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Implicit methods and hyperbolic PDE
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Hyperbolic PDE and CFL constrains

We want solve geophysical, compressible or plasmas flows (Tokamaks or astrophysical
applications).

B We consider here the following type of equations:

U+ V- (F(U))=vV-(DU)VU)
with v << lorv =0

B |n general this type of problem are solved with explicit time integrators due to first
orde CFL condition: )
Ax Ax
At < min(——————,—)
Amax(OF(U))" v
B However it can be interesting to consider CFL-less approach in some cases:
0 when we want compute stationary flows,

O when some cells are really small without physical reason (due to geometry for
example),

O for multiscale problems.

Implicit scheme and hyperbolic PDE

The hyperbolic PDE are not well-adapted to implicit method due to: nonlinearity, the
directional structure and the multiscale dynamics.
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Euler equations and the low Mach regime

=» Euler equations:
Otp+ V- (pu)=0
Or(pu) +V - (pu@u+plg) =0
OE+V - -(Eu+pu)=0

with p(t,x) > 0 the density, u(t, x) the velocity and E(t,x) > 0 the total energy.

=» Hyperbolic system with nonlinear waves. Waves speed: three differents eigenvalues:
(u,n) and (u,n) £ ¢ with the sound speed ¢? = 'y%.

@
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Euler equations and the low Mach regime

=» Euler equations:

Otp+ V- (pu) =0 Otp+V - (pu) =0 )
Ot(pu) +V - (pu®u+ply) =0 — Bt(pu)+V-(pu®u)+mVp:0
OHE+V - -(Eu+pu)=0 OE+ V- (Eu+ pu)=0

with p(t,x) > 0 the density, u(t,x) the velocity and E(t,x) > 0 the total energy.

=» Hyperbolic system with nonlinear waves. Waves speed: three differents eigenvalues:
(u,n) and (u,n) + ¢ with the sound speed ¢ = ’y%.

Physic interpretation:

=» Two important velocity scales: v and c, and their ratio (the Mach number) M = %

=» When M tends to zero, we obtain the incompressible Euler equations:
Op+u-Vp=0
potu+pu-Vu+Vp =0
V-u=0
In 1D, we only have an advection of p.
=» Aim: construct an scheme valid at the limit with a uniform cost compared to M.
=» Other related problems: Euler with gravity, low-Mach and low-3 MHD.
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Explicit vs implicit schemes

=» Explicit scheme: issues with the CFL condition for low Mach flow:

=¥ Fast perturbative phenomena: acoustic waves at velocity ¢

=» Important phenomena: transport at velocity u

=» Expected CFL condition At < ‘AT"(; in practice, we need At < % = Mm
-

At the end, we need a At multiplied by M compared to the expected At

Implicit time scheme. No CFL condition. Taking a larger time step, it allows to “filter”
the fast acoustic waves which are not import to capture the limit regime.

= Implicit scheme: Newton method (important additional cost) + GMRES
= Simpler example (linearized compressible NS equations around ug = 0):

Op+LEV-u=0 prtl 4 Aty yntl — pn
Ou+ ;Vp=vAu urtl 4 2EVprtl — pAtAtu™ = u”
=> Matrix to invert:

Z(lg—vAt?) V-
\Y M 1y

=» For At > M, the limit problem is ill-posed, and the matrix is difficult to invert.

Design simpler implicit schemes
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Relaxation methods for implicit schemes
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Second idea: relaxation approach

Relaxation approach

Keep the idea to replace the original model by one that is simpler to solve, use it as a
solver rather than a preconditioner.

=» Relaxation [JX95] : Used to design new schemes.
=» Idea: Approximate the model

1
0:U + 0xF(U) =0, by O:f + OxA(f) = g(Q(f) —f)
At the limit (Hilbert expansion) and taking Pf = U (P € R™™ with n < m) we obtain
B:U + 8xF(U) = edx(D(U)8,U) + O(£?)

