Semi Implicit Relaxation Scheme for Multi-Scale Fluid Problems

F. Bouchut³, <u>E. Franck¹²</u>, L. Navoret¹²

WCCM 2020, Paris

¹Inria Nancy Grand Est, France ²IRMA, Strasbourg university, France ³Marne la Vallée, university, France

E. Franck

Outline

Physical and mathematical context

Relaxation method

(nría-

Physical and mathematical context

Gas dynamic: Euler equations

- **Context**: Plasma simulation with Euler/MHD equations.
- Euler equation:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0\\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + \rho l_d) = 0\\ \partial_t E + \nabla \cdot (E \mathbf{u} + \rho \mathbf{u}) = 0 \end{cases}$$

- with $\rho(t, \mathbf{x}) > 0$ the density, $u(t, \mathbf{x})$ the velocity and $E(t, \mathbf{x}) > 0$ the total energy.
- The pressure p is defined by $p = \rho T$ (perfect gas law) with T the temperature.
- **Hyperbolic system** with nonlinear waves. Waves speed: three eigenvalues: (u, n) and $(u, n) \pm c$ with the sound speed $c^2 = \gamma \frac{p}{a}$.

Gas dynamic: Euler equations

- **Context**: Plasma simulation with Euler/MHD equations.
- Euler equation:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + \rho I_d) = 0 \\ \partial_t E + \nabla \cdot (E \mathbf{u} + \rho \mathbf{u}) = 0 \end{cases} \longrightarrow \begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{M^2} \nabla \rho = 0 \\ \partial_t E + \nabla \cdot (E \mathbf{u} + \rho \mathbf{u}) = 0 \end{cases}$$

with $\rho(t, \mathbf{x}) > 0$ the density, $u(t, \mathbf{x})$ the velocity and $E(t, \mathbf{x}) > 0$ the total energy.

- The pressure p is defined by $p = \rho T$ (perfect gas law) with T the temperature.
- **Hyperbolic system** with nonlinear waves. Waves speed: three eigenvalues: (u, n) and $(u, n) \pm c$ with the sound speed $c^2 = \gamma \frac{p}{\rho}$.

Physic interpretation:

Two important velocity scales: u and c and the ratio (Mach number) M = |u|/c.
 When M tends to zero, we obtain incompressible Euler equation:

$$\begin{cases} \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho = 0\\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla p_2 = 0\\ \nabla \cdot \boldsymbol{u} = 0 \end{cases}$$

In 1D we have just advection of ρ .

Aim: contruct an Scheme (AP) valid at the limit with a uniform cost.

Numerical difficulties in space: Finite volume

Finite Volumes

Finite Volumes is the natural method to solve hyperbolic systems.

Default of FV scheme. Consistency :

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \Delta x (\partial_x D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + O(\Delta x^2)$$

We consider U_M the solution at the low mach limit.

The scheme can be considered as not adapted/adapted for this regime if

 $lim_{M\to 0} \mid D(\boldsymbol{U}_M) \mid \approx M^{-p}, \quad lim_{M\to 0} \mid D(\boldsymbol{U}_M) \mid < C$

Example: isolated contact p = 1, $\nabla \cdot u_0 = 0$ and u_0 constant in time.

Rusanov scheme $T_f = 2 \mid \boldsymbol{u}_0 \mid \approx 0.001$ and 100*100 cells.

Red: exact solution, Blue: numerical solution.

Numerical problem I: time discretization.

Explicit scheme: the CFL condition for low mach flow:

- The fast phenomena: acoustic waves at velocity c
- The important phenomena: transport at velocity u
- \Box Expected CFL: $\Delta t < \frac{\Delta x}{|u|}$, CFL in practice $\Delta t < \frac{\Delta x}{|c|}$
- \Box At the end, we use a Δt divised by *M* compare to the expected Δt

First solution

Implicit time scheme. No CFL condition. Taking a larger time step, it allows to "filter" the fast acoustic waves which are not useful in the low-Mach regime.

