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Gas dynamic: Euler equations

� Context: Plasma simulation with Euler/MHD equations.

� Euler equation:  ∂tρ+∇ · (ρu) = 0
∂t(ρu) +∇ · (ρu ⊗ u + pId ) = 0
∂tE +∇ · (Eu + pu) = 0

� with ρ(t, x) > 0 the density, u(t, x) the velocity and E(t, x) > 0 the total energy.

� The pressure p is defined by p = ρT (perfect gas law) with T the temperature.

� Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: (u, n) and
(u, n)± c with the sound speed c2 = γ p

ρ
.

Physic interpretation:

� Two important velocity scales: u and c and the ratio (Mach number) M = |u|
c

.
� When M tends to zero, we obtain incompressible Euler equation: ∂tρ+ u · ∇ρ = 0

ρ∂tu + ρu · ∇u +∇p2 = 0
∇ · u = 0

In 1D we have just advection of ρ.

� Aim: contruct an Scheme (AP) valid at the limit with a uniform cost.
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Numerical difficulties in space: Finite volume

Finite Volumes
Finite Volumes is the natural method to solve hyperbolic systems.

� Default of FV scheme. Consistency :

∂tU + ∂xF (U) = ∆x(∂xD(U)∂xU) + O(∆x2)

� We consider UM the solution at the low mach limit.
� The scheme can be considered as not adapted/adapted for this regime if

limM→0 | D(UM) |≈ M−p , limM→0 | D(UM) |< C

� Example: isolated contact p = 1, ∇ · u0 = 0 and u0 constant in time.

� Rusanov scheme Tf = 2 | u0 |≈ 0.001 and 100*100 cells.

� Red: exact solution, Blue: numerical solution.

E. Franck 5/17

5/17



Numerical problem I: time discretization.
� Explicit scheme: the CFL condition for low mach flow:

� The fast phenomena: acoustic waves at velocity c
� The important phenomena: transport at velocity u
� Expected CFL: ∆t < ∆x

|u| , CFL in practice ∆t < ∆x
|c|

� At the end, we use a ∆t divised by M compare to the expected ∆t

First solution
Implicit time scheme. No CFL condition. Taking a larger time step, it allows to ”filter”
the fast acoustic waves which are not useful in the low-Mach regime.

� Implicit time scheme:

MiUn+1 = (Id + ∆tA(Id ))Un+1 = Un

� We must solve a nonlinear system and after linearization solve some linear systems.

Problem
� Direct solver too costly. Approximative conditioning for iterative solver:

k(Mi ) ≈ 1 + O

(
∆t

∆xpM

)
� We recover the two scales in the conditioning number. The full implicit schemes are

difficult to use for this reason.
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Numerical problem II: time discretization.

First idea: Semi implicit scheme
� We explicit the slow scale (transport) and implicit the fast scale (acoustic)

[CDK12]-[DLVD19]


∂tρ+ ∂x (ρu) = 0

∂t(ρu) + ∂x (ρu2) + ∂xp = 0
∂tE + ∂x (Eu) + ∂x (pu) = 0

Implicit acoustic step: ρn+1 = ρn

(ρu)n+1 = ρnun −∆t∂xpn+1 + Rhsu
En+1 = En −∆t∂x (pn+1un+1) = RhsE

Plugging this in the second equation, we obtain

En+1 −∆t2∂x

(
pn+1

ρn
∂xp

n+1

)
= Rhs(En, un, ρ)

�� Matrix-vector product to compute un+1.

Conclusion
� Semi implicit: only one scale in the implicit symmetric positive operator.
� Strong gradient of ρ generates ill-conditioning. Assembly at each time (costly).
� Nonlinear solver can have bad convergence for if ∆t >> 1 and ∂xp not so small.
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Relaxation method I
� Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations.

Used to design new schemes.
� Idea: Approximate the model

∂tU + ∂xF(U) = 0, by ∂t f + A(f) =
1

ε
(Q(f)− f)

� At the limit and taking Pf = U we obtain

∂tU + ∂xF(U) = ε∂x (D(U)∂xU) + O(ε2)

� Time scheme:
� we solve

f∗ − fn

∆t
+ A(f∗,n) = 0

� and after we approximate the stiff source term by

fn+1 = f∗ + ω(Q(f∗)− f∗)

with ω ∈]0, 2].