=» Time scheme: Splitting
=» We first solve
fx — fn
At
=» We solve the stiff source term using an implicit scheme.

1 OA(F*") = 0,

Advantages of this approach

=» In general, we construct A with a simpler structure than F, to easily designed a
Godunov numerical flux.
=» Here we use it to construct some simpler implicit schemes.
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==
Xin-Jin relaxation method

=» We consider the following nonlinear hyperbolic system

o:U+ 0«F(U) =0,
with a function U € RV, x € R.
=» Aim: Find a way to approximate this system with a sequence of simple systems.

=» Idea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume
community) [JX95]-[Nat96]-[ADNOO].

U+ 0V =0
1
8V 4+ 228,U = =(F(U) — V)
€

Limit scheme for the hyperbolic relaxation

The limit equation of the relaxation system is

8:U + 0xF(U) = e0x((\21d — |A(U)|?)0xU) + O(e?),
with A(U) the Jacobian of F(U).

=» Conclusion: the relaxation system is an approximation of the original hyperbolic

system (with an error in €). /\
10/
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Xin-Jin implicit scheme

Main property

=» Relaxation system: "the nonlinearity is local and the non-locality is linear”.

=» Main idea: splitting scheme between implicit transport and implicit relaxation.

=» Key point: we have 9;:U = 0 during the relaxation step. Therefore F(U) is explicit.

=» Relaxation step: we use a § scheme:

Un+1 = u”"
v+l — OE(F(U"JA) _ Vn+1) + (1 _ H)E(F(U") _ V")
&€ &€
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Xin-Jin implicit scheme

Main property

=» Relaxation system: "the nonlinearity is local and the non-locality is linear”.

=» Main idea: splitting scheme between implicit transport and implicit relaxation.

=» Key point: we have 9;:U = 0 during the relaxation step. Therefore F(U) is explicit.

=» Relaxation step: we use a § scheme:

Un+1 = uy"
Vot = 25 EW) - v+ (- 0) 2R - V)
£ €
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Xin-Jin implicit scheme

Main property

=» Relaxation system: "the nonlinearity is local and the non-locality is linear”.

=» Main idea: splitting scheme between implicit transport and implicit relaxation.

=» Key point: we have 9;:U = 0 during the relaxation step. Therefore F(U) is explicit.

=» Relaxation step: we use a § scheme:

Un+1 = yn
A A A

(/d + e—t) vl = G—tF(U") +(1- 0)—t(F(U") - V")
&€ € 15
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Xin-Jin implicit scheme

Main property

=» Relaxation system: "the nonlinearity is local and the non-locality is linear”.

=» Main idea: splitting scheme between implicit transport and implicit relaxation.

=» Key point: we have 9;:U = 0 during the relaxation step. Therefore F(U) is explicit.

=» Relaxation step: we use a § scheme:

Un+lzun
At
vl =vr4 ——(F(U") - V"
+5+0At(( ) )
e —
w
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Xin-Jin implicit scheme

Main property

Relaxation system: "the nonlinearity is local and the non-locality is linear”.
Main idea: splitting scheme between implicit transport and implicit relaxation.
Key point: we have 9;:U = 0 during the relaxation step. Therefore F(U) is explicit.

Relaxation step: we use a 6 scheme:
Transport step (order 1) :

0 1 urtt ur
(seae( 26 )o) (W )= ()
We plug the equation on V in the equation on U and obtain
(lg — APA20, ) U™ = U — Atd V", V™ = v — AtA25, U™

il

Numerical error of first splitting scheme

0:U + 0xF(U) = At (2 — ) B ((X2ly — |A(U) )k U) + O(AL?)

