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Iter Project and nuclear fusion

Applications
� Modeling and numerical simulation for the nuclear fusion.

� Fusion DT: At sufficiently high energies
deuterium and tritium (plasmas) can
fuse to Helium. Free energy is released.

� Plasma: For very high temperature, the
gas is ionized and give a plasma which
can be controlled by magnetic and
electric fields.

� Tokamak: toröıdal chamber where the
plasma (108 Kelvin), is confined using
magnetic fields. Larger Tokamak: Iter

Difficulties:
� Plasma turbulence (Tokamak center) ==> Kinetic models.
� Plasma instabilities (Tokamak edge) ==> Fluid models.
� Necessary to simulate these phenomena and test some controls in realistic geometries

of Tokamak.
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MHD equations
� MHD equation (non conservative form):

∂tρ+∇ · (ρu) = 0
ρ∂tu + ρu · ∇u +∇p = (∇× B)× B
∂tp +∇ · (pu) + (γ − 1)p∇ · u = 0
∂tB +∇× (u × B)
∇ · B = 0

� with ρ the density, u the velocity, p the pressure and B the magnetic field.
� We can write the model on conservative form. It is a hyperbolic system admitting a

entropy dissipation equation.

∂tρS +∇ · (ρSu) ≤ ∇ · B
� Eigen-structure:

� Material waves at the velocity (u, n)

� Alfven waves at the velocity vA =
√
|B|2
ρ

� Slow and Fast Magneto-acoustic waves: depending of vA and c =
√
γp
ρ

the sound

speed.
� The ratio between the wave speeds can be huge. The MHD is a strongly multi-scale

problem in time.
� For tokamak simulation the phenomena are strongly anisotropic with B as dominant

direction.
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MHD equilibrium and instabilities

� In tokamak we want maintains the plasma
around an equilibrium

(∇× B)︸ ︷︷ ︸
J

×B = ∇p,

with u = 0.

� Some instabilities can appear and damages
the device.

� It important to simulate these instabilities
and the possible methods to control them.

� Physical regime:

� Low β: c << Va
� compressible in parallel direction:

u‖ ≈ c
� incompressible in perpendicular

direction: u⊥ << c

� To treat this regime and the strong diffusion
in parallel direction we need implicit/semi
implicit scheme.
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Euler equation and Low-Mach regime

� To treat the MHD problem we need a scheme efficient for compressible flow (parallel
part) and nearly incompressible flow (perpendicular part).

� Simplify problem: Construct schemes for compressible Euler equations able to treat
the two regimes.

� Equations:  ∂tρ+∇ · (ρu) = 0
ρ∂tu + ρu · ∇u +∇p = 0
∂tp +∇ · (pu) + (γ − 1)p∇ · u = 0

� Normalization:

� we introduce characteristic time t0, velocity V , length L.
� the characteristic velocity u0 and pressure γp0. The sound velocity is c2 = γp0

ρ0
.

Application
� Astrophysics with the Euler equations (additional gravity term in general).
� Nuclear fission with multi-phase models.
� Nuclear fusion in Tokamak with the MHD model.
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Euler equation and Low-Mach regime
� To treat the MHD problem we need a scheme efficient for compressible flow (parallel

part) and nearly incompressible flow (perpendicular part).

� Simplify problem: Construct schemes for compressible Euler equations able to treat
the two regimes.

� Equations:  ∂tρ+∇ · (ρu) = 0
ρ∂tu + ρu · ∇u +∇p = 0
∂tp +∇ · (pu) + (γ − 1)p∇ · u = 0

� Normalization:

� we introduce characteristic time t0, velocity V , length L.
� the characteristic velocity u0 and pressure γp0. The sound velocity is c2 = γp0

ρ0
.

� We want to focus on the fluid motion consequently we choose V = u0.

� We define the mach number:M = u0
c0

. Using this we obtain


∂tρ+∇ · (ρu) = 0

ρ∂tu + ρu · ∇u +

[
1

M2

]
∇p = 0

∂tp + u · ∇p + γp∇ · u = 0

−→


∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu ⊗ u) +
1

M2
∇p = 0

∂tE +∇ · (Eu) +∇ · (pu) = 0

� with E = p
γ−1

+ M2 ρ|u|2
2

.
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Low-Mach limit

Limit in 2D
� We consider u = u0 + M2u1, We consider p = p0 + M2p1. The limit is:

∂tρ0 + u0 · ∇ρ0 = 0

∂tu0 + u0 · ∇u0 +
1

ρ0
∇p1 = 0

∇ · u0 = 0
� If ρ0 = cts we obtain the classical incompressible Euler equation.
� Interpretation: Fluid motion around the acoustic equilibrium : ∇ · u0 = 0, ∇p0 = 0.

