B-Splines Finite element and Physic-Based preconditioning for Tokamak Plasma

<u>E. Franck</u>¹, M. Gaja², J.Lakhlili², M. Mazza², A. Ratnani², S. Serra-Capizzano³, E. Sonnendrücker²

¹Inria Nancy Grand Est and IRMA Strasbourg, France ²Max-Planck-Institut für Plasmaphysik, Garching, Germany ³University of Insubria, Como, Italy

E. Franck

Outline

(nría-

Mathematical and physical context

Time discretization

Solver for simple operators

- Thermonuclear fusion: Nuclear reaction between deuterium and tritium (high energy physic phenomena), which can generate energy. For these very high temperatures, the gas are ionized and gives a plasma.
- Tokamak : The plasma is confined in a toroidal room (Tokamak) by powerful magnetic field.
- In the Tokamak some instabilities can appear in the plasma. The simulation of these instabilities is an important subject for ITER.
- The instabilities like ELM's (periodic edge instabilities) are linked to the very large gradient of pressure and very large current at the edge.

- Thermonuclear fusion: Nuclear reaction between deuterium and tritium (high energy physic phenomena), which can generate energy. For these very high temperatures, the gas are ionized and gives a plasma.
- Tokamak : The plasma is confined in a toroidal room (Tokamak) by powerful magnetic field.
- In the Tokamak some instabilities can appear in the plasma. The simulation of these instabilities is an important subject for ITER.
- The instabilities like ELM's (periodic edge instabilities) are linked to the very large gradient of pressure and very large current at the edge.

ELM simulation

- Thermonuclear fusion: Nuclear reaction between deuterium and tritium (high energy physic phenomena), which can generate energy. For these very high temperatures, the gas are ionized and gives a plasma.
- Tokamak : The plasma is confined in a toroidal room (Tokamak) by powerful magnetic field.
- In the Tokamak some instabilities can appear in the plasma. The simulation of these instabilities is an important subject for ITER.
- The instabilities like ELM's (periodic edge instabilities) are linked to the very large gradient of pressure and very large current at the edge.

Innia

- Thermonuclear fusion: Nuclear reaction between deuterium and tritium (high energy physic phenomena), which can generate energy. For these very high temperatures, the gas are ionized and gives a plasma.
- Tokamak : The plasma is confined in a toroidal room (Tokamak) by powerful magnetic field.
- In the Tokamak some instabilities can appear in the plasma. The simulation of these instabilities is an important subject for ITER.
- The instabilities like ELM's (periodic edge instabilities) are linked to the very large gradient of pressure and very large current at the edge.

Innia

- Thermonuclear fusion: Nuclear reaction between deuterium and tritium (high energy physic phenomena), which can generate energy. For these very high temperatures, the gas are ionized and gives a plasma.
- Tokamak : The plasma is confined in a toroidal room (Tokamak) by powerful magnetic field.
- In the Tokamak some instabilities can appear in the plasma. The simulation of these instabilities is an important subject for ITER.
- The instabilities like ELM's (periodic edge instabilities) are linked to the very large gradient of pressure and very large current at the edge.

Equilibrium

Shift

Tokamak equilibrium (u = 0):

 $\boldsymbol{J} \times \boldsymbol{B} = \nabla \boldsymbol{p}$

In a Tokamak we assume that

$$oldsymbol{B} = \mu_0 rac{F(oldsymbol{\psi}, Z)}{R} oldsymbol{e}_\phi + rac{1}{R} (
abla oldsymbol{\psi} imes oldsymbol{e}_\phi)$$

Equation defining the equilibrium : Grad-Shafranov

$$\Delta^* \boldsymbol{\psi} = -\mu_0 R^2 \frac{d\rho(\boldsymbol{\psi})}{d\psi} - \mu_0^2 F(\boldsymbol{\psi}) \frac{dF(\boldsymbol{\psi})}{d\psi}$$

with

$$\Delta^* \boldsymbol{\psi} = R^2 \partial_R \left(\frac{1}{R^2} \partial_R \boldsymbol{\psi} \right) + \partial_{ZZ} \boldsymbol{\psi}$$

Instabilities study: perturbation of the axisymmetric equilibrium.

/16

MHD model

Single fluid resistive MHD

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = \boldsymbol{0}, \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{J} \times \boldsymbol{B} - \nabla \cdot \overline{\overline{\boldsymbol{\Pi}}}, \\ \partial_t \boldsymbol{p} + \boldsymbol{u} \cdot \nabla \boldsymbol{p} + \rho \nabla \cdot \boldsymbol{u} + \nabla \cdot (\boldsymbol{K} \nabla \boldsymbol{T}) = \boldsymbol{0} \\ \partial_t \boldsymbol{B} = -\nabla \times (-\boldsymbol{u} \times \boldsymbol{B} + \eta \boldsymbol{J}), \\ \nabla \cdot \boldsymbol{B} = \boldsymbol{0}, \quad \nabla \times \boldsymbol{B} = \boldsymbol{J}. \end{cases}$$

Spatial discretization

- □ Parabolic problems with free-divergence ===> Compatible Finite element methods.
- Strongly anisotropic problem ===> high-order methods and aligned grids.

