Contrôle continu #1 de Probabilités

Correction Année 2025 - 2026

Exercice 1 – Soit $E = \{e_i; i \in \mathbb{N}\}\$ et $A = \{e_{2i}; i \in \mathbb{N}\}\$

1) Pour chacune des assertions ci-dessous, dire, en justifiant votre réponse, si elle est vraie ou fausse.

$$i) E \subset A; \quad ii) \{e_i\} \in A; \quad iii) e_2 \in E; \quad iv) \{e_2, e_3\} \subset A$$

L'assertion i) est fausse car par exemple $e_3 \in E$ mais $e_3 \notin A$. L'assertion ii) est fausse aussi car $\{e_i\}$ est un sous ensemble de E et à ce titre ne peut pas être un élément de E et donc a fortiori de A. L'assertion iii) est vraie mais la iv) est fausse car $e_3 \notin A$.

- 2) Donner les éléments de la tribu $\mathcal{E} = \sigma(\{A\})$ de parties de E. La tribu engendrée $\sigma(\{A\})$ est la plus petite tribu contenant A. On a donc $\mathcal{E} = \{\emptyset, E, A, A^{C}\}.$
- 3) Soit la fonction $f:(E,\mathcal{E})\to (F,\mathcal{P}(F))$ définie pour tout $e_i\in E$ par $f(e_i)=2\lceil i/2\rceil-i$ où $\lceil x\rceil=\inf\{n\in\mathbb{Z};\ x\leq n\}.$
 - i) Quel est l'ensemble F des valeurs prises par f? Il faut remarquer que si i est pair (i.e., i=2j) alors $f(e_i)=2j-i=0$. Si i est impair (i.e., i=2j+1) alors $f(e_i)=2(j+1)-2j-1=1$. Ansi, $F=\{0,1\}$.
 - ii) La fonction f est-elle mesurable ? (justifier votre réponse). On a $\mathcal{P}(F) = \sigma(\{\{0\}, \{1\}\})$. Ainsi, pour montrer que f est mesurable, il suffit de vérifier que $f^{-1}(\{0\}) \in \mathcal{E}$ et $f^{-1}(\{1\}) \in \mathcal{E}$. C'est bien le cas car $f^{-1}(\{0\}) = A \in \mathcal{E}$ et $f^{-1}(\{1\}) = A^{\mathbb{C}} \in \mathcal{E}$.
 - iii) Reprendre les questions i) et ii) avec la fonction $f:(E,\mathcal{E}) \to (F,\mathcal{P}(F))$ définie pour tout $e_i \in E$ par $f(e_i) = 3\lceil i/3 \rceil i$. Il faut à présent considérer 3 cas : i = 3j, i = 3j + 1 et i = 3j + 2. Dans le premier cas, $f(e_i) = 0$. Dans le second, $f(e_i) = 2$ et enfin, dans le troisième cas, $f(e_i) = 1$. Ainsi, $F = \{0, 1, 2\}$. En revanche, $f^{-1}(\{0\}) = \{e_{3i}; i \in \mathbb{N}\} \notin A$. Donc f n'est pas mesurable.
- 4) On introduit l'application $\mu : \mathcal{P}(E) \to \mathbb{N}$ telle que $\mu(\emptyset) = 0$ et, pour tout $A \in \mathcal{P}(E), \ \mu(A) = \inf\{i \in \mathbb{N}; \ e_i \in A\}.$
 - i) Quelle est la valeur de $\mu(\{e_2, e_7, e_1\})$? On a $\mu(\{e_2, e_7, e_1\}) = 1$.

ii) Montrer que μ n'est pas une mesure. Il suffit de remarquer que μ n'est pas σ -additive. En effet on a par exemple

$$\mu(\lbrace e_1, e_2 \rbrace \cup \lbrace e_3, e_4 \rbrace) = 1 \neq \mu(\lbrace e_1, e_2 \rbrace) + \mu(\lbrace e_3, e_4 \rbrace) = 1 + 3 = 4.$$

Exercice 2 — Un sac contient 3 boules rouges, 2 boules vertes et 1 boule bleue. Notez que les boules ne sont pas numérotées. On tire au hasard une boule du sac.

