Splitting based Implicit solvers for compressible fluid models

```
D. Coulette \({ }^{3}\), E. Franck \({ }^{1}\), M. Gaja \({ }^{2}\), P. Helluy \({ }^{3}\), J. Lakhlili \({ }^{2}\), M. Mazza \({ }^{2}\), M. Mehrenberger \({ }^{3}\), A. Ratnani \({ }^{2}\), S. Serra-Capizzano \({ }^{4}\), E. Sonnendrücker \({ }^{2}\)
```

NMPP Seminar, IPP, December 2016

[^0]
Outline

Mathematical and physical problems

Physic-Based preconditioning and semi-implicit schemes

Relaxation methods

Elliptic problems

Conclusion

Mathematical and physical problems

Hyperbolic systems and explicit scheme

- We consider the general problem

$$
\partial_{t} \boldsymbol{U}+\partial_{x}(\boldsymbol{F}(\boldsymbol{U}))=v \partial_{x}\left(D(\boldsymbol{U}) \partial_{x} \boldsymbol{U}\right)
$$

■ with $\boldsymbol{U}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ (idem for $\boldsymbol{F}(\boldsymbol{U})$) and D a matrix.

- This system is parabolic and derivate on hyperbolic system when $v \ll 1$.
- In the following we consider the limit $v \ll 1$.
- Wave structure :

$$
A(\boldsymbol{U})=\frac{\partial F}{\partial \boldsymbol{U}} \text { and } A=P(\boldsymbol{U}) \Lambda(\boldsymbol{U}) P^{-1}(\boldsymbol{U})
$$

- The Riemann invariants given by $P(\boldsymbol{U}) \boldsymbol{U}$ are propagated at the speed velocities (eigenvalues of A) contained in the matrix $\Lambda(\boldsymbol{U})$.

Explicit scheme

\square CFL for explicit scheme: $\Delta t<\min \left(\frac{\Delta x}{\lambda_{\max }}, \frac{\Delta x^{2}}{v}\right)$.

Problem of Explicit scheme

\square Problem: if $V \ll \lambda_{\max }$ (with V the characteristic velocity of the phenomena studied), the CFL is too restrictive.

Hyperbolic systems and explicit scheme

Implicit scheme

- Implicit scheme: allows to avoid the CFL condition filtering the fast phenomena.
- Problem of implicit scheme: need to invert large matrix. Direct solver not useful in 3D, we need iterative solvers.
- Conditioning of the implicit matrix: given by the ratio of the maximal and minimal eigenvalues.
- Implicit scheme:

$$
\boldsymbol{U}+\Delta t \partial_{x}(\boldsymbol{F}(\boldsymbol{U}))-\Delta t v \partial_{x}\left(\boldsymbol{D}(\boldsymbol{U}) \partial_{x} \boldsymbol{U}\right)=\boldsymbol{U}^{n}
$$

- At the limit $v \ll 1$ and $\Delta t \gg 1$ (large time step) we solve $\partial_{x} \boldsymbol{F}(\boldsymbol{U})=0$

Problem of implicit scheme

- Conclusion: for $v \ll 1$ and $\Delta t \gg 1$ the conditioning of the full system is closed to conditioning of the steady system given by the ratio of the speed waves to the hyperbolic system:

$$
\text { condi } \approx \frac{\lambda_{\max }}{\lambda_{\min }}
$$

Example of ill-conditioning systems

- Ideal MHD
- Euler equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot\left(\rho \boldsymbol{u} \otimes \boldsymbol{u}+p l_{d}\right)=0 \\
\partial_{t}(\rho \boldsymbol{e})+\nabla \cdot(\rho \boldsymbol{u} e+\boldsymbol{u} p)=0
\end{array}\right.
$$

■ Eigenvalues: $(\boldsymbol{u}, \boldsymbol{n}) \pm c$ and $(\boldsymbol{u}, \boldsymbol{n})$ with c the sound speed.

- Mach number: $M=\frac{|\boldsymbol{u}|}{c}$
- Nondimensional eigenvalues:

$$
M-1, M, M+1
$$

- Conclusion: ill-conditioned system for

$$
M \ll 1 \text { and } M=1
$$

- Same type of problem: Shallow - Water with sedimentation transport.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0, \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\boldsymbol{J} \times \boldsymbol{B}, \\
\partial_{t} p+\boldsymbol{u} \cdot \nabla p+p \nabla \cdot \boldsymbol{u}=0 \\
\partial_{t} \boldsymbol{B}=-\nabla \times(-\boldsymbol{u} \times \boldsymbol{B}), \\
\nabla \cdot \boldsymbol{B}=0, \quad \nabla \times \boldsymbol{B}=\boldsymbol{J} .
\end{array}\right.
$$

- Eigenvalues: $(\boldsymbol{u}, \boldsymbol{n}),(\boldsymbol{u}, \boldsymbol{n}) \pm V_{a}$, $(\boldsymbol{u}, \boldsymbol{n}) \pm \phi\left(c, V_{a}, \theta\right)$ with c the sound speed, V_{a} the Alfven speed and θ the angle between \boldsymbol{n} and the \boldsymbol{B}.
- Mach number: $M=\frac{|\boldsymbol{u}|}{c}$ and β-number : $\beta=\frac{c}{V_{\mathrm{a}}}$
- Approximated Nondimensional eigenvalues for $\beta \ll 1$ (Tokamak)

$$
\beta M, \quad \beta M \pm 1, \quad M \beta \pm(\beta+1)
$$

in the parallel direction of the magnetic field (different in the perpendicular region).

- Conclusion: for example we have an ill-conditioned system for

$$
M \ll 1, \quad \beta \ll 1
$$

Other problems of conditioning

- Simple model

$$
v u-\Delta u=f
$$

- We define $\hat{u}(\boldsymbol{\theta})$ with $\boldsymbol{\theta} \in[-\pi, \pi]^{2}$ the Fourier transform of u.
- Applying the Fourier transform \mathcal{F} we obtain

$$
\left(v+\|\boldsymbol{\theta}\|^{2}\right) \hat{u}=\hat{f}
$$

- After discretization more the mesh is fine more we have discrete low frequencies ($\theta \approx 0) \longrightarrow$ ill conditioned discrete system.
- For fluids models (for $v \ll 1$ and $\Delta t \gg 1$) the solutions are given by $\partial_{x}\left(\boldsymbol{F}_{x}(\boldsymbol{U})\right)+\partial_{y}\left(F_{y}(\boldsymbol{U})\right)=0$.
- Linearizing around a constant state we obtain $\boldsymbol{A}\left(\boldsymbol{U}_{0}\right) \partial_{x} \delta \boldsymbol{U}+B\left(\boldsymbol{U}_{0}\right) \partial_{y} \delta \boldsymbol{U}=0$. Applying \mathcal{F} we obtain

$$
\left(A\left(\boldsymbol{U}_{0}, \boldsymbol{\theta}\right)+B\left(\boldsymbol{U}_{0}, \boldsymbol{\theta}\right)\right) \hat{\boldsymbol{U}}=0 \longleftrightarrow \Lambda\left(\boldsymbol{U}_{0}, \boldsymbol{\theta}\right)\left(P^{-1}\left(\boldsymbol{U}_{0}, \boldsymbol{\theta}\right) \hat{\boldsymbol{U}}\right)=0
$$

- Example: eigenvalues of linearized Euler equation in Fourier space

$$
(\boldsymbol{u}, \boldsymbol{\theta})-c, \quad(\boldsymbol{u}, \boldsymbol{\theta}), \quad(\boldsymbol{u}, \boldsymbol{\theta})+c
$$

\square The Euler equations are ill-conditioned for the frequencies perp to the velocity.
\square This type of problem existes for lot of fluid models and generate ill-conditioned matrices at the discrete level.

