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Stiff hyperbolic systems

Problem
� We consider the general stiff problem:

∂tU +
1

εa
∂xF (U) +

1

εb
∂xG(U) =

1

εc
R(U)−

σ

εd
D(U)

Limit
� First case: a = b = c = 1 and σ = 0. long time limit:

∂xF (U) + ∂xG(U) = R(U)

� Second case: a = b = 0, c = 1 and σ = 0. relaxation limit:

∂tV + ∂xK1(V ) = 0

� Third case: a = b = c = 1, d = 2 σ = 1. diffusion limit:

∂tV + ∂xK1(V )− ∂x (K2(V )∂xV ) = 0

� 4th: a = c = 0, b = 1 and σ = 0. fast wave limit:

∂tU + ∂x G̃(U) = 0, ∂x F̃ (U) = 0
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Diffusion limit: damped wave equation

Damped wave equation
∂tp +

1

ε
∂xu = 0

∂tu +
1

ε
∂xp = −

σ

ε2
u

, −→ ∂tp − ∂x
(

1

σ
∂xp

)
= 0

� Ref: Jin-Levermore 96, Gosse-Toscani 01.

� We plug u = − ε
σ
∂xp + O(ε2) in first equation.

Godunov scheme


pn+1
j −pj

∆t
+ 1
ε

uj+1−uj−1

∆x
− ∆x

2ε

pj+1−2pj+pj−1

∆x2 = 0
un+1
j −uj

∆t
+ 1
ε

pj+1−pj−1

∆x
− ∆x

2ε

uj+1−2uj+uj−1

∆x2 = − σ
ε2 uj

� Limit scheme:

pn+1
j − pj

∆t
−
(

1

σ
+

∆x

2ε

)
pj+1 − 2pj + pj−1

∆x2
= O(ε)

� CFL condition: ∆t ≤ f (ε)h.

� Diffusion and numerical
solutions for ε = 0.001.
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Long time limit: Euler gravity

Euler gravity 
∂tρ+

1

ε
∂x (ρu) = 0

∂t(ρu) +
1

ε
∂x (ρu2) +

1

ε
∂xp = −

1

ε
ρ∂xφ

∂tE +
1

ε
∂x (Eu + pu) = −

1

ε
ρu∂xφ

� Class of steady solutions: for u = 0 and ∂xp = −ρ∂xφ the system does not move.
� C. Berthon, C. Klingenberg (and al) 15-16-17.

Rusanov scheme
� Example: ρ = e−x∂xφ, p = e−x∂xφ and φ = gx .


ρn+1 = ρn +

∆x

λ
∂xxρ+ O(∆x2)

(ρu)n+1 = (ρu)n +
∆x

λ
∂xx (ρu) + O(∆x2)

En+1 = En +
∆x

λ
∂xxE + O(∆x2)

� with λ > maxx (| u | +c) with c the sound speed.
� Conclusion: the equilibriums are not preserved.

� Pertubated equilibrium.
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Relaxation limit: HRM model

HRM model 
∂tρ+ ∂x (ρu) = 0

∂tρY + ∂x (ρYu) =
1

ε
(ρY eq(ρ)− ρY )

∂tρu + ∂x (ρu2 + p) = 0

� with Y the mass fraction and p = p(ρ,Y ) ( Ambrosso 09 etc).

� Relaxation limit: the mass fraction is close to given equilibrium.

Splitting scheme
� Only write for the mass fraction part

(ρY )∗ = (ρY )n +
∆t

ε
(ρnY eq(ρn)− ρnY n)and

(ρY )n+1 − (ρY )∗

∆t
+

(ρYu)∗j+1 − (ρYu)∗j−1

∆x
− λ

(ρY )∗j+1 − 2(ρY )∗j + (ρY )∗j−1

∆x
= 0

� Stability we must take ∆t < Cε∆x .
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Fast wave limit: Low-Mach Euler equation

Euler low-mach 
∂tρ+ ∂x (ρu) = 0

∂t(ρu) + ∂x (ρu2) +
1

M
∂xp = 0

∂tE + ∂x (Eu + pu) = 0

� S. Dellacherie, C. Chalons, C. Klingenberg (and al) 14-15-17.
� Limit for M small: u = cts + O(M), p = cts + O(M) and ∂tρ+ u∂xρ = O(M).

Rusanov scheme
� At the limit: density advection. Advection scheme:

∂tρj +
(ρu)j+1 − (ρu)j−1

∆x
− | u |

ρj+1 − 2ρj + ρj−1

∆x
= 0

� Limit scheme of Rusanov scheme for Euler:

∂tρj +
(ρu)j+1 − (ρu)j−1

∆x
−

λ

M

ρj+1 − 2ρj + ρj−1

∆x
= 0

� The scheme for Euler dissipate too much.
� Stability: ∆t ≤ CM∆x .
� CFL constrains by ”fast velocity / small amplitude”

acoustic waves. Filter in time/space these waves.

� Contact with u = 0.01.
Tf = 10.

� Black curve: exact sol.

� Green curve: numerical
sol with 100 cells.
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Important notion: AP and Well-Balanced schemes
� We consider PDE depending of a small parameter ε with an asymptotic limit.

