Implicit relaxation schemes for compressible fluid models

D. Coulette², <u>E. Franck¹²</u>, P. Helluy¹² A. Ratnani³, E. Sonnendrücker³

Jorek meeting, March 2016, Praha

¹Inria Nancy Grand Est, France ²IRMA, university of Strasbourg, France ³NMPP, IPP, Garching bei München, Germany

E. Franck

Outline

Mathematical and physical problems

Relaxation methods

(nría-

Mathematical and physical problems

Hyperbolic systems and implicit scheme

We consider the general problem

 $\partial_t \boldsymbol{U} + \partial_x (\boldsymbol{F}(\boldsymbol{U})) = \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U})$

with $\boldsymbol{U}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ (idem for $\boldsymbol{F}(\boldsymbol{U})$) and D a matrix.

In the following we consider the limit $\nu \ll 1$.

Implicit scheme

- **Implicit scheme**: allows to avoid the CFL condition filtering the fast phenomena.
- **Problem**: Direct solver, not useful in 3D (too large matrices), we need iterative solvers.
- Conditioning of the implicit matrix: given by the ratio of the maximal and minimal eigenvalues.

Implicit scheme :

$$\boldsymbol{U} + \Delta t \partial_x (\boldsymbol{F}(\boldsymbol{U})) - \Delta t \nu \partial_x (\boldsymbol{D}(\boldsymbol{U}) \partial_x \boldsymbol{U}) = \boldsymbol{U}^n$$

At the limit $\nu \ll 1$ and $\Delta t \gg 1$ (large time step) we solve $\partial_x F(U) = 0$.

Problem of the implicit scheme

- **Conclusion**: for $\nu \ll 1$ and $\Delta t \gg 1$ the conditioning number of the full system closed to conditioning number of the steady model (the ratio of the speed waves).
- **Exemples**: low-Mach Euler equation, low-Mach and low- β MHD.

Limit of the classical method

- High memory consumption to store Jacobian and perhaps preconditioning.
- CPU time does not increase linearly with respect to the problem size (effect of the ill-conditioning linked to the physic).

Future of scientific computing

- Machines able to make lots of parallel computing.
- Small memory by node.

Idea: Divide and Conquer

- Propose algorithm which approximates the full problem by a collection of simpler ones.
- Perform the resolution of the simple problems.
- Limit memory consumption using matrix-free method.

Outline of the session

Aim

Present implicit methods for compressible full (no potential formulation) models based on Divide and Conquer with small memory consumption.

Relaxation methods

- Classical relaxation method (my talk)
 - Presentation of the generalized Xin-Jin relaxation method: approximation of the classical model by simpler and linear larger model.
 - □ Time schemes. Application in the FE/IGA context and results.
- Kinetic relaxation method (D. Coulette talk's)
 - Alternative version of relaxation method based on kinetic formalism.
 - □ DG context and task-based parallelization (key point).

Splitting method and Compatible FE

- M. Gaja talk's
 - $\hfill\square$ Presentation of splitting method + compatible space to separate the time scale in the matrices.
 - □ Efficients solver for simple (elliptic) models in the IGA context.

Relaxation methods

General principle

We consider the following nonlinear system

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + \boldsymbol{G}(\boldsymbol{U})$$

- with U a vector of N functions.
- Aim: Find a way to approximate this system with a sequence of simple systems.
- Idea: Xin-Jin relaxation method (very popular in the hyperbolic and finite volume community).

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{G}(\boldsymbol{U}) \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} = \frac{1}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) \end{cases}$$

Limit of the hyperbolic relaxation scheme

The limit scheme of the relaxation system is

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \varepsilon \partial_x ((\alpha^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + \varepsilon \partial_x \boldsymbol{G}(\boldsymbol{U}) + \boldsymbol{o}(\varepsilon^2)$$

- \square with A(U) the Jacobian of F(U).
- Conclusion: the relaxation system is an approximation of the hyperbolic original system (error in ε).

Stability: the limit system is dissipative if $(\alpha^2 - |A(U)|^2) > 0$.