B Remarks:
O Coupling with Crank-Nicolson scheme for wave equation we can go to second order
U We solve n uncoupled constant Laplacian in place to one nonlinear ill-conditioned
system with n variables.
0 A. Thomann [Th2023] propose a specific IMEX scheme less dispersive than our
approach. ’11 \
/37
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==
Generic kinetic relaxation schemes

Kinetic relaxation systems

=» Model under consideration:

U+ 0«F(U)=0
= Lattice: W = {)\1,...., \n, } a set of velocities.
=» Mapping matrix: P a matrix nc X n, (nc < ny) such that U = Pf, with U € R".
=» Kinetic relaxation system: 1
Otf + NOxf = g(feq(U) —f)

=» Consistency condition (Natalini - Aregba [96-98-02], Bouchut [99-03]) :

{ PFeI(U) U

F(U) ©)

PAFI(U)

Chapman-Enskog stability

| \

= Limit system:
0tU + 0« F(U) = 0y ((PN*9yfI(U) — [0F (U)|?) 8xU) + O(e?)
=» This limit system is stable if the second order operator is entropy-dissipative. We also
have partial stability results for the kinetic systems.

=» Strong Stability: entropy theory equivalent to the H-theorem. Other criteria for
stability are given in Bouchut [04].

")
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Example of kinetic relaxation systems
B Example:

Btp + 6x(pu) =0
Otpu + Ox (pu? + c2p) =0
B Vectorial approach:

O Each physical equation is represented by g transport equations.
J We use 2 variables by physical variable so f = (f: ﬁ:, fru, fi”) with:

V =[=x A2,
and

r r ru ru
p="Ff_+f,, pu:)‘;+fJr

feq

2 2
u u u® +c
eq L P e M PE TR

2 T ax wE T 21

L Stable in all the physical regimes if we satisfy the sub-characteristic condition.
o dissipation: similar to Rusanov scheme.

B Boltzmann approach:

Ll We discretize with a minimal set of velocities the Boltzmann equations:
Ll Ex: isothermal Euler equation

L We use three variables f = (f—. f. fy) for all the variables (p, pu) with:
V =[-X01]

p="Ff_+fh+f, pu=Xf—1~Ff)
pc? p
232" 252
U Stable in the Mach regime < 0.6 if we satisfy the sub-characteristic condition.

a dissipation: low dissipation scheme. (13 \
E. Franck \ /37
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Implicit scheme based on kinetic relaxation |
=» Advantage: We replace independent wave equations by independent transport

equations.
=» We define the two operators for each step :

T(At) . E,At/\@x fn+1 — £
R(At) : £ = 7 4 w(FI(U™) — F")
=» First splitting scheme: T(At) o R(At) is consistent with

=» How to deal with the transport step with constant velocity?
=» Exact transport (induce a CFL), is there the Lattice Boltzmann methods.
=» Semi-Lagrangian scheme,
=» CFL-less implicit DG scheme, with a downwind strategy: block triangular matrix
using task graph numbering.
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Implicit scheme based on kinetic relaxation Il

High order scheme: composition method

=» If W, a scheme that is second-order accurate in time, satisfies W(At) = W—1(—At)
and W(0) = Iy, then we can construct the high-order extension

Mp(At) = W(y1At) o W(ypAt)o -0 W(ysAt),

with v; € [-1,1].
=>» Susuki scheme : s =5, p = 4. Kahan-Li scheme: s =9, p = 6.

New second-order scheme

=» The current second-order scheme is:
At At
V(At)=T = oR(At,w=2)oT B

=» It satisfies the time symmetry, but not W(0) = I, for € = 0. Indeed,

R(At=0,w=2) <= f"=2f% —f" £ ("
=» However, R(0,w =2) 0 R(0,w = 2) = I4, and so we propose the following
second-order scheme:
At

Vap(At) = T(T) o R(At, w_2)oT(A2 )oR(At w=)le T(A“t)

E. Franck
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Implicit scheme based on kinetic relaxation Il

=» Error lines for the isothermal Euler equations. We have taken a CFL condition equal
to 5 times the explicit one.

