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Plasma Physics

� Thermonuclear fusion: Nuclear
reaction between deuterium and
tritium (high energy physic
phenomena), which can generate
energy. For these very high
temperatures, the gas are ionized
and gives a plasma.

� Tokamak : The plasma is confined
in a toroidal room (Tokamak) by
powerful magnetic field.

� In the Tokamak some instabilities
can appear in the plasma. The
simulation of these instabilities is an
important subject for ITER.

� The instabilities like ELM’s
(periodic edge instabilities) are
linked to the very large gradient of
pressure and very large current at
the edge.

Figure: Tokamak
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Equilibrium

Shift
� Tokamak equilibrium (u = 0):

J ×B = ∇p

� In a Tokamak we assume that

B = µ0
F (ψ,Z )

R
eφ +

1

R
(∇ψ× eφ)

� Equation defining the equilibrium :
Grad-Shafranov

∆∗ψ = −µ0R
2 dp(ψ)

dψ
− µ2

0F (ψ)
dF (ψ)

dψ

with

∆∗ψ = R2∂R

(
1

R2
∂Rψ

)
+ ∂ZZ ψ

� Instabilities study: perturbation of the
axisymmetric equilibrium.

Figure: 3D equilibrium

Figure: poloidal cut of equilibrium
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MHD model

Single fluid resistive MHD
∂tρ +∇ · (ρu) = 0,

ρ∂tu + ρu · ∇u +∇p = J ×B−∇ ·Π,
∂tp + u · ∇p + p∇ · u +∇ · (K∇T ) = 0
∂tB = −∇× (−u ×B + ηJ) ,
∇ ·B = 0, ∇×B = J.

Spatial discretization

� Parabolic problems with free-divergence ===> Compatible Finite element methods.

� Strongly anisotropic problem ===> high-order methods and aligned grids.

Time problem
� low Mach and Low β regime

0 ≈‖ u ‖<< c << Va

with c =
√
T and Va =

|B |√
ρµ0

.

� Direction of B : λmin ≈‖ u ‖<< λmax ≈ Va

� Direction of B⊥ : λmin ≈‖ u ‖<< λmax ≈ c
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Exemple of Anisotropic problem: diffusion
� Model :

∂tT −∇ ·
(
(k‖ − k⊥)(b⊗ b)∇T + k⊥∇T

)
= 0

with k‖ >> k⊥.

� The magnetic field is construct solving the equilibrium.
� In this case k‖ = 100 and k⊥ = 0 .The diffusion is along the magnetic lines.

Figure: Left: solution after time T = 0.5. Right: solution after time T = 7

� Aligned grids: the actual physic code aligne the poloidal grid with the magnetic
surfaces. In the future we want 3D meshes aligned to magnetic lines.
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Euler linearized and implicit scheme
� We solve hyperbolic systems with small diffusion using implicit schemes.

� Ill-conditioned systems when ∆t >> 1 since

� λmin
λmax

>> 1 in the Jacobian,
� λmin ≈ 0 in the Jacobian.

Idea
� Idea: Use operator splitting and reformulation to approximate the Jacobian by a series

of suitable simple problems (advection, diffusion or mass problems).

Linearized Euler equation{
1
c ∂tu +Ma · ∇u +∇p = 0
1
c ∂tp +Ma · ∇p +∇ · u = 0

with M ∈ ]0, 1], and | a |= 1.

� Implicit problem after time discretization:(
Id +Mλa · ∇ λ∇·

λ∇ Id +Mλa · ∇

)(
pn+1

un+1

)
=

(
Id −Mλa · ∇ λ∇·

λ∇ Id −Mλa · ∇

)(
pn

un

)
� with λ = 0.5c∆t the numerical acoustic length.
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Schur preconditioning method
� Example of Algorithm : Schur preconditioning.

� The implicit system after linearization is given by

(
pn+1

un+1

)
=

(
AB,p Div
Grad Au

)−1 (
Rp

Ru

)
� with Ap and Au the advection terms linked to p (resp u), Div and Grad the coupling

terms which gives the acoustic waves.