Asymptotic preserving
scheme
� AP scheme: a consistent

scheme for the initial PDE
which gives at the limit a
consistent scheme of the limit
PDE.

� Uniform AP scheme:
convergence and stability
independent of ε.

� Application: simulate problem with varying physical parameter and regime. Example:
radiative transfer.

� Other application: use AP scheme to create a new scheme for the limit model.
Example: relaxation scheme for Euler equation.

Well Balanced scheme
� A scheme which preserve exact (or with high accuracy ?) a steady state of the

continuous PDE.
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AP/WB schemes for hyperbolic PDE with source terms
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Damped wave equation: Godunov scheme

Damped wave equation:
∂tp +

1

ε
∂xu = 0

∂tu +
1

ε
∂xp = −

σ

ε2
u

� Riemann Invariant: u + p (eigenvalue 1) and u − p (eigenvalue −1) .

� Important relation to obtain the limit: ∂xp = −σ
ε
u.

� Upwind scheme for ∂tu + ∂x (au) = 0:

un+1
j − unj

∆t
+

uj+ 1
2
− uj− 1

2

∆xj
= 0

with xj =| xj+ 1
2
− xj− 1

2
| and uj+ 1

2
= unj for a > 0 and uj+ 1

2
= unj+1 for a < 0.

� Godunov acoustic scheme: Upwind scheme on the Riemann invariant. We obtain
pn+1
j −pnj

∆t
+

un
j+ 1

2

−un
j− 1

2
ε∆xj

= 0

un+1
j −unj

∆t
+

pn
j+ 1

2

−pn
j− 1

2
ε∆xj

= 0,

{
uj+ 1

2
+ pj+ 1

2
= unj + pnj

uj+ 1
2
− pj+ 1

2
= unj+1 − pnj+1.

� Main drawback: the fluxes ignore the balance between the pressure gradient and the
source.
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Damped wave equation: Jin-Levermore AP scheme

Jin-Levermore scheme:
� Plug the balance law ∂xp = −σ

ε
u + O(ε2) in the fluxes (Jin-Levermore 96).

� Scheme write on irregular grids.

� We write

p(xj ) = p(xj+ 1
2

) + (xj − xj+ 1
2

)∂xp(xj+ 1
2

)

� Coupling the previous relation (and the same for xj+1) with the fluxes
uj + pj = uj+ 1

2
+ pj+ 1

2
+
σ
j+ 1

2
∆xj

2ε
uj+ 1

2
,

uj+1 − pj+1 = uj+ 1
2
− pj+ 1

2
+
σ
j+ 1

2
∆xj+1

2ε
uj+ 1

2
.

Jin-Levermore scheme:
pn+1
j − pnj

∆t
+

Mj+ 1
2
un
j+ 1

2

−Mj− 1
2
un
j− 1

2

ε∆xj
un+1
j − unj

∆t
+

pn
j+ 1

2

− pn
j− 1

2

ε∆xj
+
σ

ε2
unj = 0,

,


uj+ 1

2
=

uj + uj+1

2
+

pj − pj+1

2

pj+ 1
2

=
pj + pj+1

2
+

uj − uj+1

2

with ∆xj+ 1
2

=| xj+1 − xj | and Mj+ 1
2

= 2ε
2ε+σ

j+ 1
2

∆x
j+ 1

2

.
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Damped wave equation: Jin-Levermore AP scheme

Jin-Levermore scheme:
� Plug the balance law ∂xp = −σ

ε
u + O(ε2) in the fluxes (Jin-Levermore 96).

� Scheme write on irregular grids.

� We write

p(xj ) = p(xj+ 1
2

)− (xj − xj+ 1
2

)
σ

ε
u(xj+ 1

2
)

� Coupling the previous relation (and the same for xj+1) with the fluxes
uj + pj = uj+ 1

2
+ pj+ 1

2
+
σ
j+ 1

2
∆xj

2ε
uj+ 1

2
,

uj+1 − pj+1 = uj+ 1
2
− pj+ 1

2
+
σ
j+ 1

2
∆xj+1

2ε
uj+ 1

2
.

Jin-Levermore scheme:
pn+1
j − pnj

∆t
+

Mj+ 1
2
un
j+ 1

2

−Mj− 1
2
un
j− 1

2

ε∆xj
un+1
j − unj

∆t
+

pn
j+ 1

2

− pn
j− 1

2

ε∆xj
+
σ

ε2
unj = 0,

,


uj+ 1

2
=

uj + uj+1

2
+

pj − pj+1

2

pj+ 1
2

=
pj + pj+1

2
+

uj − uj+1

2

with ∆xj+ 1
2

=| xj+1 − xj | and Mj+ 1
2

= 2ε
2ε+σ

j+ 1
2

∆x
j+ 1

2

.
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σ
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σ
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pn+1
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Mj+ 1
2
un
j+ 1

2

−Mj− 1
2
un
j− 1

2

ε∆xj
un+1
j − unj

∆t
+

pn
j+ 1

2

− pn
j− 1

2

ε∆xj
+
σ

ε2
unj = 0,

,


uj+ 1

2
=

uj + uj+1

2
+

pj − pj+1

2

pj+ 1
2

=
pj + pj+1

2
+

uj − uj+1

2
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2

=| xj+1 − xj | and Mj+ 1
2
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2ε+σ

j+ 1
2

∆x
j+ 1

2

.
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Gosse-Toscani scheme

� Other scheme: Gosse - Toscani scheme.