Limit in 1D
� We consider u = u0 + M2u1, We consider p = p0 + M2p1. The limit is: ∂tρ0 + u0∂xρ0 = 0

∂tu0 + ∂xp1 = 0
∂xu0 = 0

� Interpretation: Fluid motion (isolated contact) around the acoustic equilibrium :
∂xu0 = 0 and ∂xp0 = 0.

Aim
� A scheme which has a good behavior in the limit regime ( around the acoustic

equilibrium).
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Numerical difficulties in space: VF and DG

� Methods used: VF/DG (FE also but not here). Principle of VF method:

∂tU(t, x) + ∂xF (U(t, x)) = 0∫
Ωj

∂tU(t, x) +

∫
Ωj

∂xF (U(t, x)) = 0

� with Ωj a cell. Easily we obtain:

∂t

∫
Ωj

U(t, x) +

∫
Ωj

∂xF (U(t, x)) = 0.

� We consider U(t, x) =
∑

j U jχΩj
with U j (t) = 1

|Ωj |
∫

Ω U(t, x)

| Ωj | ∂tU j (t) + F (U(t, xj+ 1
2

))− F (U(t, xj− 1
2

)) = 0

� The quantities F (U(t, xj± 1
2

)) are unknown. VF idea: F (U(t, xj± 1
2

)) ≈ G(U j , U j+1).

We speak about of numerical fluxes.

� Classical fluxes : centered (unstable with explicit scheme):

G(U j , U j+1) =
1

2

(
F (U j ) + F (U j+1)

)
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G(U j , U j+1) =
1
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(
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)
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� Discrete scheme:
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� with Dkh the k order discrete derivative;
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(
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Numerical difficulties in space: VF and DG II
� Properties of hyperbolic systems: these models can generate discontinuities. No

unicity of the weak solution.
� To obtain uniqueness and stability we introduce additional entropy equation:

∂tη(U) + ∂xQ(U) ≤ 0→ ∂t

∫
η(U) ≤ 0

� with η(U) a convex function, ζ(U) the entropic flux such that η
′
(U)F

′
(U) = Q

′
(U).

The left part is exactly zero for smooth solution.
� Stability of the scheme:

∂tη(U) + Dhζ(U) ≤ 0→ ∂t

∫
η(U) ≤ 0

� Approximated model:

∂tU + ∂xF (U)−∆x∂x (A(U)∂xU) = O(∆x2)

Conclusion
� The structure of the numerical diffusion play an important role in the stability.

� Aim of scheme: find a scheme with a viscosity matrix which minimize the error for the
solutions or some particular solutions ( low mach flow, steady state etc) and keeping
the stability properties.
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Numerical difficulties in space: VF in 1D
� Second method: Finite volume and DG method

� VF method + Rusanov flux. Equivalent equation:
∂tρ+ ∂x (ρu) =

S∆x

2
∂xxρ

∂t(ρu) + ∂x (ρu2) +
1

M2
∂xp =

S∆x

2
∂xx (ρu)

∂tE + ∂x (Eu) + ∂x (pu) =
S∆x

2
∂xxE

� Problem: S must be larger that 1
M

for stability. Huge diffusion.

� Example: isolated contact p = 1 and
u = 0.1.

� Exact. solution:

∂tρ+ u0∂xρ = 0

� Rusanov scheme:

∂tρ+ u0∂xρ =
S∆x

2
∂xxρ

with S > u0 + c ≈ 1.5

� Upwind scheme for limit:

∂tρ+ u0∂xρ =
u0∆x

2
∂xxρ

� Rusanov scheme Tf = 2 u0 = 0.05
and 1000 cells
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Numerical difficulties in space: VF in 2D
� Same analysis in 2D.

