Implicit kinetic relaxation schemes Application to the fluid and plasma physics

> D. Coulette ${ }^{3}$, C. Courtes ${ }^{2}$, F. Drui ${ }^{2}$, E. Franck ${ }^{12}$, P. Helluy ${ }^{12}$, M. Mendoza ${ }^{2}$, L. Navoret ${ }^{2}$, M. Mehrenberger ${ }^{4}$

NumKin2018, Garching bei Munchen, Germany
${ }^{1}$ Inria Nancy Grand Est, France
${ }^{2}$ IRMA, Strasbourg university, France
${ }^{3}$ ENS Lyon, France
${ }^{4}$ Marseille university, France

Outline

Physical and mathematical context

Approximate BGK method

Time schemes

Numerical results

Parabolic systems

Invía
E. Franck
$2 / 27$

Physical and mathematical context

Models

Model for the center: Gyro-kinetic model

$$
\left\{\begin{array}{l}
\partial_{t}\left(B_{\|} f\right)+\nabla \cdot\left(\frac{d \mathbf{x}_{g}}{d t} f\right)+\partial_{v_{\|}}\left(B_{\|} \frac{d v_{\|}}{d t} f\right)=0 \\
-\nabla \cdot \perp\left(\rho_{e}(\mathbf{x}) \nabla_{\perp} \phi\right)=\rho(\mathbf{x})-1+S(\phi)
\end{array}\right.
$$

- The guiding center motion $\frac{d \mathbf{x}_{g}}{d t}$ and $\frac{d v_{\|}}{d t}$ depend of $\boldsymbol{B}_{\|}$and $\nabla \phi$ and ρ is the density of the gyro-distribution f.
- Other models: Vlasov-Maxwell or Vlasov-Poisson.
- Kinetic models coupled with elliptic model.

Model for the edge: Resistive MHD

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0, \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}+\nu \nabla \cdot \Pi \\
\partial_{t} \boldsymbol{p}+\nabla \cdot(p \boldsymbol{u})+(\gamma-1) p \nabla \cdot \boldsymbol{u}=\nabla \cdot\left(\left(\kappa \boldsymbol{B} \otimes \boldsymbol{B}+\varepsilon I_{d}\right) \nabla T\right)+\eta|\nabla \times \boldsymbol{B}|^{2}+\nu \Pi: \nabla \boldsymbol{u} \\
\partial_{t} \boldsymbol{B}-\nabla \times(\boldsymbol{u} \times \boldsymbol{B})=\eta \nabla \times(\nabla \times \boldsymbol{B}) \\
\nabla \cdot \boldsymbol{B}=0
\end{array}\right.
$$

- Scaling: $\nu, \eta \ll 1$ and $\kappa|\boldsymbol{B}|^{2} \gg 1 \gg \varepsilon$.
- Other models: Reduced incompressible MHD model or Extended MHD.
- Hyperbolic model coupled with parabolic model.

Geometries and times schemes

Geometry

- 3D geometry: Torus with a non circular section.
- Poloidal geometry: aligned with the magnetic surfaces of the equilibrium.
- Non structured grids and singularities.

Time schemes for kinetic model

- Vlasov: large kinetic velocities.
- Gyrokinetic: large poloïdal velocities due to the electric field variation.
- Characteristic time larger that time associated to fast velocities. We need CFL-free schemes.
- Turbulence: We need high-order scheme and fine grids.

Time schemes for MHD model

- Anisotropic diffusion: We need CFL-free schemes.
- Perp magneto-acoustic waves: larger than characteristic velocity. We need CFL-free schemes.
■ Usual schemes: Implicit high-order schemes. Very hard to invert the nonlinear problem.

Kinetic model and SL schemes

Semi Lagrangian scheme

- One of the main scheme to treat transport and kinetic equations.
- Idea: use the characteristic method.
- Example: Backward SL

$$
\partial_{t} f+a \partial_{x} f=0
$$

\square Aim: compute at the mesh point x_{j} :

$$
f\left(t+\Delta t, x_{j}\right)
$$

\square Solution:

$$
f\left(t+\Delta t, x_{j}\right)=f\left(t, x_{j}-a \Delta t\right)
$$

$\square x_{n}=x_{j}-a \Delta t$ is not a mesh point.

\square Using $f\left(t, x_{i}\right)$ we interpolate the function at x_{n}.

- BSL/FSL: follow the backward characteristic and interpolate/follow the forward characteristic and distribute on the mesh.

Advantages/drawbacks

- Advantages: infinite/high order in time/space. CFL-less and no matrix inversion.
- Drawbacks: BC and Gibbs oscillations due to high-order methods.
- Interesting works: Positive SL (B. Després), Artificial diffusion for SL, limiting.

Aim

Aim:

Construct High-Order Solver like SL-Solver (no matrix inversion, no CFL) for the different type of PDE.

Approximate BGK method

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

with the moment:

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:

$$
\rho(\mathbf{x})=\int M(\boldsymbol{v}) d \boldsymbol{v}, \quad \rho u(\mathbf{x})=M(\boldsymbol{v}) \boldsymbol{v} d \boldsymbol{v}
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

- Limit: $K_{n} \longrightarrow 0$

■ Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\partial_{t} f_{0}+\boldsymbol{v} \cdot \nabla f_{0}=\left(M_{1}(\boldsymbol{v})-f_{1}\right)
$$

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

with the moment:

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:

$$
\rho(\mathbf{x})=\int M(v) d v, \quad \rho u(x)=M(v) v d v
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

- Limit: $K_{n} \longrightarrow 0$
- Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\partial_{t} M_{0}+\boldsymbol{v} \cdot \nabla M_{0}=\left(M_{1}(\boldsymbol{v})-f_{1}\right)
$$

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

with the moment:

$$
\rho(\mathbf{x})=\int M(v) d v, \quad \rho u(x)=M(v) v d v
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

■ Limit: $K_{n} \longrightarrow 0$

- Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\int\left(\partial_{t} M_{0}+\boldsymbol{v} \cdot \nabla M_{0}=\left(M_{1}(\boldsymbol{v})-f_{1}\right)\right)
$$

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:
with the moment:

$$
\rho(\mathbf{x})=\int M(v) d \boldsymbol{v}, \quad \rho \boldsymbol{u}(\mathbf{x})=M(\boldsymbol{v}) \boldsymbol{v} d \boldsymbol{v}
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

- Limit: $K_{n} \longrightarrow 0$
- Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\left(\partial_{t} \rho_{0}+\nabla \cdot\left(\rho_{0} \boldsymbol{u}_{0}\right)=\int\left(M_{1}(\boldsymbol{v})-f_{1}\right)=0\right)
$$

- Same principle for the 2 other moments conserved by BGK. Euler equation.