001 001
00001 00001
: !
“ 1e-06 | 5 1e:06
s 5
5 g
§ le-08 ; 1e-08
PR ¢
le-10 £ le-10
le-12 | len2
jrSrLe— le-l4

L L
100 N 1000

—— order 2/ Strang splitting
—— order 2/ time-symmetric splitting
—s— Suzuki / Strang splitting

—=— Suzuki / time-symmetric splitting
—ée— Kahan-Li / Strang splitting

—é— Kahan-Li / time-symmetric splitting

=» Rayleigh-Taylor instability

i

= Theory and parallelization: Coulette and al [17-18-19]. m
/37
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Implicit scheme based on kinetic relaxation IV

=» We have applied this strategy to the Guiding center for plasma physics, Helie [22]:

Otp— V- ((Vé)L +B)p) =0,
—A¢ = p— [ pdx,

with B = (—bg sin(0), bg sin(0), bg ). We choose by = 0.1 and by = 200.
=» Scheme: Exact transport in the toroidal direction, implicit DG kinetic scheme in the
poloidal plane.
=» CFL conditions for the classical and new schemes:
min(vVpor, Ve)

Vo
Atexp < ——F———— — Atpew <
P max(Axpor, Axg) new Axg

=> Test case: 3D Diocotron instability. CFL condition equal to 33 times the explicit one.

E. Franck
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Boundary condition

Bc conditions

How impose the physical BC since we solve non physical equation ?

B Equivalence equation to kinetic scheme (R. Helie an al [2022-2023]).
B We consider the model ;U + 0xF(U) = 0 and the kinetic relaxation model given by

BT + AOFT = = (F0t — f+)

=0

Oef ™ — AOF~ = = (£~ —f7)

€
B The solution of the kinetic scheme is solution of the next model with an error of

o(At?) /
(1) (79w ) (1)

with z := V — F(U)
B This analysis gives a tools to find good BC.

0 o1 02 03 04 05 06 07 08 09 1 S R m
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Relaxation methods and viscosity
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How treat low viscosity models

Objective

Discretize hyperbolic systems with small viscosity term v9x(D(U)dxU) keeping the good
structure of the algorithm with transport step and local relaxation step.

=» We recall that the first order transport-relaxation is consistant with the following
equivalent equation:

AU + 8« F(U) = Atdy ((PN*9yf(U) — |9F (U)[?) 8xU) + O(At?)
=» If we take the new relaxation model
Ocf + NOxF = M(fe"(U) —f)
5

=» the equivalent equation becomes:

AU + 0xF(U) = Atdy (Ru(U) ™ (PA20yfI(U) — |0F (U)[?) 9xU) + O(At?)
with R,(U) a subpart of R(U)

Choosing R,(U) correctly we wil obtain:

8:U 4 0xF(U) = vdy (D(U)0xU) + O(1?)

=» For high-viscosity flow there exist relaxation scheme but the situation is more compler\

20/37
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Artificial viscosity and stabilization |

Use this modified relaxation model to apply artificial viscosity to stabilize the method.

B We consider here the scalar case:

B [D2QA4] scheme : p+V - (f(p)) =0.

1. 4 new variables fi(t, x), ..., fa(t, x)
2. At each time step transport step:

f}*(tn,Xj):ﬁ(tn,Xj—AtVi), Vi<i<4
3. At each time step collisional step:
filtns1, x;) = £ (x;) + W(p(x;)) (£ (p(x))) — £7(x;))

with p(x;) = i f*(x;), M a change of basis matrix and

1 0 O 0
_ 0 0
Wpy=mM=1 o | Qp) |, |M
B Error: 0[O0 O T

Bp+V - (F(p) = AtV - | (@Y (p) = L) (X1 = F (0) @ F (0)) Vo | + O(A)

D(r) @

4
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Artificial viscosity and stabilization |l

B Choice of Q for scalar advection with 400 time step.