� VF method + Rusanov flux. Equivalent equation:
∂tρ+∇ · (ρu) =

S∆x

2
∆ρ

∂t(ρu) +∇ · (ρu ⊗ u) +
1

M2
∇p =

S∆x

2
∆(ρu)

∂tE +∇ · (Eu) +∇ · (pu) =
S∆x

2
∆E

� Problem: S must be larger that 1
M

for stability. Huge diffusion.

� Example: isolated contact p = 1, ∇ · u0 = 0 and u0 constant in time.

� Rusanov scheme Tf = 2 | u0 |≈ 0.001 and 100*100 cells.

� Red: exact solution, Blue: numerical solution.

E. Franck 12/39

12/39



Numerical difficulties in space: VF in 2D
� Same analysis in 2D.

� VF method + Rusanov flux. Equivalent equation:
∂tρ+∇ · (ρu) =

S∆x

2
∆ρ

ρ∂tu + ρu · ∇u +
1

M2
∇p =

S∆x

2
∆u

∂tp + u · ∇p + γp∇ · u =
S∆x

2
∇p

� Problem: S must be larger that 1
M

for stability. Huge diffusion.

� Example: isolated contact p = 1, ∇ · u0 = 0 and u0 constant in time.

� Rusanov scheme Tf = 2 | u0 |≈ 0.001 and 100*100 cells.

� Red: exact solution, Blue: numerical solution.

E. Franck 12/39

12/39



Numerical difficulties in time

Explicit time scheme
� Low-Mach regime: fast and small acoustic waves. Weak/no coupling with the fluid

motion.
� Explicit scheme: CFL condition

maxx
(
u +

c

M

)
∆t ≤ h

� ∆t is very small and allows to capture the fast waves. We want/can filter the fast
waves.

� Solution: full implicit/semi implicit time schemes.

Implicit time scheme
� Nonlinear problem to invert: Newton/picard + linear solver.
� Drawbacks: matrix to assembly, to store and to invert.
� Operator to invert:

(Idh −∆tA) ≈ A, for h << 1 and ∆t >> 1

with A the discrete spatial scheme of the Jacobian.

� Full implicit: Eigenvalues of A: (u − c
M

, u, u + c
M

). So ill-conditioning.
� In 2D additional zero eigenvalue (shear wave) which generate ill-conditioning.
� Strong gradient of p and ρ generate also ill-conditioning.
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Classical implicit scheme
� We use an explicit scheme for convection ( or we split the convection).
� Implicit acoustic step: ρn+1 = ρn

(ρu)n+1 = ρnun −∆t∂xpn+1 + Rhsu
En+1 = En −∆t∂x (pn+1un+1) = RhsE

Plugging this in the second equation, we obtain

En+1 −∆t2∂x

(
pn+1

ρn
∂xp

n+1

)
= Rhs(En, un, ρ)

� Matrix-vector product to compute un+1.
� Works with similar idea: [DegondTang09]-[DLV17]-[DDLV18].

Conclusion
� Semi implicit: We have only one scale in the implicit operator. The operator is

symmetric and positive.
� Strong gradient of p and ρ generate also ill-conditioning. The matrix must be
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Numerical difficulties in time

Aim
� Design implicit/semi implicit VF/DG scheme without problem of

conditioning/inverting etc.

� Solution proposed: construct new model larger, but simpler (relaxation model) with
approximate the original model and write the scheme for the new model to obtain the
scheme for the original one.
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Linear and full implicit relaxation scheme
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General principle
� We consider the following nonlinear hyperbolic system

∂tU + ∂xF (U) = 0

� with U a vector of N functions.

� Aim: Find a way to approximate this system with a sequence of simple systems.

� Idea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume
community) [JX95]-[Nat96]-[ADN00].

{
∂tU + ∂xV = 0

∂tV + λ2∂xU =
1

ε
(F (U)− V )

Limit of the hyperbolic relaxation scheme

� The limit scheme of the relaxation system is

∂tU + ∂xF (U) = ε∂x ((λ2− | A(U) |2)∂xU) + o(ε2)

� with A(U) the Jacobian of F (U).

� Conclusion: the relaxation system is an approximation of the hyperbolic original
system (error in ε).
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Specific kinetic model: stability
� First order stability: we consider the first order approximation

∂tU + ∂xF (U) = ε∂x
((
λ2In− | ∂F (U) |2

)
∂xU

)
+ O(ε2)

∂tη(U) + ∂xQ(U)− ε∂x
(
η
′
(U)

(
λ2In− | ∂F (U) |2

)
∂xU

)
≤ 0 + O(ε2)

� The second equation is true if η
′′

(U)A(U) ≥ 0.
� Finally, we have the entropy property at the first order if

λ > vpmax | ∂F (U) |, with A(U) =
(
λ2In− | ∂F (U) |2

)
.