General principle II

Generalization

The generalized relaxation is given by

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{G}(\boldsymbol{U}) \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} = \frac{R}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) + \boldsymbol{H}(\boldsymbol{U}) \end{cases}$$

□ The limit scheme of the relaxation system is

 $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \varepsilon \partial_x (\boldsymbol{R}^{-1}(\alpha^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + \varepsilon (\partial_x \boldsymbol{G}(\boldsymbol{U}) - \partial_x \boldsymbol{H}(\boldsymbol{U})) + \boldsymbol{o}(\varepsilon^2)$

Treatment of small diffusion

□ Taking $R = (\alpha^2 - |A(\boldsymbol{U})|^2)D(\boldsymbol{U})^{-1}$, $\varepsilon = \nu$ and $H(\boldsymbol{U}) = A(\boldsymbol{U})G(\boldsymbol{U})$: we obtain the following limit system

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + o(\nu^2)$$

Limit of the method: the relaxation model cannot approach pde with high diffusion.

Time discretization

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Main idea: splitting scheme between transport and the relaxation.

First order scheme

We define the three operator for each steps :

$$T_{\Delta t} = I_d + \Delta t \begin{pmatrix} 0 & \partial_x \\ \alpha^2 \partial_x & 0 \end{pmatrix}$$
$$S_{\Delta t} = I_d + \Delta t \begin{pmatrix} \mathbf{G}(I_d) & 0 \\ 0 & 0 \end{pmatrix}$$
$$R_{\Delta t} = I_d + \Delta t \begin{pmatrix} 0 & 0 \\ -\frac{R}{\varepsilon} \mathbf{F}(I_d) & \frac{R}{\varepsilon} I_d - \mathbf{H}(I_d) \end{pmatrix}$$

The final scheme $T_{\Delta t} \circ S_{\Delta t} \circ R_{\Delta t}$ is consistant with $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \frac{\Delta t}{2} \partial_x (\alpha^2 \partial_x \boldsymbol{U}) + \left(\frac{\Delta t}{2} + \varepsilon\right) \partial_x \left(\boldsymbol{R}^{-1} \left(\alpha^2 \boldsymbol{I}_d - \boldsymbol{A}(\boldsymbol{U})^2\right) \partial_x \boldsymbol{U}\right)$ $+ O(\varepsilon \Delta t + \Delta t^2 + \varepsilon^2)$

Remark: the viscosity induced by the splitting have the same form that the viscosity induced by the relaxation.

⁰/₁₉

Discretization of the transport step

Main property

Transport part:

$$\begin{aligned} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} &= 0 \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} &= 0 \end{aligned}$$

Can be rewritten as *N* independent acoustic wave problems.

• We propose a efficient way to solve a single wave equation in the FE/IGA context.

$$\begin{pmatrix} I_d & \theta \Delta t \partial_x \\ \alpha^2 \theta \Delta t \partial_x & I_d \end{pmatrix} \begin{pmatrix} u^* \\ v^* \end{pmatrix} = \begin{pmatrix} I_d & -(1-\theta)\Delta t \partial_x \\ -\alpha^2(1-\theta)\Delta t \partial_x & I_d \end{pmatrix} \begin{pmatrix} u^n \\ v^n \end{pmatrix}$$
we propose to apply a Schur decomposition to the implicit matrix.

Final algorithm problem

$$\begin{array}{ll} {\sf Predictor}: & {\sf v}^*={\sf v}^n-(1-\theta)\Delta tu\\ {\sf Update}: & (I_d-\alpha^2\theta^2\Delta t^2\partial_{xx})u^{n+1}=-\theta\Delta t\partial_x{\sf v}^*+(u^n-(1-\theta)\Delta t{\sf v}^n)\\ {\sf Corrector}: & {\sf v}^{n+1}={\sf v}^*-\alpha^2\theta\Delta t\partial_x{\sf v}^{n+1} \end{array}$$

- Systems to solve: 2 mass matrices and on laplacian by wave equations.
- Parallelization (simple BC): N independent mass matrices, N independent stiffness matrices, N independent mass matrices.
- Parallelization (complex BC): N independent mass matrices, one linear matrix of the size N (N laplacian weakly coupled by the boundary), N independent mass matrices.