Why ?
� In general, we construct A with a simpler structure than F to design numerical flux in

FV.

� Here, we construct A with a simpler structure to design simple implicit scheme.
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Relaxation method II
� Problem: the nonlinearity of the implicit acoustic step generates difficulties.
� Non conservative form and acoustic term:

∂tρ+ ∂x (ρu) = 0
∂tp + u∂xp + ρc2∂xu = 0
∂tu + u∂xu + 1

ρ
∂xp = 0

� Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + Π) = 0
∂tE + ∂x (Ev + Πv) = 0
∂tΠ + v∂xΠ + φλ2∂xv = 1

ε
(p − Π)

∂tv + v∂xv + 1
φ
∂xΠ = 1

ε
(u − v)

� Limit: 
∂tρ+ ∂x (ρu) = ε∂x [A∂xp]
∂t(ρu) + ∂x (ρu2 + p) = ε∂x [(Au∂xp) + B∂xu]

∂tE + ∂x (Eu + pu) = ε∂x
[
AE∂xp + A∂x

p2

2
+ B∂x

u2

2

]
� with A = 1

ρ

(
ρ
φ
− 1
)

and B =
(
ρφλ2 − ρ2c2

)
.

� Stability: φλ > ρc2 and ρ > φ.

Avdantage
� We keep the conservative form for the original variables and obtain a fully linear

acoustic.
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Splitting

Dynamical splitting
� Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time

depending for low-mach [IDGH2018]

� For large acoustic waves (Mach number not small) we want capture all the
phenomena. Consequently use an explicit scheme.

� For small/fast acoustic waves (low Mach number) we want filter acoustic.
Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv +M2(t)Π) = 0
∂tE + ∂x (Ev +M2(t)Πv) = 0
∂tΠ + v∂xΠ + φλ2

c∂xv = 0

∂tv + v∂xv + M2(t)
φ

∂xΠ = 0

,


∂tρ = 0
∂t(ρu) + (1−M2(t))∂xΠ = 0
∂tE + (1−M2(t))∂x (Πv) = 0
∂tΠ + φ(1−M2(t))λ2

a∂xv = 0
∂tv + (1−M2(t)) 1

φ
∂xΠ = 0

with M(t) ≈ max
(
Mmin,min

(
maxx

|u|
c

, 1
))

� Eigenvalues of Explicit part: v , v ±M(t) λc︸︷︷︸
≈c

. Implicit part 0, ±(1−M2(t)) λa︸︷︷︸
≈c

� At the end: we make the projection Π = p and v = u (can be viewed as a
discretization of the stiff source term).

E. Franck 11/17

11/17



Implicit time scheme
� We introduce the implicit scheme for the ”acoustic part”:

ρn+1 = ρn

(ρu)n+1 + ∆t(1−M2(tn))∂xΠn+1 = (ρu)n

En+1 + ∆t(1−M2(tn))∂x (Πv)n+1 = En

Πn+1 + ∆t(1−M2(tn))φλ2
a∂xv

n+1 = Πn

vn+1 + ∆t(1−M2(tn)) 1
φ
∂xΠn+1 = vn

� We plug the equation on v in the equation on Π. We obtain the following algorithm:
� Step 1: we solve

(Id − (1−M2(tn))2∆t2λ2
a∂xx )Πn+1 = Πn −∆t(1−M2(tn))φλ2

a∂xv
n

� Step 2: we compute

vn+1 = vn −∆t(1−M2(tn))
1

φ
∂xΠn+1

� Step 3: we compute

(ρu)n+1 = (ρu)n −∆t(1−M2(tn))∂xΠn+1

� Step 4: we compute

En+1 = En −∆t(1−M2(tn))∂x (Πn+1vn+1)

Advantage
� We solve only a constant Laplacian. We can assembly matrix one time.
� No problem of conditioning, which comes from to the strong gradient of ρ
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Spatial scheme in 1D
� Idea: FV Godunov fluxes for the explicit part + Central fluxes for the implicit part.
� Main problem of the explicit part: design numerical flux.
� First possibility: since the maximal eigenvalue is O(Mach) a Rusanov scheme.