Solution at t=4.0 (400 timesteps)

w=18 w=19 w=2.0
12
10
08
05
04
02
00
-02

Reference w=1.0

Construct the viscosity using neural network

Algorithm 1: Training algorithm

1 Set the total number of timesteps desired N

2 Compute reference solutions {urer,; }I; on all timesteps 0,
3 Build the neural network 7y and initialize its parameters 0

4 Set the number of timesteps for the training n

5 while True do

6  for ke {l,.. batch size} do

7 foric{l,...,m} do
8 Draw a random starting time ¢/ € {t°,...,tN ="}
i iin
9 Compute the numerical solutions uE,"J’l' !
1 [ e
10 Compute the error 17;(0) = [[ul ;"1 =l
11 end
12 Compute the approximated loss for this sample £i(0) = Y21 Ei(0)
13 end

14 Compute the approximated loss for this batch £(6) = S 47 £, (g)

15 Update the parameters 0 with V£(0)
16 end r22 ‘
\ / 37
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Artificial viscosity and stabilization Il

B Examples with the classical scheme Q = 1.9/4:

w=15
w=15
w=15

Reference

Solution at t=4 (400 timesteps)
w=18

Solution at £=4 (400 timesteps)

w=18

Solution at t=4 (400 timesteps)

w=18

w=19
w=19
w=19

E. Franck
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Artificial viscosity and stabilization Il

B Examples with learned viscosities:

Reference Constant w=1.9 scalar, 3x3 stencil, m=80 non-scalar, 3x3 stencil, m=80 non-scalar, 5x5 stencil, m=60

M 12
10
0s
o5
0s
02
00
02

Reference Constant w=19 scalar, 313 stencil, m=80 non-scalar, 3x3 stencil, m=80 non-scalar, 5x5 stencil, m=60
[} 2

10

08

o5

0a

02

00

02

Reference Constant w=19 scalar, 313 stencil, m=80 non-scalar, 3x3 stenci, m=80 non-scalar, 5x5 stencil, m=60

[}z
10
0s
06
04
02
00
02

B | ow dissipation but low deformation of the shape. How avoid this ?

B Unfinished work. Interesting to treat system. How avoid instability in the training ?

123/
\ 37

E. Franck y




Semi implicit scheme and relaxation
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Low Mach regime
=» We consider the isothermal Euler equation in the low Mach regime:

Otp+ V- (pu) =0
de(pu) + V- (pu@u+ 55p) =0

Numerical error
=» Asymptotic limit:

2
8tu+u-Vu+Vp%(

—w

) o [ul?Au+ O(At?)

=» Conclusion: The scheme is asymptotic preserving for w = 2 — M?.

P E. Franck



Low Mach regime Il

=» We consider the isothermal Euler equation in the low Mach regime:

Oep + Ox(pu) = 0
d(pu) + Ox(pu? + 5p) =0
O0t(E) + Ox(Eu+ pu) =0
=» Limit in 1D: a transport equation on the density with p(t, x) = po and u(t, x) = up.
=» A uniformly AP scheme: the error on the transport depend only on ugp.
=» Excepted behavior: accuracy must be the same for the different ug by taking
At = 0.5% and Ty = 915

uo

Numerical error

=» Equivalent equation:
2=
Bep + udep = At (7“’) 0% (A — 12) Op + O(AE)
w

=» For stability reason we must choose A > ﬁ + u. Conclusion: The scheme is too
dissipative.

Varying CFL Varying w

E. Franck




Low Mach regime Il

=» We consider the isothermal Euler equation in the low Mach regime:

Oep + Ox(pu) = 0
d(pu) + Ox(pu? + 5p) =0
O0t(E) + Ox(Eu+ pu) =0
=» Limit in 1D: a transport equation on the density with p(t, x) = po and u(t, x) = up.
=» A uniformly AP scheme: the error on the transport depend only on ugp.
=» Excepted behavior: accuracy must be the same for the different ug by taking
At = 0.5% and Ty = 915

up
Numerical error for w = 2

=» Equivalent equation:

dep + udxp = APO(N) + O(AE?)