Implicit time scheme:

$$M_i \boldsymbol{U}^{n+1} = (I_d + \Delta t A(I_d)) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n$$

• We must solve a nonlinear system and after linearization solve some linear systems.

Problem

Direct solver too costly. Approximative conditioning for iterative solver:

$$k(M_i) \approx 1 + O\left(\frac{\Delta t}{\Delta x^p M}\right)$$

• We recover the two scales in the conditioning number. The full implicit schemes are difficult to use for this reason.

Numerical problem II: time discretization.

First idea: Semi implicit scheme

 We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p = 0\\ \partial_t E + \partial_x (Eu) + \partial_x (\rho u) = 0 \end{cases}$$

Implicit acoustic step:

$$\begin{cases} \rho^{n+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x \rho^{n+1} + Rhs_u \\ E^{n+1} = E^n - \Delta t \partial_x (\rho^{n+1} u^{n+1}) = Rhs_E \end{cases}$$

Plugging this in the second equation, we obtain

$$E^{n+1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho)$$

• Matrix-vector product to compute u^{n+1} .

Numerical problem II: time discretization.

First idea: Semi implicit scheme

 We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p = 0\\ \partial_t E + \partial_x (Eu) + \partial_x (pu) = 0 \end{cases}$$

Implicit acoustic step:

$$\begin{cases} \rho_{x}^{p+1} = \rho^{n} \\ (\rho u)^{n+1} = \rho^{n} u^{n} - \Delta t \partial_{x} p^{n+1} + Rhs_{u} \\ \frac{p^{n+1}}{\gamma - 1} + \frac{1}{2} \rho^{n} u^{n} = E^{n} - \Delta t \partial_{x} (p^{n+1} u^{n+1}) = Rhs_{E} \end{cases}$$

Plugging this in the second equation, we obtain

$$\frac{p^{n+1}}{\gamma-1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho^n)$$

Matrix-vector product to compute uⁿ⁺¹.

Numerical problem II: time discretization.

۷

First idea: Semi implicit scheme

 We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p = 0\\ \partial_t E + \partial_x (Eu) + \partial_x (\rho u) = 0 \end{cases}$$

Implicit acoustic step:

$$\begin{cases} \rho^{h+1} = \rho^n \\ (\rho u)^{n+1} = \rho^n u^n - \Delta t \partial_x p^{n+1} + Rhs_u \\ \frac{p^{n+1}}{\gamma - 1} + \frac{1}{2}\rho^n u^n = E^n - \Delta t \partial_x (p^{n+1}u^{n+1}) = Rhs_E \end{cases}$$

Plugging this in the second equation, we obtain

$$\frac{p^{n+1}}{\gamma-1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho^n)$$

Matrix-vector product to compute uⁿ⁺¹.

Conclusion

- **Semi implicit**: only one scale in the implicit symmetric positive operator.
- Strong gradient of ρ generates ill-conditioning. Assembly at each time (costly).
- Nonlinear solver can have bad convergence for if $\Delta t >> 1$ and $\partial_x p$ not so small.

17

Relaxation method

Relaxation method I

- Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations. Used to design new schemes.
- Idea: Approximate the model

$$\partial_t \boldsymbol{U} + \partial_x \mathbf{F}(\boldsymbol{U}) = 0$$
, by $\partial_t \mathbf{f} + \mathbf{A}(\mathbf{f}) = \frac{1}{\varepsilon} (Q(\mathbf{f}) - \mathbf{f})$

At the limit and taking Pf = U we obtain

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{\mathsf{F}}(\boldsymbol{U}) = \varepsilon \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + O(\varepsilon^2)$$

Time scheme:

□ we solve

$$\frac{\mathbf{f}^* - \mathbf{f}^n}{\Delta t} + \mathbf{A}(\mathbf{f}^{*,n}) = 0$$

 $\hfill\square$ and after we approximate the stiff source term by

$$\mathbf{f}^{n+1} = \mathbf{f}^* + \omega(Q(\mathbf{f}^*) - \mathbf{f}^*)$$

with $\omega \in]0, 2]$.