� Entropy stability: For the model [Jin95]{
∂tu + ∂xv = 0

∂tv + λ2∂xu =
1

ε
(F (u)− v)

we obtain

∂tΦ(u, v) + ∂xΨ(u, v) ≤ −
1

ε
∂vΦ(u, v) · (v − f (u)) ≤ 0

with Φ(u, v) = h+(v +λu) + h−(v −λu), Ψ(u, v) = λ(h+(v +λu)− h−(v −λu)) and

h±(F (u)± λu) =
1

2

(
η(u)±

Q(u)

λ

)
� The inequality is true if Φ(u, v) convex compare to v and ∂vΦ(u, v = f (u)) = 0.

� It is true if | F ′
(u) |< λ. The situation seems the same for systems.
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XIn-Jin implicit scheme

Main property
Ü Relaxation system: ”the nonlinearity is local and the non locality is linear”.

Ü Main idea: splitting scheme between implicit transport and implicit relaxation
[Paru15].

Ü Key point: the ∂tU = 0 during the relaxation step. Therefore f eq(U) is explicit.

� Relaxation step:{
Un+1 = Un

V n+1 = θ∆t
ε

(F (Un+1)− VN+1) + (1− θ) ∆t
ε

(F (Un)− V n)

� Transport step (order 1) :

Id +

(
0 1
α2 0

)
∂x

(
Un+1

V n+1

)
=

(
Un

V n

)
� We plug the equation on V in the equation on U.
� We obtain the implicit part:

(Id −∆t2λ2∂xx )Un+1 = Un −∆t∂xV n

� We apply a matrix-vector product

V n+1 = −∆tλ2∂xUn+1

� Advantages: N independent elliptic equations with constant coefficient.
� Natural extension at the second order in time. In space: FV (used here) or DG/FE.
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Time discretization

� Consistency analysis of the scheme : splitting + CN for relaxation + Euler implicit for
transport.

First order scheme (first order transport )
� We define the two operators for each step :

T∆t : (Id + ∆tA∂x Id )f n+1 = f n

R∆t : f n+1 + θ
∆t

ε
(f eq(U)− f n+1) = f n − (1− θ)

∆t

ε
(f eq(U)− f n)

� Final scheme: T∆t ◦ R∆t is consistent with

∂tU + ∂xF (U) =
∆t

2
λ2∂xxU +

(
(2− ω)∆t

2ω

)
∂x (D(U)∂xU) + O(∆t2)

� with ω = ∆t
ε+θ∆t

and D(U) =
(
λ2In− | ∂F (U) |2

)
.

� Order 2: If we choose ε = 0 + θ = 0.5 for the relaxation (so we have ω = 2) +
Crank-Nicolson for transport part + Strang splitting. No numerical diffusion but
numerical dispersion.
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BC : results
� Question: What BC for the kinetic variables. How keep the order ?

First result

� The second order symmetric (modified version tot he previous scheme) scheme for the
Xin-Jin relaxation: {

∂tU + ∂xV = 0

∂tV + λ2∂xU =
1

ε
(F (U)− V )

is consistent with {
∂tU + ∂xF (U) = O(∆t2)

∂tW − ∂F (U)∂xW = O(∆t2)

with W = F (U)− V .

� Natural BC: entering condition for U and W = 0 or ∂xW = 0.
� Example: F (u) = cu (transport):

0 0.5 1
0

0.5

1

x

w
,y

0 0.5 1
x

t=0.02
t=0.09
t=0.17
t=0.25
t=0.33

� Transport of the u (dashed lines) and w = v − f (u) (plain lines) quantities.
� Same results for the Euler equations.
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� Same results for the Euler equations.
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Xin-Jin relaxation: limit of the method

Numerical error
� Error for the first order splitting scheme:

∂tU + ∂xF (U) = ∆t∂x ((λ2Id− | A(U) |2)∂xU) + o(∆t2)

� Low-Mach Euler equation: we take λ > c. For the density equation, we obtain

∂tρ+ ∂x (ρu) = ∆t∂x ((λ2 − u2)∂xρ− ρ∂xu2 − ∂xp) + o(∆t2)

� In Low mach regime ∂xu ≈ M, ∂xp ≈ M and u ≈ M consequently

∂tρ+ ∂x (ρu) ≈ ∆t∂x (c2∂xρ)− O(M)∂xxρ+ o(∆t2)

� Conclusion: Huge diffusion for the contact wave.