� Derivation of the scheme: Localization of the source on the interface and the
Riemann problem associated.

� Other solution: we use the following source term 1
2

(uj+ 1
2

+ uj− 1
2

) with the

Jin-Levermore scheme.

Gosse-Toscani scheme:


pn+1
j −pnj

∆t
+

M
j+ 1

2
u
j+ 1

2
−M

j− 1
2
u
j− 1

2
ε∆xj

un+1
j −unj

∆t
+

M
j+ 1

2
p
j+ 1

2
−M

j− 1
2
p
j− 1

2
ε∆xj

−
M

j+ 1
2
−M

j− 1
2

∆xjε
pnj +

(σ
j+ 1

2
∆x

j+ 1
2

2ε2∆xj
+
σ
j− 1

2
∆x

j− 1
2

2ε2∆xj

)
unj = 0

with

uj+ 1
2

=
unj + unj+1

2
+

pnj − pnj+1

2
, pj+ 1

2
=

pnj + pnj+1

2
+

unj − unj+1

2

and Mj+ 1
2

= 2ε
2ε+σ

j+ 1
2

∆x
j+ 1

2

.
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Analysis

Analysis of the Godunov scheme
� Consistency error:

� First equation:
(

∆x
ε

+ ∆t
)

. Second equation:
(

∆x2

ε
+ ∆t

)
� Time discretization:

� Explicit CFL: ∆t
(

1
∆xε+ε2

)
≤ 1. Semi-implicit CFL: ∆t

(
1

∆xε

)
≤ 1.

Analysis of the Jin-Levermore scheme
� Consistency error:

� First equation: (∆x + ∆t). Second equation:
(

∆x2

ε
+ ∆t

)
� Time discretization:

� Explicit CFL: ∆t
(

1
∆xε+ε2

)
≤ 1. Semi-implicit CFL: ∆t

(
1

∆xε

)
≤ 1.

Analysis of the Gosse-Toscani scheme
� Consistency error:

� First and second equation: (∆x + ∆t) .

� Time discretization:

� Explicit CFL: ∆t
(

1
∆xε

)
≤ 1. Semi-implicit CFL: ∆t

(
1

∆xε+∆x2

)
≤ 1.
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Numerical example
� Validation test for the AP scheme: the data are p(0, x) = G(x) with G(x) a

Gaussian u(0, x) = 0 and σ = 1, ε = 0.001.

Jin-Levermore scheme Godunov scheme

Scheme L2 error CPU time
Godunov, 10000 cells 0.0376 505 sec

Godunov, 500 cells 0.42 5.31 sec
AP-JL, 500 cells 4.3E-3 5.42 sec
AP-JL, 50 cells 0.012 0.46 sec

AP-GT, 500 cells 1.3E-4 2.38 sec
AP-GT, 50 cells 0.012 0.013 sec
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Test for Well-Balanced property

� We propose to study also the Well-Balanced property for the family of steady state:{
u(t, x) = C1

p(t, x) = −σ
ε
C1x + C2

� This steady-state generate also the affine steady state of the limit equation.

� For this, we initialize the different schemes with a steady state and simulate with a
large final time (Tf =20).

� Results for different scheme and meshes.

Scheme/mesh Uniform Mesh Random Mesh
Godunov, 100 cells 0.0 2.83E-3

Godunov, 1000 cells 5.0E-17 2.7E-4
AP-JL, 100 cells 0.0 3.3E-3

AP-JL, 1000 cells 6.3E-17 3.9E-4
AP-GT, 100 cells 3.1E-16 3.1E-16

AP-GT, 1000 cells 3.0E-16 2.8E-15

Conclusion

� Only the Gosse-Toscani scheme is WB for all meshes.
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Test for uniform convergence in 1D
� We solve the damped wave equation for different values of ε.

� p(t, x) = (α(t) + ε2

σ
α
′
(t)) cos(πx), u(t, x) =

(
− ε
σ
α(t) sin(πx)

)
� Convergence uniform: convergence independent of ε.

� Test: ε = hγ on uniform and random meshes.

JL scheme on uniform mesh JL scheme on random mesh

� The GT scheme and the JL scheme (only on uniform mesh) are uniform AP with the
error homogeneous to O(hε+ h2).

� On Random mesh the JL scheme is not an uniform AP scheme.
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Analysis of AP schemes: modified equations

� The modified equation associated with
the Upwind scheme is{

∂tp + 1
ε
∂xu − ∆x

2ε
∂xxp = 0,

∂tu + 1
ε
∂xp − ∆x

2ε
∂xxu = − σ

ε2 u.

� Plugging ε∂xp + O(ε2) = −σu in the
first equation, we obtain

∂tp −
1

σ
∂xxp −

∆x

2ε
∂xxp = 0.