Idea

Limit of the classical method

- High memory consumption to store Jacobian and perhaps preconditioning.
- CPU time does not increase linearly comparing to the size problem (effect of the ill-condiitoning link to the physic).

Future of scientific computing

- Machines able to make lot of parallel computing.
- Small memory by node.

Idea: Divise and Conquer

- Propose algorithm with approximate the full problems by a collection of more simple one.
- Perform the resolution of the simple problems.
- Avoid memory consumption using matrix-free.

Physic-Based preconditioning and semi-implicit scheme

Linearized Euler equation

- We consider the $2 D$ Euler equation in the conservative form,

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=0 \\
\rho \partial_{t} T+\rho \boldsymbol{u} \cdot \nabla T+\gamma \rho T \nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

■ Linearization: $\boldsymbol{u}=\boldsymbol{u}_{0}+\delta \boldsymbol{u}, \rho=\rho_{0}+\delta \rho, T=T_{0}+\delta T$ and $\sqrt{\gamma T_{0}}$

$$
\left\{\begin{array}{l}
\partial_{t} \delta \rho+\boldsymbol{u}_{0} \cdot \nabla \delta \rho+\rho_{0} \nabla \cdot \delta \boldsymbol{u}=0 \\
\rho_{0} \partial_{t} \delta \boldsymbol{u}+\rho_{0} \boldsymbol{u}_{0} \cdot \nabla \delta \boldsymbol{u}+\rho_{0} \nabla \delta T+T_{0} \nabla \delta \rho=0 \\
\rho_{0} \partial_{t} \delta T+\rho_{0} \boldsymbol{u}_{0} \cdot \nabla \delta T+\gamma \rho_{0} T_{0} \nabla \cdot \delta \boldsymbol{u}=0
\end{array}\right.
$$

■ We multiply the first equation by T_{0} and sum the first and third equations. After that we define $\delta p=\rho_{0} \delta T+T_{0} \delta \rho$

$$
\left\{\begin{array}{l}
\partial_{t} \delta p+\boldsymbol{u}_{0} \cdot \nabla \delta p+\rho_{0} c^{2} \nabla \cdot \delta \boldsymbol{u}=0 \\
\partial_{t} \delta \boldsymbol{u}+\boldsymbol{u}_{0} \cdot \nabla \delta \boldsymbol{u}+\frac{1}{\rho_{0}} \nabla \delta p=0
\end{array}\right.
$$

- After normalization we obtain the final model.

Final model

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{u}+M \mathbf{a} \cdot \nabla \boldsymbol{u}+\nabla p=0 \\
\partial_{t} p+M \mathbf{a} \cdot \nabla p+\nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

with $M \in] 0,1]$, and $\|\boldsymbol{a}\|=1$.

Schur preconditioning method

- Implicit problem after time discretization:

$$
\left(\begin{array}{cc}
I_{d}+M \lambda \boldsymbol{a} \cdot \nabla & \lambda \nabla \cdot \\
\lambda \nabla & I_{d}+M \lambda \boldsymbol{a} \cdot \nabla
\end{array}\right)\binom{p^{n+1}}{\boldsymbol{u}^{n+1}}=\left(\begin{array}{cc}
I_{d}-M \lambda \boldsymbol{a} \cdot \nabla & \lambda_{e} \nabla \cdot \\
\lambda \nabla & I_{d}-M \lambda_{e} \boldsymbol{a} \cdot \nabla
\end{array}\right)\binom{p^{n}}{\boldsymbol{u}^{n}}
$$

■ with $\lambda=\theta \Delta t$ and $\lambda_{e}=(1-\theta) \Delta t$.

- The implicit system after linearization is given by

$$
\binom{p^{n+1}}{\boldsymbol{u}^{n+1}}=\left(\begin{array}{ll}
A & \lambda \nabla \cdot \\
\lambda \nabla & A
\end{array}\right)^{-1}\binom{R_{p}}{R_{u}}, \quad \text { with } A=I_{d}+M \lambda \boldsymbol{a} \cdot \nabla
$$

- Applying the Schur decomposition we obtain

$$
\binom{p^{n+1}}{\boldsymbol{u}^{n+1}}=\left(\begin{array}{ll}
I_{d} & A^{-1} \lambda \nabla \cdot \\
0 & I_{d}
\end{array}\right)\left(\begin{array}{ll}
A^{-1} & 0 \\
0 & P_{\text {schur }}^{-1}
\end{array}\right)\left(\begin{array}{ll}
I_{d} & 0 \\
-\lambda \nabla A^{-1} & I_{d}
\end{array}\right)\binom{R_{p}}{R_{u}}
$$

- Using the previous Schur decomposition, we obtain the following algorithm:

$$
\left\{\begin{array}{l}
\text { Predictor : } A p^{*}=R_{p} \\
\text { Velocity evolution : } \quad P_{\text {schur }} \boldsymbol{u}^{n+1}=\left(-\lambda \nabla p^{n+1}+R_{u}\right) \\
\text { Corrector: } A p^{n+1}=A p^{*}-\lambda \nabla \cdot \boldsymbol{u}^{n+1}
\end{array}\right.
$$

Approximation (PC)

$\square P_{\text {schur }}=A-\lambda^{2} \nabla\left(\left(A^{-1}\right) \nabla \cdot \approx A-\lambda^{2} \nabla(\nabla \cdot)\right.$ and $A \approx I_{d}$ in the third equation. The approximation is valid in the low Mach regime.

Results on PC

- Firstly we consider the low Mach regime $(M \approx 0)$ with $\Delta t=0.1$. We study the efficiency depending of the mesh.

PC n cells	$16 * 16$	$32 * 32$	$64 * 64$	$128 * 128$
no pc	250	90	20	25
$P C_{u}$	5	5	2	1
$P C_{p}$	7	6	2	2

- We call $P C_{p}\left(\right.$ resp $\left.P C_{u}\right)$ the case where the elliptic operator in on $p(\operatorname{resp} \boldsymbol{u})$.
- Secondly, we consider the low Mach regime $M \approx 0$ with $h=1 / 64$. We study the efficiency depending of the time step.

Preconditioning Δt	$\Delta t=0.1$	$\Delta t=0.2$	$\Delta t=0.5$	$\Delta t=1$	$\Delta t=2$
no pc	20	35	70	130	230
$P C_{u}$	2	2	2	2	3
$P C_{p}$	2	2	2	3	3

Conclusion

\square In the low Mach regime more the mesh is fine and the time step large more the PC is efficient.
\square For Mach between 0.1 and 1 the efficiency for large time step is bad.