Test: smooth contact. First order time scheme. Tf = 2
M

. ∆t = Tf /100.

Order 1. Left: M = 0.1. Right: M = 0.01
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Possible solution: Relaxation with central wave
� Relaxation methods with a central wave [Bou09]-[Nat96]-[ADN00].

∂tU + ∂xV = 0

∂tV + ∂xW =
1

ε
(F (U)− V )

∂tW + λ2∂xV =
1

ε
(λ(F+(U)− F−(U))−W )

with F (U) = F+(U) + F−(U) . Additional zero wave.
� Limit:

∂tU + ∂xF (U) = ∆t∂x (λ(A+(U)− A−(U))− | ∂F (U) |2)∂xU) + o(∆t2)

� Question: choice of the flux splitting.
� Test case: Acoustic wave. Very high-order, 4000 cells.

� Xin-Jin ∆t = 0.005 (yellow), Splitting-Relaxation ∆t = 0.005/0.01 (red, green).
Contact captured.

� Conclusion: Relaxation with central Can preserve contact wave and the low mach
limit. BUT Stability not clear.
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Semi implicit relaxation scheme
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First Semi implicit scheme I
� Previous approach difficult to relax the two scales correctly and keep stability.

� Idea: Relax only the acoustic part to linearized the implicit part [CGS11]-[CC12]

� Suliciu approach: relax the pressure which is a strongly nonlinear function of
macroscopic variables.

∂tρ+ ∂x (ρu) = 0
∂t(ρu) + ∂x (ρu2 + Π) = 0
∂tE + ∂x (Eu + Πu) = 0
∂t(ρΠ) + ∂x (ρΠu) + λ2∂xu = ρ

ε
(p − Π)

� Limit: 
∂tρ+ ∂x (ρu) = 0
∂t(ρu) + ∂x (ρu2 + p) = ε∂x

((
λ2 − ρ2c2

)
∂xu
)

∂tE + ∂x (Eu + pu) = ε∂x
((
λ2 − ρ2c2

)
∂x

u2

2

)
� Stability: λ > ρc.

� Contact waves:
 ∂tρ+ u∂xρ = 0

∂xu = 0
∂xp = 0

� redare preserved by the relaxation approximation.

� Another way to say that : the contact waves are also solution of the relaxation model
if π(t = 0) = p(t = 0).

� For the low-mach flow (around the contact waves) the relaxation model is a very
accurate approximation.
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First Semi implicit scheme II
� Idea: splitting + implicit scheme for acoustic part [IDG18];

� Splitting scheme: convective part

(C) =


∂tρ+ ∂x (ρu) = 0
∂t(ρu) + ∂x (ρu2 + E2(t)Π) = 0
∂tE + ∂x (Eu + E2(t)Πu) = 0
∂t(ρΠ) + ∂x (ρΠu) + λ2

c∂xu = ρ
ε

(p − Π)

� The eigenvalues: (u − E(t)λ
ρ

, u, u + E(t)λ
ρ

).

� Splitting scheme: acoustic part

(A) =


∂tρ = 0
∂t(ρu) + (1− E2(t))∂xΠ = 0
∂tE + (1− E2(t))∂x (Πu) = 0
∂t(ρΠ) + (1− E2(t))λ2

a∂xu = ρ
ε

(p − Π)

� The eigenvalues: (−(1− E2(t))λ
ρ

, 0, (1− E2(t))λ
ρ

)

� with λ2 = λ2
c + (1− E2(t))λ2

a.

� Important point:

E2(t) ≈ min
(
Emin, max

(u
c

, 1
))2

.
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First Semi implicit scheme III

� Spatial scheme for convective part: Rusanov scheme:

� Principle of Rusanov scheme. Diffusion matrix:

A(U) =
S

2
IdU

with S larger that the maximal wave speed.
� For the full explicit scheme S >| u | +c ≈ c in low mach regime.