1) Proposer une modélisation $(\Omega, \mathcal{F}, \mathbb{P})$ de cette expérience aléatoire. On a $\Omega = \{R, V, B\}$, où l'élément R correspond au tirage d'une boule rouge parmi les 3, etc. On prend évidemment $\mathcal{F} = \mathcal{P}(\Omega)$ et enfin, la probabilité \mathbb{P} est définie par

$$\mathbb{P}(\{R\}) = \frac{3}{6} = \frac{1}{2}; \ \mathbb{P}(\{V\}) = \frac{2}{6} = \frac{1}{3} \ \text{et} \ \mathbb{P}(\{B\}) = \frac{1}{6}.$$

2) Quel est l'ensemble correspondant à l'événement "tirer une boule rouge ou une boule bleue". Donner la probabilité de cet événement. Cet événement est l'ensemble $\{R,B\}$ et on a

$$\mathbb{P}(\{R,B\}) = \mathbb{P}(\{R\}) + \mathbb{P}(\{B\}) = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}.$$

3) On a tiré la boule bleue. On effectue un second tirage sans avoir remis la boule bleue dans le sac. Modéliser cette nouvelle expérience aléatoire. On a cette fois-ci $\Omega = \{R, V\}$. On prend encore $\mathcal{F} = \mathcal{P}(\Omega)$ et enfin, la probabilité \mathbb{P} est définie par

$$\mathbb{P}(\{R\}) = \frac{3}{5} \text{ et } \mathbb{P}(\{V\}) = \frac{2}{5}.$$

Exercice 3 – Soit $f:(\mathbb{R},\mathcal{B}(\mathbb{R}))\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ la fonction définie par

$$f(x) = \begin{cases} -x & \text{si } x \le 0, \\ 1+x & \text{si } x > 0. \end{cases}$$

1) Donner les ensembles $f^{-1}(\{0\})$, $f^{-1}(\{1\})$, $f^{-1}(\{2\})$ et $f^{-1}(]-\infty,1]$). En s'aidant de la représentation graphique de la fonction f, on trouve les ensembles $f^{-1}(\{0\}) = \{0\}$, $f^{-1}(\{1\}) = \{-1\}$, $f^{-1}(\{2\}) = \{-2,1\}$ et $f^{-1}(]-\infty,1]) = [-1,0]$.

2) Montrer, en utilisant le fait que $\mathcal{B}(\mathbb{R})$ est engendrée par l'ensemble des intervalles de la forme $]-\infty,t]$, que la fonction f est mesurable. Pour montrer que f est mesurable, il suffit donc de montrer que pour tout $t\in\mathbb{R}$, on a $f^{-1}(]-\infty,t])\in\mathcal{B}(\mathbb{R})$. On considère 3 cas. Si t<0, $f^{-1}(]-\infty,t])=\emptyset\in\mathcal{B}(\mathbb{R})$. Si $t\in[0,1],\,f^{-1}(]-\infty,t])=[-t,0]\in\mathcal{B}(\mathbb{R})$. Enfin, si $t>1,\,f^{-1}(]-\infty,t])=[-t,t-1]\in\mathcal{B}(\mathbb{R})$.

Exercice 4 – Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de $\mathcal{B}(\mathbb{R})$. On rappelle les définitions suivantes :

$$\overline{\lim} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k \text{ et } \underline{\lim} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k.$$

- 1) Justifier que $\overline{\lim} A_n$ et $\underline{\lim} A_n$ sont des éléments de $\mathcal{B}(\mathbb{R})$. Ce sont des éléments de $\mathcal{B}(\mathbb{R})$ comme unions et intersections dénombrables d'éléments de $\mathcal{B}(\mathbb{R})$.
- 2) Quels sont les ensembles $\overline{\lim} A_n$ et $\underline{\lim} A_n$ lorsque

$$A_n = \left[0, 1 + \frac{\cos(n\pi)}{n+1} \right].$$

Commençons par la limite supérieure. Posons

$$B_n := \bigcup_{k \ge n} A_k$$

Si n est pair, le plus grand ensemble parmi $\{A_k; k \geq n\}$ est $A_n = [0, 1 + 1/(n+1)]$. Si n est impair, le plus grand ensemble parmi $\{A_k; k \geq n\}$ est $A_n = [0, 1 + 1/(n+2)]$. Ainsi,

$$\overline{\lim} A_n = \bigcap_{n \in \mathbb{N}} B_n = [0, 1].$$

Intéressons nous à présent à la limite inférieure. On pose

$$B_n := \bigcap_{k \ge n} A_k$$

Si n est pair, le plus petit ensemble parmi $\{A_k; k \geq n\}$ est $A_n = [0, 1 - 1/(n+2)]$. Si n est impair, le plus petit ensemble parmi $\{A_k; k \geq n\}$ est $A_n = [0, 1 - 1/(n+1)]$. Ainsi,

$$\underline{\lim} A_n = \bigcup_{n \in \mathbb{N}} B_n = [0, 1[.$$