Interpretation of PB-PC as splitting scheme

- Splitting scheme:

$$
\left\{\begin{array}{l}
\partial_{t} p+M \mathbf{a} \cdot \nabla p=0 \tag{1}\\
\partial_{t} \boldsymbol{u}=0
\end{array}, \quad\left\{\begin{array}{l}
\partial_{t} p+\nabla \cdot \boldsymbol{u}=0 \\
\partial_{t} \boldsymbol{u}+M \mathbf{a} \cdot \nabla \boldsymbol{u}+\nabla p=0
\end{array}\right.\right.
$$

- Discretization each subsystem with a θ scheme and using a Lie Splitting we obtain

$$
\begin{equation*}
\left(\boldsymbol{I}_{d}+A_{p}\right)\left(\boldsymbol{I}_{d}+A_{u}+C\right)\binom{p^{n+1}}{\boldsymbol{u}^{n+1}}=\binom{R_{p}}{R_{u}} \tag{2}
\end{equation*}
$$

- with

$$
A_{p}=\left(\begin{array}{ll}
I_{d}+M \lambda \boldsymbol{a} \cdot \nabla & 0 \\
0 & 0
\end{array}\right), A_{u}=\left(\begin{array}{ll}
0 & 0 \\
0 & I_{d}+M \lambda \boldsymbol{a} \cdot \nabla
\end{array}\right), C=\left(\begin{array}{ll}
0 & \lambda \nabla \cdot \\
\lambda \nabla & I_{d}
\end{array}\right)
$$

- The first step correspond to the predictor step

$$
\left(I_{d}+A_{p}\right)\binom{p^{*}}{u^{*}}=\binom{R_{p}}{R_{u}}
$$

- The second step can be rewritten (which correspond to update-corrector step of PBPC)

$$
\left(I_{d}+A_{u}+C\right)\binom{p^{n+1}}{\boldsymbol{u}^{n+1}}=\binom{p^{*}}{\boldsymbol{u}^{*}} \Longleftrightarrow\left\{\begin{array}{l}
P_{\text {schur }} \boldsymbol{u}^{n+1}=\left(-\lambda \nabla p^{n+1}+\boldsymbol{u}^{*}\right) \\
p^{n+1}=p^{*}-\lambda \nabla \cdot \boldsymbol{u}^{n+1}
\end{array}\right.
$$

- Conclusion: The PB-PC is equivalent to a first order implicit splitting scheme.

Splitting schemes and numerical results

- Problem of PC :
\square Less accurate for Mach closed to one.
\square Discretization effect which limited the extension of the classical PC.
- Proposition : use directly splitting schemes.
- Different splitting schemes (first or second order version can be used):

Schemes	Formula
$\mathrm{Ap}-\mathrm{AuC}$	$\left(I d+A_{p}\right)\left(I d+A_{u}+C\right)$
$\mathrm{A}-\mathrm{C}$	$\left(I d+A_{p}+A_{u}\right)(I d+C)$
$\mathrm{Au}-\mathrm{ApC}$	$\left(I d+A_{u}\right)\left(I d+A_{p}+C\right)$

- Splitting error: Splitting error $\mathrm{E}=\mathrm{O}$ (Mach).
- Numerical results (for Mach=0.5) :

	Ap-AuC		A-C		Au-ApC	
	Order 1	Order 2	Order 1	Order 2	Order 1	Order 2
$\Delta t=0.5$	0.9	1.1	0.9	$9 E^{-2}$	1.4	1.1
$\Delta t=0.25$	0.5	0.5	0.4	0.18	0.8	0.21
$\Delta t=0.125$	0.3	$1.2 E^{-1}$	0.45	$5.9 E^{-2}$	0.55	$6.7 E^{-2}$
$\Delta t=0.0625$	0.15	$3.3 E^{-2}$	0.18	$1.5 E^{-2}$	0.28	$1.7 E^{-2}$
$\Delta t=0.03125$	$7.2 E^{-2}$	$8.5 E^{-3}$	$8.2 E^{-2}$	$3.6 E^{-3}$	0.14	$4.5 E^{-3}$
$\Delta t=0.015625$	$3.5 E^{-2}$	$2.1 E^{-3}$	$4.0 E^{-2}$	$9.0 E^{-4}$	$7.0 E^{-2}$	$1.1 E^{-3}$

- Results: expected order for the different splitting.

Numerical results

- We compare the CPU time for different simulation, changing the Mach number. Test: acoustic wave.

	$M=10^{-4}$	$M=10^{-2}$	$M=10^{-1}$	$M=0.5$
PC 1	101.6	145	240	5200
PC 2	98.9	125.8	208	5000
Sp $A_{p}-A_{u} C$	101.7	102.8	103	115.2
$\operatorname{Sp} A_{u}-A_{p} C$	98.2	99.6	99.6	111.4
$\operatorname{Sp} A-C_{u}$	90.4	92.1	92.7	102.3
$\operatorname{Sp} A-C_{p} C$	93	94.3	95	104.5

- Comparison of the numerical solution (pressure). Test: acoustic wave with $\mathrm{M}=0.5$.
- Implicit time step : $\Delta t=0.01$ (2 CFL time step)

Figure: Left: solution for implicit scheme, Right: solution for Sp scheme $A_{u}-A_{p} C$

Numerical results

- We compare the CPU time for different simulation, changing the Mach number. Test: acoustic wave.

	$M=10^{-4}$	$M=10^{-2}$	$M=10^{-1}$	$M=0.5$
PC 1	101.6	145	240	5200
PC 2	98.9	125.8	208	5000
${\mathrm{Sp} A_{p}-A_{u} C}^{\operatorname{Sp} A_{u}-A_{p} C}$	101.7	102.8	103	115.2
$\mathrm{Sp} A-C_{u}$	98.2	99.6	99.6	111.4
$\mathrm{Sp} A-C_{p} C$	93	92.1	92.7	102.3

- Comparison of the numerical solution (pressure). Test: acoustic wave with $\mathrm{M}=0.5$.
- Implicit time step : $\Delta t=0.01$ (2 CFL time step)

Figure: Left: solution for Sp scheme $A_{p}-A_{u} C$, Right: solution for Sp scheme $A-C$

Numerical results

- We compare the CPU time for different simulation, changing the Mach number. Test: acoustic wave.

	$M=10^{-4}$	$M=10^{-2}$	$M=10^{-1}$	$M=0.5$
PC 1	101.6	145	240	5200
PC 2	98.9	125.8	208	5000
Sp $A_{p}-A_{u} C$	101.7	102.8	103	115.2
$\mathrm{Sp} A_{u}-A_{p} C$	98.2	99.6	99.6	111.4
$\mathrm{Sp} A-C_{u}$	90.4	92.1	92.7	102.3
$\mathrm{Sp} A-C_{p} C$	93	94.3	95	104.5

- Comparison of the numerical solution (pressure). Test: acoustic wave with $\mathrm{M}=0.5$.
- Implicit time step : $\Delta t=0.05$ (10 CFL time step)

Figure: Left: solution for implicit scheme, Right: solution for Sp scheme $A_{u}-A_{p} C$

Numerical results

- We compare the CPU time for different simulation, changing the Mach number. Test: acoustic wave.

