Contrôle continu #1 de "Probabilités 4"

Troisième année de la double Licence Mathématiques et Economie Année 2022 - 2023

Durée : 1h30. Les calculatrices et téléphones portables sont interdits.

Toutes les variables aléatoires considérées dans ce sujet sont définies sur le même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

Questions de cours –

- 1) Rappeler la définition de la convergence presque-sûre.
- 2) Enoncer le corollaire du lemme de Borel-Cantelli donnant une condition suffisante pour qu'une suite de variables aléatoires (X_n) converge presque-sûrement vers une variable aléatoire X.
- 3) Rappeler l'inégalité de Markov.
- 4) Donner l'énoncé de la loi faible des grands nombres.

Exercice 1 – Soient U_1, \dots, U_n des variables aléatoires que l'on supposera indépendantes et de loi uniforme sur [0,1].

Pour tout $i=1,\dots,n$, on pose $X_i:=-\ln(1-U_i)$. Evidemment les variables aléatoires X_1,\dots,X_n sont indépendantes et identiquement distribuées.

1) Donner l'expression de la fonction de répartition de X_1 . Quel est le nom de la loi suivie par X_1 ?

On définit pour tout $n \in \mathbb{N} \setminus \{0\}$ la variable aléatoire $Y_n := -\ln(1-\min(U_1, \cdots, U_n))$.

- 2) Donner l'expression de la fonction de répartition de Y_n . En déduire que Y_n suit une loi exponentielle de paramètre n.
- 3) Montrer que la suite (Y_n) converge en probabilité vers 0.
- 4) Pour tout $\varepsilon > 0$, donner l'expression de la somme

$$S(\varepsilon) := \sum_{n \ge 1} \mathbb{P}(Y_n > \varepsilon).$$

Vérifier que $S(\ln(2)) = 1$.

- 5) En déduire que (Y_n) converge presque-sûrement vers 0.
- 6) Utiliser la loi faible des grands nombres pour étudier la convergence en probabilité de la variable aléatoire

$$Z_n := \frac{1}{n} \ln \left(\prod_{i=1}^n (1 - U_i)^{-1} \right).$$

Exercice 2 – Soient $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ deux suites de l'intervalle]0,1[telles que $0 < a_n + b_n < 1$. Pour tout $n \in \mathbb{N} \setminus \{0\}$, on considère la variable aléatoire X_n dont la loi est déterminée par les valeurs suivantes : $\mathbb{P}(X_n = 0) = 1 - a_n - b_n$, $\mathbb{P}(X_n = 1) = a_n$ et $\mathbb{P}(X_n = 2) = b_n$.

- 1) Donner l'expression de l'espérance de X_n .
- 2) En utilisant l'inégalité de Markov, montrer que pour tout $\varepsilon > 0$,

$$\mathbb{P}(X_n > \varepsilon) \le (a_n + 2b_n)/\varepsilon.$$

- 3) Pour tout $\varepsilon > 0$, donner l'expression de la probabilité $\mathbb{P}(X_n > \varepsilon)$. Vous devrez considérer séparément les cas $\varepsilon \in]0,1[,\varepsilon \in [1,2[$ et $\varepsilon \geq 2.$
- 4) Pour cette question, on prend $a_n = n^{-\delta}/3$ et $b_n = n^{-\delta}/4$ avec $\delta > 0$. Donner l'ensemble des valeurs de δ pour lesquelles (X_n) converge en probabilité vers 0. Donner ensuite un ensemble $E \subset]0, \infty[$ tel que pour tout $\delta \in E$, la suite (X_n) converge presque-sûrement vers 0.

Pour tout $n \in \mathbb{N} \setminus \{0\}$, on considère la variable aléatoire $Y_n := |X_n - 1|$.

- 5) Quel est le nom de la loi suivie par Y_n ? Donner l'expression de son espérance.
- 6) Montrer que si $a_n = 1 n^{-2}$ alors X_n converge presque-sûrement vers une constante que vous préciserez.

Exercice 3 – Pour tout $n \geq 3$, on considère une variable aléatoire X_n de loi binomiale de paramètres n et p_n .

- 1) Si $p_n = 3/n^2$, montrer que (X_n) converge en probabilité vers 0.
- 2) Si $p_n = 3/n^3$, montrer que (X_n) converge presque-sûrement vers 0.