2D- Extension

Generalization

The generalized relaxation is given by

$$\begin{cases}
\partial_t \boldsymbol{U} + \partial_x \boldsymbol{V}_x + \partial_y \boldsymbol{V}_y = 0 \\
\partial_t \boldsymbol{V}_x + \alpha^2 B_{xx} \partial_x \boldsymbol{U} + \alpha^2 B_{xy} \partial_y \boldsymbol{U} = \frac{\Omega_{xx}}{\varepsilon} (\boldsymbol{F}_x(\boldsymbol{U}) - \boldsymbol{V}_x) + \frac{\Omega_{xy}}{\varepsilon} (\boldsymbol{F}_y(\boldsymbol{U}) - \boldsymbol{V}_y) \\
\partial_t \boldsymbol{V}_y + \alpha^2 B_{yx} \partial_x \boldsymbol{U} + \alpha^2 B_{yy} \partial_y \boldsymbol{U} = \frac{\Omega_{yx}}{\varepsilon} (\boldsymbol{F}_x(\boldsymbol{U}) - \boldsymbol{V}_x) + \frac{\Omega_{yy}}{\varepsilon} (\boldsymbol{F}_y(\boldsymbol{U}) - \boldsymbol{V}_y)
\end{cases}$$

The limit scheme of the relaxation system is

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}_x(\boldsymbol{U}) + \partial_y \boldsymbol{F}_y(\boldsymbol{U}) = \varepsilon \nabla \cdot (\Omega^{-1} (\alpha^2 B - A^q) \nabla \boldsymbol{U}) + \boldsymbol{o}(\varepsilon^2)$$

- **Remark**: classical choice for *B* is $B_{xx} = B_{yy} = I_d$ and $B_{yx} = B_{xy} = 0$
- B can be a way to reduce the diffusion adding null wave in the linear system.
- **Discretization**: same space, time discretization and algorithm that in 1D.

Parallelization of the models

- **Transport step** (simple BC): *d* * *N* independent mass matrices, *N* independent stiffness matrices, *N* independent mass matrices.
- Transport step (complex BC): d * N independent mass matrices, one linear matrix of the size N (structure depend of B), d * N independent.
- **Relaxation step**: *d* * *N* independent mass matrices.

High-Order time schemes

Second-order scheme

- □ Scheme for transport step $T(\Delta t)$: Semi Lagrangian for (KRS) or Cranck-Nicholson (KRS with DG or HRS).
- □ Scheme for relaxation step $R(\Delta t)$: Cranck-Nicholson (KRS and HRS).
- Classical full second order scheme:

$$\Psi(\Delta t) = T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t) \circ T\left(\frac{\Delta t}{2}\right).$$

AP full second order scheme:

$$\Psi_{ap}(\Delta t) = T\left(\frac{\Delta t}{4}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{2}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{4}\right)$$

 $\ \ \square \ \ \Psi \ \ \text{and} \ \ \Psi_{ap}(0) = \mathit{I}_d.$

High order scheme

Using composition method

$$M_{p}(\Delta t) = \Psi_{ap}(\gamma_{1}\Delta t)\Psi_{ap}(\gamma_{2}\Delta t)....\Psi_{ap}(\gamma_{s}\Delta t)$$

□ with $\gamma_i \in [-1, 1]$, we obtain a *p*-order schemes.

Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

E. Franck

- **Model** : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- Explicit time step : stable for $\Delta t < 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$

Figure: Left: numerical solution for the first order and the second order schemes for $\Delta t = 0.001$, Right: Zoom

- Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits high numerical dispersion and instabilities.
- **Instability**: oscillations $\rightarrow \alpha$ increase and α increase \rightarrow oscillations increase.

- Model : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- **Explicit time step** : stable for $\Delta t < 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$, $\Delta t = 5.0E^{-3}$ and $\Delta t = 1.0E^{-2}$ (only for first order and AP second order).