	$M=10^{-4}$	$M=10^{-2}$	$M=10^{-1}$	$M=0.5$
PC 1	101.6	145	240	5200
PC 2	98.9	125.8	208	5000
Sp $A_{p}-A_{u} C$	101.7	102.8	103	115.2
$\operatorname{Sp} A_{u}-A_{p} C$	98.2	99.6	99.6	111.4
$\operatorname{Sp} A-C_{u}$	90.4	92.1	92.7	102.3
$\operatorname{Sp} A-C_{p} C$	93	94.3	95	104.5

- Comparison of the numerical solution (pressure). Test: acoustic wave with $\mathrm{M}=0.5$.
- Implicit time step : $\Delta t=0.05$ (10 CFL time step)

Figure: Left: solution for Sp scheme $A_{p}-A_{u} C$, Right: solution for Sp scheme $A-C$

Compressible Navier-Stokes equation splitting

- Compressible Navier-Stokes equation. Extension of previous method: three-step splitting:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \tag{3}\\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=v \Delta \boldsymbol{u}+(v+\lambda) \nabla(\nabla \cdot \boldsymbol{u})-\rho \boldsymbol{g} \\
\rho \partial_{t} T+\rho \boldsymbol{u} \cdot \nabla T+\gamma \rho T \nabla \cdot \boldsymbol{u}=v(\nabla \boldsymbol{u})^{2}+(v+\lambda)(\nabla \cdot \boldsymbol{u})^{2}+\nabla \cdot(\eta \nabla T)
\end{array}\right.
$$

- First solution:
\square Step 1:
$\left\{\begin{array}{l}\partial_{t} \rho=0 \\ \rho \partial_{t} \boldsymbol{u}=v \Delta \boldsymbol{u}+(v+\lambda) \nabla(\nabla \cdot \boldsymbol{u}) \\ \rho \partial_{t} T=v(\nabla \boldsymbol{u})^{2}+(v+\lambda)(\nabla \cdot \boldsymbol{u})^{2}+\nabla \cdot(\eta \nabla T)\end{array}\right\}$ Diffusion $\longrightarrow \mathrm{CN}+$ finit element
\square Step 2:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\boldsymbol{u} \cdot \nabla \rho=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}=0 \\
\rho \partial_{t} T+\rho \boldsymbol{u} \cdot \nabla T=0
\end{array}\right\} \text { Transport } \longrightarrow \text { Semi Lagrangian }
$$

\square Step 3:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\rho \nabla \cdot \boldsymbol{u}=0 \\
\rho \partial_{t} \boldsymbol{u}+\nabla p=-\rho \boldsymbol{g} \\
\rho \partial_{t} T+\gamma \rho T \nabla \cdot \boldsymbol{u}=0
\end{array} \quad \text { Acoustic }+ \text { gravity } \longrightarrow \mathrm{CN}+\text { parabolization }+\mathrm{FE}\right.
$$

- Splitting Error: O(Mach + Diffusion)

Compressible Navier-Stokes equation splitting

- Compressible Navier-Stokes equation. Extension of previous method: three-step splitting:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \tag{3}\\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=v \Delta \boldsymbol{u}+(v+\lambda) \nabla(\nabla \cdot \boldsymbol{u})-\rho \boldsymbol{g} \\
\rho \partial_{t} T+\rho \boldsymbol{u} \cdot \nabla T+\gamma \rho T \nabla \cdot \boldsymbol{u}=v(\nabla \boldsymbol{u})^{2}+(v+\lambda)(\nabla \cdot \boldsymbol{u})^{2}+\nabla \cdot(\eta \nabla T)
\end{array}\right.
$$

- Second solution:
\square Step 1:

$$
\left\{\begin{array}{l}
\partial_{t} \rho=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}=v \Delta \boldsymbol{u}+(v+\lambda) \nabla(\nabla \cdot \boldsymbol{u}) \\
\rho \partial_{t} T=0
\end{array}\right\} \text { Burgers } \longrightarrow \mathrm{CN}+\text { FE or ?? (next part)) }
$$

\square Step 2:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\boldsymbol{u} \cdot \nabla \rho=0 \\
\rho \partial_{t} \boldsymbol{u}=0 \\
\rho \partial_{t} T+\rho \boldsymbol{u} \cdot \nabla T=v(\nabla \boldsymbol{u})^{2}+(v+\lambda)(\nabla \cdot \boldsymbol{u})^{2}+\nabla \cdot(\eta \nabla T)
\end{array}\right\} \text { Convection diffusion } \longrightarrow \mathrm{CN}
$$

\square Step 3:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\rho \nabla \cdot \boldsymbol{u}=0 \\
\rho \partial_{t} \boldsymbol{u}+\nabla p=-\rho \boldsymbol{g} \\
\rho \partial_{t} T+\gamma \rho T \nabla \cdot \boldsymbol{u}=0
\end{array} \quad \text { Acoustic }+ \text { gravity } \longrightarrow \mathrm{CN}+\text { parabolization }+\mathrm{FE}\right.
$$

- Splitting Error: O(Mach + Diffusion)
- Assumption: First solution better for low diffusion (opposite for large diffusion).

Implicit scheme for linear MHD equation

Final model

$$
\begin{cases}\partial_{t} \boldsymbol{u}+\left(M \sqrt{\beta} V_{a}\right) \boldsymbol{a} \cdot \nabla \boldsymbol{u}+\nabla p & =\frac{V_{a}^{2}}{\left|\boldsymbol{B}_{0}\right|}\left((\nabla \times \boldsymbol{B}) \times \boldsymbol{b}_{0}\right) \\ \partial_{t} \boldsymbol{p}+\left(M \sqrt{\bar{\beta}} V_{a}\right) \boldsymbol{a} \cdot \nabla p+\beta V_{a}^{2} \nabla \cdot \boldsymbol{u} & =0 \\ \partial_{t} \boldsymbol{B}+\left(M \sqrt{\beta} V_{a}\right) \boldsymbol{a} \cdot \nabla \boldsymbol{B}+\left|\boldsymbol{B}_{0}\right| \nabla \times\left(\boldsymbol{b}_{0} \times \boldsymbol{u}\right) & =\frac{M \sqrt{\beta} V_{a}}{R_{m}} \nabla \times(\nabla \times \boldsymbol{B})\end{cases}
$$

with $\left.M \in] 0,1], \beta \in] 10^{-6}, 10^{-1}\right],|\boldsymbol{a}|=\left|\boldsymbol{b}_{0}\right|=1$.

- We use a implicit scheme.

■ We propose to apply PB-PC or splitting $A_{p}-A_{u} C$ method. At the end we must invert three operators

Operators of the PB-PC

$$
\begin{gathered}
I_{d}+(M \sqrt{\beta} \lambda) \mathbf{a} \cdot \nabla I_{d}-\frac{M \sqrt{\beta} \lambda}{R_{m}} \Delta I_{d}, \quad I_{d}+(M \sqrt{\beta} \lambda) \boldsymbol{a} \cdot \nabla I_{d} \\
P=\left(I_{d}+M \sqrt{\beta} \lambda \boldsymbol{a} \cdot \nabla I_{d}-\beta \lambda^{2} \nabla\left(\nabla \cdot I_{d}\right)-\lambda^{2}\left(\boldsymbol{b}_{0} \times\left(\nabla \times \nabla \times\left(\boldsymbol{b}_{0} \times I_{d}\right)\right)\right)\right.
\end{gathered}
$$

with $\left.|\boldsymbol{a}|=1, M \ll 1, \beta \in] 10^{-4}, 10^{-1}\right]$ and $\lambda=V_{a} \Delta t$.

