Neural implicit representation for PDE problems

Emmanuel Franck’,

February 23 2024
MIA Seminar, La Rochelle

“MACARON project-team, Université de Strasbourg, CNRS, Inria, IRMA, France

lreia— IIMA

Institut de Recherche
Mathématique Avancée

Outline

Introduction to Neural methods for elliptic equations
General principles
Integration, complex geometries
Computation of restriction
Approximation method for elliptic PDEs

Neural methods and large dimension

Greedy approaches
Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

1/38

Introduction to Neural methods for elliptic equations

Introduction to Neural methods for elliptic equations

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 2/38

Introduction to Neural methods for elliptic equations

General principles

Objectives

Linear elliptic PDEs

Here we consider elliptic and linear PDEs of the form:
Lu(x)) = -V - (AX)Vu(x)) + V- (BxX)u(x)) + c(x)u(x) =f(x), VxeQ c R
ux) =0, VvxeoQ

Numeric Vs learning

Both learning and numerical methods seek to construct function approximations. In both cases,
we use parametric functions. One is constrained by the data, the other by the physical equation.

Idea
Use neural networks as parametric models in numerical methods.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 3/38

Approximation space

Linear space Nonlinear space

+ Approximation space: - Approximation space:
N

M, ={nne(x), © €V CR"

V”_{Zei(bi(x), GGVC]R"} n = {nng(x), }
i=1

+ Restriction operator R:

- Restriction operator R:

9* = minJ | u(x) — nne(x) [dx,
9* = minJ | u(x) — (8, ®(x)) [dx, o Ja
¢ Jo - Reconstruction operator J:
- Solving analytically this problem we obtain:
M6 = b(u)

M= [, ®(x) @ ®(x)dx, b(u)=[,ux)0dx

J(u) = nng(x)

Projection operator: TTy, =Jo R

Properties of the projection op-

« Reconstruction operator J: erator ?

N
I(u) =) 67 di(x)
i=1

- Projection operator: Ty, =Jo R

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

4/38

Approximation space Il

Linear space Nonlinear space
+ We choose fi,f, € Vy: - We choose fi,f, € Mp:
N
f1(x) + f2(x) ¢ M
AX) + %) =Y 0dbi(x) €V, k ’ ’
i=1 + M, is not a vectorial space but a mani-
- V, is a vectorial space. fold.

« Vectorial space Vs Manifold

- Difficulty: the projection on a manifold is not unique.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

5/38

Approximation space lll

Examples of linear space

« Fourier spectral functions (global):

n
fX) =D asin(2kmx)
i=k
+ Orthogonal polynomiales spectral functions

(global): J
¢ f0) =) oePr(x)
+ Finite element basis (loc’a:ls(:
fX) =5 apdnr(x)
i—k

with ¢ , piecewise polynomiales functions.
+ Radial basis (local):

Fx) =) ardlelx—x|)

i=k

avec ¢ (r) = e*’z, $(r) =+/(1+r2).

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

6/38

Approximation space lll

Examples of linear space Examples of nonlinear functions
« Fourier spectral functions (global): + Tensor methods:
n
:Zocksin(ZkT[X] Z(Z & p Pk (X)(Z Bi,kbr (% >
i=k =
+ Orthogonal polynomiales spectral functions avec x = (Xq, Xz).
(global):

= aPe(x)

+ Finite element basis (locia:ls(:

= Z g dp k()

with ¢ , piecewise polynomiales functions.
+ Radial basis (local):

=) opdlelx—x)
i—k

avec ¢ (r) = e*’z, $(r) =+/(1+r2).

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 6/38

Approximation space lll

Examples of linear space Examples of nonlinear functions
+ Fourier spectral functions (global): + Tensor methods
n
(x) =) osin(2kmx) Z (Z o Pr (X) <Z Birdr(x)
i—k -
+ Orthogonal polynomiales spectral functions avecx = (thz)-
(global): z - Fourier spectral functions (global):
fx) =) aPy
- Finite element basis (local} fX) =D asin(2wpmx)
i—k
n . .
_ Z oy (X) - Radiales basis (global):

n
= fokd?(erz [x—x;)
i—k
« Anisotropic radial basis (global):

with ¢ , piecewise polynomiales functions.
- Radial basis (local):

:ZLX&¢(€\X*XI|) ZoqA)IZ (x—x))

i—k
avec ¢ (r) = e*’z, b(r)=+/(1+r2).

MLP Neural network (global):
f(x) = nne (x)

+ KAN neural Network (global):
f(x) = kane (x)

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 6/38

Approximation space lll

Examples of linear space

+ Fourier spectral functions (global):

n
(x) =) osin(2kmx)
i=k
+ Orthogonal polynomiales spectral functions

lobal): n
(etobal =3 P

- Finite element basis (loc"a:lse:

=) opdpk(X)
i—k

with ¢ , piecewise polynomiales functions.