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:
with the moment:

$$
\rho(\mathbf{x})=\int M(v) d \boldsymbol{v}, \quad \rho \boldsymbol{u}(\mathbf{x})=M(\boldsymbol{v}) \boldsymbol{v} d \boldsymbol{v}
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

- Limit: $K_{n} \longrightarrow 0$
- Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\left(\partial_{t} \rho_{0}+\nabla \cdot\left(\rho_{0} \boldsymbol{u}_{0}\right)=\int\left(M_{1}(\boldsymbol{v})-f_{1}\right)=0\right)
$$

- Same principle for the 2 other moments conserved by BGK. Euler equation.

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

with the moment:

$$
\rho(\mathbf{x})=\int M(\boldsymbol{v}) d \boldsymbol{v}, \quad \rho \mathbf{u}(\mathbf{x})=M(\boldsymbol{v}) \boldsymbol{v} d \boldsymbol{v}
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

- Limit: $K_{n} \longrightarrow 0$
- Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\left(\partial_{t} \rho_{0}+\nabla \cdot\left(\rho_{0} \boldsymbol{u}_{0}\right)=\int\left(M_{1}(\boldsymbol{v})-f_{1}\right)=0\right)
$$

- Same principle for the 2 other moments conserved by BGK. Euler equation.
- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:

$$
\partial_{t} \boldsymbol{f}+\Lambda \partial_{x} \boldsymbol{f}=\frac{1}{\varepsilon}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-\boldsymbol{f}\right)
$$

with the a moment matrix P such that $\boldsymbol{U}=P \boldsymbol{f}$ macroscopic variables and Λ advection matrix.

- The equilibrium $\boldsymbol{f}^{e q}(\boldsymbol{U})$ depend only of \boldsymbol{U}.
- Limit: $\varepsilon \longrightarrow 0$
- Hilbert expansion: $\boldsymbol{f}=\boldsymbol{f}_{0}+\varepsilon \boldsymbol{f}_{1}+O\left(\varepsilon^{2}\right)$

$$
\boldsymbol{f}_{0}=\boldsymbol{f}_{0}^{e q}=\boldsymbol{f}^{e q}\left(\boldsymbol{U}_{0}\right)
$$

So $\quad \partial_{t} \boldsymbol{f}_{0}+\Lambda \partial_{x} \boldsymbol{f}_{0}=\left(\boldsymbol{f}_{1}^{\text {eq }}-\boldsymbol{f}_{1}\right)$

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

with the moment:

$$
\rho(\mathbf{x})=\int M(\boldsymbol{v}) d \boldsymbol{v}, \quad \rho \boldsymbol{u}(\mathbf{x})=M(\boldsymbol{v}) \boldsymbol{v} d \boldsymbol{v}
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

- Limit: $K_{n} \longrightarrow 0$
- Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\left(\partial_{t} \rho_{0}+\nabla \cdot\left(\rho_{0} \boldsymbol{u}_{0}\right)=\int\left(M_{1}(\boldsymbol{v})-f_{1}\right)=0\right)
$$

- Same principle for the 2 other moments conserved by BGK. Euler equation.
- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:

$$
\partial_{t} \boldsymbol{f}+\Lambda \partial_{x} \boldsymbol{f}=\frac{1}{\varepsilon}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-\boldsymbol{f}\right)
$$

with the a moment matrix P such that $U=P f$ macroscopic variables and Λ advection matrix.
■ The equilibrium $\boldsymbol{f}^{\text {eq }}(\boldsymbol{U})$ depend only of \boldsymbol{U}.

- Limit: $\varepsilon \longrightarrow 0$
- Hilbert expansion: $\boldsymbol{f}=\boldsymbol{f}_{0}+\varepsilon \boldsymbol{f}_{1}+O\left(\varepsilon^{2}\right)$

$$
\boldsymbol{f}_{0}=\boldsymbol{f}_{0}^{e q}=\boldsymbol{f}^{e q}\left(\boldsymbol{U}_{0}\right)
$$

So

$$
\partial_{t} \boldsymbol{f}^{e q}\left(\boldsymbol{U}_{0}\right)+\Lambda \partial_{x} \boldsymbol{f}^{e q}\left(\boldsymbol{U}_{0}\right)=\left(\boldsymbol{f}_{1}^{e q}-\boldsymbol{f}_{1}\right)
$$

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

with the moment:

$$
\rho(\mathbf{x})=\int M(\boldsymbol{v}) d \boldsymbol{v}, \quad \rho \boldsymbol{u}(\mathbf{x})=M(\boldsymbol{v}) \boldsymbol{v} d \boldsymbol{v}
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

- Limit: $K_{n} \longrightarrow 0$
- Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\left(\partial_{t} \rho_{0}+\nabla \cdot\left(\rho_{0} \boldsymbol{u}_{0}\right)=\int\left(M_{1}(\boldsymbol{v})-f_{1}\right)=0\right)
$$

- Same principle for the 2 other moments conserved by BGK. Euler equation.
- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:

$$
\partial_{t} \boldsymbol{f}+\Lambda \partial_{x} \boldsymbol{f}=\frac{1}{\varepsilon}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-\boldsymbol{f}\right)
$$

with the a moment matrix P such that $U=P f$ macroscopic variables and Λ advection matrix.
■ The equilibrium $\boldsymbol{f}^{\text {eq }}(\boldsymbol{U})$ depend only of \boldsymbol{U}.
■ Limit: $\varepsilon \longrightarrow 0$

- Hilbert expansion: $\boldsymbol{f}=\boldsymbol{f}_{0}+\varepsilon \boldsymbol{f}_{1}+O\left(\varepsilon^{2}\right)$

$$
\boldsymbol{f}_{0}=\boldsymbol{f}_{0}^{e q}=\boldsymbol{f}^{e q}\left(\boldsymbol{U}_{0}\right)
$$