=» For stability reason we must choose A > ﬁ + u. Conclusion: The scheme is too
dispersive.

Vayring u0
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Suliciu relaxation for the Low-Mach regime |

Suliciu type relaxation

Originally the relaxation methods have been used to construct Godunov solver. The
Suliciu approach consist to linearize only the genuinely nonlinear waves compared to the
Xin-Jin/Kinetic relaxation methods which linearize all the waves.

=» ldea: Linearize only the fast wave with relaxation.
=» Non-conservative form and acoustic terms:

3tP+8x(PU) =0
Orp + udxp + pc?oyu =0
Oru + udxu + %axp =0

‘ 27/37
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Suliciu relaxation for the Low-Mach regime |

Suliciu type relaxation

Originally the relaxation methods have been used to construct Godunov solver. The
Suliciu approach consist to linearize only the genuinely nonlinear waves compared to the
Xin-Jin/Kinetic relaxation methods which linearize all the waves.

=» ldea: Linearize only the fast wave with relaxation.
=» Non-conservative form and acoustic terms:

3tp+8x(PU) =0
Orp + udxp + pc?oyu =0
Oru + udxu + %‘()Xp =0

=» Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
atp + ax(pV) =0
Ot(pu) + Ox(puv +M) =0
OtE+ Ox(Ev+TNv)=0
Ot 4+ vO M + pA20xv = %(p —n)
Otv + vOxv + %(r)xl_l = %(u —v)

o7/, E. Franck
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Suliciu relaxation for the Low-Mach regime |

Suliciu type relaxation

Originally the relaxation methods have been used to construct Godunov solver. The
Suliciu approach consist to linearize only the genuinely nonlinear waves compared to the
Xin-Jin/Kinetic relaxation methods which linearize all the waves.

=» ldea: Linearize only the fast wave with relaxation.
=» Non-conservative form and acoustic terms:

Otp + 8)((9“) =0

Orp + udxp + pc?oyu =0
Oru + udxu + %axp =0

=» Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
atp + aX(PV) =0
Ot(pu) + Ox(puv +M) =0
OtE+ Ox(Ev+TNv)=0
BN + vOxMN + ¢pA20,v = L(p — M)
Otv + vOxv + %(’)XI_I = %(u —v)

Advantage

We keep the conservative form for the original variables and obtain fully linear acoustics.
[ 27/
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Suliciu relaxation for the Low-Mach regime Il

=» Limit:
Orp + Ox(pu) = 0« [Adxp]
Bt (pu) + Ox(pu? + p) = cOx [(Audxp) + deu]
O:E + Ox(Eu + pu) = 0y [AEpr +ALE + BOYE }
with A = 1 (g - 1) and B = (ppA? — p2c?).
=» Stability: The dissipation is entropically stable if X > pc? and p > ¢.

‘ 28/37
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Suliciu relaxation for the Low-Mach regime Il

=» Limit:
Otp + Ox(pu) = €0x [AD«p]
Ot(pu) + Ox(pu? + p) = c0x [(Audxp) + Baxu]

O:E + Ox(Eu + pu) = 0y [AEaxp +ALE + B }

with A = 1 (g - 1) and B = (ppA? — p2c?).
=» Stability: The dissipation is entropically stable if X > pc? and p > ¢.

The relaxation system is hyperbolic and all the characteristic fields are linearly degenerate.
The characteristic speeds are given by:

Z:{v,v,v,v,v,vfﬁ,v+i}

P P

Advantage

We keep the conservative form for the original variables and obtain fully linear acoustics.

‘ 28/37
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Suliciu relaxation for Low-Mach Il|

=» Splitting: Convective part treated explicitly / Acoustic part treated implicitly.