- Radial basis (local):

= adlelx—x)

i=k

avec & (r) = e, &(r) = /(1 +).

- Random networks (global)

= Z (anngk (x)
i=k

with 0, are randomly chosen.

Examples of nonlinear functions

+ Tensor methods:

avec X = (Xq,Xz).

+ Fourier spectral functions (global):

n
= Z g sin(2wp7x)
i—k
- Radiales basis (global):
n
=) opdler|x—x)
i—k
« Anisotropic radial basis (global):

Zam | = (x—x%;))

MLP Neural network (global):
f(x) = nne (x)

+ KAN neural Network (global):
f(x) = kane (x)

Z(Z o, br (X)(Z Bi,kdr (X)

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

6/38

Parametric model: neural network

- Neural network are one of the most popular parametric models. There are parametric mod-
els nonlinear compared to the inputs but also compared to the parameters.

Layer
A layer is a function L : x € R% — y € R%+1 defined by
Liit1(X) = o(Ax + b)
with A € Mg, 4, ,(R), b € R%+ and o() a nonlinear function applied component by component.

We call o() the activation function. The matrix A and vector b are the trainable parameters.

Neural Network
We call neural network a parametric function Ng : x € R% — y € R% defined by

No(X) = Lopo...oLipqio...0Lqin(x)

with © the set of trainable parameters.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 7/38

Introduction to Neural methods for elliptic equations

Integration, complex geometries

Integration

+ To calculate the restriction, we need to integrate over the domain. Integration depends on
the choice of space. In many case we use quadrature formula.

- We're going to look here at the case of nonlinear spaces, in particular based on neural net-
works whose characteristics are:

» Global models which not use meshes.
» Good approximation properties in large dimension

Integration
Given the qualities of NNs, the most suitable integration method is Monte Carlo.

L [[ue (x) — u(x)[3dx = Ex(a)ll|ue (x) — u(x)||3]

with U(Q) a uniform law on Q. Applying the law of large numbers, we have

N
J 30—t e = 3) — w1

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 8/38

Integration and complex number

Level-set function
Given an Q domain with T boundary, we call a level function a ¢ function such that
<0, xe€Q
d(x) = =0, xeTl
>0, xeRY/Q
+ How to sample ?
» We draw a point randomly in [a, d]? such that Q is included.
» If d(x) < 0 we keep the point otherwise we start again.
+ No level function uniqueness. Example: the disk:

P1(X) = /X +X3—r1, bi(X) =X+ X% — 1

- The first is called The signed distance function because it gives the distance between each

point and T'. Itis a C° function, not a C" one. : - :
+ Domains sum: ¢(x) < 0 ou ¢, (x) <0 i i Q
+ Domains intersection: ¢1(x) < 0 et ¢p,(x) <0 72 72 o
- Domains with holes: ¢4(x) < 0 et ¢y (x) >0 Jh | 33

(a) A cir (©) Iso-contours of the LSF.

embeddes

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

Introduction to Neural methods for elliptic equations

Computation of restriction

How compute the restriction operator ?

Linear spaces Nonlinear space
- Gradient computation: analytic + Gradient computation: Automatic differ-
entiation.

- Solving of V) = 0: normal equation.
> In the linear case we have: « Solving of VJ = 0: Gradient method and

quasi-Newton method
V]=0+—A6b=0

+ Computation of the model derivatives:

» We solve a linear system with LU, CG, GMRES. . . . L.
Y Automatic differentiation.

+ Computation of the model derivatives:
analytic

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 10/38

Gradient and Newton methods

+ We therefore want to determine 0* solution of

N
Ved(6%) =) Vadi(6*) =0
i=1
with g; the local cost function (here a L? norm) for each sample.
+ Since g is nonlinear we potentially have several solutions.
 The gradient is calculated by automatic differentiation.
- Gradient method:
Vod(0) =0 <= —MmVed(0) =0 <= —1mVed(6) +06=06
using fixed point method we obtain: 0,,, = 0, —mVeJ(0).
* Newton method:
Vod(0) =0 = Jac(Vod(00))(8 —00) + Ved(00) = Ved(0) =0
% linéarisation

Ho (J(6k)) (Br+1 — Bk) = —V0d(6k) <= Os1 = 0, — Hg ' (3(6)) Vo (Br)
with Hg(J(0¢)) the Hessian of .

- Gauss-Newton, Levenberg-Marquardt or L-BFGS use a approximation of the Hessian.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 11/38

Introduction to Neural methods for elliptic equations

Approximation method for elliptic PDEs

Approximation methods

Linear spaces

+ Ritz-Galerkin:

0* = min(a(v,v) —f(x)v)
VEVn

+ Least square Galerkin:

0* = min‘[Q | L(u)—f?

VEVh

+ The idea is the same. We restrict the functions to be minimized to the approximation space.

