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Hyperbolic PDE and CFL constrains

Context
We want solve geophysical, compressible or plasmas flows (Tokamaks or astrophysical
applications).

■ We consider here the following type of equations:

∂tU +∇ · (F (U)) = ν∇ · (D(U)∇U)

with ν << 1 or ν = 0
■ In general this type of problem are solved with explicit time integrators due to first

orde CFL condition:

∆t < min(
∆x

λmax (∂F (U))
,
∆x2

ν
)

■ However it can be interesting to consider CFL-less approach in some cases:
□ when we want compute stationary flows,
□ when some cells are really small without physical reason (due to geometry for

example),
□ for multiscale problems.

Implicit scheme and hyperbolic PDE
The hyperbolic PDE are not well-adapted to implicit method due to: nonlinearity, the
directional structure and the multiscale dynamics.
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Euler equations and the low Mach regime

➜ Euler equations: 
∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu ⊗ u + pId ) = 0

∂tE +∇ · (Eu + pu) = 0

with ρ(t, x) > 0 the density, u(t, x) the velocity and E(t, x) > 0 the total energy.

➜ Hyperbolic system with nonlinear waves. Waves speed: three differents eigenvalues:
(u, n) and (u, n)± c with the sound speed c2 = γ p

ρ
.

Physic interpretation:

➜ Two important velocity scales: u and c, and their ratio (the Mach number) M = |u|
c
.

➜ When M tends to zero, we obtain the incompressible Euler equations:
∂tρ+ u · ∇ρ = 0

ρ∂tu + ρu · ∇u +∇p2 = 0

∇ · u = 0

In 1D, we only have an advection of ρ.

➜ Aim: construct an scheme valid at the limit with a uniform cost compared to M.

➜ Other related problems: Euler with gravity, low-Mach and low-β MHD.
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Explicit vs implicit schemes
➜ Explicit scheme: issues with the CFL condition for low Mach flow:

➜ Fast perturbative phenomena: acoustic waves at velocity c
➜ Important phenomena: transport at velocity u
➜ Expected CFL condition ∆t < ∆x

|u| ; in practice, we need ∆t < ∆x
c

= M ∆x
|u|

➜ At the end, we need a ∆t multiplied by M compared to the expected ∆t

First solution
Implicit time scheme. No CFL condition. Taking a larger time step, it allows to “filter”
the fast acoustic waves which are not import to capture the limit regime.

➜ Implicit scheme: Newton method (important additional cost) + GMRES
➜ Simpler example (linearized compressible NS equations around u0 = 0):{

∂tp + 1
M
∇ · u = 0

∂tu+ 1
M
∇p = ν∆u

→
{

pn+1 + ∆t
M

∇ · un+1 = pn

un+1 + ∆t
M

∇pn+1 − ν∆t∆tun+1 = un

➜ Matrix to invert: ( M
∆t

(Id − ν∆t2) ∇·
∇ M

∆t
Id

)
➜ For ∆t ≫ M, the limit problem is ill-posed, and the matrix is difficult to invert.

Aim
Design simpler implicit schemes
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Relaxation methods for implicit schemes
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Second idea: relaxation approach

Relaxation approach
Keep the idea to replace the original model by one that is simpler to solve, use it as a
solver rather than a preconditioner.

➜ Relaxation [JX95] : Used to design new schemes.
➜ Idea: Approximate the model

∂tU + ∂xF(U) = 0, by ∂t f + ∂xA(f) =
1

ε
(Q(f)− f)

At the limit (Hilbert expansion) and taking Pf = U (P ∈ Rn,m with n < m) we obtain

∂tU + ∂xF(U) = ε∂x (D(U)∂xU) + O(ε2)

➜ Time scheme: Splitting
➜ We first solve

f∗ − fn

∆t
+ ∂xA(f

∗,n) = 0,

➜ We solve the stiff source term using an implicit scheme.

Advantages of this approach
➜ In general, we construct A with a simpler structure than F, to easily designed a

Godunov numerical flux.
➜ Here we use it to construct some simpler implicit schemes.
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Xin-Jin relaxation method
➜ We consider the following nonlinear hyperbolic system

∂tU + ∂xF (U) = 0,

with a function U ∈ RN , x ∈ R.
➜ Aim: Find a way to approximate this system with a sequence of simple systems.

