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Objective

• We have temporal data (x11, ..., xt, ..., x1T)....(xn1 , ..., xnt , ..., xnT)
• A classical task in ML is to learn a model to predict the next state.
• In general we try to find

P(xt | x1, ...., xt−1), ∀t > 0,

• No assumption on the temporal phenomena.

Learn ODE
In this case the objective is to learn fθ such that

ẋ(t) = fθ(x(t))

predict well dynamic associated to the data.

• Reduced modeling for PDEs
• Discover new physical laws (huge amount of data in astrophysics for example)
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Lagrangian systems

• Here we are interested by conservative problems.
• The conservative problem are modeled by some specific class of ODEs.

Lagrangian system
Let generalized coordinates q(t). A Lagrangian system is of the form:(

∂2L

∂q̇∂q̇

)
q̈+

(
∂2L

∂q∂q̇

)
q̇ =

∂L(q, q̇)
∂q .

where the function L(q, q̇) is called the Lagrangian.

• Noether theorem: A symmetry of L induce a conserved quantity.
• Invariance compared to spatial translation and rotation gives generalized impulsion
and angular momentum conservation.

• Since L is time translation invariant the energy H = (p, q̇) − L with p = ∂L(q,q̇)
∂q̇ the

generalized impulsion.
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Canonical Hamiltonian systems

Canonical Hamiltonian system
The dynamic of x(t) = (q(t),p(t)) is given by the Hamiltonian system

ẋ(t) = J−1∇xH(x)
with

J =

(
0 −IN
In 0

)
and H = (p, q̇) − L the Hamiltonian function.

• We note ϕH(x0; t) the flow associated to the ODE.
• Properties of the flow:

I The flow conserve the Hamiltonian function: dH(ϕH(x0;t))
dt = 0

I The flow conserve the volume: Vol(ϕH(A; t)) = Vol(A) with Vol(A) =
∫
A dx
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Structure preserving learning
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ODE learning

• We come back to original question: How learn a time dynamic ?
• Data:

X =
[
(x11, ..., xt, ..., x1T)....(xn1 , ..., xnt , ..., xnT)

]
• Using these data we can construct approximation of time derivative. We obtain

Ẋ = [(ẋ11, ..., ẋt, ..., ẋ1T)....(ẋn1 , ..., ẋnt , ..., ẋnT)]

using you favorite interpolation/finite difference method.

How learn the ODE
We just need to minimize:

minθ

n∑
i=1

T−1∑
t=1

‖ ẋit − Fθ(xit) ‖22

on the full set of trajectories. It is supervised learning.
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Stability

• How assure that the model are globally well posed, stable etc.
I Learning on the full trajectories which is equivalent to solve

minθ

(
n∑
i=1

∫ T
0
‖ xθ(t)i − x(t)i ‖22

)
with xθ(t)i solution of {

dxi,θ(t)
dt = fθ(xi,θ(t))

xi,θ(t0) = x0i
I Impose a stable structure in the learning.
I For dissipative system we learn with a gradient flow structure or assuring the existence
of Lyapunov function.

I For conservation problem we can impose the structure in the training.

• Reference: Hamiltonian Neural Networks, S. Greydanus and al.
• We minimize:

minθ

n∑
i=1

T−1∑
t=1

‖ ẋit − J−1∇xHθ(xit) ‖22
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Numerical examples

• We learn the oscillator system H(q,p) = 1
2 (p

2 + q2). Data generated with ∆t = 1e−3

and T = 20
• We solve the learned systems with ∆t = 1e−2 and T = 100

• Left: reference solution. Right: we learn fθ solved with RK4.
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Numerical examples

• We learn the oscillator system H(q,p) = 1
2 (p

2 + q2). Data generated with ∆t = 1e−3

and T = 20
• We solve the learned systems with ∆t = 1e−2 and T = 100

• Left: reference solution. Right: we learn Hθ solved with Verlet scheme.
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Numerical examples

• We learn the oscillator system H(q,p) = 1
2 (p

2 + q2). Data generated with ∆t = 1e−3

and T = 20
• We solve the learned systems with ∆t = 8e−2 and T = 160

• Left: reference solution. Right: we learn fθ solved with RK4.
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Numerical examples

• We learn the oscillator system H(q,p) = 1
2 (p

2 + q2 + 0.12 13q
3). Data generated with

∆t = 1e−3 and T = 20
• We solve the learned systems with ∆t = 8e−2 and T = 160

• Left: reference solution. Right: we learn fθ solved with RK4.
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Numerical examples

• We learn the oscillator system H(q,p) = 1
2 (p

2 + q2 + 0.12 13q
3). Data generated with

∆t = 1e−3 and T = 20
• We solve the learned systems with ∆t = 8e−2 and T = 160

• Left: reference solution. Right: we learn Hθ solved with Verlet scheme.
• Symplecticity error: O(T∆t4 + Tεtraining) where we learn fθ, O(T∆t4) where we learn
Hθ solved with RK4 and 0 where it is solved with Verlet.
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Reduced modeling

• Reduced modeling
not preserving/preserving the structure for Vlasov equation (M. Kraus simulation)

• It is important to preserve the structure of the PDE in the reduced modeling pro-
cess.