Nonlinear spaces

- Deep-Ritz:
0* = min(a(v,v) —f(x)v)
VEMp
* PINNs:
0* = minJ [L(u)—f P
VEMp Q

+ The difference between classical and neural methods is the approximation space.

+ The choice of integral approximation and resolution follows from this.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

12/38

Solving and integration

Solving
To solve the PINNs or Deep-Ritz minimization problems, we use the same methods as for
calculating the restriction operator. as for calculating the restriction operator:

- classic/preconditionned Stochastic gradient methods (Adam, ResProp, etc)

- Quasi-Newton methods (L-BFGS, Leverberg-Marquardt).

« It's quite common to combine two methods. Newton/quasi-Newton methods converge slowly
but are less robust to poor initialization and more expensive.

« Usual method: We start with a gradient method and end with a quasi-Newton algorithm.

Integration and geometry

The strategies for managing cost functions, handling complex geometries and adapting are the
same as for the restriction operator.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 13/38

Weak boundary conditions

+ As with the usual linear methods, we can impose weak boundary conditions by penalization.
« We name J,(u) the functional to be minimized (PINNs or Deep-Ritz). We call the residue of
the boundary conditions B(u) = 0 (Dirichlet, Neumann or other).

Weak BC for neural based methods
The minimization problem becomes

— <3r(u9) 2o [11Bu0) 1 dx)
Q

« Fails:If | Vodr(Ug) |lio>>]] Vodbc(Uo) |1 the training can learn mainly the PDE, ignore the BC
and compute trivial solution.

Solution
Add an algorithm to adapt the weights of each loss function to avoid dominant gradient.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 14/38

Strong boundary conditions

+ In the linear methods we can impose BC in the space. We can make the same here.

+ We assume that we have a level set function ¢(x) of the domain.

Dirichlet BC
To impose g(x) at the bc we use the space

M, = {g(x) + d(x)nne(x), 6€© C R’}

Neumann BC
To impose aaine = h(x) at the bc we use the space

OUg

M, = {(1 + ¢(x)—)nne,1(x) — GO + GAX)(X)NMoa(X), 61,60, € O C Rd}

on

+ We can make the same for Robin and multiple BC.

- We need a regular approximation of the signed distance function.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

15/38

Introduction to Neural methods for elliptic equations

Neural methods and large dimension

Advantages and disadvantages

Disadvantages

The main disadvantage of the Neural approach are the difficulty to obtain a good accuracy, and

the fact that only asymptotic convergence results are available.

- Consider a 2D Laplacian solves with a 5-layer neural network and increase the size (685

weights for the smallest network and 26300 weights for the largest).

+ Two learning rates:

FE | Ngos | CPU Error
1D | 100 | - =

2D | 1E* | ~10/20sec | ~2E~3
3D | 1E® ~ 2h ~ 23

Advantage

Mesh-free and ratio accuracy/degree of freedom less sensitive to the dimension.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

16/38

Advantages and disadvantages

Disadvantages

The main disadvantage of the Neural approach are the difficulty to obtain a good accuracy, and

the fact that only asymptotic convergence results are available.

- Consider a 2D Laplacian solves with a 5-layer neural network and increase the size (685

weights for the smallest network and 26300 weights for the largest).

+ Two learning rates:

PINNs | Ngof CPU Error

1D 5081 | 30-55sec 3E4-6E*
2D 5121 | 80-100sec LE4-2FE3
3D 5161 | 110-140sec | 1E—3-4E—3

Advantage

Mesh-free and ratio accuracy/degree of freedom less sensitive to the dimension.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

16/38

Parametric problems

+ In optimization, uncertainty propagation etc., we want to solve problems such as
La(u(x)) —f(x,B)
with p = (&, B) parameters that live in a space V,,.
+ The usual methods are too expensive in high dimension so we don't solve this problem in V,,
space.
+ In general, we run simulations for different u and build a reduced model.

Parametric neural methods
Since neural network spaces are more efficient in high dimensions, we can try to solve in V,,
space.

« In this case the restriction operator is defined by

0" = minj j U, 1) — nno(x, 1) P dx,
o Jv,Ja

« The PINNs method becomes:
6" = minj j | La(u(x, 1)) — f(x, B) P dx,
vp Jo

0

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 17/38

Introduction to Neural methods for elliptic equations
General principles
Integration, complex geometries
Computation of restriction
Approximation method for elliptic PDEs
Neural methods and large dimension
Greedy approaches
Neural based greedy approaches
Hybrid two step greedy approaches
Shape Optimization

Conclusion

Greedy approaches

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 18/38

Greedy approaches

Neural based greedy approaches

Greedy Method

Objectives

Solve, with good accuracy, large-dimensional parametric elliptic problems. We wish to use an
approach with only neural networks. How to increase the accuracy ?

Idea
Correct the first network with a second one, iterate (multistage, multlevel PINNs).

