Contrôle continu #1 de " Probabilités 4 "

Troisième année de la double Licence Mathématiques et Economie Année 2022 - 2023

Correction

Exercice 1 — Soient U_1, \dots, U_n des variables aléatoires que l'on supposera indépendantes et de loi uniforme sur [0, 1].

Pour tout $i=1,\dots,n$, on pose $X_i:=-\ln(1-U_i)$. Evidemment les variables aléatoires X_1,\dots,X_n sont indépendantes et identiquement distribuées.

1) Donner l'expression de la fonction de répartition de X_1 . Quel est le nom de la loi suivie par X_1 ?

Remarquons tout d'abord que X_1 ne prend que des valeurs positives. Ainsi, en notant F la fonction de répartition de X_1 , on a F(t) = 0 pour tout t < 0. Soit $t \ge 0$,

$$\mathbb{P}[X_1 \le t] = \mathbb{P}[-\ln(1 - U_1) \le t] = \mathbb{P}[U_1 \le 1 - \exp(-t)] = 1 - \exp(-t).$$

Ainsi, X_1 suit une loi exponentielle de paramètre 1.

On définit pour tout $n \in \mathbb{N} \setminus \{0\}$ la variable aléatoire $Y_n := -\ln(1-\min(U_1, \cdots, U_n))$.

2) Donner l'expression de la fonction de répartition de Y_n . En déduire que Y_n suit une loi exponentielle de paramètre n.

On pouvait remarquer que $Y_n = \min(X_1, \dots, X_n)$. Ainsi, si t < 0, en notant F_n la fonction de répartition de Y_n , on a $F_n(t) = 0$. Si $t \ge 0$,

$$F_n(t) = 1 - \mathbb{P}(\min(X_1, \dots, X_n) > t) = 1 - (1 - F(t))^n = 1 - \exp(-nt),$$

qui est bien la fonction de répartition d'une loi exponentielle de paramètre n.

3) Montrer que la suite (Y_n) converge en probabilité vers 0. On peut utiliser l'inégalité de Markov assurant que pour tout $\varepsilon > 0$,

$$\mathbb{P}(Y_n > \varepsilon) \le \frac{\mathbb{E}(Y_n)}{\varepsilon} = \frac{1}{n\varepsilon} \to 0,$$

lorsque $n \to \infty$ ce qui montre bien la convergence en probabilité.

4) Pour tout $\varepsilon > 0$, donner l'expression de la somme

$$S(\varepsilon) := \sum_{n \ge 1} \mathbb{P}(Y_n > \varepsilon).$$

Vérifier que $S(\ln(2)) = 1$.

Soit $\varepsilon > 0$, on a

$$\sum_{n\geq 1} \mathbb{P}(Y_n > \varepsilon) = \sum_{n\geq 1} \exp(-n\varepsilon) = \frac{e^{-\varepsilon}}{1 - e^{-\varepsilon}}.$$

Ainsi, on a bien $S(\ln(2)) = (1/2)/(1 - (1/2)) = 1$.

- 5) En déduire que (Y_n) converge presque-sûrement vers 0. C'est une conséquence directe de la question précédente et du Corollaire de Borel-Cantelli.
- 6) Utiliser la loi faible des grands nombres pour étudier la convergence en probabilité de la variable aléatoire

$$Z_n := \frac{1}{n} \ln \left(\prod_{i=1}^n (1 - U_i)^{-1} \right).$$

Il suffit de remarquer que

$$Z_n = \frac{1}{n} \sum_{i=1}^{n} [-\ln(1 - U_i)] = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Par la loi faible des grands nombres, Z_n converge en probabilité vers $\mathbb{E}(X_1)=1.$

Exercice 2 – Soient $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ deux suites de l'intervalle]0,1[telles que $0 < a_n + b_n < 1$. Pour tout $n \in \mathbb{N} \setminus \{0\}$, on considère la variable aléatoire X_n dont la loi est déterminée par les valeurs suivantes : $\mathbb{P}(X_n = 0) = 1 - a_n - b_n$, $\mathbb{P}(X_n = 1) = a_n$ et $\mathbb{P}(X_n = 2) = b_n$.