• In this talk we focus on ODE structure preserving learning. The goal is to apply this
to learn the dynamic on the latent space.

• Work of G. Steimer on reduction (nice talk but ... yesterday).
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NonCanonical Hamiltonian
Non canonical Hamiltonian systems
We assume that x ∈ U ⊂ R2N. A non canonical equation is on the form:

ẋ = K(x)−1∇xH(x)
with K(x) a invertible skew-symetric matrix satisfying the Jacobi identity:

n∑
l=1

(
∂Kij(x)
∂xl

Klk(x) +
∂Kjk(x)

∂xl
Kli(x) +

∂Kki(x)
∂xl

Klj(x)
)

= 0

The flow is K-symplectic if (∇xϕ)t(x)K(ϕ(x))(∇xϕ) = K(x).

• More general modeling. How learn these type of systems ?
I We learn Hθ and a skew-symmetric matrix Kθ. Jacobi identity is not verified.
I We learn Hθ and a skew-symmetric matrix Kθ with Jacobi identity is verified choosing

Ki,j(x) =
∂Vi,θ(x)

∂xj
−

∂Vj,θ(x)
∂xi

• Reference: Y. Chen and al Neural Symplectic Form: Learning Hamiltonian Equations on Gen-
eral Coordinate Systems. 2021
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Non canonical Hamiltonian learning

• Example given in the reference. Example: double pendulum
• Short time, different learning.

• Long time

• Work well but in this work they use RK4 scheme.
• It will be generate problem for long time simulations.
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Lagrangian formulation and variational integrator

• For Vθ = [0, ϑθ], the non canonical Hamiltonian system can be rewrite as Lagrangian
system with

L(q,p, q̇) =
n∑
j=1

ϑj,θ(q,p) · qj −H(q,p)

with x = (q,p)t. We speak about properly degenerate Lagrangian. We obtain the
following system:{

q̇ =
(
Dpϑ

)−1∇pH,

ṗ =
(
Dqϑ

)−T
((
Dqϑ− Dqϑ>

)(
Dpϑ

)−1∇pH −∇qH
)

• Allows to use specific time integrator called Discrete Variational Integrator (order 1).
• Variational integrators are numerical schemes based on a discrete Lagrangian

zn+1 = ϑ(qn,pn) + Dqϑ(qn,pn)>(qn − qn−1) − ∆t∇qH(qn,pn),
qn+1 = qn + ∆t

(
Dpϑ(qn+1,pn+1)

)−T∇pH(qn+1,pn+1),
pn+1 = ϑ−1(qn+1, zn+1).
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Fails of non-canonical learning
• Like for the non Canonical Hamiltonian model we learn Hθ and ϑθ minimizing:

minθ

n∑
i=1

T−1∑
t=1

(J1,i,t(θ) + J2,i,t(θ))

with
J1,i,t(θ) =‖ q̇it −

(
Dpϑθ

)−1∇pHθ(qit,pit), ‖22
J2,i,t(θ) =‖ ṗit −

(
Dqϑθ

)−T(Dqϑθ − Dqϑ>θ
)(
Dpϑ

)−1∇pH(qit,pit) −H(qit,pit) ‖22

• Example: Lokta Voltera

ϑ(q,p) = − ln(p)/q,

H(q,p) = q+p−ln(q)−ln(p) 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

1st period
rk4
dvi

• Reference solution. Short time. Large time step.

• The model use Jacobian inverse of ϑ, the scheme use the local invert of ϑ.
• The scheme is sensitive to perturbations on ϑ, even if they don’t impact the EDO.
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• Reference solution. Long time. Large time step.

• The model use Jacobian inverse of ϑ, the scheme use the local invert of ϑ.
• The scheme is sensitive to perturbations on ϑ, even if they don’t impact the EDO.
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• Example: Lokta Voltera

ϑ(q,p) = − ln(p)/q,

H(q,p) = q+p−ln(q)−ln(p) 2 4 6 8 10 12 14
x

30

25

20

15

10

5

0

y

1st period
rk4
dvi

• Learning model. Short time. Large time step.

• The model use Jacobian inverse of ϑ, the scheme use the local invert of ϑ.
• The scheme is sensitive to perturbations on ϑ, even if they don’t impact the EDO.
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Fails of non-canonical learning
• Like for the non Canonical Hamiltonian model we learn Hθ and ϑθ minimizing:

minθ

n∑
i=1

T−1∑
t=1

(J1,i,t(θ) + J2,i,t(θ))

with
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J2,i,t(θ) =‖ ṗit −

(
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)−T(Dqϑθ − Dqϑ>θ
)(
Dpϑ

)−1∇pH(qit,pit) −H(qit,pit) ‖22

• Example: Lokta Voltera

ϑ(q,p) = − ln(p)/q,

H(q,p) = q+p−ln(q)−ln(p) 4 3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

5k periods
rk4
dvi

• Learning model. Long time. Large time step.