Otp + Ox(pv) =0 Orp =0

Ot(pu) + Ox(puv + M2(t)N) =0 dr(pu) + (1 — M?(1))0xN =0
OE + Ox(Ev + M*(t)Nv) = 0 and OE + (1 — M?(1))0x(Mv) =0
atl'l+v8XI'I+¢/>§8Xv: 0 0N + (1 — M2(t))A\20xv =0
8tv+v8Xv+MT(t)8XI'I:0 Bev + (1= M2(1)) an =0

with M(t) & max (M,,,,-n, min (max M, 1))
c

‘ 29/37
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Suliciu relaxation for Low-Mach Il|

=» Splitting: Convective part treated explicitly / Acoustic part treated implicitly.

Otp+ Ox(pv) =0 Otp=0

Ot(pu) + Ox(puv + M2(t)N) =0 dr(pu) + (1 — M?(1))0xN =0
OE + Ox(Ev + M*(t)Nv) = 0 and OE + (1 — M?(1))0x(Mv) =0
atl'l+v8XI'I+¢/>§8Xv: 0 0N + (1 — M2(t))A\20xv =0
8tv+v8Xv+MT(t)8XI'I:0 Bev + (1= M2(1)) an =0

with M(t) & max (M,,,,-n, min (max M, 1))
c

=» Eigenvalues: explicit part: v, v M(t) Ac ; implicit part: 0, (1 — M?(t)) A, -
=» Step 1: we solve
(lg = (1 = M2(£))2At2220,6 )™ = N7 — At(1 — M>(t))pA20v"

= Step 2: we compute v"t1 and pu"t! using M1, and EV*! using M7 H1ytl,

‘ 29/37
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Suliciu relaxation for Low-Mach 11l

=» Splitting: Convective part treated explicitly / Acoustic part treated implicitly.

Otp+ Ox(pv) =0 Otp=0

Ot(pu) + Ox(puv + M2(t)N) =0 dr(pu) + (1 — M?(1))0xN =0
OtE + Oy (Ev + M2(t)Nv) = 0 and OtE + (1 — M?(1))0x(NMv) =0
8t|'|+v8X|'|+qb);§8Xv:0 0eM + ¢(1 — M?(t))\20xv = 0
8:v+v8xv+MT(t)8X|'| -0 Bev + (1= M2(1)) an =0

with M(t) & max (Mm,-,,, min (max M, 1))
c

=» Eigenvalues: explicit part: v, v M(t) Ac ; implicit part: 0, (1 — M?(t)) A, .
~c ~c
=» Step 1: we solve
(lg = (1 = M2(£))2At2220,6 )™ = N7 — At(1 — M>(t))pA20v"

= Step 2: we compute v"t1 and pu"t! using M1, and EV*! using M7 H1ytl,

Advantages

=» We construct an efficient Godunov relaxation scheme for the explicit part.
=» We solve only a linear and constant Laplacian. The matrix is only assembled once.
=» No conditioning issues coming from large gradients of p.

o7/, E. Franck
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Results in 1D

=» We consider the same low problem as before with density transport.
=» Convergence of different schemes:

N =250 | N=500 | N=1000 | N = 2000
. error 0.77 0.67 0.53 0.38
Explicit (Rusanov) order - 0.2 0.34 0.48
.. error 1.63E2 8.3E3 41E-3 2.0E-3
Bxplicit (FVS) order - 0.96 1.02 1.03
- error | 5.0E~2 [ 2B54E~? | 1.3E 2 6.55E 3
St Suliciu (Rusanov) order - 0.97 0.98 0.99
error 1.1E-1 6.5E—72 3.4E2 1.7E~2
SR e ) A - 0.76 0.93 1.0
error 1.55E—2 7.8E3 393 2.0E-3
S () order - 0.99 1.0 1.0
error 1.54E~2 7.8E73 393 2.0E-3
S| two-speed (Godunov) order i} 10 10 10
=» CFL comparison
Scheme Amax At (PG law) | At (SG law)
Explicit max(Ju — c[, [u+ c]) 1.3E—% 2.7E-5
SI Suliciu max (|u — E(t)Ac/pl, |u+ E(t)Ac/pl) 0.0038 0.004
S| two-speed max (|[v — E(t) Al [v + E(t)Ac]) 0.029 0.03
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Results in 2D: Kelvin-Helmholtz instability