Time problem

Exemple of Anisotropic problem: diffusion

Model :

$$\partial_t T - \nabla \cdot \left((k_{\parallel} - k_{\perp}) (\mathbf{b} \otimes \mathbf{b}) \nabla T + k_{\perp} \nabla T \right) = 0$$

with $k_{\parallel} >> k_{\perp}$.

The magnetic field is construct solving the equilibrium.

In this case $k_{\parallel} = 100$ and $k_{\perp} = 0$. The diffusion is along the magnetic lines.

Figure: Left: solution after time T = 0.5. Right: solution after time T = 7

16

Aligned grids: the actual physic code aligne the poloidal grid with the magnetic surfaces. In the future we want 3D meshes aligned to magnetic lines.

Euler linearized and implicit scheme

- We solve hyperbolic systems with small diffusion using implicit schemes.
- **Ill-conditioned systems when** $\Delta t >> 1$ since
 - $\begin{array}{ll} \Box & \frac{\lambda_{\min}}{\lambda_{\max}} >> 1 \text{ in the Jacobian,} \\ \Box & \lambda_{\min} \approx 0 \text{ in the Jacobian.} \end{array}$

Idea

Idea: Use operator splitting and reformulation to approximate the Jacobian by a series of suitable simple problems (advection, diffusion or mass problems).

Linearized Euler equation

$$\begin{cases} \frac{1}{c}\partial_t \boldsymbol{u} + \boldsymbol{M}\boldsymbol{a} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p} &= 0\\ \frac{1}{c}\partial_t \boldsymbol{p} + \boldsymbol{M}\boldsymbol{a} \cdot \nabla \boldsymbol{p} + \nabla \cdot \boldsymbol{u} &= 0 \end{cases}$$

with $M \in [0, 1]$, and |a| = 1.

Implicit problem after time discretization:

$$\begin{pmatrix} I_d + \mathbf{M}\lambda \mathbf{a} \cdot \nabla & \lambda \nabla \cdot \\ \lambda \nabla & I_d + \mathbf{M}\lambda \mathbf{a} \cdot \nabla \end{pmatrix} \begin{pmatrix} p^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} I_d - \mathbf{M}\lambda \mathbf{a} \cdot \nabla & \lambda \nabla \cdot \\ \lambda \nabla & I_d - \mathbf{M}\lambda \mathbf{a} \cdot \nabla \end{pmatrix} \begin{pmatrix} p^n \\ \mathbf{u}^n \end{pmatrix}$$

• with $\lambda = 0.5c\Delta t$ the numerical acoustic length.

Schur preconditioning method

- Example of Algorithm : Schur preconditioning.
- The implicit system after linearization is given by

$$\left(\begin{array}{c}p^{n+1}\\\mathbf{u^{n+1}}\end{array}\right) = \left(\begin{array}{c}A_{\boldsymbol{B},p} & Div\\Grad & A_{\mathbf{u}}\end{array}\right)^{-1} \left(\begin{array}{c}R_{p}\\R_{u}\end{array}\right)$$

- with A_p and A_u the advection terms linked to p (resp u), Div and Grad the coupling terms which gives the acoustic waves.
- Applying the Schur decomposition we obtain

$$\begin{pmatrix} p^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} I_d & A_{B,p}^{-1} Div \\ 0 & I_d \end{pmatrix} \begin{pmatrix} A_p^{-1} & 0 \\ 0 & P_{schur}^{-1} \end{pmatrix} \begin{pmatrix} I_d & 0 \\ -GradA_p^{-1} & I_d \end{pmatrix} \begin{pmatrix} R_p \\ R_u \end{pmatrix}$$

Using the previous Schur decomposition, we obtain the following algorithm:

- $\left\{ \begin{array}{ll} {\rm Predictor}: & A_{\rho} p^* = R_{\rho} \\ {\rm Velocity \ evolution}: & P_{schur} {\bf u}^{n+1} = \left(-{\rm Grad} p^{n+1} + R_{\bf u}\right) \\ {\rm Corrector}: & A_{\rho} p^{n+1} = A_{\rho} p^* {\rm Div} {\bf u}_{n+1} \end{array} \right.$
- with $P_{schur} = A_u Grad(A_p^{-1})Div \approx A_u GradDiv$. The approximation is valid in the low Mach regime.