+ We can write that as a greedy algorithm.
> We consider the following submanifold approximation M;, 1<i<d
> We initialize the greedy basis: B = 0, up(x, n) =0
> While k < Kand | R(up) |[> €
+ We solve

argmin, ([[Reuntx,),mncsnyac+ A [[t tx),)1k

20

+ We compute (o,o,) With a Galerkin projection or with a estimation.
+ Gives global approximation uj (x, i) = Zflo o (X, 1.

Which space ?

Interesting point: each approximation space M; can be different. Examples: NN, radial basis,
finite element etc.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 19/38

Full NN greedy method |

Full NN approach

How choose the model at each step:
- One layer hidden-NN where we double the number of parameters at each step.

- Deep NN at each step with increase ability to capture high frequencies.

Spectral bias
Using the NTK theory makes it possible to study Spectral bias of MLP. MLPs first learn low
frequencies, before learning the high frequencies (with difficulty).

+ We solve —Au = 128 sin(87x) sin(8mty). First try (left figure): classical MLP vs Fourier NNs.

B ‘Tesewe - |-
os \ B e P)
LA RN R R)
o RCEX LT AR L)
B o e ewe®
b eHoBOE®E®
Q e Bon®e® [
. Wemos®o

« FNN: we add Fourier features. We replace NNg(x) by NNg(X,sin(27tR:X), ..., sin(27tR,x)) with

(R,R,) trainable parameters.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 20/38

Full NN greedy method I

« Test: 4D problem (2D spatial + 2 parameters).
- Classical network (~ 9k parameters). 4000 epochs. 25k points. 45 min CPU.

prediction residual

ooms1z

oo0n176
0001008
oo008d0
0000672

0000336

oo00168

1 15 -10 -5 00 o5 10 1

« Greedy network (4 sub-networks) (2 MLPs, 2 Fourier MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

prediction, 1 network

residual, 1 network error, 1 network

0.0162

00144
0.0144

00128
00126

00112
o 0.0108

0.0096
00080 0.0090
0.0064 0.0072
0.0048 ™ 0.0054
0.0036

00032 _; ¢
0.0016 0.0018
0.0000 ™ 0.0000
-1 0 1

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 21/38

Full NN greedy method I

« Test: 4D problem (2D spatial + 2 parameters).

+ Classical network (~

prediction

residual

oxzs
-0s

0250
10 075

s

ouzs

. Greedy network (4 sub-networks) (2 MLPs 2 Fourler MLPs). 1k, 1k, 3k and 4k parameters (total:

9k parameters). 4000 epochs 25k points. 45 min CPU.

15 -10 -3 00

05 10

9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

prediction, 2 networks

residual, 2 networks
-

error, 2 networks

15
0.000324
0.0002881.0
0.000252

05
0000216

0,000180y 5
0000144
00001683
0000072,
0.000036

0.000000"3

-1 0 1

0.000945
0.000840
0.000735
0.000630
0.000525
0.000420
0.000315
0.000210
0.000105
0.000000

ooms1z

oo0n176
0001008
oo008d0
0000672

Emmanuel Franck

Neural implicit representation for PDE problems

Idefix Seminar

21/38

Full NN greedy method I

« Test: 4D problem (2D spatial + 2 parameters).
- Classical network (~ 9k parameters). 4000 epochs. 25k points. 45 min CPU.

prediction residual

ooms1z

oo0n176

0001008

oo008d0

0000672

0000336

oo00168

1 15 -10 -5 00 o5 10 1

« Greedy network (4 sub-networks) (2 MLPs, 2 Fourier MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

prediction, 3 networks residual, 3 networks

1e-6 error, 3 networks
15
0.000243
10 0000216
0.000189
05
0.000162
00 0.000135
0.000108
03 o 0.000081
-10 —10 0.000054
0.000027
-15 =15 0.000000

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 21/38

Full NN greedy method I

« Test: 4D problem (2D spatial + 2 parameters).
- Classical network (~ 9k parameters). 4000 epochs 25k points. 45 min CPU.

prediction residual

ooms1z
s

oo0n176
ouzs

oxzs
-0s

0250
10 075

0001008

oo008d0

0000672

45 -10 -5 00 o5 10

. Greedy network (4 sub-networks) (2 MLPs 2 Fourler MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

prediction, 4 networks residual, 4 networks

le-6

error, 4 networks -
15 _ _ 6.48 =

5.76

5.04

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 21/38

Greedy approaches

Hybrid two step greedy approaches

Prediction-correction method

Hybrid methods
In this context, hybrid methods combine classical numerical methods and numerical methods
based on neural representations.

Objectives
Taking the best of both worlds: the accuracy of classical numerical methods, and the mesh-free
large-dimensional capabilities of neural-based numerical methods [FEhybrid].

General Idea

- Offline/Online process: train a Neural Network (PINNs, NGs, or NOs) to obtain a large family
of approximate solutions.
+ Online process: correct the solution with a numerical method.