➜ Idea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume
community) [JX95]-[Nat96]-[ADN00].∂tU + ∂xV = 0

∂tV + λ2∂xU =
1

ε
(F (U)− V )

Limit scheme for the hyperbolic relaxation
The limit equation of the relaxation system is

∂tU + ∂xF (U) = ε∂x ((λ
2Id − |A(U)|2)∂xU) + O(ε2),

with A(U) the Jacobian of F (U).

➜ Conclusion: the relaxation system is an approximation of the original hyperbolic
system (with an error in ε).
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Xin-Jin implicit scheme

Main property
➜ Relaxation system: ”the nonlinearity is local and the non-locality is linear”.
➜ Main idea: splitting scheme between implicit transport and implicit relaxation.
➜ Key point: we have ∂tU = 0 during the relaxation step. Therefore F (U) is explicit.

➜ Relaxation step: we use a θ scheme:Un+1 = Un

V n+1 = θ
∆t

ε
(F (Un+1)− V n+1) + (1− θ)

∆t

ε
(F (Un)− V n)

➜ Transport step (order 1) :(
Id +∆t

(
0 1
λ2 0

)
∂x

)(
Un+1

V n+1

)
=

(
Un

V n

)
We plug the equation on V in the equation on U and obtain

(Id −∆t2λ2∂xx )Un+1 = Un −∆t∂xV n, V n+1 = V n −∆tλ2∂xUn+1

Numerical error of first splitting scheme

∂tU + ∂xF (U) = ∆t

(
2− ω

ω

)
∂x ((λ

2Id − |A(U)|2)∂xU) + O(∆t2)

■ Remarks:
□ Coupling with Crank-Nicolson scheme for wave equation we can go to second order
□ We solve n uncoupled constant Laplacian in place to one nonlinear ill-conditioned

system with n variables.
□ A. Thomann [Th2023] propose a specific IMEX scheme less dispersive than our

approach.
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Generic kinetic relaxation schemes

Kinetic relaxation systems
➜ Model under consideration:

∂tU + ∂xF (U) = 0

➜ Lattice: W = {λ1, ....,λnv } a set of velocities.

➜ Mapping matrix: P a matrix nc × nv (nc < nv ) such that U = Pf , with U ∈ Rnc .

➜ Kinetic relaxation system:

∂t f + Λ∂x f =
1

ε
(f eq(U)− f )

➜ Consistency condition (Natalini - Aregba [96-98-02], Bouchut [99-03]) :{
Pf eq(U) = U
PΛf eq(U) = F (U)

(C)

Chapman-Enskog stability
➜ Limit system:

∂tU + ∂xF (U) = ε∂x
((
PΛ2∂U f eq(U)− |∂F (U)|2

)
∂xU

)
+ O(ε2)

➜ This limit system is stable if the second order operator is entropy-dissipative. We also
have partial stability results for the kinetic systems.

➜ Strong Stability: entropy theory equivalent to the H-theorem. Other criteria for
stability are given in Bouchut [04].
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Example of kinetic relaxation systems
■ Example: {

∂tρ+ ∂x (ρu) = 0
∂tρu + ∂x

(
ρu2 + c2ρ

)
= 0

.

■ Vectorial approach:
□ Each physical equation is represented by q transport equations.

□ We use 2 variables by physical variable so f =
(
f r−, f r+, f ru− , f ru+

)
with:

V = [−λ,λ]2 .

and
ρ = f r− + f r+, ρu = f ru− + f ru+

f
eq
r ,± =

ρ

2
±

ρu

2λ
, f

eq
ru,± =

ρu

2
±

ρu2 + c2ρ

2λ
□ Stable in all the physical regimes if we satisfy the sub-characteristic condition.
□ dissipation: similar to Rusanov scheme.

■ Boltzmann approach:
□ We discretize with a minimal set of velocities the Boltzmann equations:
□ Ex: isothermal Euler equation
□ We use three variables f =

(
f−, f0, f+

)
for all the variables (ρ, ρu) with:

V = [−λ, 0,λ]

ρ = f− + f0 + f+, ρu = λ(f+ − f−)

f
eq
± =

ρu

2
(u ± 1) +

ρc2

2λ2
, f

eq
0 = ρ − ρ

2u −
c2ρ

2λ2

□ Stable in the Mach regime < 0.6 if we satisfy the sub-characteristic condition.
□ dissipation: low dissipation scheme.
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Implicit scheme based on kinetic relaxation I
➜ Advantage: We replace independent wave equations by independent transport

equations.
➜ We define the two operators for each step :