� Other solution: construct a Godunov scheme for the relaxation system. Principle:

� eigenvalues: v − E(t)λc , v(x3), v + E(t)λc
� Strong invariants of external waves:

∂t(v ± φλcπ) + (v ± E(t)λc )∂x (v ± φλcπ) = 0

� Strong invariants of central wave:

∂t

(
1

ρ
+

π

ρφλ2

)
+ v∂x

(
1

ρ
+

π

ρφλ2

)
= 0

∂t

(
u −

φ

ρ
v

)
+ v∂x

(
u −

φ

ρ
v

)
= 0

∂t

(
ρe +

π2

2ρφλ2
c

+
(v − u)2

2( ρ
φ
− 1)

)
+ v∂x

(
ρe +

π2

2ρφλ2
c

+
(v − u)2

2( ρ
φ
− 1)

)
= 0

� Important: strong invariant are weak invariant (conserved) on other wave.
Exemple: (π, v) preserved on central wave.

� We obtain all the intermdiary states using these previous result.
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Results 1D I: contact
� Smooth contact :  ρ(t, x) = χx<x0 + 0.1χx>x0

u(t, x) = 0.01
p(t, x) = 1

� Error

cells Ex Rusanov Ex LR Old relax Rusanov Relax Rus Relax PC-FVS
250 0.042 3.6E−4 1.4E−3 7.8E−4 4.1E−4

500 0.024 1.8E−4 6.9E−4 3.9E−4 2.0E−4

1000 0.013 9.0E−5 3.4E−4 2.0E−4 1.0E−5

2000 0.007 4.5E−5 1.7E−4 9.8E−5 4.9E−5

� Old relax: other relaxation scheme where the implicit Laplacian is not constant and
depend of ρn.

� Comparison time scheme:

Scheme λ ∆t
Explicit max(| u − c |, | u + c |) 2.2E−4

SI Old relax max(| u −M(tn))λ
ρ
|, | u +M(tn))λ

ρ
|) 0.0075

SI new relaxation max(| v −M(tn))λ |, | v +M(tn))λ |) 0.04

� Conditioning:

Schemes ∆t conditioning
Si old relax 0.00757 3000
Si new relax 0.041 9800
Si new relax 0.0208 2400
si new relax 0.0075 320
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Results in 2D: Gresho vortex

� Gresho vortex: ∇ · u = 0 and p = 1
M2 + p2(x)

� Explicit Lagrange+remap scheme Norm of the velocity (2D plot). 1D initial (red) and
final (blue) time .From left to right: M0 = 0.5 (∆t = 1.4E−3), M0 = 0.1
(∆t = 3.5E−4), M0 = 0.01 (∆t = 3.5E−5), M0 = 0.001 (∆t = 3.5E−6).
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Results in 2D: Kelvin helmholtz

� kelvin-Helmholtz instability. Density:

� Density at time Tf = 3, k = 1, M0 = 0.1. Explicit Lagrange-Remap scheme with
120× 120 (left) and 360× 360 cells (middle left), SI two-speed relaxation scheme
(λc = 18, λa = 15, φ = 0.98) with 42× 42 (middle right) and 120× 120 cells (right).
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Results in 2D: Kelvin helmholtz

� kelvin-Helmholtz instability. Density:

� Density at time Tf = 3, k = 2, M0 = 0.01 with SI two-speed relaxation scheme
(λc = 180, λa = 150, φ = 0.98). Left: 120× 120 cells. Right: 240× 240 cells.
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Conclusion

Resume
� Introducing Dynamic splitting scheme we separate the scales.
� Introducing implicit scheme for the acoustic wave we can filter these waves.
� Introducing relaxation we simplify at the maximum the implicit scheme.
� A well-adapted spatial scheme is also very important.

� At the end: we capture the incompressible limit.

Perspectives:
� To avoid some spurious mods: Use compatible discretization for the linear wave part

(mimetic/staggered DF, compatible finite element).

� Extension to High Order, MUSCL firstly and after DG and HDG schemes.
� Extension to Shallow-Water/Ripa models and MHD (main goal). For MHD the

relaxation it is ok but the splitting is less clear.
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