� Applying the Schur decomposition we obtain(
pn+1

un+1

)
=

(
Id A−1

B,pDiv

0 Id

)(
A−1
p 0

0 P−1
schur

)(
Id 0
−GradA−1

p Id

)(
Rp

Ru

)
� Using the previous Schur decomposition, we obtain the following algorithm:

Predictor : App
∗ = Rp

Velocity evolution : Pschurun+1 =
(
−Gradpn+1 + Ru

)
Corrector : App

n+1 = App
∗ −Divun+1

� with Pschur = Au −Grad(A−1
p )Div ≈ Au −GradDiv . The approximation is valid in the

low Mach regime.
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Numerical results

� First test case. We compare the PC for different mesh and different time step.
� c = 1 and a = (0, 0). Number of iteration to converge :

Gmres Gmres + PBPC
∆t = 0.1 ∆t = 0.5 ∆t = 1 ∆ = 0.1 ∆ = 0.5 ∆ = 1

64*64 25 4000 1.0E+5 4 35 60
128*128 30 7800 2.0E+5 4 50 75

� The method allows to reduce the number of iteration to converge. The method is
efficient if the sub-steps are treat efficiently.

� The algorithm depend of the boundary conditions. Additional optimization mus be
add.

� Now we study the Mach dependency. We take a mesh 64*64 and ∆t = 0.25

Mach M = 10−5 M = 10−3 M = 10−2 M = 10−1 M = 0.5
10 11 12 35 80

� Conclusion : the algorithm is less efficient for Mach around one, since the
approximation of the Schur complement is less good.
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Simple operators

� Applying the algorithm in time ( Schur preconditioning or other splitting and
reformulation methods) we obtain simples operator to solve

A = Id +Mλa ·∇, L = Id +λ∆, Dd = Id +λ∇(∇·), Dc = Id +λ∇× (∇×)

� with M << 1 and λ >> 1.

� Numerical problems :

� At the limit λ >> 1, Dd and Dc have a infinite dimensional kernel. Therefore the
operators are ill-conditioned for large λ.

� Numerical example for Dd with 3-order Hdiv B-Splines

λ / size mesh 32*32 64*64 128*128
λ = 0.01 480 1060 3000
∆t = 0.1 2250 7500 14000
∆t = 1 7500 29000 112000

∆t = 10 27000 280000 nc

� When the polynomial ordre is large all the operators are ill-conditioned.
� Advection diffusion problem with M = 0.1, λ = 1 (Gmres + Jacobi) :

λ / size mesh p = 3 p = 5 p = 7 p = 9
Mesh 32 ∗ 32 60 260 2200 70000
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GLT principle

� PDE : Lu = g after discretization gives Lnun = gn with {Ln}n a sequence of matrices.

� It is often the case that the matrix Ln is a linear combination, product, inversion or

conjugation of these two simple kinds of matrices

� Tn(f ), i.e., a Toeplitz matrix obtained from the Fourier coefficient of
f : [−π, π]→ C , with f ∈ L1([−π, π]).

� D(a), i.e., a diagonal matrix such that (Dn(a))ii = a( i
n ) with a : [0, 1]→ C

Riemann integrable function.

In such a case {Ln}n is called a GLT sequence.

Fundamental property

� Each GLT sequence {Ln}n is equipped with a ”symbol”, a function
χ : [0, 1]× [−π, π]→ C which describes the asymptotical spectral behaviour of {Ln}n:

{Ln}n ∼ χ

E.g.: if Ln = Dn(a)Tn(f ), then {Ln}n ∼ χ = a · f

� Advantage of this tool: studying the symbol we retrieve information on the
conditioning and propose new preconditioning based on this symbol.
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GLT for stiffness matrix
� Application: B-Splines discretization of the model

−∆u = f , in [0, 1]d .

� The basis functions are given by φi (x) a tensor product of 1D B-Splines functions.

Symbol of the problem{
nd−2Ln

}
n
∼ 1

n

(
Πd

k=1mpk−1(θk )
) (

∑ d
k=1µ2

k (2− 2 cos(θk ))Π
d
j=1,j 6=kwpj (θj )

)
with θk ∈ [−π, π] and wp(θ) := mp(θ)/mp−1(θ).