T (∆t) : e∆tΛ∂x f n+1 = f n

R(∆t) : f n+1 = f n + ω(f eq(Un)− f n)

➜ First splitting scheme: T (∆t) ◦ R(∆t) is consistent with

➜ How to deal with the transport step with constant velocity?
➜ Exact transport (induce a CFL), is there the Lattice Boltzmann methods.
➜ Semi-Lagrangian scheme,
➜ CFL-less implicit DG scheme, with a downwind strategy: block triangular matrix

using task graph numbering.
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Implicit scheme based on kinetic relaxation II

High order scheme: composition method

➜ If Ψ, a scheme that is second-order accurate in time, satisfies Ψ(∆t) = Ψ−1(−∆t)
and Ψ(0) = Id , then we can construct the high-order extension

Mp(∆t) = Ψ(γ1∆t) ◦Ψ(γ2∆t) ◦ · · · ◦Ψ(γs∆t),
with γi ∈ [−1, 1].

➜ Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

New second-order scheme
➜ The current second-order scheme is:

Ψ(∆t) = T

(
∆t

2

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

2

)
.

➜ It satisfies the time symmetry, but not Ψ(0) = Id for ε ≈ 0. Indeed,

R(∆t = 0,ω = 2) ⇐⇒ f n = 2f eq − f n ̸= f n

➜ However, R(0,ω = 2) ◦ R(0,ω = 2) = Id , and so we propose the following
second-order scheme:

Ψap(∆t) = T

(
∆t

4

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

2

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

4

)
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Implicit scheme based on kinetic relaxation III
➜ Error lines for the isothermal Euler equations. We have taken a CFL condition equal

to 5 times the explicit one.

➜ Rayleigh-Taylor instability

➜ Theory and parallelization: Coulette and al [17-18-19].
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Implicit scheme based on kinetic relaxation IV
➜ We have applied this strategy to the Guiding center for plasma physics, Helie [22]:{

∂tρ−∇ ·
(
((∇ϕ)⊥ + B)ρ

)
= 0,

−∆ϕ = ρ−
∫
ρdx ,

with B = (−bθ sin(θ), bθ sin(θ), bϕ)
t . We choose bθ = 0.1 and bϕ = 200.

➜ Scheme: Exact transport in the toroidal direction, implicit DG kinetic scheme in the
poloidal plane.

➜ CFL conditions for the classical and new schemes:

∆texp <
min(vpol , vϕ)

max(∆xpol ,∆xϕ)
→ ∆tnew <

vϕ

∆xϕ

➜ Test case: 3D Diocotron instability. CFL condition equal to 33 times the explicit one.
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Boundary condition

Bc conditions
How impose the physical BC since we solve non physical equation ?

■ Equivalence equation to kinetic scheme (R. Helie an al [2022-2023]).
■ We consider the model ∂tU + ∂xF (U) = 0 and the kinetic relaxation model given by

∂t f
+ + λ∂x f

+ =
1

ε

(
feq,+ − f+

)
∂t f

− − λ∂x f
− =

1

ε

(
feq,− − f−

)
■ The solution of the kinetic scheme is solution of the next model with an error of

O(∆t2)

∂t

(
U
z

)
+

(
F′(U) 0

0 −F′(U)

)
∂x

(
U
z

)
= 0

with z := V − F(U)
■ This analysis gives a tools to find good BC.
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Relaxation methods and viscosity
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How treat low viscosity models

Objective
Discretize hyperbolic systems with small viscosity term ν∂x (D(U)∂xU) keeping the good
structure of the algorithm with transport step and local relaxation step.

➜ We recall that the first order transport-relaxation is consistant with the following
equivalent equation:

∂tU + ∂xF (U) = ∆t∂x
((
PΛ2∂U f eq(U)− |∂F (U)|2

)
∂xU

)
+ O(∆t2)

➜ If we take the new relaxation model

∂t f + Λ∂x f =
R(U)

ε
(f eq(U)− f )

➜ the equivalent equation becomes:

∂tU + ∂xF (U) = ∆t∂x
(
Ru(U)−1

(
PΛ2∂U f eq(U)− |∂F (U)|2

)
∂xU

)
+ O(∆t2)

with Ru(U) a subpart of R(U)

Solution
Choosing Ru(U) correctly we wil obtain:

∂tU + ∂xF (U) = ν∂x (D(U)∂xU) + O(ν2)

➜ For high-viscosity flow there exist relaxation scheme but the situation is more complex.
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Artificial viscosity and stabilization I

Idea
Use this modified relaxation model to apply artificial viscosity to stabilize the method.