Why?

In general, we construct ${\bm A}$ with a simpler structure than ${\bm F}$ to design numerical flux in FV.

Here, we construct **A** with a simpler structure to design simple implicit scheme.

Relaxation method II

- Problem: the nonlinearity of the implicit acoustic step generates difficulties.
 Non conservative form and acoustic term:

$$\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0 \\ \partial_t p + u \partial_x p + \rho c^2 \partial_x u &= 0 \\ \partial_t u + u \partial_x u + \frac{1}{\rho} \partial_x \rho &= 0 \end{aligned}$$

Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.

$$\begin{aligned} &\partial_t \rho + \partial_x (\rho v) = 0 \\ &\partial_t (\rho u) + \partial_x (\rho u v + \Pi) = 0 \\ &\partial_t E + \partial_x (E v + \Pi v) = 0 \\ &\partial_t \Pi + v \partial_x \Pi + \phi \lambda^2 \partial_x v = \frac{1}{\varepsilon} (p - \Pi) \\ &\partial_t v + v \partial_x v + \frac{1}{\phi} \partial_x \Pi = \frac{1}{\varepsilon} (u - v) \end{aligned}$$

Limit[.]

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = \varepsilon \partial_x [A \partial_x p] \\ \partial_t (\rho u) + \partial_x (\rho u^2 + p) = \varepsilon \partial_x [(A u \partial_x p) + B \partial_x u] \\ \partial_t E + \partial_x (E u + p u) = \varepsilon \partial_x \left[A E \partial_x p + A \partial_x \frac{p^2}{2} + B \partial_x \frac{u^2}{2} \right] \end{cases}$$

with $A = \frac{1}{\rho} \left(\frac{\rho}{\phi} - 1 \right)$ and $B = (\rho \phi \lambda^2 - \rho^2 c^2)$.
Stability: $\phi \lambda > \rho c^2$ and $\rho > \phi$.

Avdantage

We keep the conservative form for the original variables and obtain a fully linear acoustic.

Splitting

Dynamical splitting

- Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time depending for low-mach [IDGH2018]
- For large acoustic waves (Mach number not small) we want capture all the phenomena. Consequently use an explicit scheme.
- For small/fast acoustic waves (low Mach number) we want filter acoustic. Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u v + \mathcal{M}^2(t) \Pi) = 0 \\ \partial_t E + \partial_x (E v + \mathcal{M}^2(t) \Pi v) = 0 \\ \partial_t \Pi + v \partial_x \Pi + \phi \lambda_c^2 \partial_x v = 0 \\ \partial_t v + v \partial_x v + \frac{\mathcal{M}^2(t)}{\phi} \partial_x \Pi = 0 \end{cases}, \begin{cases} \partial_t \rho = 0 \\ \partial_t (\rho u) + (1 - \mathcal{M}^2(t)) \partial_x \Pi = 0 \\ \partial_t E + (1 - \mathcal{M}^2(t)) \partial_x (\Pi v) = 0 \\ \partial_t \Pi + \phi (1 - \mathcal{M}^2(t)) \lambda_a^2 \partial_x v = 0 \\ \partial_t v + (1 - \mathcal{M}^2(t)) \frac{1}{\phi} \partial_x \Pi = 0 \end{cases}$$

with $\mathcal{M}(t) pprox max\left(\mathcal{M}_{\textit{min}}, \textit{min}\left(max_{x}rac{|u|}{c}, 1
ight)
ight)$

- Eigenvalues of Explicit part: $v, v \pm \mathcal{M}(t) \underbrace{\lambda_c}_{\approx c}$. Implicit part 0, $\pm (1 \mathcal{M}^2(t)) \underbrace{\lambda_a}_{\approx c}$
- At the end: we make the projection $\Pi = p$ and v = u (can be viewed as a discretization of the stiff source term).

