Contrôle continu #1 de Probabilités

Correction Année 2025 - 2026

Exercice 1 – Soit E un ensemble quelconque et soit $G = \{e_i; i \in \mathbb{N}\} \subset E$.

- 1) Remplacer **si possible** le point d'interrogation $\begin{center} ? \\ ? \\ par l'un des 2 symboles suivants : <math>\in$ ou \subset
 - i) $\{e_2\}$ $\boxed{?}$ E; ii) e_3 $\boxed{?}$ E; iii) $\{e_4\}$ $\boxed{?}$ $\mathcal{P}(E);$ iv) e_5 $\boxed{?}$ $\mathcal{P}(E).$
 - i) \subset ; ii) \in ; iii) \in ; iv) Ici aucun des deux symboles ne convient.
- 2) Donner les éléments de la tribu $\mathcal{E}_1 = \sigma(\{G\})$. On a $\mathcal{E}_1 = \{E, \emptyset, G, G^{\mathbb{C}}\}$.

On introduit le sous ensemble de G défini par $G_1 = \{e_{2i}; i \in \mathbb{N}\}$ et on pose $G_2 = G \setminus G_1$.

3) Donner les éléments de la tribu $\mathcal{E}_2 = \sigma(\{G, G_1\})$. On a $\mathcal{E}_2 = \{E, \emptyset, G, G_1, G^{\mathrm{C}}, G_1^{\mathrm{C}}, G_2^{\mathrm{C}}, G_2\}$.

Sur l'espace mesuré (E, \mathcal{E}_2) , on introduit la mesure $\mu : \mathcal{E}_2 \to [0, \infty)$ pour laquelle $\mu(G_1) = 1$, $\mu(G_2) = 2$ et $\mu(E \setminus G) = 0$.

4) Donner les valeurs suivantes : $\mu(G)$, $\mu(E)$, $\mu(E \setminus G_2)$. Comme $G = G_1 \cup G_2$ avec $G_1 \cap G_2 = \emptyset$, on a en utilisant la σ -additivité d'une mesure que $\mu(G) = \mu(G_1) + \mu(G_2) = 1 + 2 = 3$. De même, $\mu(E) = \mu(E \setminus G) + \mu(G) = 0 + 3 = 3$. Enfin, la mesure μ étant bornée, on a $\mu(E \setminus G_2) = \mu(E) - \mu(G_2) = 3 - 2 = 1$.

Soit $\alpha_3 > 0$. On introduit la fonction $f: (E, \mathcal{E}_2, \mu) \to ([0, \infty[, \mathcal{B}([0, \infty[))]$ définie pour tout $x \in \mathbb{E}$ par

$$f(x) = \begin{cases} 1 & \text{si } x \in G_1, \\ 2 & \text{si } x \in G_2, \\ \alpha_3 & \text{si } x \in E \setminus G. \end{cases}$$

5) Quelle est la valeur de l'intégrale de Lebesgue $\int_E f d\mu$? On remarque que f est une fonction étagée positive car elle est de la forme

$$f = \sum_{i=1}^{3} \alpha_i \mathbb{I}_{A_i},$$

avec $\alpha_1=1,\ \alpha_2=2,\ A_1=G_1,\ A_2=G_2$ et $A_3=E\setminus G$. Les éléments $A_1,\ A_2$ et A_3 de \mathcal{E}_2 forment bien une partition de E. Ainsi,

$$\int_{E} f d\mu = 1 \times \mu(G_1) + 2 \times \mu(G_2) + \alpha_3 \times \mu(E \setminus G) = 1 + 4 = 5.$$

Exercice 2 — On dispose d'un premier sac contenant 3 boules rouges, 1 boule verte et 3 boules bleues, d'un second sac contenant 2 boules rouges et enfin d'une pièce de monnaie équilibrée. J'attire votre attention sur le fait que les boules ne sont pas numérotées.

L'expérience aléatoire consiste à lancer dans un premier temps la pièce. Si elle tombe du côté pile, on tire 2 boules dans le premier sac sinon, on tire une boule du second sac.

1) Modéliser cette expérience aléatoire par un espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$. L'ensemble des réalisations possibles est

$$\Omega = \{(F, R), (P, 2R), (P, RV); (P, RB), (P, VB), (P, 2B)\},\$$

où par exemple l'élément (P, RV) correspond au résultat "obtenir pile puis tirer une boule rouge et une boule verte". La tribu est évidemment $\mathcal{P}(\Omega)$. Enfin, la mesure de probabilité est donnée par

$$\begin{split} \mathbb{P}(\{(F,R)\}) &= \frac{1}{2}; \ \mathbb{P}(\{(P,2R)\}) = \frac{1}{14}; \ \mathbb{P}(\{(P,RV)\}) = \frac{1}{14}; \\ \mathbb{P}(\{(P,RB)\}) &= \frac{3}{14}; \ \mathbb{P}(\{(P,VB)\}) = \frac{1}{14}; \ \mathbb{P}(\{(P,2B)\}) = \frac{1}{14}. \end{split}$$

On introduit la fonction $X:(\Omega,\mathcal{P}(\Omega))\to (E,\mathcal{P}(E))$ qui à tout $\omega\in\Omega$ associe le nombre de boules rouges tirées.

- 2) Quel est l'ensemble E des valeurs prises par X? On a $E = \{0, 1, 2\}$.
- 3) La fonction X est-elle une variable aléatoire ? (justifier votre réponse). Quelle est la plus petite tribu $\mathcal F$ dont on doit munir l'espace de départ pour que X soit mesurable ?

