities.

� Instability: oscillations −→ α increase and α increase −→ oscillations increase.
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Results II
� Model : Viscous - Burgers model.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.
� Explicit time step : stable if for ∆t = 1.0E−5.
� Implicit time step : ∆t = 1.0E−3, ∆t = 5.0E−3 and ∆t = 1.0E−2.

Figure: Left: numerical solution for first order scheme, Right: numerical solution for
second order scheme. ν = 10−2

� Remark: for discontinuous solution ( or strong gradient solution) the scheme admits
high numerical dispersion and instabilities.

� Instability: oscillations −→ α increase and α increase −→ oscillations increase.
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Results II
� Model : Viscous - Burgers model.

� Conditioning : well-conditioning system in 1D.

� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.

� Explicit time step : stable if for ∆t = 1.0E−5

Figure: Left: Comparison between fine solution, CN and relaxation numerical
solutions. Right: zoom. ν = 10−10, ∆t = 0.002

� Conclusion: the Relaxation method is a little more dispersive that the
Cranck-Nicholson method.
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� Spatial discretization: Ncell = 10000, order = 3. Initial condition : Gaussian.

� Explicit time step : stable if for ∆t = 1.0E−5

Figure: Left: Comparison between fine solution, CN and relaxation numerical
solutions. Right: zoom. ν = 10−10, ∆t = 0.01

� Conclusion: the Relaxation method is a little more dispersive that the
Cranck-Nicholson method.
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Results II
� Model : Viscous - Burgers model with ν = 10−12.
� Comparison of CPU time between two methods.

CN method Relaxation method
∆t cells 5.103 104 2.104 5.103 104 2.104

∆t = 0.005 67 217.5 980 75.5 240 1100
∆t = 0.01 35 114 518 41 122.5 561
∆t = 0.02 18 61 280 20 63 294
∆t = 0.05 9.5 32.5 144 8 29 126

Remark

� The Relaxation method is competitive when the solver converges slowly for the
classical method (high time step in this case).

� The assembly time is negligible in 1D not in 2D and 3D. The 1D burgers equation is
not an ill-posed problem contrary multi-D hyperbolic systems or low Mach Euler
equations.

� Therefore for complex models or in multi-D.

Future optimization:

� CN scheme does not use a PC and the relaxation scheme solves sequentially the
independent subsystems.
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Exemple II : 1D Navier-Stokes equation

� Model : Viscous Burgers equation
∂tρ + ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + p) = ∂x (ν(ρ)∂xu)− ρg

∂tE + ∂x (Eu + pu) = ∂x (ν(ρ)∂x
u2

2 ) + ∂x (η∂xT )− ρvg

� We apply the relaxation method: three additional variables.

Stability

� The relaxation scheme is stable if α2− | A |2> 0 with A the Jacobian.

� Classical choice: α > u + c.

Diffusion

� To obtain the physical diffusion matrix:

E =

 0 0 0

− ν(ρ)u
ρ

ν(ρ)
ρ 0

−η 3
2 η(γ− 1)E − ν(ρ)u2 ν(ρ)− (γ− 1)ρη (γ− 1)ρη

 (α2− | A |2)−1
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Results for Navier-Stokes equation I
� Simple test case: ρ(t, x) = 1 +G (x − ut), u(t, x) = 2 and T (t, x) = 0.

Scheme ∆t ∆t = 1.0E−2 ∆t = 5.0E−3 ∆t = 2.5E−3 ∆t = 1.25E−3

CN scheme 8.8E−3 2.25E−3 5.7E−3 1.4E−3

Relaxation scheme 2.25E−3 5.7E−4 1.4E−4 3.6E−5

� Conclusion: the relaxation scheme converges with the second order as expected.
� Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green)
∆t = 0.01
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Results for Navier-Stokes equation I
� Simple test case: ρ(t, x) = 1 +G (x − ut), u(t, x) = 2 and T (t, x) = 0.