So

$$
P\left(\partial_{t} \boldsymbol{f}_{0}^{e q}+\Lambda \partial_{x} \boldsymbol{f}_{0}^{e q}=\left(\boldsymbol{f}_{1}^{e q}-\boldsymbol{f}_{1}\right)\right)
$$

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

with the moment:

$$
\rho(\mathbf{x})=\int M(\boldsymbol{v}) d \boldsymbol{v}, \quad \rho \mathbf{u}(\mathbf{x})=M(\boldsymbol{v}) \boldsymbol{v} d \boldsymbol{v}
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

- Limit: $K_{n} \longrightarrow 0$
- Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\left(\partial_{t} \rho_{0}+\nabla \cdot\left(\rho_{0} \boldsymbol{u}_{0}\right)=\int\left(M_{1}(\boldsymbol{v})-f_{1}\right)=0\right)
$$

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:

$$
\partial_{t} \boldsymbol{f}+\Lambda \partial_{x} \boldsymbol{f}=\frac{1}{\varepsilon}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-\boldsymbol{f}\right)
$$

with the a moment matrix P such that $U=P f$ macroscopic variables and Λ advection matrix.
■ The equilibrium $\boldsymbol{f}^{\text {eq }}(\boldsymbol{U})$ depend only of \boldsymbol{U}.

- Limit: $\varepsilon \longrightarrow 0$
- Hilbert expansion: $\boldsymbol{f}=\boldsymbol{f}_{0}+\varepsilon \boldsymbol{f}_{1}+O\left(\varepsilon^{2}\right)$

$$
\boldsymbol{f}_{0}=\boldsymbol{f}_{0}^{e q}=\boldsymbol{f}^{e q}\left(\boldsymbol{U}_{0}\right)
$$

So

$$
\left.\partial_{t}\left(P \boldsymbol{f}_{0}^{e q}\right)\right)+\partial_{x}\left(P \wedge \boldsymbol{f}_{0}^{e q}\right)=P\left(\boldsymbol{f}_{1}^{e q}-\boldsymbol{f}_{1}\right)
$$

- Same principle for the 2 other moments conserved by BGK. Euler equation.

BGK and approximate BGK theory

- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in \mathbb{R}^{d}$.
- BGK equation:

$$
\partial_{t} f+\boldsymbol{v} \cdot \nabla f=\frac{1}{K_{n}}\left(M_{\rho, \mathbf{u}, T}(\boldsymbol{v})-f\right)
$$

with the moment:

$$
\rho(\mathbf{x})=\int M(\boldsymbol{v}) d \boldsymbol{v}, \quad \rho u(\mathbf{x})=M(\boldsymbol{v}) \boldsymbol{v} d \boldsymbol{v}
$$

and the T link to the third moment of $M(v)$.

- The equilibrium Maxwellian is:

$$
M(\boldsymbol{v})=\frac{\rho(\mathbf{x})}{(2 \pi k T(\mathbf{x}))^{\frac{d}{2}}} e^{-\frac{-|\boldsymbol{u}-\boldsymbol{v}|^{2}}{2 T}}
$$

- Limit: $K_{n} \longrightarrow 0$
- Hilbert expansion: $f=f_{0}+K_{n} f_{1}+O\left(K_{n}^{2}\right)$

$$
f_{0}=M_{0}(\boldsymbol{v})
$$

So

$$
\left(\partial_{t} \rho_{0}+\nabla \cdot\left(\rho_{0} \boldsymbol{u}_{0}\right)=\int\left(M_{1}(\boldsymbol{v})-f_{1}\right)=0\right)
$$

- Same principle for the 2 other moments conserved by BGK. Euler equation.
- Distribution $f(t, \mathbf{x}, \boldsymbol{v})$ with $\boldsymbol{v} \in\left\{\boldsymbol{v}_{1} . . \boldsymbol{v}_{m}\right\}$.
- Vector Distribution $\boldsymbol{f}(t, \mathbf{x})$ of size m.
- Discrete BGK equation:

$$
\partial_{t} \boldsymbol{f}+\Lambda \partial_{x} \boldsymbol{f}=\frac{1}{\varepsilon}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-\boldsymbol{f}\right)
$$

with the a moment matrix P such that $\boldsymbol{U}=P \boldsymbol{f}$ macroscopic variables and Λ advection matrix.
■ The equilibrium $\boldsymbol{f}^{\text {eq }}(\boldsymbol{U})$ depend only of \boldsymbol{U}.

- Limit: $\varepsilon \longrightarrow 0$
- Hilbert expansion: $\boldsymbol{f}=\boldsymbol{f}_{0}+\varepsilon \boldsymbol{f}_{1}+O\left(\varepsilon^{2}\right)$

$$
\boldsymbol{f}_{0}=\boldsymbol{f}_{0}^{e q}=\boldsymbol{f}^{e q}\left(\boldsymbol{U}_{0}\right)
$$

So

$$
\left.\partial_{t}\left(P \boldsymbol{f}_{0}^{e q}\right)\right)+\partial_{x}\left(P \wedge \boldsymbol{f}_{0}^{e q}\right)=P\left(\boldsymbol{f}_{1}^{e q}-\boldsymbol{f}_{1}\right)
$$

- Taking $P \boldsymbol{f}^{e q}=\boldsymbol{U}$ and $P \wedge \boldsymbol{f}^{e q}=\boldsymbol{F}(\boldsymbol{U})$. We obtain the limit

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=0
$$

Generic kinetic relaxation scheme

Kinetic relaxation system

- Considered model:

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=0
$$

- Lattice: $W=\left\{\lambda_{1}, \ldots, \lambda_{n_{v}}\right\}$ a set of velocities.
- Mapping matrix: P a matrix $n_{c} \times n_{v}\left(n_{c}<n_{v}\right)$ such that $\boldsymbol{U}=P \boldsymbol{f}$, with $\boldsymbol{U} \in \mathbb{R}^{n_{c}}$.
- Kinetic relaxation system:

$$
\partial_{t} \boldsymbol{f}+\Lambda \partial_{x} \boldsymbol{f}=\frac{1}{\varepsilon}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-\boldsymbol{f}\right)
$$

- Consistence condition (Natalini - Aregba [96-98-20], Bouchut [99-03]) :

$$
\mathcal{C}\left\{\begin{array}{l}
P \boldsymbol{f}^{e q}(\boldsymbol{U})=\boldsymbol{U} \\
P \wedge \boldsymbol{f}^{\boldsymbol{e} q}(\boldsymbol{U})=\boldsymbol{F}(\boldsymbol{U})
\end{array}\right.
$$

Chapman-Enskog stability

- Limit of the system:

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\varepsilon \partial_{x}\left(\left(P \wedge^{2} \partial_{\boldsymbol{U}} \boldsymbol{f}^{e q}(\boldsymbol{U})-|\partial \boldsymbol{F}(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+O\left(\varepsilon^{2}\right)
$$

- This limit system is stable if the second order operator is dissipative for the entropy. Partial stability result for the kinetic system.
- Strong-Stability: entropy theory equivalent to the H-theorem. Other criteria for stability Bouchut [04].