- Can be view as a two step Greedy method. The first with NNs on Q x V,, and the second with
finite element on QO x {w ...y p k.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 22/38

Additive and multiplicative formulation

+ We consider the following elliptic problem:

Lu(x) ==V - (A(xVu(x)) +v-Vu(x) + ru(x) =f(x), ¥xeQ
Onu(x) + Bu(x) = g(x), Vx € 0Q

+ We assume that we have a continuous prior given by a parametric PINN ug(X; 1)
+ We propose the following corrections of the finite element basis functions:

Up(X) = U (X; 1) + pn(X), U(X) = Ue(X; 1)pn(X),
with pp(X) a perturbation discretized using P, Lagrange finite element.
- For the first approach, we solve in practice:

Lpn(x) = f(x) — Lug (x; 1), vx € Q
OnPn(X) + Bpn(x) = g(x) — ue(X; 1), VX € 0Q

- Additional cost: increase the quadrature rule degree where the network is integrated.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 23/38

Error estimates

Additive approach

+ We define I,() the interpolator operator on the finite element space.

- We rewrite the Cea lemma for u,(x) = ug(X) + pn(X). We obtain
M
lu—unll < —llu—ue —In(u —us)]|
with I, the interpolator. Using the classical result of P, Lagrange interpolator we obtain

[ulym

M ~
Ju—uflam < = ChE (w) |l
H/_/

gain

Key point

The prior must give a good approximation of the m™ derivative.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

24/38

Results |

« For finite element version we use a old Fenics version (probably too slow).

« Test 1

We define Q by the square Q = [—0.57t, 0.57t]2. For the test case the solution ue is given by

—Au=f, inQ,
u=g, onT.

1 2 2
Uex (X, y) = sin(2x) sin(2y) e~ 2 (x—H) T+ y—r2)D) |

with homogeneous BC on Q (i.e. g = 0) and w4, py ~ U(—0.5,0.5).
+ Gain at fixed size. First we use a classical PINNs (called L? PINNs)

Gains on PINNs Gains on FEM

Emmanuel Franck

N min max mean std min max mean std
20 157 4835 33.64 5.57 13431 377.36 2694 43.67
40 61.47 195.75 13541 2321 131.18 362.09 262.12 41.67
Gains on PINNs Gains on FEM
N min max mean std min max mean std
20 24481 996.23 655.08 153.63 67.12 165.13 135.21 21.37
40 2,056.2 8,345.4 5,504.89 1,287.16 66.52 159.73 132.05 20.38
Gains on PINNs Gains on FEM
N min max mean std min max mean std
20 280427 11,797.23 7,607.51 1,780.7 39.72 7299 6185 7.05
40 50,989.23 212,714.99 137,711.77 32,125.57 40.02 73 61.98 6.92
Neural implicit representation for PDE problems | Idefix Seminar

25/38

Results |

« For finite element version we use a old Fenics version (probably too slow).

+ Test1:
—Au=f, in Q,

u=g, onT.
We define Q by the square QO = [—0.57t, 0.571]2. For the test case the solution uy is given by
Uex (X,Y) = sin(2¢) sin(2y) e~ 2 (w00

with homogeneous BC on Q (i.e. g = 0) and 4, pp ~ U(—0.5,0.5).
+ Gain at fixed size. First we use a H; PINNs

Gains on PINNs Gains on FEM
min max mean std min max mean std

N
% 18.28 66.19 4342 1247 243.79 8743 63345 137.97
40 7345 27236 176.52 51.82 241.8 843.29 621.68 132.89

Gains on PINNs Gains on FEM

N min max mean std min max mean std

20 362.57 2,052.78 1,025.28 409.17 177.74 476.76 376.16 75.9
40 3,081.22 17,532.62 8,725.57 3,494.26 177.16 472.55 371.93 74.85

Gains on PINNs Gains on FEM

N min max mean std min max mean std
20 4,879.13 2.757.68 14.616.89 6,699.18 116.52 298.33 208.35 43.62
40 88,736.63 587,716.86 264,383.45 120,240.85 117.46 296.34 20829 43.16

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 25/38

Results |

« For finite element version we use a old Fenics version (probably too slow).
+ Test1:
{—Au =f, in Q,

u=g, onT.

We define Q by the square QO = [—0.57t, 0.571]2. For the test case the solution ugy is given by
1
Uex (X,Y) = sin(2x) sin(2y) e~ 2 (w020

with homogeneous BC on Q (i.e. g = 0) and 4, pp ~ U(—0.5,0.5).
+ Gain at fixed error (Finite element P;)

Ngof CPU Error
Pinns L? X 4min15 5.21x 103
Pinns H' X X 2.0 x 103
Correction 20% (L?) | 400 1.1sec 1.42 x 10—*
Correction 20% (H') | 400 1.1sec 5.8 x 10
FE 1602 25600 1min20sec 5.46 x 10 *
FE 3202 102400 5min22sec 1.36 x 10 %

+ The error is the average error on a set of 10 parameters.