Relaxation methods

General principle

- We consider the following nonlinear system

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=v \partial_{x}\left(D(\boldsymbol{U}) \partial_{x} \boldsymbol{U}\right)+\boldsymbol{G}(\boldsymbol{U})
$$

- Aim: Find a way to approximate this systemwith a suite of simple systems.
- Idea: Xin-Jin relaxation method (finite volume method).

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{V}=\boldsymbol{G}(\boldsymbol{U}) \\
\partial_{t} \boldsymbol{V}+\alpha^{2} \partial_{x} \boldsymbol{U}=\frac{1}{\varepsilon}(\boldsymbol{F}(\boldsymbol{U})-\boldsymbol{V})+\boldsymbol{H}(\boldsymbol{U})
\end{array}\right.
$$

Limit of relaxation scheme

\square The limit scheme of the relaxation system is

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\boldsymbol{G}(\boldsymbol{U})+\varepsilon \partial_{x}\left(\left(\alpha^{2}-|A(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+\varepsilon \partial_{x} \boldsymbol{G}(\boldsymbol{U})-\varepsilon \partial_{x} \boldsymbol{H}(\boldsymbol{U})+o\left(\varepsilon^{2}\right)
$$

\square with $A(\boldsymbol{U})$ the Jacobian of $\boldsymbol{F}(\boldsymbol{U})$.

- Conclusion: the relaxation system is an approximation of the hyperbolic original system (error in ε).
- Stability: the limit system is dissipative if $\left(\alpha^{2}-|\rho|^{2}\right)>0$.

General principle II

Generalization

- Replacing $\frac{1}{\varepsilon} I_{d}$ by \mathcal{E}^{-1} with

$$
\mathcal{E}=v D(\boldsymbol{U})\left(\alpha^{2}-|\rho|^{2}\right)^{-1}
$$

- and taking $\boldsymbol{H}(\boldsymbol{U})=A(\boldsymbol{U}) \boldsymbol{G}(\boldsymbol{U})$: we obtain the following limit system

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\boldsymbol{G}(\boldsymbol{U})+v \partial_{x}\left(D \boldsymbol{U} \partial_{x} \boldsymbol{U}\right)+o\left(v^{2}\right)
$$

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Key method: Splitting between source and linear hyperbolic part.

Solver for linear part

- The system

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{V}=0 \\
\partial_{t} \boldsymbol{V}+\alpha^{2} \partial_{x} \boldsymbol{U}=0
\end{array}\right.
$$

- can be rewritten as N independent wave systems.
- Wave solver: Schur complement. We solve two mass matrices and one Laplacian to obtain the solution of the implicit wave problem.

Exemple 1: 1D Burgers equation

- Model : Viscous Burgers equation

$$
\partial_{t} \rho+\partial_{x}\left(\frac{1}{2} \rho^{2}\right)=\partial_{x}\left(v \partial_{x} \rho\right)+f
$$

- Classical implicit scheme : Cranck-Nicholson + linearization + Newton.
- Relaxation system:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x} u=f \\
\partial_{t} u+\alpha^{2} \partial_{x} \rho=\frac{1}{\varepsilon}\left(\frac{\rho^{2}}{2}-u\right)
\end{array}\right.
$$

Limit of relaxation scheme

\square The limit scheme is given by

$$
\partial_{t} \rho+\partial_{x}\left(\frac{1}{2} \rho^{2}\right)=\varepsilon \partial_{x}\left(\left(\alpha^{2}-|\rho|^{2}\right) \partial_{x} \rho\right)+f+o\left(\varepsilon^{2}\right)
$$

\square taking $\varepsilon=\frac{v}{\alpha^{2}-|\rho|^{2}}$ we recover the initial equation.
\square Stability condition: $\alpha>|u|$.

Exemple 1: Time scheme for Burgers

Step:

- Transport step $(T(\Delta t))$:

$$
\left(\begin{array}{ll}
I_{d} & \theta \Delta t \partial_{x} \\
\alpha^{2} \theta \Delta t \partial_{x} & I_{d}
\end{array}\right)\binom{\rho^{*}}{u^{*}}=\left(\begin{array}{ll}
I_{d} & -(1-\theta) \Delta t \partial_{x} \\
-\alpha^{2}(1-\theta) \Delta t \partial_{x} & I_{d}
\end{array}\right)\binom{\rho^{n}}{u^{n}}
$$

- Relaxation step $(R(\Delta t))$:

$$
\left\{\begin{array}{l}
\rho^{*}=\rho^{n}+\Delta t f \\
u^{*}=\frac{\Delta t}{\varepsilon+\theta \Delta t} \frac{\rho^{2}}{2}+\frac{\varepsilon-(1-\theta) \Delta t}{\varepsilon+\theta \Delta t} u
\end{array}\right.
$$

- First order time scheme: $T(\Delta t) \circ R(\Delta t)$ with $\theta=1$
- Second order time scheme: $T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t) \circ T\left(\frac{\Delta t}{2}\right)$ or inverse with $\theta=0.5$.

Consistency at the limit

- The first order scheme at the limit is consistent with

$$
\partial_{t} \rho+\partial_{x}\left(\frac{1}{2} \rho^{2}\right)=\left(\varepsilon+\frac{\Delta t}{2}\right) \partial_{x}\left(\left(\alpha^{2}-|\rho|^{2}\right) \partial_{x} \rho\right)+\frac{\Delta t}{2} \partial_{x}\left(\alpha^{2} \partial_{x} u\right)+f+o\left(\varepsilon^{2}+\Delta t^{2}+\varepsilon \Delta t\right)
$$

Results I

- Model : We consider the Burgers equation without viscosity with source term.
- We choose as source term $f=g \rho$ to obtain a steady solution given by

$$
\rho(t, x)=1.0+0.1 e^{-\frac{x^{2}}{\sigma}}, \quad g(t, x)=-\frac{2 x}{\sigma} e^{-\frac{x^{2}}{\sigma}}
$$

- We consider the final time $T=0.1$ and a fine mesh (10000 cells with third order polynomials). The first and second order schemes are compared for different time step.

	Order 1		Order 2	
	Error	Order	Error	Order
$\Delta t=0.02$	$1.58 E^{-2}$	-	$3.1 E^{-4}$	-
$\Delta t=0.01$	$9.47 E^{-3}$	0.74	$7.75 E^{-5}$	2.0
$\Delta t=0.005$	$5.18 E^{-3}$	0.87	$1.95 E^{-5}$	2.0
$\Delta t=0.0025$	$2.7 E^{-3}$	0.94	$4.86 E^{-6}$	2.0
$\Delta t=0.00125$	$1.38 E^{-3}$	0.97	$1.21 E^{-6}$	2.0

Table: Error and order for the test 1 one with the relaxation scheme.

- The splitting scheme allows to obtain first and second order scheme without CFL condition.

Results II

- Model : Viscous - Burgers model.
- Spatial discretization: $N_{\text {cell }}=10000$, order $=3$. Initial condition: Gaussian.
- Explicit time step : stable if for $\Delta t=1.0 E^{-5}$.
- Implicit time step : $\Delta t=1.0 E^{-3}$

Figure: Left: numerical solution for first order and second order schemes for $\Delta t=0.001$, Right: Zoom

- Remark: for discontinuous solution (or strong gradient solution) the scheme admits high numerical dispersion and instabilities.
■ Instability: oscillations $\longrightarrow \alpha$ increase and α increase \longrightarrow oscillations increase.