Example of Approximate BGK model I

- We consider the classical Xin-Jin [95] relaxation for a scalar system $\partial_{t} u+\partial_{x} F(u)=0$:

$$
\left\{\begin{array}{l}
\partial_{t} u+\partial_{x} v=0 \\
\partial_{t} v+\lambda^{2} \partial_{x} u=\frac{1}{\varepsilon}(F(u)-v)
\end{array}\right.
$$

Limit

\square The limit scheme of the relaxation system is

$$
\partial_{t} u+\partial_{x} F(u)=\varepsilon \partial_{x}\left(\left(\lambda^{2}-|\partial F(u)|^{2}\right) \partial_{x} u\right)+O\left(\varepsilon^{2}\right)
$$

\square Stability: the limit system is dissipative if $\left(\lambda^{2}-|\partial F(u)|^{2}\right)>0$.

- We diagonalize the hyperbolic matrix $\left(\begin{array}{cc}0 & 1 \\ \lambda^{2} & 0\end{array}\right)$ to obtain

$$
\left\{\begin{array}{l}
\partial_{t} f_{-}-\lambda \partial_{x} f_{-}=\frac{1}{\varepsilon}\left(f_{e q}^{-}-f_{-}\right) \\
\partial_{t} f_{+}+\lambda \partial_{x} f_{+}=\frac{1}{\varepsilon}\left(f_{e q}^{+}-f_{+}\right)
\end{array}\right.
$$

■ with $u=f_{-}+f_{+}$and $f_{e q}^{ \pm}=\frac{u}{2} \pm \frac{F(u)}{2 \lambda}$.

- This system is called the D1Q2 model.

Example of Approximate BGK model II

Vectorial $[D 1 Q 2]^{n}$ model

- The idea is simple: use one D1Q2 par macroscopic equation.
- Consider $\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=0$. We consider two velocities $\pm \lambda$. For each U_{i} we have:

$$
P \boldsymbol{f}^{i}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{f_{\overline{-}}^{i}}{f_{+}^{i}}=U_{i}, \quad P \wedge \boldsymbol{f}^{i}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\lambda_{-} & 0 \\
0 & \lambda_{+}
\end{array}\right)\binom{f_{\bar{i}}^{i}}{f_{+}^{i}}=F_{i}(\boldsymbol{U})
$$

- The unique solution is: $f_{ \pm}^{\text {eq, } i}=\frac{U_{i}}{2} \pm \frac{F_{i}(\boldsymbol{U})}{2 \lambda}$. The limit:

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\varepsilon \partial_{x}\left(\left(\lambda^{2} I_{n}-|\partial \boldsymbol{F}(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+O\left(\varepsilon^{2}\right)
$$

Vectorial [D1Q3] ${ }^{n}$ model

- Use one D1Q3 par macroscopic equation (generalization to D1Qq).
- Consider $\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=0$. We consider two velocities $\pm \lambda$ and $\lambda_{0}=0$. For each U_{i} we have:

$$
P \boldsymbol{f}^{i}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
f_{-}^{i} \\
f_{0}^{i} \\
f_{+}^{i}
\end{array}\right)=U_{i}, \quad P \wedge \boldsymbol{f}=F_{i}(\boldsymbol{U}), \quad P \wedge^{2} \boldsymbol{f}=G_{i}(\boldsymbol{U})
$$

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\varepsilon \partial_{x}\left(\left(\partial \boldsymbol{G}(\boldsymbol{U})-|\partial \boldsymbol{F}(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+O\left(\varepsilon^{2}\right)
$$

- with $\partial \boldsymbol{G}(\boldsymbol{U}) \approx|\partial \boldsymbol{F}(\boldsymbol{U})|^{2}$. Difficulty: construct $\boldsymbol{G}(\boldsymbol{U})$.
- Classic choice: $\boldsymbol{G}(\boldsymbol{U})=\boldsymbol{F}^{+}(\boldsymbol{U})-\boldsymbol{F}^{-}(\boldsymbol{U})$ with $\boldsymbol{F}=\boldsymbol{F}^{+}+\boldsymbol{F}^{-}$a flux vector splitting.

Time schemes

Invía

Time discretization: First order

Space scheme

- Semi-Lagrangian method for advection: high order/exact in space/time.

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Many schemes: Jin-Filbet [10], Dimarco-Pareschi [11-14-17], Lafitte-Samaey [17] etc.
- Main idea: splitting scheme between transport and implicit relaxation (Dellar [13]).
- Key point: the $\partial_{t} \boldsymbol{U}=0$ during the relaxation step. Therefore $\boldsymbol{f}^{e q}(\boldsymbol{U})$ is explicit.

First order scheme (exact transport)

- We define the two operators for each step :

$$
\begin{gathered}
T_{\Delta t}: e^{\Delta t \Lambda \partial_{x}} \boldsymbol{f}^{n+1}=\boldsymbol{f}^{n} \\
R_{\Delta t}: \boldsymbol{f}^{n+1}+\frac{\Delta t}{\varepsilon}\left(\boldsymbol{f}^{e q}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{f}^{n+1}\right)=\boldsymbol{f}^{n}
\end{gathered}
$$

- Final scheme: $T_{\Delta t} \circ R_{\Delta t}$ is consistent with

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\left(\frac{\Delta t}{2}\right) \partial_{x}\left(D(\boldsymbol{U}) \partial_{x} \boldsymbol{U}\right)+O\left(\Delta t^{2}\right)
$$

■ with $\omega=\frac{\Delta t}{\varepsilon+\theta \Delta t}$ and $D(\boldsymbol{U})=\left(P \wedge^{2} \partial_{\boldsymbol{U}} \boldsymbol{f}^{e q}(\boldsymbol{U})-\partial \boldsymbol{F}(\boldsymbol{U})^{2}\right)$.