� Conclusion: the regime is captured
only on fine grids.

� The modified equation associated to
the Gosse-Toscani scheme is{

∂tp + M 1
ε
∂xu −M ∆x

2ε
∂xxp = 0,

∂tu + M 1
ε
∂xp −M ∆x

2ε
∂xxu = −M σ

ε2 u.

� Plugging Mε∂xp + O(ε2) = −Mσu in
the first equation, we obtain

∂tp −
M

σ
∂xxp −

1−M

σ
∂xxp = 0.

� Conclusion: the regime is captured on
all grids.

AP schemes
� AP schemes modify the numerical diffusion to correct the scheme on coarse grid.
� The JL scheme does not converge in the intermediary regimes.
� Interpretation: since the linear steady states are not preserved the limit diffusion

scheme in these regimes is not consistent.

Idea
� The exact preservation of linear steady-state is necessary for uniform AP schemes ?
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Uniform convergence in space
� Naive convergence estimate : ||Pεh − Pε||naive ≤ Cε−bhc

� Idea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

||Pεh − Pε||L2 ≤ min(||Pεh − Pε||naive , ||Pεh − P0
h ||+ ||P

0
h − P0||+ ||Pε − P0||)

� Intermediary estimations :

� ||Pε − P0|| ≤ Caεa,
� ||P0

h − P0|| ≤ Cdh
d ,

� ||Pεh − P0
h || ≤ Ceεe ,

� d ≥ c, e ≥ a.

� We using min(x , y + z) ≤ min(x , y) + min(x , z) and d ≥ c, e ≥ a to obtain

||Pεh−P
ε||L2 ≤ C

(
min(ε−bhc , εe) + hd + min(ε−bhc , εa)

)
≤ 2C

(
hd + min(ε−bhc , εa)

)
� Defining ε−b

th hc = εath we obtain min(ε−bhc , εa) ≤ εath = h
ac
a+b .

Space result
We assume that ‖V ε(0)− V ε

h(0)‖L2(Ω) ≤ Ch ‖ p(0) ‖H2 and C1h < ∆xj < C2h ∀j .

‖V ε − V ε
h‖L2([0,T ]×Ω) ≤ C min

(
h

1
2 ε−

1
2 , h + 2ε

)
‖ p0 ‖H3(Ω)≤ Ch

1
3 ‖ p0 ‖H3(Ω)
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Euler equation with external forces
� Euler equation with gravity and friction:

∂tρ+
1

ε
∂x (ρu) = 0,

∂tρu +
1

ε
∂x (ρu2) +

1

ε
∂xp = −

1

ε
(ρ∂xφ+

σ

ε
ρu),

∂tE +
1

ε
∂x (Eu + pu) = −

1

ε
(ρu∂xφ+

σ

ε
ρu2).

� with φ the gravity potential, σ the friction coefficient.

Subset of solutions :
� Hydrostatic Steady-state (α = 1, β = 0):{

u = 0,
∂xp = −ρ∂xφ.

� High friction limit (α = 0, β = 1), no gravity: u = 0

� Diffusion limit (α = 1, β = 1):
∂tρ+ ∂x (ρu) = 0,
∂tE + ∂x (Eu) + p∂xu = 0,

u = −
1

σ

(
∂xφ+

1

ρ
∂xp

)
.
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Design of AP nodal scheme I

Jin Levermore method:
Plug the relation ∂xp + O(ε) = −ρ∂xφ− σ

ε
ρu in the Lagrangian fluxes

� Classical Lagrange+remap scheme (LP scheme):
∂tρj +

ρ
j+ 1

2
u∗
j+ 1

2

−ρ
j− 1

2
u∗
j− 1

2
ε∆xj

= 0

∂t(ρu)j +
(ρu)

j+ 1
2
u∗
j+ 1

2

−(ρu)
j− 1

2
u∗
j− 1

2
ε∆xj

+
p∗
j+ 1

2

−p∗
j− 1

2
ε∆xj

= − 1
ε

(
ρj (∂xφ)j + σ

ε
ρjuj

)
∂tEj +

E
j+ 1

2
u∗
j+ 1

2

−E
j− 1

2
u∗
j− 1

2
ε∆xj

+
p∗
j+ 1

2

u∗
j+ 1

2

−p∗
j− 1

2

u∗
j− 1

2
ε∆xj

= − 1
ε

(
ρjuj (∂xφ)j + σ

ε
ρju

2
j

)
with Lagrangian fluxes p∗

j+ 1
2

+ (ρc)j+ 1
2
u∗
j+ 1

2

= pj + (ρc)j+ 1
2
uj

p∗
j+ 1

2

− (ρc)j+ 1
2
u∗
j+ 1

2

= pj+1 − (ρc)j+ 1
2
uj+1

and the upwind flux

u∗
j+ 1

2

fj+ 1
2

=

 u∗
j+ 1

2

fj

u∗
j+ 1

2

fj+1
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Design of AP nodal scheme I

Jin Levermore method:
Plug the relation ∂xp + O(ε) = −ρ∂xφ− σ

ε
ρu in the Lagrangian fluxes

� New scheme (LP-AP scheme):
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∆x

j+ 1
2

2

(
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Properties

Ap property
� The semi-implicit scheme is AP on general grids with a parabolic CFL condition.

