Contrôle continu #1 de Probabilités

Troisième année de la Licence de Mathématiques Parcours "Mathématiques Appliquées" et "Actuariat" Année 2025 - 2026

Durée : 1h. Les calculatrices et téléphones portables sont interdits

Questions de cours – On considère l'espace mesuré (E, \mathcal{E}, μ) .

- 1) Donner la définition précise de l'élément \mathcal{E} de l'espace mesuré.
- 2) Que doit satisfaire μ pour être une mesure sur (E, \mathcal{E}) ?
- 3) Soit $\mathcal{C} \subset \mathcal{P}(E)$. Rappeler la définition de $\sigma(\mathcal{C})$, la tribu engendrée par \mathcal{C} .

Exercice 1 – Soit $E = \{e_i; i \in \mathbb{N}\}$ et $A = \{e_{2i}; i \in \mathbb{N}\}$

- Pour chacune des assertions ci-dessous, dire, en justifiant votre réponse, si elle est vraie ou fausse.
 - $i) E \subset A; \quad ii) \{e_i\} \in A; \quad iii) e_2 \in E; \quad iv) \{e_2, e_3\} \subset A$
- 2) Donner les éléments de la tribu $\mathcal{E} = \sigma(\{A\})$ de parties de E.
- 3) Soit la fonction $f:(E,\mathcal{E})\to (F,\mathcal{P}(F))$ définie pour tout $e_i\in E$ par $f(e_i)=2\lceil i/2\rceil-i$ où $\lceil x\rceil=\inf\{n\in\mathbb{Z};\ x\leq n\}.$
 - i) Quel est l'ensemble F des valeurs prises par f?
 - ii) La fonction f est-elle mesurable? (justifier votre réponse).
 - iii) Reprendre les questions i) et ii) avec la fonction $f:(E,\mathcal{E}) \to (F,\mathcal{P}(F))$ définie pour tout $e_i \in E$ par $f(e_i) = 3\lceil i/3 \rceil i$.
- 4) On introduit l'application $\mu : \mathcal{P}(E) \to \mathbb{N}$ telle que $\mu(\emptyset) = 0$ et, pour tout $A \in \mathcal{P}(E), \, \mu(A) = \inf\{i \in \mathbb{N}; \, e_i \in A\}.$
 - i) Quelle est la valeur de $\mu(\{e_2, e_7, e_1\})$?
 - ii) Montrer que μ n'est pas une mesure.

Exercice 2 — Un sac contient 3 boules rouges, 2 boules vertes et 1 boule bleue. Notez que les boules ne sont pas numérotées. On tire au hasard une boule du sac.

- 1) Proposer une modélisation $(\Omega, \mathcal{F}, \mathbb{P})$ de cette expérience aléatoire.
- 2) Quel est l'ensemble correspondant à l'événement "tirer une boule rouge ou une boule bleue". Donner la probabilité de cet événement.

3) On a tiré la boule bleue. On effectue un second tirage sans avoir remis la boule bleue dans le sac. Modéliser cette nouvelle expérience aléatoire.

Exercice 3 – Soit $f:(\mathbb{R},\mathcal{B}(\mathbb{R})) \to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ la fonction définie par

$$f(x) = \begin{cases} -x & \text{si } x \le 0, \\ 1+x & \text{si } x > 0. \end{cases}$$

- 1) Donner les ensembles $f^{-1}(\{0\}), f^{-1}(\{1\}), f^{-1}(\{2\})$ et $f^{-1}(]-\infty, 1]$).
- 2) Montrer, en utilisant le fait que $\mathcal{B}(\mathbb{R})$ est engendrée par l'ensemble des intervalles de la forme $]-\infty,t]$, que la fonction f est mesurable.

Exercice 4 – Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de $\mathcal{B}(\mathbb{R})$. On rappelle les définitions suivantes :

$$\overline{\lim} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k \text{ et } \underline{\lim} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} A_k.$$

- 1) Justifier que $\overline{\lim} A_n$ et $\underline{\lim} A_n$ sont des éléments de $\mathcal{B}(\mathbb{R})$.
- 2) Quels sont les ensembles $\overline{\lim} A_n$ et $\underline{\lim} A_n$ lorsque

$$A_n = \left[0, 1 + \frac{\cos(n\pi)}{n+1} \right].$$