■ We consider here the scalar case:

∂ρ+∇ · (f (ρ)) = 0.
■ [D2Q4] scheme :

1. 4 new variables f1(t, x), ... , f4(t, x)
2. At each time step transport step:

f ∗i (tn, x j ) = fi (tn, x j −∆tv i ), ∀1 ≤ i ≤ 4

3. At each time step collisional step:

fi (tn+1, x j ) = f ∗i (x j ) +W (ρ(x j ))(f
eq
i (ρ(x j ))− f ∗i (x j ))

with ρ(x j ) =
∑4

i=1 f
∗
i (x j ), M a change of basis matrix and

W (ρ) = M−1


1 0 0 0
0
0

Ω(ρ)
0
0

0 0 0 τ

M.

■ Error :

∂ρ+∇ · (f (ρ)) = ∆t∇ ·

(
Ω−1(ρ)− 1

2
I
)(

λ2

2
I − f

′
(ρ)⊗ f

′
(ρ)

)︸ ︷︷ ︸
D(ρ)

∇ρ

+ O(∆t2)

■ Ω allows to control the viscosity.E. Franck 21/37
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Artificial viscosity and stabilization II
■ Choice of Ω for scalar advection with 400 time step.

Aim
Construct the viscosity using neural network
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Artificial viscosity and stabilization III

■ Examples with the classical scheme Ω = 1.9Id :
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Artificial viscosity and stabilization III

■ Examples with learned viscosities:

■ Low dissipation but low deformation of the shape. How avoid this ?

■ Unfinished work. Interesting to treat system. How avoid instability in the training ?
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Semi implicit scheme and relaxation
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Low Mach regime
➜ We consider the isothermal Euler equation in the low Mach regime:{

∂tρ+∇ · (ρu) = 0
∂t(ρu) +∇ · (ρu⊗ u+ 1

M2 ρ) = 0

Numerical error
➜ Asymptotic limit:

∂tu+ u · ∇u+∇p ≈
(
2− ω

ω

)
∆t

2M2
|u|2∆u+ O(∆t2)

➜ Conclusion: The scheme is asymptotic preserving for ω = 2−M2.
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Low Mach regime II
➜ We consider the isothermal Euler equation in the low Mach regime:

∂tρ+ ∂x (ρu) = 0
∂t(ρu) + ∂x (ρu2 +

1
M2 p) = 0

∂t(E) + ∂x (Eu + pu) = 0
➜ Limit in 1D: a transport equation on the density with p(t, x) = p0 and u(t, x) = u0.
➜ A uniformly AP scheme: the error on the transport depend only on u0.
➜ Excepted behavior: accuracy must be the same for the different u0 by taking

∆t = 0.5∆x
u0

and Tf = 0.15
u0

Numerical error
➜ Equivalent equation:

∂tρ+ u∂xρ = ∆t

(
2− ω

ω

)
∂x

(
λ2 − u2

)
∂ρ+ O(∆t2)

➜ For stability reason we must choose λ > c
M

+ u. Conclusion: The scheme is too
dissipative.
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Low Mach regime II
➜ We consider the isothermal Euler equation in the low Mach regime:

∂tρ+ ∂x (ρu) = 0
∂t(ρu) + ∂x (ρu2 +

1
M2 p) = 0

∂t(E) + ∂x (Eu + pu) = 0
➜ Limit in 1D: a transport equation on the density with p(t, x) = p0 and u(t, x) = u0.
➜ A uniformly AP scheme: the error on the transport depend only on u0.
➜ Excepted behavior: accuracy must be the same for the different u0 by taking

∆t = 0.5∆x
u0

and Tf = 0.15
u0

Numerical error for ω = 2
➜ Equivalent equation:

∂tρ+ u∂xρ = ∆t2O(λ4) + O(∆t2)

➜ For stability reason we must choose λ > c
M

+ u. Conclusion: The scheme is too
dispersive.
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Suliciu relaxation for the Low-Mach regime I

Suliciu type relaxation
Originally the relaxation methods have been used to construct Godunov solver. The
Suliciu approach consist to linearize only the genuinely nonlinear waves compared to the
Xin-Jin/Kinetic relaxation methods which linearize all the waves.