Numerical results

First test case. We compare the PC for different mesh and different time step.
 c = 1 and a = (0,0). Number of iteration to converge :

	Gmres			Gmres + PBPC		
	$\Delta t = 0.1$	$\Delta t = 0.5$	$\Delta t = 1$	$\Delta = 0.1$	$\Delta = 0.5$	$\Delta = 1$
64*64	25	4000	1.0E+5	4	35	60
128*128	30	7800	2.0E+5	4	50	75

- The method allows to reduce the number of iteration to converge. The method is efficient if the sub-steps are treat efficiently.
- The algorithm depend of the boundary conditions. Additional optimization mus be add.
- Now we study the Mach dependency. We take a mesh 64*64 and $\Delta t = 0.25$

Mach	$M = 10^{-5}$	$M = 10^{-3}$	$M = 10^{-2}$	$M = 10^{-1}$	<i>M</i> = 0.5
	10	11	12	35	80

Conclusion : the algorithm is less efficient for Mach around one, since the approximation of the Schur complement is less good.

Simple operators

Applying the algorithm in time (Schur preconditioning or other splitting and reformulation methods) we obtain simples operator to solve

 $A = I_d + M\lambda \mathbf{a} \cdot \nabla, \qquad L = I_d + \lambda \Delta, \qquad D_d = I_d + \lambda \nabla (\nabla \cdot), \qquad D_c = I_d + \lambda \nabla \times (\nabla \times)$

- with $M \ll 1$ and $\lambda \gg 1$.
- Numerical problems :
 - □ At the limit $\lambda >> 1$, D_d and D_c have a infinite dimensional kernel. Therefore the operators are ill-conditioned for large λ .
 - □ Numerical example for D_d with 3-order Hdiv B-Splines

λ / size mesh	32*32	64*64	128*128
$\lambda = 0.01$	480	1060	3000
$\Delta t = 0.1$	2250	7500	14000
$\Delta t = 1$	7500	29000	112000
$\Delta t = 10$	27000	280000	nc

- □ When the polynomial ordre is large all the operators are ill-conditioned.
- Advection diffusion problem with M = 0.1, $\lambda = 1$ (Gmres + Jacobi) :

λ / size mesh	<i>p</i> = 3	<i>p</i> = 5	<i>p</i> = 7	<i>p</i> = 9
Mesh 32 * 32	60	260	2200	70000

GLT principle

- PDE : Lu = g after discretization gives $L_n \mathbf{u}_n = \mathbf{g}_n$ with $\{L_n\}_n$ a sequence of matrices.
- It is often the case that the matrix L_n is a linear combination, product, inversion or conjugation of these two simple kinds of matrices
 - \Box $T_n(f)$, i.e., a Toeplitz matrix obtained from the Fourier coefficient of $f: [-\pi, \pi] \to C$, with $f \in L^1([-\pi, \pi])$.
 - \square D(a), i.e., a diagonal matrix such that $(D_n(a))_{ii} = a(\frac{i}{n})$ with $a : [0, 1] \rightarrow C$ Riemann integrable function.

In such a case $\{L_n\}_n$ is called a **GLT sequence**.

Fundamental property

□ Each GLT sequence $\{L_n\}_n$ is equipped with a "symbol", a function $\chi : [0, 1] \times [-\pi, \pi] \rightarrow C$ which describes the asymptotical spectral behaviour of $\{L_n\}_n$:

$$\{L_n\}_n \sim \chi$$

E.g.: if $L_n = D_n(a) T_n(f)$, then $\{L_n\}_n \sim \chi = a \cdot f$

• Advantage of this tool: studying the symbol we retrieve information on the conditioning and propose new preconditioning based on this symbol.

GLT for stiffness matrix

Application: B-Splines discretization of the model

$$-\Delta u = f, \quad \text{ in } [0,1]^d.$$

The basis functions are given by $\phi_i(\mathbf{x})$ a tensor product of 1D B-Splines functions.

Symbol of the problem

$$\left\{ n^{d-2} L_n \right\}_n \sim \frac{1}{n} \left(\Pi_{k=1}^d m_{p_k-1}(\theta_k) \right) \left(\sum_{k=1}^d \mu_k^2 (2 - 2\cos(\theta_k)) \Pi_{j=1, j \neq k}^d w_{p_j}(\theta_j) \right)$$

$$\theta_k \in [-\pi, \pi] \text{ and } w_p(\theta) := m_p(\theta) / m_{p-1}(\theta).$$