WB property

� The discrete steady state pj+1 − pj = −∆xj+ 1
2

(ρ∂xφ)j+ 1
2

is exactly preserved.

� Question: How the scheme preserved the continuous steady state ?
� First choice:

(ρ∂xφ)j+ 1
2

=
1

2

(
ρj + ρj+1

) φj+1 − φj
∆xj+ 1

2

� Only the continuous steady state with ρ∂xφ = Cts are exactly preserved.

Idea
� To treat general steady-state: construct a new discrete equilibrium which is a very

high order approximation to the continuous one.

the final equilibrium pj+1 − pj = −∆xj+ 1
2

(ρ∂xφ)HO
j+ 1

2

(ρ∂xφ)HO
j+ 1

2

= ∆xj+ 1
2

 1

∆xj+ 1
2

∫ xj+1

xj

(
∂xpj+ 1

2
+ ρj+ 1

2
∂xφj+ 1

2

)
−

pj+1 − pj

∆xj+ 1
2
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Properties

Ap property
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WB property

� The discrete steady state pj+1 − pj = −∆xj+ 1
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(ρ∂xφ)j+ 1
2

is exactly preserved.

� Question: How the scheme preserved the continuous steady state ?
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(ρ∂xφ)j+ 1
2

=

(
ρj+1 − ρj

ln(ρj+1)− ln(ρj )

)
φj+1 − φj

∆xj+ 1
2

� Only the continuous steady state with ρ = p = e−xg , φ = gx are exactly preserved.
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with pj+ 1

2
(same for ρ and φ) average polynomial interpolation.
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Results
� Comparison between AP and Non AP scheme for Euler equation.

� Left: non AP, Right: AP. Red: fine solution, black: coarse solution and green: middle
coarse solution.
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Results
� Well-Balanced property.

� Test case: ρ(t, x) = 3 + 2 sin(2πx) and φ(x) = − sin(2πx). Random mesh

Schemes LR LR-AP (2) LR-AP (3) LR-AP (4)

cells Err q Err q Err q Err q

20 0.8335 - 0.0102 - 0.0079 - 0.0067 -
40 0.4010 1.05 0.0027 1.91 8.4E-4 3.23 1.5E-4 5.48
80 0.2065 0.96 7.0E-4 1.95 7.7E-5 3.45 4.1E-6 5.19
160 0.1014 1.02 1.7E-4 2.04 7.0E-6 3.46 1.0E-7 5.36

� Test case: ρ(t, x) = e−gx , u(t, x) = 0, p(t, x) = e−gx et φ = gx . Random mesh

Schemes LR LR-AP (2) LR-AP (3) LR-AP (4)

cells Err q Err q Err q Err q

20 0.0280 - 6.5E-4 - 1.8E-5 - 8.0E-7 -
40 0.0152 0.88 1.4E-4 2.21 2.0E-6 3.17 3.8E-8 4.4
80 0.0072 1.08 3.3E-5 2.08 2.0E-7 3.32 2.0E-9 4.25
160 0.0038 0.92 8.8E-6 1.90 2.8E-8 2.84 1.1E-10 4.18

WB scheme
Not exact preservation of general steady-state, but arbitrary high order accuracy around
the steady-state
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Implicit relaxation method for low Mach Euler equations
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Low Mach and implicit scheme

Aim: Low Mach Euler equation
∂tρ+∇ · (ρu) = 0,

∂tρu +∇ · (ρu⊗ u) +
1

M
∇p = 0,

∂tE +∇ · ((E + p)u) = 0,

� CFL condition ∆t ≤ hM.
� Aim: choose a time step adapted to u. Filter the fast waves.
� Solution: implicit scheme.

Implicit scheme
� Direct solver: too expensive in CPU time and memory consumption.

� Iterative solver: used in practice. But ofter ill-conditioning for hyperbolic models.
� Euler equation: ill-conditioned mainly in the low-Mach regime.

Idea
� Using relaxation model and AP schemes to obtain implicit scheme without matrices.
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Relaxation scheme
� We consider the relaxation model (Jin-Xin 95) for a scalar system ∂tu + ∂xF (u) = 0:{

∂tu + ∂xv = 0

∂tv + α2∂xu =
1

ε
(F (u)− v)

Limit

� The limit scheme of the relaxation system is

∂tu + ∂xF (u) = ε∂x ((λ2− | ∂F (u) |2)∂xu) + O(ε2)

� Stability: the limit system is dissipative if (λ2− | ∂F (u) |2) > 0.

� We diagonalize the hyperbolic matrix

(
0 1
λ2 0

)
to obtain

∂t f− − λ∂x f− =
1

ε
(f −eq − f−)

∂t f+ + λ∂x f+ =
1

ε
(f +
eq − f+)

� with u = f− + f+ and f ±eq = u
2
± F (u)

2λ
.