• The model use Jacobian inverse of ϑ, the scheme use the local invert of ϑ.
• The scheme is sensitive to perturbations on ϑ, even if they don’t impact the EDO.
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First solution: Discretization informed regularization
• We consider the solution (q, q̇). By an analysis of the local error we obtain:

Dvi((q, q̇)) = ∆t2R((q, q̇)) + O(∆t3)

• We learn Hθ and ϑθ minimizing:

minθ

n∑
i=1

T−1∑
t=1

(J1,t,i(θ) + J2,t,i(θ) + Regi,t(θ))

with
Regi,t(θ) =‖ R(qti , q̇

t
i) ‖

2
2

• Example: Lokta Voltera

ϑ(q,p) = − ln(p)/q,

H(q,p) = q+p−ln(q)−ln(p) 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

1st period
rk4
dvi

• Learning model with regularization. Short time. Large
time step.
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Emmanuel Franck | Learning non canonical Hamiltonian ODEs | Conference in honour of François Dubois 15/19



Second solution: Learning with the numerical integrator

• Since we will use the DVI, why not learn direct with the DVI.

minθ

n∑
i=1

T−1∑
t=1

(J1,i,t(θ) + Reg(θ))

with
J1,i,t(θ) =‖ DVi((qti , q̇

t
i) ‖

2
2

• The regularization term penalize the conditioning of the matrix inverted in the
scheme.

• Example: Lokta Voltera

ϑ(q,p) = − ln(p)/q,

H(q,p) = q+p−ln(q)−ln(p) 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.5

1.0

1.5

2.0

2.5

3.0

y

1st period
rk4
dvi

• Learning model. Short time. Large time step.

• We learn the modified ϑ associated to the DVI. Large error reducing if you fixe ∆t
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Guiding center
Guiding center
Asymptotic model of plasma physics in tokamaks with a strong magnetic field.

• The position is expressed in poloidal-toroidal coordinates X = (r, θ,φ).
• r is the minor-radial position, θ the geometric poloidal angle, and φ the geometric toroidal angle.
• The momentum is reduced to a single coordinate u in the toroidal direction, parallel to the magnetic field.

• Lagrangian:

L(θ,φ, r,u, θ̇, φ̇) = Aθ(r, θ)θ̇+ (Aφ(r) + u(R0 + r cos(θ)))φ̇− H(r, θ,u).

where A = (0,Aθ,Aφ) is a magnetic potential associated to B = ∇X × A. It is given by

Aθ(r, θ) =
B0R20
cos2(θ)

(
r cos(θ)
R0

− log

(
1+ r cos(θ)

R0

))
, Aφ(r) = −

B0r2

2q0
and

H(r, θ,u) = 1
2u

2 + µB(r, θ), B(r, θ) = B0
1+ r cos(θ)

R0

√
1+

(
r

q0R0

)2

Emmanuel Franck | Learning non canonical Hamiltonian ODEs | Conference in honour of François Dubois 17/19



Numerical results for Guiding center

• Long time simulation
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• Exact model with DVI (top), with RK4 (bottom)

Emmanuel Franck | Learning non canonical Hamiltonian ODEs | Conference in honour of François Dubois 18/19



Numerical results for Guiding center

• Long time simulation

0.925 0.950 0.975 1.000 1.025 1.050
R

0.06

0.04

0.02

0.00

0.02

0.04

0.06

3 2 1 0 1 2 3
0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

u

0.95 1.00 1.05 1.10
R

0.075

0.050

0.025

0.000

0.025

0.050

0.075

3 2 1 0 1 2 3
0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

u

• Learned model without regularization with DVI (top) and with RK4 (bottom)
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Numerical results for Guiding center

• Long time simulation
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• Long time simulation
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• Learned model with the scheme with DVI (top) and with RK4 (bottom)
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Conclusion and perspectives
Conclusion

• Learn non-canonical systems preserving the structure gives better results.
• For long time simulations we need structure preserving scheme.
• The DVI scheme not work directly on the learned model.
• To solve the problem we introduce effect on the DVI scheme in the loss.

I We penalize the first term in the local error of the scheme. Gives a good approximation
of the model but need good reconstruction on the data derivative.

I We learn with the scheme. We learn the modified model associated to the scheme. It is
more accurate since we correct the error of the scheme. Cannot use with other scheme
or too different time steps.

Perspectives
Learn Poisson system

ẋ = B(x)∇xH(x)
where B(x) can be degenerated.
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