➜ Idea: Linearize only the fast wave with relaxation.

➜ Non-conservative form and acoustic terms:
∂tρ+ ∂x (ρu) = 0
∂tp + u∂xp + ρc2∂xu = 0
∂tu + u∂xu + 1

ρ
∂xp = 0

➜ Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv +Π) = 0
∂tE + ∂x (Ev +Πv) = 0
∂tΠ+ v∂xΠ+ ϕλ2∂xv = 1

ε
(p − Π)

∂tv + v∂xv + 1
ϕ
∂xΠ = 1

ε
(u − v)

Advantage
We keep the conservative form for the original variables and obtain fully linear acoustics.
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Suliciu relaxation for the Low-Mach regime II

➜ Limit: 
∂tρ+ ∂x (ρu) = ε∂x [A∂xp]
∂t(ρu) + ∂x (ρu2 + p) = ε∂x [(Au∂xp) + B∂xu]

∂tE + ∂x (Eu + pu) = ε∂x
[
AE∂xp + A∂x

p2

2
+ B∂x

u2

2

]
,

with A = 1
ρ

(
ρ
ϕ
− 1

)
and B =

(
ρϕλ2 − ρ2c2

)
.

➜ Stability: The dissipation is entropically stable if ϕλ > ρc2 and ρ > ϕ.

Results
The relaxation system is hyperbolic and all the characteristic fields are linearly degenerate.
The characteristic speeds are given by:

Σ =

{
v , v , v , v , v , v −

a

ρ
, v +

a

ρ

}

Advantage
We keep the conservative form for the original variables and obtain fully linear acoustics.
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Suliciu relaxation for Low-Mach III
➜ Splitting: Convective part treated explicitly / Acoustic part treated implicitly.

∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv +M2(t)Π) = 0
∂tE + ∂x (Ev +M2(t)Πv) = 0
∂tΠ+ v∂xΠ+ ϕλ2

c∂xv = 0

∂tv + v∂xv + M2(t)
ϕ

∂xΠ = 0

and


∂tρ = 0
∂t(ρu) + (1−M2(t))∂xΠ = 0
∂tE + (1−M2(t))∂x (Πv) = 0
∂tΠ+ ϕ(1−M2(t))λ2

a∂xv = 0
∂tv + (1−M2(t)) 1

ϕ
∂xΠ = 0

with M(t) ≈ max

(
Mmin, min

(
max

|u|
c

, 1

))
.

➜ Eigenvalues: explicit part: v , v ±M(t) λc︸︷︷︸
≈c

; implicit part: 0, ±(1−M2(t)) λa︸︷︷︸
≈c

.

➜ Step 1: we solve

(Id − (1−M2(tn))
2∆t2λ2

a∂xx )Π
n+1 = Πn −∆t(1−M2(tn))ϕλ

2
a∂xv

n

➜ Step 2: we compute vn+1 and ρun+1 using Πn+1, and E v+1 using Πn+1vn+1.

Advantages
➜ We construct an efficient Godunov relaxation scheme for the explicit part.
➜ We solve only a linear and constant Laplacian. The matrix is only assembled once.
➜ No conditioning issues coming from large gradients of ρ.
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Results in 1D

➜ We consider the same low problem as before with density transport.

➜ Convergence of different schemes:
N = 250 N = 500 N = 1000 N = 2000

Explicit (Rusanov)
error 0.77 0.67 0.53 0.38
order - 0.2 0.34 0.48

Explicit (FVS)
error 1.63E−2 8.3E−3 4.1E−3 2.0E−3

order - 0.96 1.02 1.03

SI Suliciu (Rusanov)
error 5.0E−2 2.54E−2 1.3E−2 6.55E−3

order - 0.97 0.98 0.99

SI two-speed (Rusanov)
error 1.1E−1 6.5E−2 3.4E−2 1.7E−2

order - 0.76 0.93 1.0

SI two-speed (FVS)
error 1.55E−2 7.8E−3 3.9E−3 2.0E−3

order - 0.99 1.0 1.0

SI two-speed (Godunov)
error 1.54E−2 7.8E−3 3.9E−3 2.0E−3

order - 1.0 1.0 1.0

➜ CFL comparison
Scheme λmax ∆t (PG law) ∆t (SG law)
Explicit max(|u − c|, |u + c|) 1.3E−4 2.7E−5