Scheme ∆t ∆t = 1.0E−2 ∆t = 5.0E−3 ∆t = 2.5E−3 ∆t = 1.25E−3

CN scheme 8.8E−3 2.25E−3 5.7E−3 1.4E−3

Relaxation scheme 2.25E−3 5.7E−4 1.4E−4 3.6E−5

� Conclusion: the relaxation scheme converges with the second order as expected.
� Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green)
∆t = 0.02
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Results for Navier-Stokes equation I
� Simple test case: ρ(t, x) = 1 +G (x − ut), u(t, x) = 2 and T (t, x) = 0.

Scheme ∆t ∆t = 1.0E−2 ∆t = 5.0E−3 ∆t = 2.5E−3 ∆t = 1.25E−3

CN scheme 8.8E−3 2.25E−3 5.7E−3 1.4E−3

Relaxation scheme 2.25E−3 5.7E−4 1.4E−4 3.6E−5

� Conclusion: the relaxation scheme converges with the second order as expected.
� Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green)
∆t = 0.05

� The two methods (CN and relaxation) capture well the fine solution.
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Results II

� Model : Compressible Navier-Stokes equation model with ε = 10−10.

� Initial data: Constant pressure with a perturbation of density. Initial velocity null.

� Test: Propagation of acoustic wave.

CN method Relaxation method
∆t / cells 5.103 104 2.104 5.103 104 2.104

∆t = 0.005 170 580 2550 135 420 1890
∆t = 0.01 100 345 1500 70 215 980
∆t = 0.02 60 205 920 40 120 525
∆t = 0.05 30 120 525 20 65 270

Conclusion:

� The 1D Navier-Stokes problem is ill-conditioned comparing to Burgers. In this case
the efficiency of Relaxation comparing to Cranck-Nicholson is better.

� In this case the Relaxation method is competitive with the classical scheme without
important optimization (no parallelization of the problem, etc).
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Problem of relaxation solvers
� Problem for Relaxation solver I: high diffusion

∂tU +∇ · F (U) = ∇ · (D(U)∇U) +G (U) +O(| D(U) |2)

� Conclusion: For | D(U) |<< 1 the relaxation system is valid.

� Tokamak MHD context: the anisotropic diffusion in the parallel direction is in O(1)
for Tokamak. We must adapt the method.

� Toy model:{
∂tT +∇ · (uT ) = ∇ · (D(b)∇T ), D(b)∇T = (b⊗ b)∇T + κ∇T

� There exists different relaxation schemes for the diffusion.

� The first results (we need more results) show difficulty to treat large time steps if we
use implicit schemes.

� Possible solution : modification of the relaxation method (keeping a part of relaxation
step in the transport step) to treat high time step.

� Problem for Relaxation solver II: more numerical and physical dispersion (more
critical problem)

� Possible solution : adaptive time scheme ? limiter or other treatment for
discontinuities, high order scheme in time ?
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Lattice Boltzmann schemes
� Lattice Boltzmann schemes: use a kinetic interpretation of the Fluid mechanics

model.

Lattice Scheme
� For N velocities → compute equilibrium:

fi = wiρ
(
1 + 3(u i · u) + 9

2 (u iu i − 1
2 Id ) : uu

)
� For N velocities → relaxation to the equilibrium:

∂t fi =
1
τ (f

eq
i − fi )

� For N velocities → transport : ∂t fi + vi · ∇fi = 0

� We compute the moments ρ = ∑i fi , ρu = ∑i u i fi
etc

� Advantage: ln DG context the transport matrices
are triangular by block and can be solved by a
up-down algorithm without stocking

� Problem: physical limitation. Example D2Q9 is
consistent with isothermal Navier-Stokes + a
destabilizing diffusion homogeneous to O(Mach3).