Time scheme: second order

- Classical result: Strang Splitting + exact scheme for relaxation converge at first order for $\varepsilon \approx 0$ [Jin96].
- Comparison between different scheme for relaxation (+ Strang splitting):

	Exact		SSP RK2		CN	
	Error	Order	Error	Order	Error	Order
$\Delta t=4.10^{-3}$	$2.0 E^{-2}$	-	$2.0 E^{-2}$	-	$4.8 E^{-4}$	-
$\Delta t=2.10^{-3}$	$1.1 E^{-2}$	0.86	$1.1 E^{-2}$	0.86	$1.2 E^{-4}$	2.0
$\Delta t=1.10^{-3}$	$5.7 E^{-3}$	0.95	$5.5 E^{-3}$	1.0	$2.9 E^{-5}$	2.05
$\Delta t=5.10^{-4}$	$2.9 E^{-3}$	0.97	$2.8 E^{-3}$	0.98	$7.4 E^{-6}$	1.95

■ Remark: we lose one order of cv with exact and SPP-RK solver not for CN.

- Schemes for $\varepsilon \approx 0$:
- For Euler implicit, exact and SSP-RK2 schemes.

$$
\boldsymbol{f}^{n+1} \approx \boldsymbol{f}^{e q}\left(\boldsymbol{U}^{n}\right)+O(\varepsilon)
$$

- For Crank-Nicolson.

$$
\boldsymbol{f}^{n+1} \approx 2 \boldsymbol{f}^{e q}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{f}^{n}+O(\varepsilon) \quad \text { Implicit Euler scheme. } \Delta t=100 \varepsilon
$$

■ We solve the EDO $\partial_{t} u=\frac{1}{\varepsilon}\left(u_{e q}-u\right)$.

Conclusion:

- Order two only with CN scheme but large dispersive effect far to the equilibrium.

Time scheme: second order

■ Classical result: Strang Splitting + exact scheme for relaxation converge at first order for $\varepsilon \approx 0$ [Jin96].

- Comparison between different scheme for relaxation (+ Strang splitting):

	Exact		SSP RK2		CN	
	Error	Order	Error	Order	Error	Order
$\Delta t=4.10^{-3}$	$2.0 E^{-2}$	-	$2.0 E^{-2}$	-	$4.8 E^{-4}$	-
$\Delta t=2.10^{-3}$	$1.1 E^{-2}$	0.86	$1.1 E^{-2}$	0.86	$1.2 E^{-4}$	2.0
$\Delta t=1.10^{-3}$	$5.7 E^{-3}$	0.95	$5.5 E^{-3}$	1.0	$2.9 E^{-5}$	2.05
$\Delta t=5.10^{-4}$	$2.9 E^{-3}$	0.97	$2.8 E^{-3}$	0.98	$7.4 E^{-6}$	1.95

■ Remark: we lose one order of cv with exact and SPP-RK solver not for CN.

- Schemes for $\varepsilon \approx 0$:
- For Euler implicit, exact and SSP-RK2 schemes.

$$
\boldsymbol{f}^{n+1} \approx \boldsymbol{f}^{e q}\left(\boldsymbol{U}^{n}\right)+O(\varepsilon)
$$

- For Crank-Nicolson.

■ We solve the EDO $\partial_{t} u=\frac{1}{\varepsilon}\left(u_{e q}-u\right)$.

$$
\boldsymbol{f}^{n+1} \approx 2 \boldsymbol{f}^{e q}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{f}^{n}+O(\varepsilon)
$$

Conclusion:

- Order two only with CN scheme but large dispersive effect far to the equilibrium.

Time scheme: second order

- Classical result: Strang Splitting + exact scheme for relaxation converge at first order for $\varepsilon \approx 0$ [Jin96].
- Comparison between different scheme for relaxation (+ Strang splitting):

	Exact		SSP RK2		CN	
	Error	Order	Error	Order	Error	Order
$\Delta t=4.10^{-3}$	$2.0 E^{-2}$	-	$2.0 E^{-2}$	-	$4.8 E^{-4}$	-
$\Delta t=2.10^{-3}$	$1.1 E^{-2}$	0.86	$1.1 E^{-2}$	0.86	$1.2 E^{-4}$	2.0
$\Delta t=1.10^{-3}$	$5.7 E^{-3}$	0.95	$5.5 E^{-3}$	1.0	$2.9 E^{-5}$	2.05
$\Delta t=5.10^{-4}$	$2.9 E^{-3}$	0.97	$2.8 E^{-3}$	0.98	$7.4 E^{-6}$	1.95

■ Remark: we lose one order of cv with exact and SPP-RK solver not for CN.

- Schemes for $\varepsilon \approx 0$:
- For Euler implicit, exact and SSP-RK2 schemes.

$$
\boldsymbol{f}^{n+1} \approx \boldsymbol{f}^{e q}\left(\boldsymbol{U}^{n}\right)+O(\varepsilon)
$$

- For Crank-Nicolson.
- We solve the EDO $\partial_{t} u=\frac{1}{\varepsilon}\left(u_{e q}-u\right)$.

$$
\boldsymbol{f}^{n+1} \approx 2 \boldsymbol{f}^{e q}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{f}^{n}+O(\varepsilon)
$$

- SSP RK2 scheme. $\Delta t=100 \varepsilon$

Conclusion:

- Order two only with CN scheme but large dispersive effect far to the equilibrium.

Time scheme: second order

- Classical result: Strang Splitting + exact scheme for relaxation converge at first order for $\varepsilon \approx 0$ [Jin96].
- Comparison between different scheme for relaxation (+ Strang splitting):

	Exact		SSP RK2		CN	
	Error	Order	Error	Order	Error	Order
$\Delta t=4.10^{-3}$	$2.0 E^{-2}$	-	$2.0 E^{-2}$	-	$4.8 E^{-4}$	-
$\Delta t=2.10^{-3}$	$1.1 E^{-2}$	0.86	$1.1 E^{-2}$	0.86	$1.2 E^{-4}$	2.0
$\Delta t=1.10^{-3}$	$5.7 E^{-3}$	0.95	$5.5 E^{-3}$	1.0	$2.9 E^{-5}$	2.05
$\Delta t=5.10^{-4}$	$2.9 E^{-3}$	0.97	$2.8 E^{-3}$	0.98	$7.4 E^{-6}$	1.95

■ Remark: we lose one order of cv with exact and SPP-RK solver not for CN.