+ CPU time for 100 simulations varying parameters: 355sec for our method (L? version), 32200 sec for FE. CPU divided by
90.7.

+ CPU time for 100 simulations varying parameters: 1450sec for our method (L2 version), 322000 sec for FE. CPU divided by
2220.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 25/38

Results Il

+ Test2:
—Au=f, inQ,
u=g, onT.
We define Q by the square Q = [—0.57t, 0.57t]2. For the test case the solution ue is given by

.
Uex (X, ¥) = sin(8X) sin(8y) x 102 (C—m)?Hl—wz)?)

with homogeneous BC on Q (i.e. g = 0) and wq, pp ~ U(—0.5,0.5).

+ Example of solution
prediction, parameters = 0.00, 0.00

® 08

0.4

I

.
O 1OF
X (O

te@0oeen
e

0.2

0.0

OF I F L)
.

feBe@e
Beoges

S

:

1.4

|
5
|
°
|
°
o
°
e
o
°
=
5

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 26/38

Results Il

+ Test2:
—Au=f, in Q,
u=g, on T.
We define Q by the square QO = [—0.57t, 0.57t]2. For the test case the solution uey is given by

1 2 2
Uex (X, YY) = sin(8x) sin(8y) x 102 (x—r1) T+ —r2)9) |

with homogeneous BC on Q (i.e. g = 0) and wq, up ~ U(—0.5,0.5).
+ Gain at fixed size

Gains on PINNs Gains on FEM

N min max mean std min max mean std

20 917 3613 19.79 6.63 1122 45443 34941 82.75
40 26.14 111.44 5886 19.8 106.01 388.96 30849 71.81

Gains on PINNs Gains on FEM

N min max mean std min max mean std

20 35.47 166.68 87.44 29.18 65.7 206.07 157.83 37.13
40 207.56 1,102.21 524.38 181.75 52.97 141.53 111.17 22.44

Gains on PINNs Gains on FEM

N min max mean std min max mean std

75.86 499.24 215.89 79.51 2891 649 52.36 8
40 999.27 6,317.61 2,665.31 1,003.72 20.09 42.2 343 5.19

)
S

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 26/38

Results Il

» Test2:
{—Au =f, in Q,

u=g, onT.

We define Q by the square QO = [—0.57, 0.57t]2. For the test case the solution ue is given by
; ; —3 (=2 (y—u2)?)
Uex (X,y) = sin(8x) sin(8y) x 10 2 1 20700

with homogeneous BC on Q (i.e. g = 0) and w1, pp ~ U(—0.5,0.5).
-+ Gain at fixed error (Finite element P;)

Ndof CPU Error
Pinns 28045 13min 2.4 x 102
Correction 20° | 400 2sec 1.1x 103
FE 1602 25600 1min54 7.8 x10 3
FE 3202 102400 7m29 1.95 x 103

« The error is the average error on a set of 10 parameters.
+ CPU time for 100 simulations varying parameters: 980sec for our method, 44900 sec for FE. CPU divided by 45.8.
+ CPU time for 1000 simulations varying parameters: 2780sec for our method, 449000 sec for FE. CPU divided by 161.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 26/38

Results Il

+ Test3:
—V - (KVu) =f, in Q,
u=0, onT.
We define Q by the square QO = [—0.57t, 0.57t]2. The source is given by

F(X,y) =10exp(—((x1—c1)? 4+ (x2 — ¢2)?)/(0.0250?))

and the anisotropy matrix is given by
- ex?+y2 (e—Txy
T \(e—=Txy X2+ ey?

with ¢;, ¢ ~ U(—0.5,0.5), o ~ U(0.1,0.8) and e ~ 1 (0.01,0.9).
+ Example of solution (no analytic solution: we will compare with a fine solution)

prediction, parameters = 0.50, 0.45, 0.20, 0.01

01728

01536

01344

ons2

0.0960

00768

00576

00384

o012

0.0000

Emmanuel frangds gooddBradrianlicit representation for PDE problems | Idefix Seminar 27/38

Results Il

+ Test3:
—V - (KVu) =f, in Q,
u=0, on T.
We define Q by the square QO = [—0.57t, 0.57t]2. The source is given by

f(x,y) =10exp(—((x1—c1)? + (x2 — c2)?)/(0.0250?))

KZ((

and the anisotropy matrix is given by

ex? +y?
e —1)xy

(e71)xy)

X + ey?

with ¢1, ¢; ~ U(—0.5,0.5), o ~ U(0.1,0.8) and € ~ 1 (0.01,0.9)

+ Gain at fixed error:

Naos CPU Error
Pinns 30min | 2.86 x 102
Correction 20> | 400 1sec 1.40 x 103
Correction 402 | 400 3sec 3.3x10*
FE 80? 6400 6sec 213 x 103
FE 2402 57600 55sec 2.38 x 10 *

- CPU time for 100 simulations varying parameters (precision &~ 2 x 10—3): 1900sec for our method, 600 sec for FE. CPU

multiplied by 3.1.

