Intégration et probabilité : Contrôle continu #3

Correction

Exercice préliminaire — Montrer à l'aide d'une intégration par parties que pour tout $i \in \mathbb{N} \setminus \{0\}$,

$$\int_0^\infty x^i \exp(-x) dx = i \int_0^\infty x^{i-1} \exp(-x) dx.$$

En déduire (par récurrence) que

$$\int_0^\infty x^i \exp(-x) dx = i!$$

 $R\'{e}ponse - En prenant u(x) = x^i et v'(x) = \exp(-x) on a$

$$\int_0^\infty x^i \exp(-x) dx = \left[-x^i \exp(-x) \right]_0^\infty + \int_0^\infty i x^{i-1} \exp(-x) dx$$
$$= i \int_0^\infty x^{i-1} \exp(-x) dx.$$

Si on pose

$$g(i) := \int_0^\infty x^i \exp(-x) dx,$$

on a g(1) = 1 = 1!. Supposons que g(i) = i!. On a g(i+1) = (i+1)g(i) = (i+1)!.

Exercice 1 – Soit $X:(\Omega,\mathcal{F},\mathbb{P})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une variable aléatoire de loi \mathbb{P}_X définie pour $\lambda>0$ par

$$\mathbb{P}_X(]-\infty,t]) = \begin{cases} 0 & \text{si } t < 0, \\ 1 - \exp(-\lambda t) & \text{si } t \ge 0 \end{cases}$$

- Sous quel nom est connue cette loi ?
 Réponse C'est une loi exponentielle de paramètre λ.
- 2) Pour tout $i \in \mathbb{N}$ donner, en fonction de λ , l'expression de $\mathbb{E}(X^i)$. $Réponse-On\ a$

$$\mathbb{E}(X^i) = \lambda \int_0^\infty x^i \exp(-\lambda x) dx.$$

En posant $y = \lambda x$ il vient

$$\mathbb{E}(X^{i}) = \frac{1}{\lambda^{i}} \int_{0}^{\infty} y^{i} \exp(-y) dy = \frac{i!}{\lambda^{i}}$$

On considère à présent une variable aléatoire $Y:(\Omega,\mathcal{F},\mathbb{P})\to(\mathbb{N},\mathcal{P}(\mathbb{N}))$ indépendante de X et de loi \mathbb{P}_Y définie pour tout $k\in\mathbb{N}$ par

$$\mathbb{P}_Y(\{k\}) = \frac{\mathrm{e}^{-1}}{k!}.$$

3) Calculer l'espérance de Y. On rappelle que pour tout $x \in \mathbb{R}$ on a

$$e^x = \sum_{i \in \mathbb{N}} \frac{x^i}{i!}.$$

 $R\'{e}ponse - On obtient facilement que \mathbb{E}(Y) = 1.$

4) On pose $Z=\min(2,Y)$. Donner la loi de Z et calculer son espérance. Réponse – La variable aléatoire Z prend ses valeurs dans l'ensemble $\{0,1,2\}$. Il suffit de calculer les probabilités $\mathbb{P}(Z=0)$, $\mathbb{P}(Z=1)$ et $\mathbb{P}(Z=2)$. Or, $\mathbb{P}(Z=0)=\mathbb{P}(Y=0)=\mathrm{e}^{-1}$. De plus, $\mathbb{P}(Z=1)=\mathbb{P}(Y=1)=\mathrm{e}^{-1}$. Enfin, $\mathbb{P}(Z=2)=\mathbb{P}(Y\geq 2)=1-2\mathrm{e}^{-1}$. On en déduit que

$$\mathbb{E}(Z) = 0 \times e^{-1} + 1 \times e^{-1} + 2 \times (1 - 2e^{-1}) = 2 - 3e^{-1}.$$

5) On note $\sigma(Y)$ la plus petite tribu rendant Y mesurable. Montrer qu'il existe des événements $\{A_i \in \mathcal{F}; i \in \mathbb{N}\}$ (que vous préciserez) de probabilité non nulle, qui forment une partition de Ω et tels que

$$\sigma(Y) = \sigma(\{A_i \in \mathcal{F}; i \in \mathbb{N}\}).$$

Réponse – Il suffit de prendre $A_i = Y^{-1}(\{i\}) = \{\omega \in \Omega \mid Y(\omega) = i\}.$

Soit $V:(\Omega,\mathcal{F},\mathbb{P})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une variable aléatoire intégrable. On rappelle que si $\mathcal{A}=\sigma(\{A_i\in\mathcal{F};\ i\in\mathbb{N}\})$ où les événements A_i sont de probabilité non nulle et forment une partition de Ω alors

$$\mathbb{E}(V \mid \mathcal{A}) = \sum_{i \in \mathbb{N}} \left(\frac{1}{\mathbb{P}(A_i)} \int_{A_i} V d\mathbb{P} \right) \mathbb{I}_{A_i}.$$

6) Donner l'expression de la fonction mesurable h telle que $\mathbb{E}(X^Z \mid Y) = h(Y)$.