- Schemes for $\varepsilon \approx 0$:
- We solve the EDO $\partial_{t} u=\frac{1}{\varepsilon}\left(u_{e q}-u\right)$.
- For Euler implicit, exact and SSP-RK2 schemes.

$$
\boldsymbol{f}^{n+1} \approx \boldsymbol{f}^{e q}\left(\boldsymbol{U}^{n}\right)+O(\varepsilon)
$$

- For Crank-Nicolson.

$$
\boldsymbol{f}^{n+1} \approx 2 \boldsymbol{f}^{e q}\left(\boldsymbol{U}^{n}\right)-\boldsymbol{f}^{n}+O(\varepsilon)
$$

- Crank-Nicolson scheme. $\Delta t=100 \varepsilon$

Conclusion:

- Order two only with CN scheme but large dispersive effect far to the equilibrium.

Analysis of the second order scheme

Consistance analysis I

- Making Taylor expansion we can prove that $\Psi_{a p}$ for the $[D 1 Q 2]^{n}$ is consistant with

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=O\left(\Delta t^{2}\right) \\
\partial_{t} \boldsymbol{W}-\partial \boldsymbol{F}(\boldsymbol{U}) \partial_{x} \boldsymbol{W}=O\left(\Delta t^{2}\right)
\end{array}\right.
$$

with $U_{i}=f_{-}^{i}+f_{+}^{i}, V_{i}=\lambda\left(f_{+}^{i}-f_{-}^{i}\right)$ and $\boldsymbol{W}=\boldsymbol{V}-\boldsymbol{F}(\boldsymbol{U})$.

Consistance analysis II

- Particular case: $\Psi_{a p}$ and D1Q2 for $\partial_{t} u+\partial_{x}(c u)=0$:

$$
\partial_{t}\binom{u}{w}+\binom{c \partial_{x} u}{-c \partial_{x} w}+\underbrace{\left(\begin{array}{cc}
\left(\lambda^{2}-c^{2}\right) & 3 c \\
3 c\left(\lambda^{2}-c^{2}\right) & -\left(\lambda^{2}-c^{2}\right)
\end{array}\right) \partial_{x x x}\binom{u}{w}}_{A}=O\left(\Delta t^{3}\right)
$$

with $u=f_{-}^{i}+f_{+}^{i}, v=\lambda\left(f_{+}^{i}-f_{-}^{i}\right)$ and $w=u-c u$.

- Chapman-Enskog stability: The previous third order approximation is stable since the following energy is preserved:

$$
E(t)=\int\left(\left(\lambda^{2}-c^{2}\right) u^{2}+w^{2}\right)
$$

- We recover the sub-characteristic condition $\lambda>c$.

High-Order time schemes

High order scheme: composition method

- If Ψ second order time scheme satisfy $\Psi(\Delta t)=\Psi^{-1}(-\Delta t)$ and $\Psi(0)=I_{d}$ we can construct high order extension with

■ with $\gamma_{i} \in[-1,1]$. $M_{p}(\Delta t)=\Psi\left(\gamma_{1} \Delta t\right) \circ \Psi\left(\gamma_{2} \Delta t\right) \circ \ldots \ldots \circ \Psi\left(\gamma_{s} \Delta t\right)$

- Susuki scheme : $s=5, p=4$. Kahan-Li scheme: $s=9, p=6$.

Second-order scheme

- For now we have

$$
\Psi(\Delta t)=T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t, \theta=0.5) \circ T\left(\frac{\Delta t}{2}\right) .
$$

- We have symmetry in time but not $\Psi(0)=I_{d}$ for $\varepsilon \approx 0$. Indeed

$$
R(\Delta t=0, \theta=0.5) \boldsymbol{f}^{n}=2 \boldsymbol{f}^{e q}-\boldsymbol{f}^{n} \neq \boldsymbol{f}^{n}
$$

- However $R(0, \theta=0.5) \circ R(0, \theta=0.5)=I_{d}$ consequently we can propose a new second order scheme:

$$
\Psi_{\mathrm{ap}}(\Delta t)=T\left(\frac{\Delta t}{4}\right) \circ R(\Delta t, \theta=0.5) \circ T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t, \theta=0.5) \circ T\left(\frac{\Delta t}{4}\right)
$$

Numerical results

Burgers: convergence results

- Model: Burgers equation

$$
\partial_{t} \rho+\partial_{x}\left(\frac{\rho^{2}}{2}\right)=0
$$

- Spatial discretization: SL-scheme, 2000 cells, degree 11.
- Test: $\rho(t=0, x)=\sin (2 \pi x)$. $T_{f}=0.14$ (before the shock) and no viscosity.
- Scheme: splitting schemes and Suzuki composition + splitting.

	SPL 1, $\theta=1$		SPL 1, $\theta=0.5$		SPL 2, $\theta=0.5$		Suzuki	
Δt	Error	order	Error	order	Error	order	Error	order
0.005	$2.6 E^{-2}$	-	$1.3 E^{-3}$	-	$7.6 E^{-4}$	-	$4.0 E^{-4}$	-
0.0025	$1.4 E^{-2}$	0.91	$3.4 E^{-4}$	1.90	$1.9 E^{-4}$	2.0	$3.3 E^{-5}$	3.61
0.00125	$7.1 E^{-3}$	0.93	$8.7 E^{-5}$	1.96	$4.7 E^{-5}$	2.0	$2.4 E^{-6}$	3.77
0.000625	$3.7 E^{-3}$	0.95	$2.2 E^{-5}$	1.99	$1.2 E^{-5}$	2.0	$1.6 E^{-7}$	3.89

- Scheme: second order splitting scheme.
- Same test after the shock:

Convergence

- Equation: Euler isothermal
- Model [D1Q2] ${ }^{2}$ High-order space scheme. Comparison of the time scheme.
- Test case: smooth solution. $\Delta t=\frac{\beta \Delta x}{\lambda}$ with $\beta=50$

\ldots Suzuki / Strang splitting
\ldots Suzuki / time-symmetric splitting
\ldots Kahan-Li / Strang splitting
\ldots Kahan-Li / time-symmetric splitting
- With Strang splitting: only order 2 for f.
- Loss of convergence for macroscopic variables for Kahan-li + Strang splitting.