Implicit time scheme

We introduce the implicit scheme for the "acoustic part":

$$\begin{cases} \rho^{n+1} = \rho^{n} \\ (\rho u)^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \partial_{x} \Pi^{n+1} = (\rho u)^{n} \\ E^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \partial_{x} (\Pi v)^{n+1} = E^{n} \\ \Pi^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \phi \lambda_{a}^{2} \partial_{x} v^{n+1} = \Pi^{n} \\ v^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \frac{1}{\phi} \partial_{x} \Pi^{n+1} = v^{n} \end{cases}$$

■ We plug the equation on *v* in the equation on Π. We obtain the following algorithm: □ Step 1: we solve

$$(I_d - (1 - \mathcal{M}^2(t_n))^2 \Delta t^2 \lambda_a^2 \partial_{xx}) \Pi^{n+1} = \Pi^n - \Delta t (1 - \mathcal{M}^2(t_n)) \phi \lambda_a^2 \partial_x v^n$$

 \Box Step 2: we compute

$$v^{n+1} = v^n - \Delta t (1 - \mathcal{M}^2(t_n)) \frac{1}{\phi} \partial_x \Pi^{n+1}$$

□ Step 3: we compute

$$(\rho u)^{n+1} = (\rho u)^n - \Delta t (1 - \mathcal{M}^2(t_n)) \partial_x \Pi^{n+1}$$

Step 4: we compute

$$E^{n+1} = E^n - \Delta t (1 - \mathcal{M}^2(t_n)) \partial_x(\Pi^{n+1} v^{n+1})$$

Advantage

- We solve only a constant Laplacian. We can assembly matrix one time.
- No problem of conditioning, which comes from to the strong gradient of ho

Spatial scheme in 1D

- Idea: FV Godunov fluxes for the explicit part + Central fluxes for the implicit part.
- Main problem of the explicit part: design numerical flux.
- First possibility: since the maximal eigenvalue is O(Mach) a Rusanov scheme.
- Other solution: construct a Godunov scheme for the relaxation system. Principle:
 - \Box eigenvalues: $v \mathcal{E}(t)\lambda_c$, v(x3), $v + \mathcal{E}(t)\lambda_c$
 - Strong invariants of external waves:

$$\partial_t (v \pm \phi \lambda_c \pi) + (v \pm \mathcal{E}(t) \lambda_c) \partial_x (v \pm \phi \lambda_c \pi) = 0$$

Strong invariants of central wave:

$$\partial_t \left(\frac{1}{\rho} + \frac{\pi}{\rho\phi\lambda^2} \right) + v\partial_x \left(\frac{1}{\rho} + \frac{\pi}{\rho\phi\lambda^2} \right) = 0$$
$$\partial_t \left(u - \frac{\phi}{\rho}v \right) + v\partial_x \left(u - \frac{\phi}{\rho}v \right) = 0$$
$$\partial_t \left(\rho e + \frac{\pi^2}{2\rho\phi\lambda_c^2} + \frac{(v-u)^2}{2(\frac{\rho}{\phi} - 1)} \right) + v\partial_x \left(\rho e + \frac{\pi^2}{2\rho\phi\lambda_c^2} + \frac{(v-u)^2}{2(\frac{\rho}{\phi} - 1)} \right) = 0$$

□ **Important**: strong invariant are weak invariant (conserved) on other wave. **Exemple**: (π, ν) preserved on central wave.

□ We obtain all the intermdiary states using these previous result.