Figure: Left: numerical solution for the first order scheme, Right: numerical solution for the second order scheme. $\nu=10^{-3}$

- Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits high numerical dispersion and instabilities.
- Instability: oscillations $\longrightarrow \alpha$ increase and α increase \longrightarrow oscillations increase.

- Model : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- Explicit time step : stable for $\Delta t < 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$, $\Delta t = 5.0E^{-3}$ and $\Delta t = 1.0E^{-2}$ (only for first order and AP second order).

Figure: Left: numerical solution for the first order scheme, Right: numerical solution for the second order scheme. $\nu=10^{-3}$

- Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits high numerical dispersion and instabilities.
- Instability: oscillations $\rightarrow \alpha$ increase and α increase \rightarrow oscillations increase.

- Model : Viscous Burgers model.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.
- **Explicit time step** : stable for $\Delta t < 1.0E^{-5}$.
- Implicit time step : $\Delta t = 1.0E^{-3}$, $\Delta t = 5.0E^{-3}$ and $\Delta t = 1.0E^{-2}$.

Figure: Left: numerical solution for the first order scheme, Right: numerical solution for the second order scheme. $\nu=10^{-2}$

- Remark: for discontinuous solutions (or strong gradient solutions) the scheme admits high numerical dispersion and instabilities.
- Instability: oscillations $\rightarrow \alpha$ increase and α increase \rightarrow oscillations increase.

Model: compressible Navier-Stokes equation

$$\left\{ \begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t \rho u + \partial_x (\rho u^2 + p) = \partial_x (\nu(\rho) \partial_x u) - \rho g\\ \partial_t E + \partial_x (Eu + pu) = \partial_x (\nu(\rho) \partial_x \frac{u^2}{2}) + \partial_x (\eta \partial_x T) - \rho \nu g \end{array} \right.$$

- **Test**: Propagation of acoustic wave (no viscosity, no gravity).
- CPU Time for initial Mach = 0:

	C	1 meth	od	Relaxation method			
Δt / cells	5.10 ³	104	2.10 ⁴	5.10 ³	104	2.104	
$\Delta t = 0.005$	160	540	2350	135	430	1920	
$\Delta t = 0.01$	90	315	1550	70	220	1000	
$\Delta t = 0.02$	55	175	765	40	125	530	
$\Delta t = 0.05$	30	100	420	20	65	270	

CPU Time for initial *Mach* = 0.5:

	CN	1 meth	od	Relaxation method		
Δt / cells	5.10 ³	10 ⁴ 2.10 ⁴		5.10 ³	104	2.10 ⁴
$\Delta t = 0.01$	145	480	2150	100	320	1470
$\Delta t = 0.02$	80	290	1200	60	200	970

Conclusion:

□ In this case the Relaxation method is competitive with the classical scheme without important optimization (no parallelization of the problem, etc).

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0 E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	5.7 <i>E</i> ⁻³	$1.4E^{-3}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

- **Conclusion**: the relaxation scheme converges with the second order as expected.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green), $M = 0, \Delta t = 0.01$

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0 E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	5.7 <i>E</i> ⁻³	$1.4E^{-3}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

- **Conclusion**: the relaxation scheme converges with the second order as expected.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green), $M = 0, \Delta t = 0.02$

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	5.7 <i>E</i> ⁻³	$1.4E^{-3}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

Conclusion: the relaxation scheme converges with the second order as expected.

Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green), M = 0, $\Delta t = 0.05$

The two methods (CN and relaxation) capture well the fine solution.

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0 E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	5.7 <i>E</i> ⁻³	$1.4E^{-3}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

- **Conclusion**: the relaxation scheme converges with the second order as expected.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution(green), M = 0.5, $\Delta t = 0.01$

Simple test case: $\rho(t, x) = 1 + G(x - ut)$, u(t, x) = 2 and T(t, x) = 0.