Results II

- Model : Viscous - Burgers model.
- Spatial discretization: $N_{\text {cell }}=10000$, order $=3$. Initial condition: Gaussian.
- Explicit time step : stable if for $\Delta t=1.0 E^{-5}$.
- Implicit time step : $\Delta t=1.0 E^{-3}, \Delta t=5.0 E^{-3}$ and $\Delta t=1.0 E^{-2}$ (only for first order).

Figure: Left: numerical solution for first order scheme, Right: numerical solution for second order scheme. $v=10^{-3}$

- Remark: for discontinuous solution (or strong gradient solution) the scheme admits high numerical dispersion and instabilities.
■ Instability: oscillations $\longrightarrow \alpha$ increase and α increase \longrightarrow oscillations increase.

Results II

■ Model : Viscous - Burgers model.

- Spatial discretization: $N_{\text {cell }}=10000$, order $=3$. Initial condition: Gaussian.
- Explicit time step : stable if for $\Delta t=1.0 E^{-5}$.
- Implicit time step : $\Delta t=1.0 E^{-3}, \Delta t=5.0 E^{-3}$ and $\Delta t=1.0 E^{-2}$.

Figure: Left: numerical solution for first order scheme, Right: numerical solution for second order scheme. $v=10^{-2}$

- Remark: for discontinuous solution (or strong gradient solution) the scheme admits high numerical dispersion and instabilities.
■ Instability: oscillations $\longrightarrow \alpha$ increase and α increase \longrightarrow oscillations increase.

Results II

■ Model : Viscous - Burgers model.

- Conditioning : well-conditioning system in 1D.
- Spatial discretization: $N_{\text {cell }}=10000$, order $=3$. Initial condition: Gaussian.
- Explicit time step : stable if for $\Delta t=1.0 E^{-5}$

Figure: Left: Comparison between fine solution, CN and relaxation numerical solutions. Right: zoom. $v=10^{-10}, \Delta t=0.002$

- Conclusion: the Relaxation method is a little more dispersive that the Cranck-Nicholson method.

Results II

■ Model : Viscous - Burgers model.

- Conditioning : well-conditioning system in 1D.
- Spatial discretization: $N_{\text {cell }}=10000$, order $=3$. Initial condition: Gaussian.
- Explicit time step : stable if for $\Delta t=1.0 E^{-5}$

Figure: Left: Comparison between fine solution, CN and relaxation numerical solutions. Right: zoom. $v=10^{-10}, \Delta t=0.005$

- Conclusion: the Relaxation method is a little more dispersive that the Cranck-Nicholson method.

Results II

- Model : Viscous - Burgers model.
- Conditioning : well-conditioning system in 1D.
- Spatial discretization: $N_{\text {cell }}=10000$, order $=3$. Initial condition: Gaussian.
- Explicit time step : stable if for $\Delta t=1.0 E^{-5}$

Figure: Left: Comparison between fine solution, CN and relaxation numerical solutions. Right: zoom. $v=10^{-10}, \Delta t=0.01$

- Conclusion: the Relaxation method is a little more dispersive that the Cranck-Nicholson method.

Results II

- Model : Viscous - Burgers model with $v=10^{-12}$.
- Comparison of CPU time between two methods.

	CN method			Relaxation method		
Δt cells	5.10^{3}	10^{4}	2.10^{4}	5.10^{3}	10^{4}	2.10^{4}
$\Delta t=0.005$	67	217.5	980	75.5	240	1100
$\Delta t=0.01$	35	114	518	41	122.5	561
$\Delta t=0.02$	18	61	280	20	63	294
$\Delta t=0.05$	9.5	32.5	144	8	29	126

Remark

\square The Relaxation method is competitive when the solver converges slowly for the classical method (high time step in this case).
\square The assembly time is negligible in 1D not in 2D and 3D. The 1D burgers equation is not an ill-posed problem contrary multi-D hyperbolic systems or low Mach Euler equations.Therefore for complex models or in multi-D.

Future optimization:

\square CN scheme does not use a PC and the relaxation scheme solves sequentially the independent subsystems.

Exemple II : 1D Navier-Stokes equation

- Model : Viscous Burgers equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t} \rho u+\partial_{x}\left(\rho u^{2}+p\right)=\partial_{x}\left(v(\rho) \partial_{x} u\right)-\rho g \\
\partial_{t} E+\partial_{x}(E u+p u)=\partial_{x}\left(v(\rho) \partial_{x} \frac{u^{2}}{2}\right)+\partial_{x}\left(\eta \partial_{x} T\right)-\rho v g
\end{array}\right.
$$

- We apply the relaxation method: three additional variables.

Stability

The relaxation scheme is stable if $\alpha^{2}-|A|^{2}>0$ with A the Jacobian.
\square Classical choice: $\alpha>u+c$.

Diffusion

\square To obtain the physical diffusion matrix:

$$
\mathcal{E}=\left(\begin{array}{lll}
0 & 0 & 0 \\
-\frac{v(\rho) u}{\rho} & \frac{v(\rho)}{\rho} & 0 \\
-\eta \frac{3}{2} \eta(\gamma-1) E-v(\rho) u^{2} & v(\rho)-(\gamma-1) \rho \eta & (\gamma-1) \rho \eta
\end{array}\right)\left(\alpha^{2}-|A|^{2}\right)^{-1}
$$

Results for Navier-Stokes equation I

■ Simple test case: $\rho(t, x)=1+G(x-u t), u(t, x)=2$ and $T(t, x)=0$.

Scheme Δt	$\Delta t=1.0 E^{-2}$	$\Delta t=5.0 E^{-3}$	$\Delta t=2.5 E^{-3}$	$\Delta t=1.25 E^{-3}$
CN scheme	$8.8 E^{-3}$	$2.25 E^{-3}$	$5.7 E^{-3}$	$1.4 E^{-3}$
Relaxation scheme	$2.25 E^{-3}$	$5.7 E^{-4}$	$1.4 E^{-4}$	$3.6 E^{-5}$

- Conclusion: the relaxation scheme converges with the second order as expected.
- Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green) $\Delta t=0.01$

Results for Navier-Stokes equation I

- Simple test case: $\rho(t, x)=1+G(x-u t), u(t, x)=2$ and $T(t, x)=0$.

Scheme Δt	$\Delta t=1.0 E^{-2}$	$\Delta t=5.0 E^{-3}$	$\Delta t=2.5 E^{-3}$	$\Delta t=1.25 E^{-3}$
CN scheme	$8.8 E^{-3}$	$2.25 E^{-3}$	$5.7 E^{-3}$	$1.4 E^{-3}$
Relaxation scheme	$2.25 E^{-3}$	$5.7 E^{-4}$	$1.4 E^{-4}$	$3.6 E^{-5}$

- Conclusion: the relaxation scheme converges with the second order as expected.
- Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green) $\Delta t=0.02$

Results for Navier-Stokes equation I

■ Simple test case: $\rho(t, x)=1+G(x-u t), u(t, x)=2$ and $T(t, x)=0$.