SI Suliciu max (|u − E(t)λc/ρ| , |u + E(t)λc/ρ|) 0.0038 0.004
SI two-speed max (|v − E(t)λc l , |v + E(t)λc |) 0.029 0.03
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Results in 2D: Kelvin-Helmholtz instability

➜ Kelvin-Helmholtz instability. Density:

➜ Density at time Tf = 3, k = 1, M0 = 0.1. Explicit Lagrange-Remap scheme with
120× 120 (left) and 360× 360 cells (middle left), SI two-speed relaxation scheme
(λc = 18, λa = 15, ϕ = 0.98) with 42× 42 (middle right) and 120× 120 cells (right).
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Results in 2D: Kelvin-Helmholtz instability

➜ Kelvin-Helmholtz instability. Density:

➜ Density at time Tf = 3, k = 2, M0 = 0.01 with SI two-speed relaxation scheme
(λc = 180, λa = 150, ϕ = 0.98). Left: 120× 120 cells. Right: 240× 240 cells.
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Well balanced extension I
➜ We consider the Ripa model:

∂th + ∂x (hu) = 0

∂t(hu) + ∂x
(
hu2 + p(h,Θ)

F 2
r

)
= − ghΘ∂x z

F 2
r

∂t(hΘ) + ∂x (hΘu) = 0

with p = gΘ 1
2
h2 the pressure.

➜ Steady states: u = 0
Θ = cst
h + z = cst,

,


u = 0
z = cst

Θ h2

2
= Cts,

,


u = 0
h = cst

z + h
2
ln(Θ) = Cts

➜ We want solve around equilibrium: u = O (Fr )
Θ = cst + O (Fr )
h + z = cst + O (Fr )

Idea
Propose the same semi implicit relaxation scheme as before coupled with a procedure to
plug the source into the fluxes. This procedure is call the Jin-Levermore method. It allows
to obtain WB scheme.
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Well balanced extension II

➜ Relaxation model:
∂th + ∂x (hv) = 0,
∂t(hu) + ∂x (huv +Π) = −gh∂xz,
∂t(hΘ) + ∂x (hΘv) = 0,

∂tΠ+ v∂xΠ+ ab
h
λ2∂xv = 1

ε

(
Π− gΘ 1

2
h2

)
∂tv + v∂xv + a

bh
∂xΠ = − a

b
gΘ∂xz + 1

ε
(v − u)

➜ Limit of the relaxation model:
∂th + ∂x (hu) = ε∂x (β (∂xp + gh∂xz))
∂t(hu) + ∂x

(
hu2 +Θ g

2
h2

)
= −hgΘ∂xz + ε∂x (uβ (∂xp + gh∂xz)) + ε∂x (γ∂xu)

∂t(hΘ) + ∂x (hΘu) = ε∂x (Θγ (∂xp + gh∂xz))

Results
In the relaxation limite the model preserve the equilibriums of Ripa model.
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Results for Well balanced extension
➜ Test case: equilibrium preservation:

∆t/ Error Tests Rusanov Ex Relaxation Exp Relaxation SI

ST1

Error h 1.5E−2 1.5E−17 3.6E−13

Error u 5.9E−3 1.5E−15 6.7E−13

Error Θ 0.0 0.0 0.0
∆t 8.1E−4 7.1E−4 1.42E−1

ST2

Error h 9.3E−2 0.0 8.4E−12

Error u 7.3E−9 0.0 1.3E−13

Error Θ 0.13 1.8E−17 6.0E−12

∆t 2.5E−3 2.3E−3 4.7E−1

ST3

Error h 0.59 0.0 1.38E−12

Error u 0.65 1.6E−15 4.4E−14

Error Θ 0.19 0.0 1.4E−12

∆t 2.4E−3 1.8E−3 0.49

➜ Test case: equilibrium perturbation:
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Conclusion
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Conclusion

Relaxation methods
The global idea of relaxation methods is to replace a PDE complex to discretize by a
larger PDE but simpler to discretize.

Relaxation methods and Implicit schemes
With this idea we have develop different implicit schemes very simple, cheaper than
classical approaches for hyperbolic PDEs

Low Mach regimes
In the low Mach regime we obtain a very simple scheme which is uniformly accurate.
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