Réponse – D'après le rappel,

$$\mathbb{E}(X^Z \mid Y) = \sum_{i \in \mathbb{N}} \left(\frac{1}{\mathbb{P}(Y=i)} \int_{\{Y=i\}} X^Z d\mathbb{P} \right) \mathbb{I}_{\{Y=i\}}$$
$$= \sum_{i \in \mathbb{N}} \left(\frac{1}{\mathbb{P}(Y=i)} \int_{\Omega} \mathbb{I}_{\{i\}}(Y) X^{\min(2,i)} d\mathbb{P} \right) \mathbb{I}_{\{i\}}(Y).$$

Or, en utilisant l'indépendance entre X et Y,

$$\int_{\Omega} \mathbb{I}_{\{i\}}(Y)X^{i}d\mathbb{P} = \mathbb{E}\left(\mathbb{I}_{\{i\}}(Y)X^{\min(2,i)}\right) = \mathbb{P}(Y=i)\mathbb{E}(X^{\min(2,i)}).$$

Ainsi

$$\mathbb{E}(X^Z \mid Y) = \sum_{i \in \mathbb{N}} \mathbb{E}(X^{\min(2,i)}) \mathbb{I}_{\{i\}}(Y) = h(Y),$$

avec pour tout $y \in \mathbb{N}$, $h(y) = \mathbb{E}[X^{\min(2,y)}] = \min(2,y!)/\lambda^{\min(2,y)}$.

7) En utilisant la question précédente, calculer $\mathbb{E}(X^Z)$. $Réponse - On \ sait \ que \ \mathbb{E}(X^Z) = \mathbb{E}[\mathbb{E}(X^Z \mid Y)]$. Ainsi,

$$\mathbb{E}(X^Z) = e^{-1} \sum_{k \in \mathbb{N}} \frac{\min(2, k!)}{k! \lambda^{\min(2, k)}} = e^{-1} \left(1 + \frac{1}{\lambda} + \frac{2}{\lambda^2} \sum_{k \ge 2} \frac{1}{k!} \right)$$
$$= e^{-1} \left(1 + \frac{1}{\lambda} + \frac{2}{\lambda^2} (e^1 - 2) \right).$$

8) Montrer que $X^Z = \mathbb{I}_{\{0\}}(Y) + X\mathbb{I}_{\{1\}}(Y) + X^2\mathbb{I}_{\mathbb{N}\setminus\{0,1\}}(Y)$. Utiliser cette égalité pour calculer $\mathbb{E}(X^Z)$. Réponse – Il suffit de remarquer que

$$X^{Z} = X^{Z} \left(\mathbb{I}_{\{0\}}(Y) + \mathbb{I}_{\{1\}}(Y) + \mathbb{I}_{\mathbb{N} \setminus \{0,1\}}(Y) \right),$$

et que $X^Z=1$ lorsque Y=0, $X^Z=X$ lorsque Y=1 et enfin $X^Z=X^2$ lorsque $Y\geq 2$. On calcule ensuite facilement l'espérance en utilisant la linéarité de l'espérance et le fait que X et Y sont indépendantes.

Exercice 2 – Soit $(X,Y):(\Omega,\mathcal{F},\mathbb{P})\to(\mathbb{R}^2,\mathcal{B}(\mathbb{R}^2))$ un vecteur aléatoire de loi $\mathbb{P}_{(X,Y)}$ définie pour tout $A\in\mathcal{B}(\mathbb{R})$ et $B\in\mathcal{B}(\mathbb{R})$ par

$$\mathbb{P}_{(X,Y)}(A \times B) = \int_A \int_B \frac{2}{y} x^{-1/y-1} \mathbb{I}_{\Delta}(x,y) dy dx,$$

avec $\Delta := \{(x, y) \in \mathbb{R}^2 \mid x > 1 \text{ et } 0 < y < 1/2\}.$

1) Donner l'expression de la densité de Y. Quelle loi reconnaissez-vous ? $R\'{e}ponse - Le \ vecteur \ al\'{e}atoire \ (X,Y) \ admet \ pour \ densit\'e \ la fonction$

$$f_{(X,Y)}(x,y) = \frac{2}{y} x^{-1/y-1} \mathbb{I}_{\Delta}(x,y) = \frac{2}{y} x^{-1/y-1} \mathbb{I}_{]1,\infty[}(x) \mathbb{I}_{]0,1/2[}(y).$$

On a pour tout $y \in \mathbb{R}$

$$f_Y(y) = \int_{\mathbb{R}} f_{(X,Y)}(x,y) dx = \frac{2}{y} \mathbb{I}_{]0,1/2[}(y) \int_1^{\infty} x^{-1/y-1} dx = 2\mathbb{I}_{]0,1/2[}(y).$$

On reconnait la densité d'une loi uniforme sur]0,1/2[.