D1Q3 models and low Mach limit

Limitation

\square Drawback of $[D 1 Q 2]^{n}$ model: diffusion/dispersion homogenous to the larger speed.

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\sigma \Delta t \partial_{x}\left(\left(\lambda^{2} I_{d}-|\partial \boldsymbol{F}(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+O\left(\Delta t^{2} \lambda^{3}\right)
$$

\square Low-mach limit: contact wave admit an error homogeneous to acoustic speed.

- Euler equation: Flux splitting for low-mach flow.

$$
\left\{\begin{array}{l}
\boldsymbol{f}_{-}^{\text {eq }}(\boldsymbol{U})=\frac{1}{\lambda_{-}} \boldsymbol{F}^{-}(\boldsymbol{U}) \\
\boldsymbol{f}_{0}^{\text {eq }}(\boldsymbol{U})=\left(\boldsymbol{U}-\left(\frac{\boldsymbol{F}^{+}(\boldsymbol{U})}{\lambda_{+}}+\frac{\boldsymbol{F}^{-}(\boldsymbol{U})}{\lambda_{-}}\right)\right) \\
\boldsymbol{f}_{+}^{\text {eq }}(\boldsymbol{U})=\frac{1}{\lambda_{+}} \boldsymbol{F}^{+}(\boldsymbol{U})
\end{array}\right.
$$

- Test case: Acoustic wave. SL order 11, 4000 cells.

■ D1Q2 $\Delta t=0.005$ (yellow), D1Q3 $\Delta t=0.005 / 0.01$ (red, green). Contact captured.

D1Q3 models and low Mach limit

Limitation

\square Drawback of $[D 1 Q 2]^{n}$ model: diffusion/dispersion homogenous to the larger speed.

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\sigma \Delta t \partial_{x}\left(\left(\lambda^{2} I_{d}-|\partial \boldsymbol{F}(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+O\left(\Delta t^{2} \lambda^{3}\right)
$$

\square Low-mach limit: contact wave admit an error homogeneous to acoustic speed.

- Euler equation: Flux splitting for low-mach flow.

$$
\boldsymbol{F}(\boldsymbol{U})=\left(\begin{array}{l}
(\rho) u \\
(\rho u) u+p \\
(E) u+p u
\end{array}\right), \quad \boldsymbol{F}^{ \pm}(\boldsymbol{U})=\frac{1}{2}\left(\begin{array}{l}
\left(\rho u \pm \alpha \frac{u^{2}}{\lambda} \rho\right)+p \\
\left(\rho u^{2} \pm \alpha \frac{u^{2}}{\lambda} q\right)+p\left(1 \pm \gamma \frac{u}{\lambda}\right) \\
\left(E u \pm \alpha \frac{u^{2}}{\lambda} E\right)+\left(p u \pm \frac{\gamma}{\lambda}\left(u^{2}+\lambda^{2}\right) p\right)
\end{array}\right)
$$

- Test case: Acoustic wave. SL order 11, 4000 cells.

■ D1Q2 $\Delta t=0.005$ (yellow), D1Q3 $\Delta t=0.005 / 0.01$ (red, green). Contact captured.

$B C$: preliminary results

- Question: What BC for the kinetic variables. How keep the order ?

Consistency result (recall)

\square The second order symmetric scheme ($\Psi_{a p}$) for the following equation (equivalent to [D1Q2] ${ }^{n}$ kinetic model):

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=O\left(\Delta t^{2}\right) \\
\partial_{t} \boldsymbol{W}-\partial \boldsymbol{F}(\boldsymbol{U}) \partial_{x} \boldsymbol{W}=O\left(\Delta t^{2}\right)
\end{array}\right.
$$

with $U_{i}=f_{-}^{i}+f_{+}^{i}, V_{i}=\lambda\left(f_{+}^{i}-f_{-}^{i}\right)$ and $\boldsymbol{W}=\boldsymbol{F}(\boldsymbol{U})-\boldsymbol{V}$.

- Natural BC: entering condition for \boldsymbol{U} and $\boldsymbol{W}=0$ or $\partial_{x} \boldsymbol{W}=0$.
- Example I: $F(u)=c u$ (transport):

- Transport of the u (dashed lines) and $w=v-f(u)$ (plain lines) quantities.

BC : preliminary results

- Question: What BC for the kinetic variables. How keep the order?

Consistency result (recall)

\square The second order symmetric scheme ($\Psi_{a p}$) for the following equation (equivalent to [D1Q2] ${ }^{n}$ kinetic model):

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=O\left(\Delta t^{2}\right) \\
\partial_{t} \boldsymbol{W}-\partial \boldsymbol{F}(\boldsymbol{U}) \partial_{x} \boldsymbol{W}=O\left(\Delta t^{2}\right)
\end{array}\right.
$$

with $U_{i}=f_{-}^{i}+f_{+}^{i}, V_{i}=\lambda\left(f_{+}^{i}-f_{-}^{i}\right)$ and $\boldsymbol{W}=\boldsymbol{F}(\boldsymbol{U})-\boldsymbol{V}$.

- Natural BC: entering condition for \boldsymbol{U} and $\boldsymbol{W}=0$ or $\partial_{x} \boldsymbol{W}=0$.
- Example I: $F(u)=c u$ (transport):

- Initial state and comparison of the final states. Gaussian initial profile, $\Delta x=2^{-7}$.

$B C$: preliminary results

- Question: What BC for the kinetic variables. How keep the order ?

Consistency result (recall)

\square The second order symmetric scheme ($\Psi_{a p}$) for the following equation (equivalent to [D1Q2] ${ }^{n}$ kinetic model):

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=O\left(\Delta t^{2}\right) \\
\partial_{t} \boldsymbol{W}-\partial \boldsymbol{F}(\boldsymbol{U}) \partial_{x} \boldsymbol{W}=O\left(\Delta t^{2}\right)
\end{array}\right.
$$

with $U_{i}=f_{-}^{i}+f_{+}^{i}, V_{i}=\lambda\left(f_{+}^{i}-f_{-}^{i}\right)$ and $\boldsymbol{W}=\boldsymbol{F}(\boldsymbol{U})-\boldsymbol{V}$.
■ Natural BC: entering condition for \boldsymbol{U} and $\boldsymbol{W}=0$ or $\partial_{x} \boldsymbol{W}=0$.