� For the splitting implicit scheme S >| u | +E(t) ≈ 2u in low mach regime.

� Conclusion: the density is slowly damped as a classical scheme for advection.
Good behavior of scheme for low mach flow.

� Since is never zero. The scheme doesn’t preserve steady contact wave (u=0).
� For high-mach flow the full model is explicit and we obtain classical scheme.

� Spatial scheme for the acoustic part: centered scheme. The stability is preserved since
this part will be implicit.
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First Semi implicit scheme IV

� Time scheme:  (ρu)n+1 = ρnun −∆t(1− E2(t))∂xΠn+1 = 0
En+1 = En −∆t(1− E2(t))∂x (Πn+1un+1) = 0
ρnΠn+1 = ρnΠn − (1− E2(t))∆tλ2

a∂xu
n+1 = 0

The last equation can be rewritten as

un+1 = un −∆t(1− E2(t))
1

ρn
∂xΠn+1 = 0

Plugging this in the second equation, we obtain

Πn+1 −∆t2(1− E2(t))2 1

ρn
∂x

(
1

ρn
λ2
a∂xΠn+1

)
= b(Πn, un)

� Matrix-vector product to compute u and E .

� Advantages Implicit part: just one linear elliptic problem to invert.

� Defaults: conditioning depending of the density and need to be assembly at each
time.

� Problem: velocity is a nonlinear function of ρ and ρu.
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Second Semi implicit scheme I
� Idea: Relax only the acoustic part to linearized the implicit part.
� New approach: relax the pressure and velocity (acoustic variables).

∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + Π) = 0
∂tE + ∂x (Ev + Πv) = 0
∂tΠ + v∂xΠ + φλ2∂xv = 1

ε
(p − Π)

∂tv + v∂xv + 1
φ
∂xΠ = 1

ε
(u − v)

� Limit:
∂tρ+ ∂x (ρu) = ε∂x

[
1
ρ

(
ρ
φ
− 1
)
∂xp
]

∂t(ρu) + ∂x (ρu2 + p) = ε∂x
[

1
ρ

[
u
(
ρ
φ
− 1
)
∂xp +

(
ρφλ2 − ρ2c2

)
∂xu
]]

∂tE + ∂x (Eu + pu) = ε∂x
[

1
ρ

[
E
(
ρ
φ
− 1
)
∂xp +

(
ρ
φ
− 1
)
∂x

p2

2
+
(
ρφλ2 − ρ2c2

)
∂x

u2

2

]]
� Stability: φλ > ρc2 and ρ > φ.
� Contact waves:

 ∂tρ+ u∂xρ = 0
∂xu = 0
∂xp = 0

� redare preserved by the relaxation approximation.
� The contact waves are also solutions if π(t = 0) = p(t = 0) and v(t = 0) = u(t = 0).
� For the low-mach flow (around the contact waves) the relaxation model is a very

accurate approximation.
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Second Semi implicit scheme II
� First order stability: we consider the first order approximation

∂tU + ∂xF (U) = ε∂x (A(U)∂xU) + O(ε2)

∂tη(U) + ∂xQ(U)− ε∂x
(
η
′
(U)A(U)∂xU

)
≤ 0 + O(ε2)

� The second equation is true if η
′′

(U)A(U) ≥ 0. It is true for the matrix associated
with relaxation scheme if

φλ2 > ρc2, ρ > φ.
� Entropy stability: We rewrite the model as

∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + Π) = 0
∂tE + ∂x (Ev + Πv) = 0
∂t(ρΠ) + ∂x (ρvΠ) + ab∂xv = ρ

ε
(p − Π)

∂t(ρv) + ∂x (ρv2) + a
b
∂xΠ = ρ

ε
(u − v)

∂ta + ∂x (av) = 0
∂tb + ∂x (bv) = 0

� with a(t = 0) = ρλ and b(= 0) = φλ.
� Idea : comparison principle. We consider S the entropy and Ŝ the function such that

∂t Ŝ + v∂x Ŝ = 0, with Ŝ(t = 0) = S(t = 0)

� We prove using the equations that S(ρ, s) ≤ ê and using specific invariants that
ê > e(ρ, ŝ). We deduce that

S(ρ, e) > Ŝ,→
∫

S(t) ≥
∫

Ŝ(t) =

∫
S(t = 0)
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Second Semi implicit scheme III
� Idea: splitting + implicit scheme for acoustic part.
� Splitting scheme: convective part

(C) =



∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + E2(t)Π) = 0
∂tE + ∂x (Ev + E2(t)Πv) = 0
∂tΠ + v∂xΠ + φλ2

c∂xv = 1
ε

(p − Π)

∂tv + v∂xv + E2(t)
φ
∂xΠ = 1

ε
(u − v)

� The eigenvalues: (v − E(t)λ, v , v + E(t)λ).