� Solution: use DdQ(d + 1)n lattice we obtain a
relaxation system where the transport is diagonal
with properties closed to the Jin-Xin relaxation.
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Elliptic problems
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Elliptic problems for ”Splitting” implicit schemes

Resume :

� All the methods proposed before split the complex systems between some simple
systems.

� Simples systems:

� Laplacian : νu − λ∆u = f

� Advection: νu + λa · ∇u = f

� Div-Div and Curl-Curl: νu − λ∇(∇ · u) = f , νu − λ∇× (∇× u) = f

� Alfven Curl-Curl: νu − βλ∇(∇ · u)− λ (b0 × (∇×∇× (b0 × u))) = f

� For the last operator, we have additional complexity, but the scale can be probably
separate using a formulation parallel-perp of the MHD and PC.

� Conclusion: to obtain efficient methods in time we need efficient methods for all these
systems.

� Efficient solvers: solvers with an accuracy independent of λ , the order and the size of
the mesh. Parallelized solvers.
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GLT principle

� PDE : Lu = g after discretization gives Lnun = gn with {Ln}n a sequence of matrices.

� It is often the case that the matrix Ln is a linear combination, product, inversion or

conjugation of these two simple kinds of matrices

� Tn(f ), i.e., a Toeplitz matrix obtained from the Fourier coefficient of
f : [−π, π]→ C, with f ∈ L1([−π, π]).

� D(a), i.e., a diagonal matrix such that (Dn(a))ii = a( i
n ) with a : [0, 1]→ C

Riemann integrable function.

In such a case {Ln}n is called a GLT sequence.

Fundamental property

� Each GLT sequence {Ln}n is equipped with a ”symbol”, a function
χ : [0, 1]× [−π, π]→ C which describes the asymptotic spectral behaviour of {Ln}n:

{Ln}n ∼ χ

E.g.: if Ln = Dn(a)Tn(f ), then {Ln}n ∼ χ = a · f

� Advantage of this tool: studying the symbol we retrieve information on the
conditioning and propose new preconditioning based on this symbol.
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GLT for stiffness matrix
� Application: B-Splines discretization of the model

−∆u = f , in [0, 1]d .

� The basis functions are given by φi (x) a tensor product of 1D B-Splines functions.

Symbol of the problem{
nd−2Ln

}
n
∼ 1

n

(
Πd

k=1mpk−1(θk )
) (

∑ d
k=1µ2

k (2− 2 cos(θk ))Π
d
j=1,j 6=kwpj (θj )

)
with θk ∈ [−π, π] and wp(θ) := mp(θ)/mp−1(θ).

�
(

4
π2

)p
≤ mp−1(θ) ≤ mp−1(0) = 1.

� Remark 1: The symbol has a zero in θ = (0, ... , 0) ⇒ nd−2Ln is ill-conditioned in the
low frequencies. Classical problem solved by MG preconditioning.

� Remark 2: The symbol has infinitely many exponential zeros at the points θ with
θj = π for some j when pj → ∞ ⇒ nd−2Ln is ill-conditioned in the high frequencies.
Non-canonical problem solvable by GLT theory.

� Preconditioning: Using the symbol we can construct a smoother for MG valid for
high-frequencies. (i.e. CG preconditioned with a Kronecker product whose jth factor is
Tµjn+pj−2(mpj−1)).

� Extension: the method can be extended to the case with mapping (general
geometries) and more general operators.
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Numerical results

� Solver: Comparison between classical multi-grid solver and MG with CG + GLT
preconditioning smoother.

� Model: 2D Laplacian with Homogeneous Dirichlet BC

� Efficiency of the multi-grid method depending to the polynomial degree.

� Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.
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Numerical results

� Solver: Comparison between classical multi-grid solver and MG with CG + GLT
preconditioning smoother.

� Model: 2D Laplacian with Homogeneous Dirichlet BC

� Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.

� The efficiency of the multi-grid method + GLT PC method depending on the
polynomial degree.