La fonction X est forcément mesurable, l'ensemble de départ étant muni de la plus grande tribu. C'est donc une variable aléatoire. Pour que X soit mesurable, il suffit que la tribu de départ contienne les éléments $X^{-1}(\{0\}) = \{(P, VB), (P, 2B)\}, X^{-1}(\{1\}) = \{(F, R), (P, RV), (P, RB)\}$ et $X^{-1}(\{2\}) = \{(P, 2R)\}$. On a donc

$$\begin{split} \mathcal{F} &= \sigma\left(\{\{(P,VB),(P,2B)\},\{(F,R),(P,RV),(P,RB)\}\}\right) \\ &= \Big\{\Omega,\emptyset,\{(P,VB),(P,2B)\},\{(F,R),(P,RV),(P,RB)\},\\ &\{(F,R),(P,2R),(P,RV);(P,RB)\},\{(P,2R),(P,VB),(P,2B)\},\\ &\{(P,VB),(P,2B),(F,R),(P,RV),(P,RB)\},\{(P,2R)\}\Big\}. \end{split}$$

4) Donner l'expression de la loi \mathbb{P}_X de X comme combinaison linéaire de mesures de Dirac.

La variable aléatoire X étant discrète, sa loi est de la forme

$$\mathbb{P}_X = \mathbb{P}(X=0)\delta_0 + \mathbb{P}(X=1)\delta_1 + \mathbb{P}(X=2)\delta_2 = \frac{1}{7}\delta_0 + \frac{11}{14}\delta_1 + \frac{1}{14}\delta_2.$$

5) Quelle est la valeur de $\mathbb{E}(X)$? On a

$$\mathbb{E}(X) = \int_{\Omega} X d\mathbb{P} = \int_{E} x d\mathbb{P}_{X}(x) = 0 \times \frac{1}{7} + 1 \times \frac{11}{14} + 2 \times \frac{1}{14} = \frac{13}{14}.$$

Exercice 3 – On considère la fonction $g:([-1,1],\mathcal{B}([0,1]))\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ définie pour tout $x\in [-1,1]$ par $g(x)=\sqrt{1-x^2}$.

1) La fonction g est-elle mesurable ? Justifier votre réponse. La fonction g étant continue sur [-1,1], elle est par conséquent mesurable.

On introduit à présent la fonction $f:([-1,1],\mathcal{B}([-1,1]))\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ définie par

$$f(x) = \begin{cases} g(x) & \text{si } g(x) \le 1/2, \\ 4/5 & \text{si } g(x) > 1/2. \end{cases}$$

2) Représenter graphiquement la fonction f.

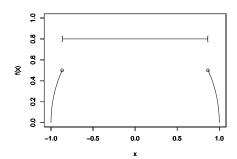


Figure 1: Représentation graphique de la fonction f.

3) Donner les sous ensembles de [-1,1] suivants :

$$f^{-1}(]-\infty,0.6]); f^{-1}(]-\infty,0.25]) \text{ et } f^{-1}(]-\infty,0.8]).$$

On a

$$f^{-1}(]-\infty,0.6]) = \left[-1, -\frac{\sqrt{3}}{2}\right] \cup \left[\frac{\sqrt{3}}{2}, 1\right];$$

$$f^{-1}(]-\infty,0.25]) = \left[-1, -\frac{\sqrt{15}}{4}\right] \cup \left[\frac{\sqrt{15}}{4}, 1\right];$$
et $f^{-1}(]-\infty,0.8]) = [-1, 1].$

4) En utilisant le fait que $\mathcal{B}(\mathbb{R}) = \sigma(\{]-\infty,t]; t \in \mathbb{R}\}$, montrer que f est mesurable.

Il suffit de montrer que pour tout $t \in \mathbb{R}$, on a $f^{-1}(]-\infty,t]) \in \mathcal{B}([-1,1])$. Si t < 0, on a $f^{-1}(]-\infty,t]) = \emptyset \in \mathcal{B}([-1,1])$.

Si $t \in [0, 1/2]$, on a

$$f^{-1}(]-\infty,t]) = \left[-1,-\sqrt{1-t^2}\right] \cup \left[\sqrt{1-t^2},1\right] \in \mathcal{B}([-1,1]).$$

Si $t \in]1/2, 4/5[$,

$$f^{-1}(]-\infty,t]) = \left[-1, -\frac{\sqrt{3}}{2}\right] \cup \left[\frac{\sqrt{3}}{2}, 1\right] \in \mathcal{B}([-1,1]).$$

Enfin, si
$$t \ge 4/5$$
, $f^{-1}(]-\infty,t]) = [-1,1] \in \mathcal{B}([-1,1])$.

On munit l'espace mesurable de départ $([-1,1],\mathcal{B}([-1,1]))$ de la mesure μ définie pour tout $-1 \le a \le b \le 1$ par $\mu([a,b]) = (1+b)^2 - (1+a)^2$.

5) Donner la valeur de l'intégrale

$$\int_{[-1,1]} f \mathbb{I}_{]-\sqrt{3}/2,\sqrt{3}/2[} d\mu,$$

où pour tout $A \subset [-1,1]$, \mathbb{I}_A est la fonction indicatrice sur A. Il fallait remarquer que

$$f\mathbb{I}_{]-\sqrt{3}/2,\sqrt{3}/2[} = \frac{4}{5}\mathbb{I}_{]-\sqrt{3}/2,\sqrt{3}/2[}.$$

Ainsi, par linéarité de l'intégrale de Lebesgue,

$$\int_{[-1,1]} f \mathbb{I}_{]-\sqrt{3}/2,\sqrt{3}/2[} d\mu = \frac{4}{5} \mu \left(\left] -\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right[\right) = \frac{8\sqrt{3}}{5}.$$