Results 1D I: contact

Smooth contact :

$$\begin{aligned} \rho(t,x) &= \chi_{x < x_0} + 0.1 \chi_{x > x_0} \\ u(t,x) &= 0.01 \\ \rho(t,x) &= 1 \end{aligned}$$

Error

cells	Ex Rusanov	Ex LR	Old relax Rusanov	Relax Rus	Relax PC-FVS
250	0.042	$3.6E^{-4}$	$1.4E^{-3}$	$7.8E^{-4}$	$4.1E^{-4}$
500	0.024	$1.8E^{-4}$	$6.9E^{-4}$	$3.9E^{-4}$	$2.0E^{-4}$
1000	0.013	$9.0E^{-5}$	$3.4E^{-4}$	$2.0E^{-4}$	$1.0E^{-5}$
2000	0.007	$4.5E^{-5}$	$1.7E^{-4}$	$9.8E^{-5}$	$4.9E^{-5}$

- **Old relax**: other relaxation scheme where the implicit Laplacian is not constant and depend of ρ^n .
- Comparison time scheme:

Scheme	λ	Δt
Explicit	$\max(\mid u-c\mid,\mid u+c\mid)$	$2.2E^{-4}$
SI Old relax	$\max(\mid u - \mathcal{M}(t_n)) rac{\lambda}{ ho} \mid, \mid u + \mathcal{M}(t_n)) rac{\lambda}{ ho} \mid)$	0.0075
SI new relaxation	$\max(\mid v - \mathcal{M}(t_n))\lambda \mid, \mid v + \mathcal{M}(t_n))\lambda \mid)$	0.04

Conditioning:

Schemes	Δt	conditioning	
Si old relax	0.00757	3000	
Si new relax	0.041	9800	
Si new relax	0.0208	2400	
si new relax	0.0075	320	

Results in 2D: Gresho vortex

Gresho vortex:
$$\nabla \cdot \boldsymbol{u} = 0$$
 and $\boldsymbol{p} = \frac{1}{M^2} + p_2(\mathbf{x})$

Explicit Lagrange+remap scheme Norm of the velocity (2D plot). 1D initial (red) and final (blue) time .From left to right: $M_0 = 0.5$ ($\Delta t = 1.4E^{-3}$), $M_0 = 0.1$ ($\Delta t = 3.5E^{-4}$), $M_0 = 0.01$ ($\Delta t = 3.5E^{-5}$), $M_0 = 0.001$ ($\Delta t = 3.5E^{-6}$).

Results in 2D: Gresho vortex

Gresho vortex:
$$\nabla \cdot \boldsymbol{u} = 0$$
 and $\boldsymbol{p} = \frac{1}{M^2} + p_2(\mathbf{x})$

Relaxation scheme. Norm of the velocity (2D plot). 1D initial (red) and final (blue) times. From left to right: M = 0.5, $\Delta t = 2.5E^{-3}$, M = 0.1, $\Delta t = 2.5E^{-3}$, M = 0.01, $\Delta t = 2.5E^{-3}$.

Results in 2D: Kelvin helmholtz

kelvin-Helmholtz instability. Density:

Density at time $T_f = 3$, k = 1, $M_0 = 0.1$. Explicit Lagrange-Remap scheme with 120×120 (left) and 360×360 cells (middle left), SI two-speed relaxation scheme ($\lambda_c = 18$, $\lambda_a = 15$, $\phi = 0.98$) with 42 × 42 (middle right) and 120 × 120 cells (right).

Results in 2D: Kelvin helmholtz

kelvin-Helmholtz instability. Density:

Density at time $T_f = 3$, k = 2, $M_0 = 0.01$ with SI two-speed relaxation scheme ($\lambda_c = 180$, $\lambda_a = 150$, $\phi = 0.98$). Left: 120×120 cells. Right: 240×240 cells.

Conclusion

Resume

- Introducing Dynamic splitting scheme we separate the scales.
- Introducing implicit scheme for the acoustic wave we can filter these waves.
- Introducing relaxation we simplify at the maximum the implicit scheme.
- A well-adapted spatial scheme is also very important.
- At the end: we capture the incompressible limit.

Perspectives:

- To avoid some spurious mods: Use compatible discretization for the linear wave part (mimetic/staggered DF, compatible finite element).
- Extension to High Order, MUSCL firstly and after DG and HDG schemes.
- Extension to Shallow-Water/Ripa models and MHD (main goal). For MHD the relaxation it is ok but the splitting is less clear.