Scheme Δt	$\Delta t = 1.0E^{-2}$	$\Delta t = 5.0 E^{-3}$	$\Delta t = 2.5 E^{-3}$	$\Delta t = 1.25 E^{-3}$
CN scheme	8.8 <i>E</i> ⁻³	$2.25E^{-3}$	5.7 <i>E</i> ⁻³	$1.4E^{-3}$
Relaxation scheme	$2.25E^{-3}$	$5.7E^{-4}$	$1.4E^{-4}$	3.6 <i>E</i> ⁻⁵

- **Conclusion**: the relaxation scheme converges with the second order as expected.
- Spatial discretization: $N_{cell} = 10000$, order = 3. Initial condition : Gaussian.

Figure: Fine solution (black). CN solution (violet) and Relaxation solution (green), M = 0.5, $\Delta t = 0.02$

I The two methods (CN and relaxation) capture well the fine solution.

Model: 2D compressible isothermal Navier-Stokes equation

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = S_r \rho \\ \partial_t (\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u} + c^2 \rho I_d) = \mu \Delta \boldsymbol{u} + (\mu + \lambda) \nabla (\nabla \cdot \boldsymbol{u}) + S_r \boldsymbol{u} \end{cases}$$

Test I: Steady state between source and spatial part. Order of convergence:

	Error	Order
$\Delta t = 0.025$	$1.6E^{-2}$	х
$\Delta t = 0.0125$	$3.8E^{-3}$	х
$\Delta t = 0.00625$	$9.3E^{-4}$	х
$\Delta t = 0.003125$	$2.3E^{-4}$	х

Test II: Propagation of acoustic wave (no viscosity, no gravity).

• CPU Time for initial Mach = 0:

	C	N metho	bd	CN Newton			Relaxation method		
Δt / cells	100 ²	200 ²	400 ²	100 ²	200 ²	400 ²	100 ²	200 ²	400 ²
$\Delta t = 0.01$	340	1320	5650	610	2410	9800	330	1260	5040
$\Delta t = 0.02$	170	670	3060	310	1250	6850	165	650	2555
$\Delta t = 0.05$	75	300	1290	140	555	3080	70	275	1115
$\Delta t = 0.1$	45	170	760	100	380	2190	40	155	625

Conclusion:

The Relaxation method is competitive with the classical schemes (linearized of Newton) without important optimization (no parallelization of the problem, etc).

Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the relaxation (bottom) for a time step $\Delta t = 0.01$.

19

Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the relaxation (bottom) for a time step $\Delta t = 0.05$.

19

Test I: Acoustic wave for isothermal Euler equation.

Figure: Comparison between the CN coupled with Newton method (top) and the relaxation (bottom) for a time step $\Delta t = 0.1$.

19

Test I: Acoustic wave for isothermal Euler equation.

Figure: 1D cut. Fine solution (black), CN method (red), Newton (green) and relaxation (blue). $\Delta t = 0.05$ (left) and $\Delta t = 0.1$ (right)

[′]19

Future works on relaxation methods

Diffusion

Propose relaxation for diffusion equation (main point the nonlinearitly must be local).

Model:

$$\partial_t \rho - \partial_x (D(\rho) \nabla \rho) = f$$

Baby MHD model

Propose relaxation for a baby model with the additional difficulties linked to the MHD

Model:

$$\partial_t \boldsymbol{B} + \nabla \times \left(\boldsymbol{u} \times \boldsymbol{B} + \frac{1}{\rho_0} \nabla T \right) = \eta \nabla \times (\nabla \times \boldsymbol{B}) \\ \partial_t \boldsymbol{T} - \nabla \cdot \left((k_{\parallel} - k_{\perp}) (\boldsymbol{b} \otimes \boldsymbol{b}) \nabla \boldsymbol{T} + k_{\perp} \nabla \boldsymbol{T} \right) = 0$$

- Difficulties: anisotropic diffusion and divergence free constrains
- Div free constrains: Powell method + classical relaxation or specific relaxation for curl and compatible FE space.

Equilibrium

- Since we over transport all the quantities decoupling the variables we create additional numerical diffusion in time not compatible with equilibrium conservation.
- Aim : find method to preserve with a better accuracy the equilibrium.