Remark
� Main property: the transport is diagonal (D1Q2 model) which can be easily solved.
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Generic kinetic relaxation scheme

Kinetic relaxation system
� Considered model:

∂tU + ∂xF (U) = 0
� Lattice: W = {λ1, ....,λnv } a set of velocities.

� Mapping matrix: P a matrix nc × nv (nc < nv ) such that U = Pf , with U ∈ Rnc .

� Kinetic relaxation system:

∂t f + Λ∂x f =
1

ε
(f eq(U)− f )

� We define the macroscopic variable by Pf = U.

� Consistence conditon (R. Natalini, D. Aregba-Driollet, F. Bouchut) :

C
{

Pf eq(U) =U
PΛf eq(U)=F (U)

� In 1D : same property of stability that the classical relaxation method.
� Limit of the system:

∂tU + ∂xF (U) = ε∂x
((
PΛ2∂f eq− | ∂F (U) |2

)
∂xU

)
+ O(ε2)

First Generalization
� Generalization [D1Q2]n: one Xin-Jin or D1Q2 model by macroscopic variable.
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Time scheme

Time scheme
� Property: the nonlinearity is local and non-locality is linear.

� Main idea: time splitting scheme between transport and source.

Consistency in time
� We define the two operators for each step :

T∆t : e∆tΛ∂x f n+1 = f n

R∆t : f n+1 + θ
∆t

ε
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε
(f eq(U)− f n)

� Final scheme: Ψ(∆t) = T∆t ◦ R∆t is consistent with

∂tU + ∂xF (U) =

(
(2− ω)∆t

2ω

)
∂x (D(U)∂xU) + O(∆t2)

� with ω = ∆t
ε+θ∆t

and D(U) =
(
PΛ2∂U f eq − A(U)2

)
.

Drawback
� For [D1Q2]2 scheme we have a large error: D(U) =

(
λ2Id − A(U)2

)
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High-order extension

High order scheme
� Second order splitting

Ψ(∆t) = T

(
1

2
∆t

)
◦ R (∆t) ◦ T

(
1

2
∆t

)
� Higher order scheme using composition:

Mp(∆t) = Ψ(γ1∆t) ◦Ψ(γ2∆t)..... ◦Ψ(γs∆t)

� with γi ∈ [−1, 1], we obtain a p-order schemes.
� Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.
� High-order convergence only for macroscopic variables.

Space solver
� Exact transport: the choice of the velocities link time and space discretization.

� Semi- Lagrangian: Interpolation 2q + 1 gives a consistency error O( h2d+2

∆t
).

� implicit DG: DG (k polynomial and Gauss-Lobatto) point gives a consistency error
O(hk ) + O(∆t2).
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Burgers: convergence results
� Model: Burgers equation

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Spatial discretization: SL-scheme, 2000 cells, degree 11.

� Test: ρ(t = 0, x) = sin(2πx). Tf = 0.14 (before the shock) and no viscosity.
� Scheme: splitting schemes and Suzuki composition + splitting.

SPL 1, θ = 1 SPL 1, θ = 0.5 SPL 2, θ = 0.5 Suzuki
∆t Error order Error order Error order Error order
0.005 2.6E−2 - 1.3E−3 - 7.6E−4 - 4.0E−4 -
0.0025 1.4E−2 0.91 3.4E−4 1.90 1.9E−4 2.0 3.3E−5 3.61
0.00125 7.1E−3 0.93 8.7E−5 1.96 4.7E−5 2.0 2.4E−6 3.77
0.000625 3.7E−3 0.95 2.2E−5 1.99 1.2E−5 2.0 1.6E−7 3.89

� Scheme: second order
splitting scheme.

� Same test after the shock:

� Comparison for different time step. Violet:
∆t = 0.001 (CFL 5-30), Green: ∆t = 0.005 (CFL
20-120), Blue ∆t = 0.01 (CFL 50-300), Black :
reference.
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

3D case in cylinder

Figure: Plot of the mass fraction of gas
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Numerical results: 2D-3D fluid models
� Model : liquid-gas Euler model with gravity.

� Kinetic model : (D2− Q4)n. Symmetric Lattice.

� Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

� Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

2D cut of the 3D case

Figure: Plot of the mass fraction of gas
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Classical kinetic representation

Limitation
� High-order extension allows to correct the main default of relaxation: large error.

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: Sod problem.

� Second order time scheme + SL scheme:

� Left: density ∆t = 1.0−4. Right: density ∆t = 4.0−4

� Conclusion: shock and high order time scheme needs limiting methods.
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Classical kinetic representation

Limitation
� High-order extension allows to correct the main default of relaxation: large error.

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: smooth contact (u =cts, p=cts).
� First/Second order time scheme + SL scheme. Tf = 2

M
and 100 time step.

� Order 1 Left: M = 0.1. Right: M = 0.01
� Conclusion: First order method too much dissipative for low Mach flow (dissipation

with acoustic coefficient).
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Classical kinetic representation

Limitation
� High-order extension allows to correct the main default of relaxation: large error.

� In two situations the High-order extension is not sufficient:

� For discontinuous solutions like shocks.
� For strongly multi-scale problem like low-Mach problem.