� Splitting scheme: acoustic part

(A) =


∂tρ = 0
∂t(ρu) + (1− E2(t))∂xΠ = 0
∂tE + (1− E2(t))∂x (Πv) = 0
∂tΠ + (1− E2(t))φλ2

a∂xv =
ε

(p − Π)

∂tv + (1− E2(t)) 1
φ
∂xΠ = 1

ε
(u − v)

� The eigenvalues: (−(1− E2(t))λ, 0, (1− E2(t))λ

� with λ2 = λ2
c + (1− E2(t))λ2

a.

� Important point:

E2(t) ≈ min
(
Emin, max

(u
c

, 1
))2

.
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Second Semi implicit scheme IV
� Spatial scheme for convective part: Rusanov scheme:

� Diffusion matrix for this scheme:

∂x (A(U)∂xU) =
S

2
∂xxU

with S larger that the maximal wave speed.
� For the full explicit scheme S >| u | +c ≈ c in low mach regime.
� For the splitting implicit scheme S >| u | +E(t) ≈ 2u in low mach regime.

� Conclusion: the density is slowly damped as a classical scheme for advection.
Good behavior of scheme for low mach flow.

� Spatial scheme for convective part: LR-like scheme:

� Diffusion matrix for this scheme:

∂x (A(U)∂xU) =

 ∂x (| u | ∂xρ) + ∂x (ρ∂xp)

∂x (| u | ∂x (ρu)) + ∂x (ρu∂xp) + E(t)φλ
2
∂xxu

∂x (| u | ∂xE) + ∂x (E∂xp) + φλ
2

(E(t)∂x (u∂xp) + E(t)3∂x (p∂xu))


� Conclusion: the density is slowly damped as a classical scheme for advection.

Good behavior of scheme for low mach flow.
� This scheme is less dissipative for the density and preserve exactly stationary

contact.

� Spatial scheme for the acoustic part: centered scheme. The stability is preserved since
this part will be implicit.
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Second Semi implicit scheme V

� Time scheme:

(A1) =



ρn+1 = ρn

(ρu)n+1 = (ρu)n −∆t(1− E2(t))∂xΠn+1

En+1 = En −∆t(1− E2(t))∂x (Πn+1vn+1)

Πn+1 + (1− E(t))∆tφλ2
a∂xv

n+1 = Πn

vn+1 + (1− E(t))∆t 1
φ
∂xΠn+1 = vn

We consider the equation on the new velocity

vn+1 = −∆t(1− E2(t))
1

φ
∂xΠn+1 + vn

We plug into the equation on Π and we obtain(
Id − θ2(1− E2(t))2∆t2λ2

a∂xx
)

Πn+1 = R(Πn, vn)

� Matrix-vector product to compute v , E and ρu.

� Advantages Implicit part: just one linear and constant elliptic problem to invert.

� The matrix can be constructed once and the conditioning does not depend of ρ.
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Results I
� Smooth contact  ρ(t, x) = χx<x0 + 0.1χx>x0

u(t, x) = 0.01
p(t, x) = 1

� Error

cells Ex Rusanov Ex LR I Xin-jin SI Rusanov New SI Rus New SI LR
250 0.042 3.6E−4 0.32 1.4E−3 7.8E−4 4.1E−4

500 0.024 1.8E−4 0.24 6.9E−4 3.9E−4 2.0E−4

1000 0.013 9.0E−5 0.17 3.4E−4 2.0E−4 1.0E−5

2000 0.007 4.5E−5 0.12 1.7E−4 9.8E−5 4.9E−5

� Comparison time scheme:

Scheme λ ∆t
Explicit max(| u − c |, | u + c |) 2.2E−4

Xin-Jin - 0.0052

SI Suliciu max(| u − E(t)λ
ρ
|, | u + E(t)λ

ρ
|) 0.0075

SI new relaxation max(| v − E(t)λ |, | v + E(t)λ |) 0.04

� Conditioning:

Schemes ∆t conditioning
Si suliciu 0.00757 3000

Si new relax 0.041 9800
Si new relax 0.0208 2400
si new relax 0.0075 320
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2D extension
� 2D extension: 

∂tρ+∇ · (ρv) = 0
∂t(ρu) +∇ · (ρu ⊗ v) +∇Π = 0
∂tE +∇ · (Ev + Πv) = 0
∂tΠ + v · ∇Π + φλ2∇ · v = 1

ε
(p − Π)

∂tv + v · ∇v + 1
φ
∇Π = 1

ε
(u − v)

� Limit:

∂tρ+∇ · (ρu) = ε∇ ·
[

1
ρ

(
ρ
φ
− 1
)
∇p
]

∂t(ρu) +∇ · (ρu ⊗ v) +∇p = ε∇ ·
[

1
ρ
u
(
ρ
φ
− 1
)
∇p
]

+ ε∇
[

1
ρ

(
ρφλ2 − ρ2c2

)
∇ · u

]
∂tE +∇ · ((E + p)u) = ε∇ ·

[
1
ρ

[
E
(
ρ
φ
− 1
)
∇p +

(
ρ
φ
− 1
)
∇ p2

2

]]
+ε∇ ·

[
1
ρ

(
ρφλ2 − ρ2c2

)
u∇ · u

]
� Remark: This diffusion approximate of the relaxation model preserve the acoustic

steady states and consequently the low mach limit.

Scheme

� Splitting ”convection” (Euler explicit) + ”acoustic” (theta scheme).

� Convective part: Lagrange+remap-like scheme on Cartesian meshes.

� Acoustic part: centered scheme based also on nodal method.
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First 2D result I
� We take 100*100 cells Tf = 1 and ρ(t, x) = G(x− u0t)

u(t, x) = u0, such that ∇ · u0 = 0 and | u0 |≈ 10−3

p(t, x) = 1

� Results:

Vars Ex Rusanov Ex LR SI Rusanov New SI Rus... New SI LR
ρ 0.39 1.9E−4 8.4E−4 7.3E−4 7.5E−5

u 0.87 0.51 5.3E−3 4.8E−3 2.7E−3

p 9.6E−8 5.5E−7 1.8E−6 7.2E−7 7.2E−7

∆t 4.2E−4 4.4E−4 0.8 1(max 9) 1(max 9)

Figure: Explicit Rusanov scheme, ex Lr-Like, Semi Implicit relax
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First 2D results II

� Gresho vortex: stationary vortex with varying Mach number.

� Classical test case for Low-Mach flow for Euler equation.

Figure: Results with Rusanov: M = 0.5 (∆t = 1.4E−3), M = 0.1 (∆t = 3.5E−4),
M = 0.01 (∆t = 3.5E−4)

E. Franck 37/39

37/39



First 2D results II

� Gresho vortex: stationary vortex with varying Mach number.

� Classical test case for Low-Mach flow for Euler equation.

Figure: Results with New-relax: M = 0.5 (∆t = 2.5E−3), M = 0.1 (∆t = 2.5E−3),
M = 0.01 (∆t = 2.5E−3)
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Conclusion

Full implicit schemes
� The Xin-Jin model + high order scheme gives good results.
� Drawback: Not sufficiently accurate in the Low -mach regime.
� First relaxation method with central wave as solution.
� Future works: understand the stability of these relaxation methods for low-mach flow

and extend in 2D.

� All these relaxation models can be rewritten/generalized on a diagonal form
(approximated BGK methods) with very high-order schemes and Semi-Lagrangian
schemes.

Semi implicit schemes
� Relaxation + Splitting + VF allows to preserve contact wave and low Mach regime

with a simple implicit step.
� Stability: Possible modification of the scheme to obtain discrete entropy inequality.

� Future works:

� High accuracy for acoustic wave with a theta scheme for relaxation and implicit.
� Modification splitting: Problem of time step if ∂tE(t) >> 1.
� DG Extension in 1D/2D. Which limiting ? MOOD ? Subcell etc ?
� MHD, Exner, Euler with gravity extension in 1D.
� MHD in 2D. Large difficulty to be accurate around the magneto-acoustic steady

state.
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