•
$$\left(\frac{4}{\pi^2}\right)^p \leq m_{p-1}(\theta) \leq m_{p-1}(0) = 1.$$

- **Remark 1**: The symbol has a zero in $\theta = (0, ..., 0) \Rightarrow n^{d-2}L_n$ is ill-conditioned in the low frequencies. Classical problem solved by MG preconditioning.
- **Remark 2**: The symbol has infinitely many exponential zeros at the points θ with $\theta_j = \pi$ for some *j* when $p_j \to \infty \Rightarrow n^{d-2}L_n$ is ill-conditioned in the high frequencies. Non-canonical problem solvable by GLT theory.
- **Preconditioning**: Using the symbol we can construct a smoother for MG valid for high-frequencies. (i.e. CG preconditioned with a Kronecker product whose *j*th factor is $T_{\mu_j n+p_j-2}(m_{p_j-1})$).
- **Extension**: the method can be extended to the case with mapping (general geometries) and more general operators.

with

Numerical results for GLT

Inia

GLT for curl-curl problem: a 2D example

• **Application**: compatible B-Splines discretization based on a discrete De Rham sequence of the variational problem:

Find $\boldsymbol{u} \in H(curl, [0, 1]^2)$ such that

$$(\nabla \times \boldsymbol{u}, \nabla \times \boldsymbol{v}) + \nu (\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{f}, \boldsymbol{v}), \quad \forall \boldsymbol{v} \in H(\textit{curl}, [0, 1]^2),$$

where $\nu \ge 0$ and $H(\mathit{curl}, [0,1]^2) := \{ \textit{u} \in (L^2([0,1]^2))^2 \text{ s.t. } \nabla \times \textit{u} \in L^2([0,1]^2) \}.$

- **Coefficient matrix** \mathcal{A}_{n}^{ν} : is a 2 × 2 block matrix.
- Spectral symbol f^v:
 - □ 2D problem $\Rightarrow f^{\nu}$ is bivariate;
 - □ vectorial problem $\Rightarrow f^{\nu}$ is 2 × 2 matrix-valued function. In such cases, we have to look at the eigenvalue functions of f^{ν} .

$$\begin{split} \lambda_1 \left(f^{\nu}(\theta_1, \theta_2) \right) &\approx \frac{1}{\mu_1 \mu_2} m_{p-1}(\theta_1) m_{p-1}(\theta_2) \frac{\nu}{n^2} \\ \lambda_2 \left(f^{\nu}(\theta_1, \theta_2) \right) &\approx \frac{1}{\mu_1 \mu_2} m_{p-1}(\theta_1) m_{p-1}(\theta_2) \left[\mu_2^2 (2 - 2\cos(\theta_2)) + \mu_1^2 (2 - 2\cos(\theta_1)) + \frac{\nu}{n^2} \right] \end{split}$$

- **Continuum:** the curl-curl operator has infinite dimensional kernel and on the complement behaves as a second order operator.
- Spectral counterpart: when $\nu = 0$, $\lambda_1(f^{\nu}) \equiv 0$, while $\lambda_2(f^{\nu})$ is the symbol of the 2D Laplacian operator.

GLT for curl-curl problem

How to use our spectral analysis?: an equispaced sampling of the eigenvalues functions in $[-\pi, \pi]^2$ gives an approximation of the eigenvalues of \mathcal{A}_n^{ν} .

$$\lambda_1(f^{\nu})$$
 $\lambda_2(f^{\nu})$

Comparison between the eigenvalues of \mathcal{A}_{n}^{ν} (colored dots) and $\lambda_{k}(f^{\nu})$, k = 1, 2, when n = 40, p = 3, $\nu = 10^{-2}$ (matrix-size 3612).

As for IgA stiffness matrices: $\lambda_k(f^{\nu})$, k = 1, 2 satisfy the following properties

- \Box for $\nu = 0$, $\lambda_2(f^{\nu})$ has an analytic zero in $(\theta_1, \theta_2) = (0, 0)$ of order 2;
- □ both $\lambda_1(f^v)$ and $\lambda_2(f^v)$ possess infinitely many numerical exponential zeros at the points (θ_1, θ_2) with $\theta_j = \pi$ when *p* becomes large.

Solver proposal: Using the symbol we can construct a smoother for MG valid for high-frequencies. (i.e. CG preconditioned with a direct sum of Toeplitz matrices generated by the mass symbol $m_{p-1}(\theta_1)m_{p-1}(\theta_2)$).

Conclusion

Conclusion about time-scheme

- □ Schur preconditioning: Very efficient in the low-mach regime. Less when the mach is close to one.
- Other possibilities:
 - Coupling implicit acoustic scheme (with Schur pc) and explicit transport.
 - Linearization and decoupled approximate model adding variables and using splitting.
- □ General remark: these algorithms are efficient if we have efficient solvers for simple models.

Conclusion about simple solvers

- □ **GLT**: the method allows to understand the problem of conditioning linked to different operators discretized with B-Splines.
- □ **GLT** + **MG**: the method allows to design smoother for Multi-grids methods for these operators.
- □ Vectorial elliptic operators: coupling GLT and auxiliary spaces method allows to design solver for div-div and curl-curl operators.

