RRRRRRRRR
EEEEEEEEEEEE

FRANCASE CEPR A DAYSR202E

Liberté
Egalité
Fraternité

cea PEPFCan@/;\\V(m

PEPR IA/ PDE Al

rance\ BRI - 1
C/ e Greedy training for neural networks |

Applications to PINNs //






PDE and numerical METNOAS .....c..c.civirieiririiiiiccirecneeccrt ettt ettt ettt ettt b e n e 2
Greedy Training for NNS and PINNS ... 5
Neural operators and greedy MEtNOAS .......c.coviiriiiriieic ettt ettt sttt 19

Conclusion



PDE and numerical methods



PDE and numerical methods

Motivation

* PDE modeling: Most physical phenomena are modeled by implicit constraints on the desired function u(t, z),
known as a PDE (Partial Differential Equation).

N(atuv awu 7 ’LL) = f(t,.’]?)

P v

* Simulations: To simulate these phenomena, we use numerical methods to construct an approximation of the
solution u(t, )

* ML and numerical methods: Machine learning, like numerical methods, aims to approximate functions of the
form u(t, z) using a parametric model u,(¢, ). ML approaches achieves this by solving

N
mé}n ; d(U’O (tia xi)a U’z)
with a limited number N of data points, and numerical methods do so by solving
N
meln ; d(N (Oyug, Opug, 0,,ug) (L, ;), f(t;,2;))

where the constraint can be evaluated at as many points as needed.
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PDE and numerical methods

Classical vs Neural numerical methods

e (lassical vs neural methods for spatial PDE like —Au = f

e Approximation trial space: e Approximation trial space:
PP P PP P

V., = {ug(x), such that ug(x) =A;0(A4; ;... +b,_,1)+b))}
V. = < ug(x), such that ug(x Z 0,0, (x

e We solve:

/ 3| (—Aug(@)) — f(@)h (@) ? da

e We solve:

/ S (—Aug(@)) — f(@)s() 2 da

Q =1

ithW_ =S the test with W,, = Span (¢, ..., ¥,,) the test space.
- » = 5pan (i1, - P the test space. , Since the problem is nonlinear we solve it using
o Since the problem is quatradic in § we solve it oradient methods and automatic

with normal equation. Jifferentiation.

e For time problems we can make the same with ¢ a dimension like ther others.
e In general we prefer choose ¢(t) and write a continuous time process which describes the evolution of the

parameters.
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PDE and numerical methods

Why Neural numerical methods ?

Result (Convergence): The set of numerical methods admits a result of this type:

| u(@) — u5(@) 1< CpacC(5)

n

e The neural based methods (PINNSs, discrete PINNs, Neural Galerkin) admit a limited accuracy and no convergence
results.

e Why, in this case, use neural networks ?

Question (Dimension): In uncertainty propagation or optimal control problems, we aim to understand the
influence of the parameter p of the PDE on the solution, thus capturing an approximation of u(x, ).

Result (Curse of dimensionality): We consider a problem of dimension d. We set a target error €. The number of
degrees of freedom (dof) is very roughly given by: O(Z).
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Greedy Training for NNs and PINNs

How improve the performance ?

e The limiting point seems to be the optimization of the neural networks.
e Promising results have been obtained by using:
» Preconditionning (Natural gradient, Gauss-Newton, Leverberg-Marquardt like methods):

Ors1 =0, — ATVI(6))
with for example A = va Vou(z;) ® Vou(x,).
» Subspace/Least Square approaches: we see the network as a basis expension with Apdative basis functions

Uq,p(T) = Z a;p;(x; 6;)
i=1

Alternatively we project onto the basis (least square solver) and we adapt the basis (nonlinear optimization).

» Greedy approach: As subspace approach we consider the network as a sum of adaptive basis functions. The basis

functions are constructed one by one to minimize the error.
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Greedy Training for NNs and PINNs

Greedy Algorithm

Definition (Greedy method): We consider a problem like:

u = argmin, € (v)
We consider D a dictionary of functions (subspace of V). The greedy algorithm is
¢ Initialization: uy = ¢,
* Jteration:

n
¢ = argmin  pE(up_1 +), and (oy,..q,) = argminﬂl’._',ﬁné'( Bi%)
i—1
* update:

un — az’ 902
=1

S

e The greedy algorithm is a sequential method in which we construct a sum of basis functions, each chosen to
minimize the error of the previous approximation.
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Greedy Training for NNs and PINNs

Greedy methods and PINNs

e Difficulty:

» As the algorithm progresses, the error we aim to capture becomes smaller and corresponds to higher frequencies.
* References:

» Seigel and al: Shallow Neural networks and convergence in n~z. O(100) steps.
M. Ainsworth and al: single hidden-layer NN with increasing number of neurons for the high-frequency
capturing. O(10) steps.
Z. Aldirany and al: Deep networks with fourier features for the high-frequency capturing. machine error with 4
networks.

v

v

v

Y. Wang and al: Deep networks with fourier features for the high-frequency capturing with heuristic for the
frequencies choice machine error with 4 networks.