� Euler equation: smooth contact (u =cts, p=cts).
� First/Second order time scheme + SL scheme. Tf = 2

M
and 100 time step.

� Order 1 Left: M = 0.1. Right: M = 0.01
� Conclusion: Second order method too much dispersive for low Mach flow (dispersion

with acoustic coefficient).
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Generic vectorial D1Q3

Idea
� Add a central velocity (equal or close to zero) to capture the slow dynamics.

� Consistency condition:{
f k− + f k0 + f k+ =Uk , ∀k ∈ {1..Nc}
λ−f k− + λ0f k0 + λ+f k+ =F k (U), ∀k ∈ {1..Nc}{

f k− + f k0 + f k+ =Uk , quad∀k ∈ {1..Nc}
(λ− − λ0)f k− + (λ+ − λ0)f k+ =F k (U)− λ0f k0 , ∀k ∈ {1..Nc}

� We assume a decomposition of the flux (Bouchut 03, Natalini -Aregba 00)

F k (U) = F k,−
0 (U) + F k,+

0 (U) + λ0Id

� We obtain the following equation for the equilibrium{
f k− + f k0 + f k+ =Uk , ∀k ∈ {1..Nc}
(λ− − λ0)f k− + (λ+ − λ0)f k+ =F k,−

0 (U) + F k,+
0 (U), ∀k ∈ {1..Nc}

� By analogy of the kinetic theory and kinetic flux splitting scheme we propose the
following decomposition

∑
v>0 vf

k = F k,+
0 (U) and

∑
v<0 vf

k = F k,−
0 (U) .
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Generic vectorial D1Q3

Idea
� Add a central velocity (equal or close to zero) to capture the slow dynamics.

� The lattice [D1Q3]N is defined by the velocity set V = [λ−,λ0,λ+] and



f eq
− (U) = −

1

(λ0 − λ−)
F−0 (U)

f eq
0 (U) =

(
U −

(
F+

0 (U)

(λ+ − λ0)
−

F−0 (U)

(λ0 − λ−)

))
f eq

+ (U) =
1

(λ+ − λ0)
F+

0 (U)

Stability
� Condition only on the macroscopic flux splitting.

� Condition for entropy stability:

� F+
0 and F−0 is an entropy decomposition of the flux

� ∂F+
0 , −∂F−0 and 1− ∂F+

0 −∂F−0
λ

are positive.
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D1Q3 for scalar case
� First choice: D1Q3 Rusanov (λ0 = 0)

F−0 (ρ) = −λ−
(F (ρ)− λ+ρ)

λ+ − λ−
, F+

0 (ρ) = λ+
(F (ρ)− λ−ρ)

λ+ − λ−

� Consistency (for λ− = −λ+): ∂tρ+∂xF (ρ) = σ∆t∂x
(
λ2− | ∂F (ρ) |2

)
∂xρ+ O(∆t2)

� Second choice: D1Q3 Upwind

F−0 (ρ) = χ{∂F (ρ)<λ0} (F (ρ)− λ0ρ) F+
0 (ρ) = χ{∂F (ρ)>λ0} (F (ρ)− λ0ρ)

� with χ the indicatrice function.
� Consistency: ∂tρ+ ∂xF (ρ) = σ∆t∂x

(
λ | ∂F (ρ) | − | ∂F (ρ) |2

)
∂xρ+ O(∆t2)

� Third choice: D1Q3 Lax-Wendroff (λ0 = 0)

F−0 (ρ) =
1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
F+

0 (ρ) =
1

2

(
F (ρ) +

α

λ

∫ ρ

(∂F (u))2

)
� with λ0 = 0 and λ− = −λ+ and α ≥ 1.
� Consistency: ∂tρ+ ∂xF (ρ) = σ∆t∂x

(
(α− 1) | ∂F (ρ) |2

)
∂xρ+ O(∆t2).

� The last one is not entropy stable and L2 stability in some case.

E. Franck 34/39

34/39



D1Q3 for Euler equation II
� Low Mach case: 

∂tρ+ ∂x (ρu) = 0

∂tρu + ∂x
(
ρu2 +

p

M

)
= 0

∂tE + ∂x (Eu + pu) = 0

� We want to preserve as possible the limit:

p = cts, u = cts, ∂tρ+ u∂xρ = 0

� Idea: Splitting of the flux (E. Toro 12):

F (U) =

 (ρ)u
(ρu)u + p
(E)u + pu


� Idea: Lax-Wendroff Flux splitting for convection and AUSM-type (M. Liou 93) for the

pressure term.
� Use only u, p and λ (≈ c) to reconstruct pressure. Important to preserve the low

mach limit.
� We obtain

F±(U) =
1

2

 (ρu ± u2

λ
ρ) + p

(ρu2 ± u2

λ
q) + p(1± γ u

λ
)

(Eu ± u2

λ
E) +

(
pu ± 1

λ
γ(u2 + λ2)p

)


� Preserve contact. Diffusion error for ρ in O(u2).
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Burgers
� Model: Viscous Burgers equations

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Test case 1: ρ(t = 0, x) = sin(2πx). 10000 cells. Order 17. First order time scheme.

