Contrôle continu #1 de Probabilités

Troisième année de la double Licence Mathématiques et Economie Année 2025 - 2026

Durée : 1h30. Les calculatrices et téléphones portables sont interdits

Questions de cours -

- 1) Soit E un ensemble quelconque. Donner la définition d'une tribu \mathcal{E} de parties de E.
- 2) Soit (E,\mathcal{E}) un espace mesurable. Donner la définition d'une mesure μ définie sur \mathcal{E} .
- 3) Soient (E_1, \mathcal{E}_1) et (E_2, \mathcal{E}_2) deux espaces mesurables et soit $f: E_1 \to E_2$ une fonction. Quelle propriété doit vérifier cette fonction pour être une fonction mesurable?
- 4) Soit $X:(\Omega,\mathcal{F},\mathbb{P})\to(E,\mathcal{E})$ une variable aléatoire. Donner la définition de la loi de X.

Exercice 1 – Soit E un ensemble quelconque et soit $G = \{e_i; i \in \mathbb{N}\} \subset E$.

1) Remplacer **si possible** le point d'interrogation $\boxed{?}$ par l'un des 2 symboles suivants : \in ou \subset

$$i) \{e_2\}$$
 $\boxed{?}$ $E; ii) e_3$ $\boxed{?}$ $E; iii) \{e_4\}$ $\boxed{?}$ $\mathcal{P}(E); iv) e_5$ $\boxed{?}$ $\mathcal{P}(E)$.

2) Donner les éléments de la tribu $\mathcal{E}_1 = \sigma(\{G\})$.

On introduit le sous ensemble de G défini par $G_1 = \{e_{2i}; i \in \mathbb{N}\}$ et on pose $G_2 = G \setminus G_1$.

3) Donner les éléments de la tribu $\mathcal{E}_2 = \sigma(\{G, G_1\})$.

Sur l'espace mesuré (E, \mathcal{E}_2) , on introduit la mesure $\mu : \mathcal{E}_2 \to [0, \infty)$ pour laquelle $\mu(G_1) = 1$, $\mu(G_2) = 2$ et $\mu(E \setminus G) = 0$.

4) Donner les valeurs suivantes : $\mu(G)$, $\mu(E)$, $\mu(E \setminus G_2)$.

Soit $\alpha_3 > 0$. On introduit la fonction $f: (E, \mathcal{E}_2, \mu) \to ([0, \infty[, \mathcal{B}([0, \infty[))] \text{ définie pour tout } x \in \mathbb{E} \text{ par})$

$$f(x) = \begin{cases} 1 & \text{si } x \in G_1, \\ 2 & \text{si } x \in G_2, \\ \alpha_3 & \text{si } x \in E \setminus G. \end{cases}$$

5) Quelle est la valeur de l'intégrale de Lebesgue $\int_E f d\mu$?

Exercice 2 — On dispose d'un premier sac contenant 3 boules rouges, 1 boule verte et 3 boules bleues, d'un second sac contenant 2 boules rouges et enfin d'une pièce de monnaie équilibrée. J'attire votre attention sur le fait que les boules ne sont pas numérotées.

L'expérience aléatoire consiste à lancer dans un premier temps la pièce. Si elle tombe du côté pile, on tire 2 boules dans le premier sac sinon, on tire une boule du second sac.

1) Modéliser cette expérience aléatoire par un espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$.

On introduit la fonction $X:(\Omega,\mathcal{P}(\Omega))\to (E,\mathcal{P}(E))$ qui à tout $\omega\in\Omega$ associe le nombre de boules rouges tirées.

- 2) Quel est l'ensemble E des valeurs prises par X?
- 3) La fonction X est-elle une variable aléatoire ? (justifier votre réponse). Quelle est la plus petite tribu \mathcal{F} dont on doit munir l'espace de départ pour que X soit mesurable ?

- 4) Donner l'expression de la loi \mathbb{P}_X de X comme combinaison linéaire de mesures de Dirac.
- 5) Quelle est la valeur de $\mathbb{E}(X)$?

Exercice 3 – On considère la fonction $g:([-1,1],\mathcal{B}([0,1]))\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ définie pour tout $x\in[-1,1]$ par $g(x)=\sqrt{1-x^2}$.

1) La fonction g est-elle mesurable ? Justifier votre réponse.

On introduit à présent la fonction $f:([-1,1],\mathcal{B}([-1,1]))\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ définie par

$$f(x) = \begin{cases} g(x) & \text{si } g(x) \le 1/2, \\ 4/5 & \text{si } g(x) > 1/2. \end{cases}$$

- 2) Représenter graphiquement la fonction f.
- 3) Donner les sous ensembles de [-1,1] suivants :

$$f^{-1}(]-\infty,0.6]); f^{-1}(]-\infty,0.25]) \text{ et } f^{-1}(]-\infty,0.8]).$$

4) En utilisant le fait que $\mathcal{B}(\mathbb{R}) = \sigma(\{]-\infty,t]; t \in \mathbb{R}\}$, montrer que f est mesurable.

On munit l'espace mesurable de départ $([-1,1],\mathcal{B}([-1,1]))$ de la mesure μ définie pour tout $-1 \le a \le b \le 1$ par $\mu([a,b]) = (1+b)^2 - (1+a)^2$.

- 5) La mesure μ est-elle bornée ? Justifier votre réponse.
- 6) Donner la valeur de l'intégrale

$$\int_{[-1,1]} f \mathbb{I}_{]-\sqrt{3}/2,\sqrt{3}/2[} d\mu,$$

où pour tout $A \subset [-1,1]$, \mathbb{I}_A est la fonction indicatrice sur A.