- 1) Donner l'expression de l'espérance de X_n . $\mathbb{E}(X_n) = 0 \times \mathbb{P}(X_n = 0) + 1 \times \mathbb{P}(X_n = 1) + 2 \times \mathbb{P}(X_n = 2) = a_n + 2b_n$.
- 2) En utilisant l'inégalité de Markov, montrer que pour tout $\varepsilon > 0$,

$$\mathbb{P}(X_n > \varepsilon) \le (a_n + 2b_n)/\varepsilon.$$

La variable aléatoire X_n est positive donc l'inégalité de Markov (avec la puissance égale à 1) donne

$$\mathbb{P}(X_n > \varepsilon) \le \frac{\mathbb{E}(X_n)}{\varepsilon} = \frac{a_n + 2b_n}{\varepsilon}.$$

- 3) Pour tout $\varepsilon > 0$, donner l'expression de la probabilité $\mathbb{P}(X_n > \varepsilon)$. Vous devrez considérer séparément les cas $\varepsilon \in]0,1[$, $\varepsilon \in [1,2[$ et $\varepsilon \geq 2.$ Si $\varepsilon \in]0,1[$, $\mathbb{P}(X_n > \varepsilon) = \mathbb{P}(X_n = 1) + \mathbb{P}(X_n = 2) = a_n + b_n.$ Si $\varepsilon \in [1,2[$, $\mathbb{P}(X_n > \varepsilon) = \mathbb{P}(X_n = 2) = b_n.$ Enfin, si $\varepsilon \geq 2$, $\mathbb{P}(X_n > \varepsilon) = 0$.
- 4) Pour cette question, on prend $a_n = n^{-\delta}/3$ et $b_n = n^{-\delta}/4$ avec $\delta > 0$. Donner l'ensemble des valeurs de δ pour lesquelles (X_n) converge en probabilité vers 0. Donner ensuite un ensemble $E \subset]0, \infty[$ tel que pour tout $\delta \in E$, la suite (X_n) converge presque-sûrement vers 0. Pour tout $\delta > 0$, a_n et b_n convergent vers 0 et donc, d'après la question

précédente, $\mathbb{P}(X_n > \varepsilon) \to 0$ pour tout $\varepsilon > 0$. Ainsi, (X_n) converge en probabilité vers 0 pour tout $\delta > 0$. Pour que

$$\sum_{n\geq 1} \mathbb{P}(X_n > \varepsilon) < \infty,$$

il suffit de prendre $\delta > 1$. Donc $E =]1, \infty[$.

Pour tout $n \in \mathbb{N} \setminus \{0\}$, on considère la variable aléatoire $Y_n := |X_n - 1|$.

5) Quel est le nom de la loi suivie par Y_n ? Donner l'expression de son espérance.

La variable aléatoire Y_n prend les valeurs 1 (si $X_n = 0$ ou $X_n = 2$) et 0 (si $X_n = 1$). Ainsi, Y_n suit une loi de Bernoulli de paramètre $\mathbb{P}(Y_n = 1) = 1 - a_n$. Son espérance est donc $\mathbb{E}(Y_n) = 1 - a_n$.

6) Montrer que si $a_n = 1 - n^{-2}$ alors $\frac{X_n}{n}$ (1) Y_n converge presque-sûrement vers une constante que vous préciserez. On a pour tout $\varepsilon \in]0,1[$,

$$\sum_{n\geq 1} \mathbb{P}(Y_n > \varepsilon) = \sum_{n\geq 1} \mathbb{P}(Y_n = 1) = \sum_{n\geq 1} \frac{1}{n^2} < \infty.$$

Ainsi, d'après le corollaire du lemme de Borel-Cantelli, Y_n converge presquesûrement vers 0.

Exercice 3 — Pour tout $n \ge 3$, on considère une variable aléatoire X_n de loi binomiale de paramètres n et p_n .

1) Si $p_n = 3/n^2$, montrer que (X_n) converge en probabilité vers 0. Soit $\varepsilon > 0$. En utilisant l'inégalité de Markov, on a

$$\mathbb{P}(X_n > \varepsilon) \le \frac{\mathbb{E}(X_n)}{\varepsilon} = \frac{np_n}{\varepsilon} = \frac{3}{n\varepsilon} \to 0.$$

Donc (X_n) converge en probabilité vers 0.

2) Si $p_n = 3/n^3$, montrer que (X_n) converge presque-sûrement vers 0. Soit $\varepsilon > 0$. En utilisant l'inégalité de Markov, on a

$$\mathbb{P}(X_n > \varepsilon) \le \frac{\mathbb{E}(X_n)}{\varepsilon} = \frac{np_n}{\varepsilon} = \frac{3}{n^2 \varepsilon}.$$

Ainsi,

$$\sum_{n>3} \mathbb{P}(X_n > \varepsilon) \le \frac{3}{\varepsilon} \sum_{n>3} \frac{1}{n^2} < \infty,$$

ce qui montre le résultat en utilisant le corollaire du lemme de Borel Cantelli.

¹Il y avait une erreur dans l'énoncé