Rusanov Upwind Lax Wendroff α = 1
Error Order Error Order Error Order

∆t = 0.01 3.9E−2 - 1.1E−2 - 2.3E−3 -
∆t = 0.005 2.1E−2 0.89 6.4E−3 0.78 6.0E−4 1.94

∆t = 0.0025 1.1E−2 0.93 3.5E−3 0.87 1.5E−4 2.00
∆t = 0.00125 5.4E−3 1.03 1.8E−3 0.96 3.9E−5 1.95

� Shock wave. First order scheme in time.

� Left ∆t = 0.002. Right ∆t = 0.01. Reference (black), Rusanov (yellow), Upwind
(violet), Lax-Wendroff (green), Lax-Wendroff α = 1.5 (blue).
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� Model: Viscous Burgers equations

∂tρ+ ∂x

(
ρ2

2

)
= 0

� Test case 1: ρ(t = 0, x) = sin(2πx). 10000 cells. Order 17. First order time scheme.

Rusanov Upwind Lax Wendroff α = 1
Error Order Error Order Error Order

∆t = 0.01 3.9E−2 - 1.1E−2 - 2.3E−3 -
∆t = 0.005 2.1E−2 0.89 6.4E−3 0.78 6.0E−4 1.94

∆t = 0.0025 1.1E−2 0.93 3.5E−3 0.87 1.5E−4 2.00
∆t = 0.00125 5.4E−3 1.03 1.8E−3 0.96 3.9E−5 1.95

� Rarefaction wave. First order scheme in time.

� Left ∆t = 0.002. Right ∆t = 0.01. Reference (black), Rusanov (violet), Upwind
(green), Lax-Wendroff α = 1 (blue), Lax-Wendroff α = 2 (Yellow).
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1D Euler equations II
� Test case: Smooth contact. We take p = 1 and u is also constant.
� Final aim: take ∆t = O( 1

u
) when u decrease to have the same error.

� We choose ∆t = 0.02 and Tf = 2. 4000 cells. First order time scheme. We compare
different D1Q3 schemes.

Schemes Rusanov VL Osher Low Mach

u = 10−2
ρ(t, x) 0.26 1.0E−1 8.4E−2 1.0E−3

u(t, x) 0 3.4E−3 6.0E−7 0
p(t, x) 0 5.0E−4 4.3E−8 0

u = 10−4
ρ(t, x) 0.26 1.0E−1 8.4E−2 1.0E−5

u(t, x) 0 3.4E−3 6.0E−7 0
p(t, x) 0 5.0E−4 4.3E−8 0

u = 0
ρ(t, x) 0.26 1.0E−1 4.8E−2 0.0
u(t, x) 0 3.4E−3 6.0E−7 0
p(t, x) 0 5.0E−4 4.3E−8 0

� Drawback: When the time step is too large we have dispersive effect.
� Possible explanation: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O(∆tu2) + O(∆t2uλq)

]
.

� with λ closed to the sound speed.
� Problem: At the second order we recover partially the problem since λ is closed to the

sound speed.
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1D Euler equations III
� Possible solution: decrease λ for the density equation.
� We propose two-scale kinetic model.

� We consider the following [D1Q5]3 based on the following velocities:

V = [−λf ,−λs , 0,λs ,λf ]︸ ︷︷ ︸
slow scale

� The convective part at the slow scale. The acoustic part at the fast scale.

� Smooth contact: We take 200 time step and ∆t = 0.001
u

:

Error u = 10−1 u = 10−2 u = 10−3 u = 10−4

α = 1 2.5E−3 2.5E−3 2.5E−3 2.5E−3
λs 2 0.2 0.02 0.002
λf 2 20 200 2000

Conclusion
� Conclusion: the error would be homogeneous to

| ρn(x)− ρ(t, x) |≈
[
O(∆tu2) + O(∆t2uλqs )

]
.

� with λs which can be take small.
� Drawback: For the stability it seems necessary to have

λsλf ≥ C max
x

(u + c)
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Conclusion

Ap schemes for diffusion limit
� AP scheme: plug the term source effect in the fluxes.
� Uniform AP: scheme: previous construction not sufficient. WB also ?

� Other Works:

� 2D extension on unstructured meshes for damped wave equations [BDF12],
[FHNG11], [BDFL16].

� Extension on 2D unstructured meshes for Friedrich’s systems [BDF14].
� Extension on 2D unstructured meshes for nonlinear radiative problem [BDF11],

[BDF12] and Euler equations [F14], [FM16].

Kinetic relaxation schemes
� Implicit schemes: without matrices based on kinetic relaxation schemes.
� High order time extension [CFHMN17], [CFHMN18] and parallel algorithm

[Cemracs18].

� Future Works:

� D1Q3 schemes for hyperbolic problem in 1D (in redaction). Extension in 2D/3D
application to low-Mach Euler equation.

� Implicit Kinetic schemes for anisotropic diffusion (in redaction).
� Boundary conditions (Post doc of F. Drui).
� Incompressibility, divergence constrains.
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