+ CPU time for 100 simulations varying parameters (precision /= 2 x 10—3): 2800sec for our method, 3000 sec for FE. CPU

divided by 1.1.
+ Results less good for small e.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

27/38

Results Il

+ Test3:
—V - (KVu) =f, in Q,
u=0, on T.
We define Q by the square QO = [—0.57t, 0.57t]2. The source is given by

f(x,y) =10exp(—((x1—c1)? + (x2 — c2)?)/(0.0250?))

KZ((

and the anisotropy matrix is given by

ex? +y?
e —1)xy

(e71)xy)

X + ey?

with ¢1, ¢; ~ U(—0.5,0.5), o ~ U(0.1,0.8) and € ~ 1 (0.01,0.9)

+ Gain at fixed error:

Naos CPU Error
Pinns 30min | 2.86 x 102
Correction 20> | 400 1sec 1.40 x 103
Correction 402 | 400 3sec 3.3x10*
FE 80? 6400 6sec 213 x 103
FE 2402 57600 55sec 2.38 x 10 *

+ CPU time for 100 simulations varying parameters (precision ~ 2 x 10—*): 2100sec for our method, 5500 sec for FE. CPU

divided by 2.62.

+ CPU time for 100 simulations varying parameters (precision ~ 2 x 10—*): 4800sec for our method, 55000 sec for FE. CPU

divided by 11.5.
+ Results less good for small e.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

27/38

Introduction to Neural methods for elliptic equations
General principles
Integration, complex geometries
Computation of restriction
Approximation method for elliptic PDEs
Neural methods and large dimension
Greedy approaches
Neural based greedy approaches
Hybrid two step greedy approaches
Shape Optimization

Conclusion

Shape Optimization

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 28/38

Problem solved

PINNSs and inverse problem

One of the advantages often mentioned is their ability to easily handle inverse problems and
optimal control problems, since we're already solving a nonlinear optimization problem.

+ Here we consider Shape optimization problems:
« Energy Dirichlet:
E(Q):= inf 1J (IVul — fu)dx
2o

ueH)(Q)

+ Problem solved:
inf{€(Q), Q bounded open set of R”, such that |Q] = V,}
- itis equivalent to solve:

—Au=f inQ,

inf(1 J (IVup —fu)dx), with the constrains
@ ol u=0 on 0Q.

2

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 29/38

Classical method

+ Here we details the classical methods to solve this problem.

One step of the algorithm

- We solve the PDE problem a Finite element or orher method on the mesh Q,

+ We solve the adjoint PDE problem a Finite element or other method on the mesh Qy,
- We compute the shape derivative using the primal and adjoint state.

+ We use this shape derivative to move the boundary of the shape

+ If the mesh becomes too degenerate we remesh.

+ Picture of parameter-Free Shape Optimization: Various Shape Updates for Engineering Applications.

- Immersed boundary finite element method avoid the remeshing but need to compute the
shape derivative computing level set moving.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 30/38

PINNs method

+ Our approach:
» We use two networks: ug (X, u) for the parametric solution of the PDE and d)ef(Qo) a
diffeomorphism which deform the original space.

» We solve:
. 1
min J <7|Vu9(x; WP — £ (% e (X; u))dx dp
9,0¢ Po (Q)xM 2

with M the parameter space.

» By a change of variable we find a equivalent problem to solve on Qy. We sample on Q,.

- Difficulties:
» How obtain a invertible neural network ?
» How treat the volumes constrains ?
Advantages
One single loss function to consider.

« A penalization loss for the volume does not work.
+ So we propose to impose in hard in the network: invertibility and volume preservation

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

31/38

Symplectic map

Key idea

Use to ¢e, a neural network called SympNet

+ Hamiltonian ODE:

o) QR
E*H VxH(x)

withx € R" and § = 0~
i 0

* Flow ¢y(t,x) of Hamiltonian ODE:

> Symplectic: (3dy) (X)I(ddby)(X) =7
> Volume preservation: Vol(¢y (t, Q))) = Vol(Q)

+ If we split the Hamiltonian H into H; + ... + Hi the flow can be approximate by
q)H(At,x) = ¢HK(At,x) ©...0 ¢H1 (At) X)

and this approximation is symplectic since each subflow is associated to hamiltonian ODE
and composition of symplectic map is symplectic.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar

32/38

Symplectic map Il

Go to NNs
It look like a neural network if we learn the H;. How assure that each subflow is symplectic ? With
an exact flow. Idea: parametrize H; such that we can compute exact flow.