Scheme Δt	$\Delta t=1.0 E^{-2}$	$\Delta t=5.0 E^{-3}$	$\Delta t=2.5 E^{-3}$	$\Delta t=1.25 E^{-3}$
CN scheme	$8.8 E^{-3}$	$2.25 E^{-3}$	$5.7 E^{-3}$	$1.4 E^{-3}$
Relaxation scheme	$2.25 E^{-3}$	$5.7 E^{-4}$	$1.4 E^{-4}$	$3.6 E^{-5}$

- Conclusion: the relaxation scheme converges with the second order as expected.
- Acoustic wave test case:

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green) $\Delta t=0.05$

- The two methods (CN and relaxation) capture well the fine solution.

Results II

- Model : Compressible Navier-Stokes equation model with $\varepsilon=10^{-10}$.
- Initial data: Constant pressure with a perturbation of density. Initial velocity null.
- Test: Propagation of acoustic wave.

	CN method			Relaxation method		
$\Delta t /$ cells	5.10^{3}	10^{4}	2.10^{4}	5.10^{3}	10^{4}	2.10^{4}
$\Delta t=0.005$	170	580	2550	135	420	1890
$\Delta t=0.01$	100	345	1500	70	215	980
$\Delta t=0.02$	60	205	920	40	120	525
$\Delta t=0.05$	30	120	525	20	65	270

Conclusion:

\square The 1D Navier-Stokes problem is ill-conditioned comparing to Burgers. In this case the efficiency of Relaxation comparing to Cranck-Nicholson is better.
\square In this case the Relaxation method is competitive with the classical scheme without important optimization (no parallelization of the problem, etc).

Problem of relaxation solvers

- Problem for Relaxation solver I: high diffusion

$$
\partial_{t} \boldsymbol{U}+\nabla \cdot \boldsymbol{F}(\boldsymbol{U})=\nabla \cdot(D(\boldsymbol{U}) \nabla \boldsymbol{U})+\boldsymbol{G}(\boldsymbol{U})+O\left(|D(\boldsymbol{U})|^{2}\right)
$$

- Conclusion: For $|D(\boldsymbol{U})| \ll 1$ the relaxation system is valid.
- Tokamak MHD context: the anisotropic diffusion in the parallel direction is in $\mathrm{O}(1)$ for Tokamak. We must adapt the method.
- Toy model:

$$
\left\{\partial_{t} T+\nabla \cdot(\boldsymbol{u} T)=\nabla \cdot(D(\boldsymbol{b}) \nabla T), \quad D(\boldsymbol{b}) \nabla T=(\boldsymbol{b} \otimes \boldsymbol{b}) \nabla T+\kappa \nabla T\right.
$$

- There exists different relaxation schemes for the diffusion.
- The first results (we need more results) show difficulty to treat large time steps if we use implicit schemes.
- Possible solution : modification of the relaxation method (keeping a part of relaxation step in the transport step) to treat high time step.
- Problem for Relaxation solver II: more numerical and physical dispersion (more critical problem)
- Possible solution : adaptive time scheme ? limiter or other treatment for discontinuities, high order scheme in time ?

Lattice Boltzmann schemes

- Lattice Boltzmann schemes: use a kinetic interpretation of the Fluid mechanics model.

Lattice Scheme

- For N velocities \rightarrow compute equilibrium:
$f_{i}=w_{i} \rho\left(1+3\left(\boldsymbol{u}_{i} \cdot \boldsymbol{u}\right)+\frac{9}{2}\left(\boldsymbol{u}_{i} \boldsymbol{u}_{i}-\frac{1}{2} I_{d}\right): \boldsymbol{u} \boldsymbol{u}\right)$
- For N velocities \rightarrow relaxation to the equilibrium: $\partial_{t} f_{i}=\frac{1}{\tau}\left(f_{i}^{\text {eq }}-f_{i}\right)$
- For N velocities \rightarrow transport: $\partial_{t} f_{i}+v_{i} \cdot \nabla f_{i}=0$
- We compute the moments $\rho=\sum_{i} f_{i}, \rho \boldsymbol{u}=\sum_{i} \boldsymbol{u}_{i} f_{i}$

D3Q19

- Advantage: In DG context the transport matrices are triangular by block and can be solved by a up-down algorithm without stocking
- Problem: physical limitation. Example D2Q9 is consistent with isothermal Navier-Stokes + a destabilizing diffusion homogeneous to $O\left(\right.$ Mach $\left.^{3}\right)$.
- Solution: use $\operatorname{DdQ}(d+1)^{n}$ lattice we obtain a relaxation system where the transport is diagonal with properties closed to the Jin-Xin relaxation.

Elliptic problems

Elliptic problems for "Splitting" implicit schemes

Resume :

\square All the methods proposed before split the complex systems between some simple systems.

- Simples systems:
\square Laplacian : $v u-\lambda \Delta u=f$
\square Advection: $v u+\lambda \boldsymbol{a} \cdot \nabla u=f$
\square Div-Div and Curl-Curl: $v \boldsymbol{u}-\lambda \nabla(\nabla \cdot \boldsymbol{u})=\boldsymbol{f}, \quad v \boldsymbol{u}-\lambda \nabla \times(\nabla \times \boldsymbol{u})=\boldsymbol{f}$
\square Alfven Curl-Curl: vu $-\beta \lambda \nabla(\nabla \cdot \boldsymbol{u})-\lambda\left(\boldsymbol{b}_{0} \times\left(\nabla \times \nabla \times\left(\boldsymbol{b}_{0} \times \boldsymbol{u}\right)\right)\right)=\boldsymbol{f}$
\square For the last operator, we have additional complexity, but the scale can be probably separate using a formulation parallel-perp of the MHD and PC.
- Conclusion: to obtain efficient methods in time we need efficient methods for all these systems.
- Efficient solvers: solvers with an accuracy independent of λ, the order and the size of the mesh. Parallelized solvers.

GLT principle

- PDE: $L u=g$ after discretization gives $L_{n} u_{n}=g_{n}$ with $\left\{L_{n}\right\}_{n}$ a sequence of matrices.
- It is often the case that the matrix L_{n} is a linear combination, product, inversion or conjugation of these two simple kinds of matrices
$\square T_{n}(f)$, i.e., a Toeplitz matrix obtained from the Fourier coefficient of $f:[-\pi, \pi] \rightarrow \mathbb{C}$, with $f \in L^{1}([-\pi, \pi])$.
$\square D(a)$, i.e., a diagonal matrix such that $\left(D_{n}(a)\right)_{i i}=a\left(\frac{i}{n}\right)$ with $a:[0,1] \rightarrow \mathbb{C}$ Riemann integrable function.
In such a case $\left\{L_{n}\right\}_{n}$ is called a GLT sequence.

Fundamental property

\square Each GLT sequence $\left\{L_{n}\right\}_{n}$ is equipped with a "symbol", a function $\chi:[0,1] \times[-\pi, \pi] \rightarrow \mathbf{C}$ which describes the asymptotic spectral behaviour of $\left\{L_{n}\right\}_{n}$:

$$
\left\{L_{n}\right\}_{n} \sim \chi
$$

E.g.: if $L_{n}=D_{n}(a) T_{n}(f)$, then $\left\{L_{n}\right\}_{n} \sim \chi=a \cdot f$

- Advantage of this tool: studying the symbol we retrieve information on the conditioning and propose new preconditioning based on this symbol.