� Conclusion: the MG + CG-GLT is efficient for all high-order polynomial degrees.
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Numerical results
� Solver: Comparison between classical multi-grid solver and MG with CG + GLT

preconditioning smoother.
� Model: 2D Laplacian with Homogeneous Dirichlet BC

� Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.

Degree/Scheme MG + GLT MG
1 1.32 1.76
2 2.56 2.75
3 2.58 4.42
4 3.42 21.62
5 6.35 170.48
6 15.71 677.17*
7 25.99 825.56*
8 27.89 800.72*
9 58.03 1098.94*

Table: Computational cost comparison for the Laplacian operator -2D 64*64 elements

Conclusion

� The GLT preconditioning allows to avoid the problem of conditioning for high degree
polynomial and limit CPU time.
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Numerical results

� The GLT preconditioning is based on the ”symbol” which describe the eigenvalues
linked to the mass matrix.

� Conclusion: it can be also used as a PC for the mass matrix (closed to Kronecker
product preconditioning).

� Result inverting the mass matrix with CG + GLT.

Degree PCG CG
3 10 111
5 25 449
7 40 1777

Degree PCG CG
3 10 117
5 23 533
7 38 2166

Table: Left: Number of iterations-mass matrix on a square 32*32. Right on a square
64*64

Degree PCG CG
3 50 210
5 83 796
7 125 2639

Degree PCG CG
3 71 340
5 118 1711
7 186 >3000

Table: Left: Number of iterations-mass matrix on a circle 32*32. Right on a circle
64*64

� Conclusion: the GLT PC is also a good PC for the mass matrix.
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Vectoriel elliptic problems and advection
� Study of the conditioning problem using Fourier analysis.

� Fourier transform for Advection

[ν + i(a · θ)]û = 0

� For ν << 1 the system is ill-conditioning to the orthogonal frequencies to the velocity
a.

� Fourier transform for vectorial elliptic problems (ex grad div problem):[
νId +

(
θ2

1 θ1θ2

θ1θ2 θ2
2

)]
û = 0

[
νId +

(
0 0
0 ‖ θ ‖2

)]
P−1û = 0

� For small ν the vectorial problems are ill-conditioning.

� In the future: GLT analysis to find additional problems due to the numerical
discretization.

� Aim: find preconditioning for these problems. Open problem for advection. Auxiliary
space or GLT with diagonalization for vectorial problems.
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Conclusion
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Conclusion
� First way: Splitting method. M. Gaja Phd and NMPP group.

Physic-based method
� Advantages:

� Efficient method for low Mach method.
� Compatible with equilibrium conservation.
� Few memory consumption if coupled with Jacobian free.

� Defaults:
� Nonlinear matrices (important cost )
� Less efficient is the regime Mach closed to one.
� Efficiency of PC depend also to the mesh, discretization etc ( not clear)
� Need Preconditioning for advection ?

Semi Implicit
� Advantages:

� Probably efficient for all Mach regimes between zero and one.
� Compatible with equilibrium conservation.
� Few memory consumption if coupled with Jacobian free

� Defaults:
� Nonlinear matrices (important cost )
� Efficiency of PC depend also to the mesh, discretization etc ( not clear)
� Need Preconditioning for advection ?
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Conclusion

Second way: Relaxation method. INRIA Tonus team and NPP group.

Relaxation
� Advantages:

� Few memory consumption ( derivates matrices and perhaps mass).
� Good parallelization ( models + domain decomposition).
� Able to treat lots of regimes.

� Defaults:
� Not directly able to treat high diffusion (on going work).
� Lose of parallelization for complex BC.
� A little bit more numerical dispersion.
� not compatible with equilibrium conservation.

Remark
� All the methods needs preconditioning for mass, Laplacian and vectorial elliptic

problems.

� All the methods needs stabilization or other treatment in the nonlinear phase for the
numerical dispersion.

� Find 4th order schemes for the two methods could be possible and useful (ongoing
work in TONUS team)
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