Idea of Sympnet
If x = (q, p) we choose for parametric model :
Ho,(a, p) = To,(d) + Ko, (P)
and we split agains the Hamiltonian and write the exact flo on each part.

Symplectic layer
The layer is obtained using Ky, (p) = diag(a)Z(Kp + b) et Ug,(q) = diag(a)Z(Kq + b). It gives
®1a(q,p) = L? o L' with
12 q ;1 _ (a+K'diag(a)o(Kp +b),
p + Kidiag(a)o(Kq + b), p

with K, b et a learnable parameters.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 33/38

Results |

2
+ Left: We solve a parametric problem —Au = f(x1,X;) = exp('l — (%) — (uxz)z) on a domain obtain applying a

analytic symplectic map:
+ Right: We learn a parametric symplectic map:

X

- Xy %) > (x1 77\X%+0.3sin(¥) 70.25in(8xz),xz>,

2 o
85 : (Xx1,%2) = (X1, X2 4 0.2Ax7 4+ 0.12 cos(xq)).
100 Lax10- e ‘
015 13 %107 105107
™ 11x 107 Lix10?
0.25, 96 %107 1.4 %107
8.0 x 1072 1.2x 1072
o "
6.4 x 1077 9.6 x 107
e :
4.8 x 1077 7.2x 107
00 32 %1072 45 108
-0 16 %102 4 x 105
—L00 x10° x 100 10
Y5 o o5 o0 05 1o 0xW “Ts ie s oo o5 1o 00X - .
(a) solution, = 0.5 (b) error, p.= 0.5 (a) A=05 (b)A=125
100 17 x 107! 2.4% 1072
0.75] 15% 107! 2.2x 107
0.50, 13 %107 1.9% 1072
-1 16x 1072
. 12x10
9.6 x 102 14x1072
0.00; N
77 %1072 11x107%
0z
5.8 x 1077 8.1 x 107 10
0% 3.8 x 1077 5.4x 107
—0.73] 1o w0t 27x 10 "
1 . .
S5 -io o5 oo 05 1o oxi R
(c) solution, = 1.5 (@) error, p= 1.5 ©A=2 (d) A € {0.5,0.875,1.25,1.625.2}

Emmanuel Franck

Neural implicit representation for PDE problems

Idefix Seminar 34/38

Result Il

+ Optimization problem with f = 1and Qg an ellipse.

method FEM (R =100) FEM (R =250) FEM (R=500) GeSONN
Computational time (s) 53.3 509 3020 22.5
£2 error 7.20 % 10~2 2.83 x 10~2 2.21 x 10~2 1.99 x 10—3

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 35/38

Result Il

+ Optimization problem with f (x,y; A) = exp('l —|TA (x,y)||2) with T is a the previous symplectic map and Qg an

- 17w 4707
07 -
L2x107! 425107
050 00
37x 10 o7 1071
035 .
a2k B 20 1071
010 26x10° 00 26 107!
0.5 207 g 21 10
o 1ox 107! Lox 10!
~040) ~0.50]
Lox 10! Lox 107!
0.8 075
52 x10 52 102

i 1
o o0 1P
—0.5 00 05 10 o0
(a) solution, A = 0.69 b) :uluhun, A=108
B T
710 " — s 20 x 107
0.751 12 x 1070 N / \\
; IR N\
o0 s 7x10 1% 10t
0.25] 3.2 % 107" 035
0.001 260107 o 0.0 % 10"
T
o)
B Loxn —050 —10x 0
o toxut
0T st =" .
™ 20
—05. 00 05 10 000 iry i wn e 0
(c) solution, A=1.82 (d) deviation from the average of the optimality condition

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 36/38

Introduction to Neural methods for elliptic equations
General principles
Integration, complex geometries
Computation of restriction
Approximation method for elliptic PDEs
Neural methods and large dimension
Greedy approaches
Neural based greedy approaches
Hybrid two step greedy approaches
Shape Optimization

Conclusion

Conclusion

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 37/38

Conclusion

PINNs

PINNs look like a Least-Square Galerkin method on finite dimension submanifold. It is global
model (no need mesh) able to tackle large dimensional smooth problems.

Greedy approaches
allows to increase the accuracy of the PINNs. Using a two step greedy method coupling PINNs
and FE we can obtain a convergent method more accurate for parametric problems.

Optimization

Since we use nonlinear optimization it is a natural framework for inverse problem and control.
NNs are also very useful to parametrize geometries (mapping, signed distance function) and
avoid mesh in shape optimization.

Emmanuel Franck | Neural implicit representation for PDE problems | Idefix Seminar 38/38

	Introduction to Neural methods for elliptic equations
	General principles
	Integration, complex geometries
	Computation of restriction
	Approximation method for elliptic PDEs
	Neural methods and large dimension

	Greedy approaches
	Neural based greedy approaches
	Hybrid two step greedy approaches

	Shape Optimization
	Conclusion