- Example II: Barotropic Euler equation (supersonic):

Figure 5_{5} Convergences study for the Euler equations with Gaussian initial profile Comparison
of Dirichlet and Neumann strategies for the variables w_{ρ} and of Dirichlet and Neumann strategies for the variables w_{ρ} and z_{ρ}.

- Left: ρ and w_{ρ}, Right: convergence result.

Parabolic systems

Relaxation scheme for diffusion

■ We consider the classical Xin-Jin relaxation for a scalar system $\partial_{t} u-\nu \partial_{x x} u=0$:

$$
\left\{\begin{array}{l}
\partial_{t} u+\partial_{x} v=0 \\
\partial_{t} v+\frac{\lambda^{2}}{\varepsilon^{2}} \partial_{x} u=-\frac{1}{\varepsilon^{2}} v
\end{array}\right.
$$

Limit

\square The limit scheme of the relaxation system is

$$
\partial_{t} u-\partial_{x}\left(\lambda^{2} \partial_{x} u\right)=\varepsilon^{2} \partial_{x x x x} u+O\left(\varepsilon^{4}\right)
$$

\square Consistency: Choosing $\lambda^{2}=\nu$ we obtain the initial solution.

- We diagonalize the hyperbolic matrix $\left(\begin{array}{cc}0 & 1 \\ \lambda^{2} & 0\end{array}\right)$ to obtain

$$
\left\{\begin{array}{l}
\partial_{t} f_{-}-\frac{\lambda}{\varepsilon} \partial_{x} f_{-}=\frac{1}{\varepsilon^{2}}\left(f_{e q}^{-}(u)-f_{-}\right) \\
\partial_{t} f_{+}+\frac{\lambda}{\varepsilon} \partial_{x} f_{+}=\frac{1}{\varepsilon^{2}}\left(f_{e q}^{+}(u)-f_{+}\right)
\end{array}\right.
$$

■ with $u=f_{-}+f_{+}$and $f_{\text {eq }}(u)^{ \pm}=\frac{\mu}{2}$.

- Many schemes for this limit. Hyperbolic case: Jin-Levermore [96], Gosse-Toscani [00] etc. Kinetic case: Lemou-Cresetto and al [09-14-17], Pareschi-Dimarco [07-10-14] etc

Discretization

Consistency analysis

- We consider $\partial_{t} \rho-\nu \partial_{x x} \rho=0$.
- We define the two operators for each step:

$$
\begin{gathered}
T_{\Delta t}: e^{\Delta t \frac{\Lambda}{\varepsilon} \partial_{x}} \boldsymbol{f}^{n+1}=\boldsymbol{f}^{n} \\
R_{\Delta t}: \boldsymbol{f}^{n+1}+\theta \frac{\Delta t}{\varepsilon^{2}}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-\boldsymbol{f}^{n+1}\right)=\boldsymbol{f}^{n}-(1-\theta) \frac{\Delta t}{\varepsilon^{2}}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-\boldsymbol{f}^{n}\right)
\end{gathered}
$$

- Final scheme: $T_{\Delta t} \circ R_{\Delta t}$ is consistent with

$$
\partial_{t} \rho=\Delta t \partial_{x}\left(\left(\frac{1-\omega}{\omega}+\frac{1}{2}\right) \frac{\lambda^{2}}{\varepsilon^{2}} \partial_{x} \rho\right)+O\left(\Delta t^{2}\right)
$$

- We don't have convergence for all ε. The splitting scheme is not AP
- Taking $\nu=\lambda^{2}, \theta=0.5$ and $\varepsilon=\sqrt{\Delta t}$ we obtain the diffusion equation.
- Question: When you choose like this. Consistence or not ?
- First results (for these choices of parameters):
\square Second order at the numerical level.
\square At the minimum the first order theoretically.

Numerical results for diffusion equation

- Heat equation. Scheme with $\varepsilon=\Delta t^{\gamma}$ and very high order $\mathrm{SL}+$ fine grid.

	$\gamma=\frac{1}{2}$		$\gamma=1$		$\gamma=2$	
	Error	order	Error	order	Error	order
$\Delta t=0.04$	$1.87 E^{-2}$	-	1.43	-	1.43	-
$\Delta t=0.02$	$6.57 E^{-3}$	1.50	0.2	0	0.23	0
$\Delta t=0.01$	$1.85 E^{-3}$	1.82	0.2	0	0.23	0
$\Delta t=0.005$	$3.6 E^{-4}$	2.36	0.2	0	0.23	0
$\Delta t=0.0025$	$7.3 E^{-5}$	2.30	0.2	0	0.23	0

- $\Delta t=0.1$. The scheme oscillate. We cannot take very large time step.

Generalization

- With the general model

$$
\partial_{t} \boldsymbol{f}+\Lambda \partial_{x} \boldsymbol{f}=\frac{R(x, \rho)}{\varepsilon}\left(\boldsymbol{f}^{e q}(\rho)-\boldsymbol{f}\right)
$$

- we can approximate the equation:

$$
\partial_{t} \rho-\partial_{x}\left(D(x, \rho) \partial_{x} \rho\right)=0
$$

- Convergence: CV can be at the order 1.

Conclusion

Time scheme for BGK

- High order Method: Composition + Strang Splitting (or modified version) + Crank-Nicolson scheme for relaxation.
- Default: scheme not accurate far from the equilibrium and dispersive.
- Advantage: independent transport equation. Useful with an implicit transport solver.

Implicit Kinetic relaxation schemes

- We can approximate hyperbolic/parabolic PDE by small BGK models.
- Using this, we propose high-order scheme with large time step algorithm (SL method).
- This algorithm is very competitive against implicit schemes (no matrices, no solvers).

Future works

- Improve and study stability of low-Mach scheme in 1D
- Extension in 2D/3D for Low-Mach Euler/NS/MHD equations.
- Different approach/similar idea: Semi implicit Relaxation for NS and MHD.
- Study the scheme for elliptic problems and anisotropic diffusion.
- Propose artificial viscosity method for the total scheme (relaxation and SL steps) to avoid the oscillations.