=» Kelvin-Helmholtz instability. Density:

[Py E S B S B
o b— 00
00 02 04 06 08 10 00 02 04 08 08 10 00 0z 04 05 08 10 o0 0z 04 05 08 10

=» Density at time Tf =3, k =1, My = 0.1. Explicit Lagrange-Remap scheme with
120 x 120 (left) and 360 x 360 cells (middle left), SI two-speed relaxation scheme
(Ac =18, A\; = 15, ¢ = 0.98) with 42 x 42 (middle right) and 120 x 120 cells (right).
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Results in 2D: Kelvin-Helmholtz instability

=» Kelvin-Helmholtz instability. Density:

zZw

178

125

=» Density at time Tr = 3, k =2, My = 0.01 with Sl two-speed relaxation scheme
(Ac =180, A\; =150, ¢ = 0.98). Left: 120 x 120 cells. Right: 240 x 240 cells.

E. Franck
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Well balanced extension |

=» We consider the Ripa model:
Oth+ Ox(hu) =0
On(hu) + O (hu? + ERL) = 84902
0t(h®) + 0x(h©u) =0

with p = g@%h2 the pressure.
=» Steady states:

u=20 u=20 u=20

© = cst , Z=2C5f , h = cst

h+ z = cst, @% = Cts, z+ g In(©) = Cts
=» We want solve around equilibrium:

u=O(F)
© =cst+ O(F)
h+z=cst+ O(F;)

Propose the same semi implicit relaxation scheme as before coupled with a procedure to
plug the source into the fluxes. This procedure is call the Jin-Levermore method. It allows

to obtain WB scheme.

E. Franck



Well balanced extension I

=» Relaxation model:
8th + Bx(hv) = 0,
Ot(hu) + Ox(huv + N) = —ghodxz,
0:(h®) + dx(h©V) =0,
0N+ va N+ 2X29,v =1 (N - g01H)
Otv + vOxv + bihBXI'l = f%g@&(z + g(v — u)

=» Limit of the relaxation model:

Or(hu) + Oy (hu? + ©§h?) = —hg©@0xz + £0x (uB (Oxp + gh0xz)) + £0x (VOxu)
0t(h®) + O« (hOu) = €dx (O (Oxp + ghdxz))

In the relaxation limite the model preserve the equilibriums of Ripa model. I
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=» Test case: equilibrium preservation:

Results for Well balanced extension

At/ Error Tests Rusanov Ex | Relaxation Exp | Relaxation S|
Error h 1.5E2 15E~ Y 3.6E 13
ST1 Error u 5.9E—3 15E-T 6.7E"13
Error © 0.0 0.0 0.0
At 8.1E—* 7.1E-*% 1.42E71
Error h 93E—2 0.0 84E—T2
ST2 Error u 73E7° 0.0 1.3E713
Error © 0.13 1.8E~17 6.0E— 12
At 25E3 2.3E-3 47E1T
Error h 0.59 0.0 1.38E— 12
ST3 Error u 0.65 1.6E~T° 4.4E T3
Error © 0.19 0.0 1.4E7 T
At 2.4E—3 1.8E—3 0.49

=» Test case: equilibrium perturbation:

1.005

1.002

0.999

0.996

0.993

1.0014

1.0011

1.0008

1.0008

1.0002
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Conclusion
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Conclusion

Relaxation methods

The global idea of relaxation methods is to replace a PDE complex to discretize by a
larger PDE but simpler to discretize.

Relaxation methods and Implicit schemes

With this idea we have develop different implicit schemes very simple, cheaper than
classical approaches for hyperbolic PDEs

Low Mach regimes

In the low Mach regime we obtain a very simple scheme which is uniformly accurate.

P E. Franck 4
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