GLT for stiffness matrix

- Application: B-Splines discretization of the model

$$
-\Delta u=f, \quad \text { in }[0,1]^{d}
$$

- The basis functions are given by $\phi_{i}(x)$ a tensor product of 1D B-Splines functions.

Symbol of the problem

$$
\left\{n^{d-2} L_{n}\right\}_{n} \sim \frac{1}{n}\left(\Pi_{k=1}^{d} m_{p_{k}-1}\left(\theta_{k}\right)\right)\left(\sum_{k=1}^{d} \mu_{k}^{2}\left(2-2 \cos \left(\theta_{k}\right)\right) \Pi_{j=1, j \neq k}^{d} w_{p_{j}}\left(\theta_{j}\right)\right)
$$

with $\theta_{k} \in[-\pi, \pi]$ and $w_{p}(\theta):=m_{p}(\theta) / m_{p-1}(\theta)$.

- $\left(\frac{4}{\pi^{2}}\right)^{p} \leq m_{p-1}(\theta) \leq m_{p-1}(0)=1$.
- Remark 1: The symbol has a zero in $\theta=(0, \ldots, 0) \Rightarrow n^{d-2} L_{n}$ is ill-conditioned in the low frequencies. Classical problem solved by MG preconditioning.
- Remark 2: The symbol has infinitely many exponential zeros at the points θ with $\theta_{j}=\pi$ for some j when $p_{j} \rightarrow \infty \Rightarrow n^{d-2} L_{n}$ is ill-conditioned in the high frequencies. Non-canonical problem solvable by GLT theory.
- Preconditioning: Using the symbol we can construct a smoother for MG valid for high-frequencies. (i.e. CG preconditioned with a Kronecker product whose j th factor is $\left.T_{\mu_{j} n+p_{j}-2}\left(m_{p_{j}-1}\right)\right)$.
- Extension: the method can be extended to the case with mapping (general geometries) and more general operators.

Numerical results

- Solver: Comparison between classical multi-grid solver and MG with CG + GLT preconditioning smoother.
- Model: 2D Laplacian with Homogeneous Dirichlet BC
- Efficiency of the multi-grid method depending to the polynomial degree.

- Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.

Numerical results

- Solver: Comparison between classical multi-grid solver and MG with CG + GLT preconditioning smoother.
- Model: 2D Laplacian with Homogeneous Dirichlet BC
- Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.
- The efficiency of the multi-grid method + GLT PC method depending on the polynomial degree.

- Conclusion: the MG + CG-GLT is efficient for all high-order polynomial degrees.

Numerical results

- Solver: Comparison between classical multi-grid solver and MG with CG + GLT preconditioning smoother.
- Model: 2D Laplacian with Homogeneous Dirichlet BC
- Conclusion: the MG (as expected) is not efficient for high-order polynomial degrees.

Degree/Scheme	MG + GLT	MG
1	1.32	1.76
2	2.56	2.75
3	2.58	4.42
4	3.42	21.62
5	6.35	170.48
6	15.71	677.17^{*}
7	25.99	825.56^{*}
8	27.89	800.72^{*}
9	58.03	1098.94^{*}

Table: Computational cost comparison for the Laplacian operator -2D 64*64 elements

Conclusion

\square The GLT preconditioning allows to avoid the problem of conditioning for high degree polynomial and limit CPU time.

Numerical results

- The GLT preconditioning is based on the "symbol" which describe the eigenvalues linked to the mass matrix.
- Conclusion: it can be also used as a PC for the mass matrix (closed to Kronecker product preconditioning).
- Result inverting the mass matrix with CG + GLT.

Degree	PCG	CG
3	10	111
5	25	449
7	40	1777

Degree	PCG	CG
3	10	117
5	23	533
7	38	2166

Table: Left: Number of iterations-mass matrix on a square $32 * 32$. Right on a square 64*64

Degree	PCG	CG	Degree	PCG	CG
3	50	210	3	71	340
5	83	796	5	118	1711
7	125	2639	7	186	>3000

Table: Left: Number of iterations-mass matrix on a circle 32*32. Right on a circle 64*64

- Conclusion: the GLT PC is also a good PC for the mass matrix.

Vectoriel elliptic problems and advection

- Study of the conditioning problem using Fourier analysis.
- Fourier transform for Advection

$$
[v+i(\boldsymbol{a} \cdot \boldsymbol{\theta})] \hat{u}=0
$$

- For $v \ll 1$ the system is ill-conditioning to the orthogonal frequencies to the velocity a.
- Fourier transform for vectorial elliptic problems (ex grad div problem):

$$
\begin{gathered}
{\left[v I_{d}+\left(\begin{array}{cc}
\theta_{1}^{2} & \theta_{1} \theta_{2} \\
\theta_{1} \theta_{2} & \theta_{2}^{2}
\end{array}\right)\right] \hat{\mathbf{u}}=0} \\
{\left[v I_{d}+\left(\begin{array}{cc}
0 & 0 \\
0 & \|\boldsymbol{\theta}\|^{2}
\end{array}\right)\right] P^{-1} \hat{\boldsymbol{u}}=0}
\end{gathered}
$$

- For small v the vectorial problems are ill-conditioning.
- In the future: GLT analysis to find additional problems due to the numerical discretization.
- Aim: find preconditioning for these problems. Open problem for advection. Auxiliary space or GLT with diagonalization for vectorial problems.

Conclusion

Conclusion

- First way: Splitting method. M. Gaja Phd and NMPP group.

Physic-based method

\square Advantages:

- Efficient method for low Mach method.
- Compatible with equilibrium conservation.
- Few memory consumption if coupled with Jacobian free.
\square Defaults:
- Nonlinear matrices (important cost)
- Less efficient is the regime Mach closed to one.
- Efficiency of PC depend also to the mesh, discretization etc (not clear)
- Need Preconditioning for advection?

Semi Implicit

\square Advantages:

- Probably efficient for all Mach regimes between zero and one.
- Compatible with equilibrium conservation.
- Few memory consumption if coupled with Jacobian free
\square Defaults:
- Nonlinear matrices (important cost)
- Efficiency of PC depend also to the mesh, discretization etc (not clear)
- Need Preconditioning for advection?

Conclusion

Second way: Relaxation method. INRIA Tonus team and NPP group.

Relaxation

- Advantages:
\square Few memory consumption (derivates matrices and perhaps mass).
\square Good parallelization (models + domain decomposition).
\square Able to treat lots of regimes.
- Defaults:
\square Not directly able to treat high diffusion (on going work).
\square Lose of parallelization for complex BC.
\square A little bit more numerical dispersion.
\square not compatible with equilibrium conservation.

Remark

- All the methods needs preconditioning for mass, Laplacian and vectorial elliptic problems.
- All the methods needs stabilization or other treatment in the nonlinear phase for the numerical dispersion.
- Find 4th order schemes for the two methods could be possible and useful (ongoing work in TONUS team)

[^0]: ${ }^{1}$ Inria Nancy Grand Est and IRMA Strasbourg, France
 ${ }^{2}$ Max-Planck-Institut für Plasmaphysik, Garching, Germany
 ${ }^{3}$ University of Strasbourg, France
 ${ }^{4}$ University of Insubria, Como, Italy