�
(

4
π2

)p
≤ mp−1(θ) ≤ mp−1(0) = 1.

� Remark 1: The symbol has a zero in θ = (0, ... , 0) ⇒ nd−2Ln is ill-conditioned in the
low frequencies. Classical problem solved by MG preconditioning.

� Remark 2: The symbol has infinitely many exponential zeros at the points θ with
θj = π for some j when pj → ∞ ⇒ nd−2Ln is ill-conditioned in the high frequencies.
Non-canonical problem solvable by GLT theory.

� Preconditioning: Using the symbol we can construct a smoother for MG valid for
high-frequencies. (i.e. CG preconditioned with a Kronecker product whose jth factor is
Tµjn+pj−2(mpj−1)).

� Extension: the method can be extended to the case with mapping (general
geometries) and more general operators.
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Numerical results for GLT
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GLT for curl-curl problem: a 2D example
� Application: compatible B-Splines discretization based on a discrete De Rham

sequence of the variational problem:

Find u ∈ H(curl , [0, 1]2) such that

(∇× u,∇× v ) + ν (u, v ) = (f , v ), ∀v ∈ H(curl , [0, 1]2),

where ν ≥ 0 and H(curl , [0, 1]2) := {u ∈ (L2([0, 1]2))2 s.t. ∇× u ∈ L2([0, 1]2)}.

� Coefficient matrix Aν
n : is a 2× 2 block matrix.

� Spectral symbol f ν:
� 2D problem ⇒ f ν is bivariate;
� vectorial problem ⇒ f ν is 2× 2 matrix-valued function. In such cases, we have to

look at the eigenvalue functions of f ν.

λ1 (f
ν(θ1, θ2)) ≈

1

µ1µ2
mp−1(θ1)mp−1(θ2)

ν

n2

λ2 (f
ν(θ1, θ2)) ≈

1

µ1µ2
mp−1(θ1)mp−1(θ2)

[
µ2

2(2− 2 cos(θ2)) + µ2
1(2− 2 cos(θ1)) +

ν

n2

]
� Continuum: the curl-curl operator has infinite dimensional kernel and on the

complement behaves as a second order operator.
� Spectral counterpart: when ν = 0, λ1(f ν) ≡ 0, while λ2(f ν) is the symbol of the 2D

Laplacian operator.
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GLT for curl-curl problem
� How to use our spectral analysis?: an equispaced sampling of the eigenvalues

functions in [−π, π]2 gives an approximation of the eigenvalues of Aν
n.

λ1(f
ν) λ2(f

ν)
Comparison between the eigenvalues of Aν

n (colored dots) and λk (f
ν), k = 1, 2, when

n = 40, p = 3, ν = 10−2 (matrix-size 3612).

� As for IgA stiffness matrices: λk (f
ν), k = 1, 2 satisfy the following properties

� for ν = 0, λ2(f ν) has an analytic zero in (θ1, θ2) = (0, 0) of order 2;
� both λ1(f ν) and λ2(f ν) possess infinitely many numerical exponential zeros at the

points (θ1, θ2) with θj = π when p becomes large.
� Solver proposal: Using the symbol we can construct a smoother for MG valid for

high-frequencies. (i.e. CG preconditioned with a direct sum of Toeplitz matrices
generated by the mass symbol mp−1(θ1)mp−1(θ2)).
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Conclusion

Conclusion about time-scheme
� Schur preconditioning: Very efficient in the low-mach regime. Less when the mach is

close to one.

� Other possibilities:

� Coupling implicit acoustic scheme (with Schur pc) and explicit transport.
� Linearization and decoupled approximate model adding variables and using

splitting.

� General remark: these algorithms are efficient if we have efficient solvers for simple
models.

Conclusion about simple solvers
� GLT: the method allows to understand the problem of conditioning linked to different

operators discretized with B-Splines.

� GLT + MG: the method allows to design smoother for Multi-grids methods for these
operators.

� Vectorial elliptic operators: coupling GLT and auxiliary spaces method allows to
design solver for div-div and curl-curl operators.
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