J. Ng and al: Deep networks with fourier features for the high-frequency capturing with FFT for the frequencies
choice machine error with 2-3 networks.

v

Question (Greedy methods and PINNS):

e Use only for simple ellitpic problems. How extend it to more complex problems: nonlinear PDE, complex
geometries.

e How extend the theoretical proofs ?
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Greedy Training for NNs and PINNs

Theoretical results for deep networks

Result (Convergence (V. Ehrlacher)): We assume that the functional to minimize is strongly convex. If D the
dictionary satisfy:

e Span(D) is dense in V (the functional space of the solution like H!(£2))
e Dis weakly closed in V

e VAeR,zeDthen Az €D

the the sequence (u,,) _.. converge toward the solution u.

e If we cannot have the second condition we can add a Ridge penalization of the §,, parameters where D =
{fo(x),such that 6 € U C R"}

Remark: The main point in the density of Span(D).
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Greedy Training for NNs and PINNs

Numerical results for deep networks

Result (Seigel): The shallows networks are dense in H™(Q) if v(x)

= o(z + 1) — o(x) with o the activation
function admit a polynomial decay at infinity.

Result (L. Navoret, V. Ehrlacher, E; Franck, V. Michel-Dansac): We consider the space of deep neural networks
with a specified archicture and L hidden layer and classical activation as tanh or sinus is dense in H™(2)

e There exist a set of weights that all network

Zao ((0;,) +b,)

with o€ the composition of all the activation functions of the deep network.

e So the Span of the deep network contains the space of Shallows networks associated o*
* For many classical activation functions ¥ satisfy the condition of Seigel

e Therefore, we have the density of the deep network in H™(Q2) using Siegel’s results.
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Greedy Training for NNs and PINNs

Results Laplacian I

e PDE: 2D laplacian + 2D parametric source term

(21-n1) +(@a—pg)?

—Au=-¢e 202
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Figure 1: Network used: First step
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Greedy Training for NNs and PINNs

Results Laplacian II

e PDE: 2D laplacian + 2D parametric source term

_(w1—u1)2+(w2—u2)2
—Au = e 202
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Figure 2: Network used: Second step
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Results Laplacian III

e PDE: 2D laplacian + 2D parametric source term

prediction, 3 networks
parameters = 0.12, -0.22
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Figure 3: Network used: Third step
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Results Laplacian IV

e PDE: 2D laplacian + 2D parametric source term

_($1—M1)2+(w2—u2)2

—Au=ce 202
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Figure 4: Network used: Fourth step

Greedy training for neural networks
Emmanuel Franck — PEPR IA- Days 18/03/2025

error, 4 networks
parameters = 0.12, -0.22

) / N\
/ . h
-y




Greedy Training for NNs and PINNs

Results Grad-Shafranov I

e PDE: 2D linear Grad-Shafranov (Plasma tokamak equilibrium) + 1D parametric source term

_ar’r?’b + %arw T azz??D - 6f0 (T2 + T(Q))
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Figure 5: Network used: First step
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Results Grad-Shafranov II

e PDE: 2D linear Grad-Shafranov (Plasma tokamak equilibrium) + 1D parametric source term

_ar’r?’b + %arw o azzw - efo (T’2 + Tg)
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Figure 6: Network used: Second step
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Results Grad-Shafranov III

e PDE: 2D linear Grad-Shafranov (Plasma tokamak equilibrium) + 1D parametric source term

prediction, 3 networks
parameters = 1.16
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Results Grad-Shafranov IV

e PDE: 2D linear Grad-Shafranov (Plasma tokamak equilibrium) + 1D parametric source term
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Figure 8: Network used: Fourth step
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Greedy Training for NNs and PINNs

Next steps and PEPR IA

Project in the PEPR IA
e Post doc of F. Salin (beginning first april 2025).
* » Step 1:
— Extend the proof of convergence with error estimates for greedy methods applied to shallow networks with
Fourier features.
— Propose an efficient strategy for complex geometries to initialize the frequencies of Fourier features,
— Extension to one-hidden-layer networks ?
— Couple Greedy methods with natural gradient for each step.

» Step 2
— We conside high-dimensional transport equations with a neural Semi-Lagrangian scheme (in redaction paper):

2

N
b1 = argming Y || ug(z;) —uy, (z; —vAL) |
i=1

— Coupling this method with the greedy projection.

— Demonstrate the convergence of the greedy method for this problem.
— Applications: Hamilton-Jacobi-Bellman equation (shape optimization, continuous RL), Vlasov equation
(Plasma), Radiative transfer.
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Neural operators and greedy methods

Neural Operator

* We consider a PDE problem like:
—Au = f

Definition (Neural Operator): A neural operator is a neural network that approximates operators like —A. It
takes as input the function f and output the function w.

e In practice we work with numerical approximations of v and f
e We speak about Neural operator where the result is independent of the resolution and possibly the discretization of
the inputs and outputs.

Definition (Continuous neural operator layer): We consider v,y € R% and v, (z) € R%+1. Alayer of neural
operator is given by:

v (T) =0 (W’Ul(x) + /Q K (z,y,v(x),v,(y))v,(y)dy + bz(x))

with W, b, and K] are learnable.
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Neural operators and greedy methods

Neural Operator and Greedy methods

e Simpler case: the GreenNet which is a single linear layer neural operator:

Vs () = / Ky(z, y)oi(y)dy + by(2)
Q

with K is a MLP or similar network and the integration is discretized using Monte Carlo.

Objective (Greedy methods for neural Operator): A first result with randomized neural networks and greedy
methods for the construction of K was obtained. We want extend this to shallow and single hidden NNs with

theoretical results.

e [t will be also interesting to consider numerically deeper neural operators and coupling these with greedy methods.
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Conclusion

Conclusion

e Greedy methods are a promising approach to improve the performance of neural networks for PDEs.
e Theoretical results are available for shallow networks and we obtain partial results for deep networks.

Objective: Provide more theoretical results with error estimates

Objective: Extend the methodology to time-evolutionary neural networks and neural operators.

Objective: Find automatic way to choose the frequencies of the Fourier features and other hyper-parameters.
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