2) Calculer l'espérance et la variance de Y. $Réponse - On montre facilement que <math>\mathbb{E}(Y) = 1/4$ et $\mathbb{E}(Y^2) = 1/12$. Ainsi, Var(Y) = 1/12 - 1/16 = 1/48.

On introduit la fonction $L:]0, \infty[\to]0, \infty[$ définie pour tout t>0 par

$$L(t) = \int_{2}^{\infty} \frac{1}{z} \exp(-tz) dz.$$

La fonction L est la transformée de Laplace de la fonction $z\mapsto 1/z\mathbb{I}_{[2,\infty[}(z).$

3) Donner l'expression, en fonction de la transformée de Laplace L, de la densité de X. (Aide : poser z=1/y.) $R\'{e}ponse-On~a$

$$f_X(x) = \int_{\mathbb{R}} f_{(X,Y)}(x,y) dy = \mathbb{I}_{]1,\infty[}(x) \int_0^{1/2} \frac{2}{y} x^{-1/y-1} dy$$
$$= \frac{2}{x} \mathbb{I}_{]1,\infty[}(x) \int_0^{1/2} \frac{1}{y} x^{-1/y} dy.$$

En posant z = 1/y, il vient

$$f_X(x) = \frac{2}{x} \mathbb{I}_{]1,\infty[}(x) \int_2^\infty \frac{1}{z} \exp(-z \ln(x)) dz = \frac{2}{x} \mathbb{I}_{]1,\infty[}(x) L(\ln(x)).$$

4) Déterminez la fonction mesurable $h:]0,1/2[\to \mathbb{R}$ telle que $\mathbb{E}(X\mid Y) = h(Y)$.

 $R\'{e}ponse - D'apr\`{e}s \ le \ cours, \ pour \ tout \ y \in]0, 1/2[,$

$$h(y) = \int_{\mathbb{R}} x \frac{f_{(X,Y)}(x,y)}{f_Y(y)} dx = \int_1^\infty \frac{1}{y} x^{-1/y} dx = \frac{1}{1-y}.$$

5) Calculer l'espérance de X. $Réponse - Comme \mathbb{E}(X) = \mathbb{E}[\mathbb{E}(X \mid Y)] \ on \ a$

$$\mathbb{E}(X) = \int_{\mathbb{R}} h(y) f_Y(y) dy = 2 \int_{0}^{1/2} \frac{1}{1-y} dy = 2 \int_{1/2}^{1} \frac{1}{y} dy = 2 \ln(2).$$

6) En déduire la valeur de

$$\int_{1}^{\infty} L(\ln(x)) dx.$$

Réponse – D'après la question 3), on a

$$\mathbb{E}(X) = 2\int_{1}^{\infty} L(\ln(x))dx = 2\ln(2).$$

Ainsi,

$$\int_{1}^{\infty} L(\ln(x))dx = \ln(2).$$

Exercice 3 — Soient X_1 et X_2 deux variables aléatoires définies sur le même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs dans $(E_1, \mathcal{P}(E_1))$ et $(E_2, \mathcal{P}(E_2))$ respectivement. On suppose que la loi de X_1 est définie pour tout $k \in \mathbb{N}$ et pour $\lambda > 0$ par

 $\mu_1(\{k\}) = e^{-\lambda} \frac{\lambda^k}{k!}.$

La loi de X_2 quant à elle est donnée pour $n\in\mathbb{N}\setminus\{0\},\,p\in]0,1[$ et $k\in\{0,\cdots,n\}$ par

 $\mu_2(\{k\}) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}.$

Pour $\alpha \in]0,1[$, on considère une variable aléatoire $Y:(\Omega,\mathcal{F},\mathbb{P})\to (E,\mathcal{P}(E))$ de loi $\mathbb{P}_Y=\alpha\mu_1+(1-\alpha)\mu_2$.

- 1) Quel est l'ensemble E des valeurs prises par la variable aléatoire Y ? $Réponse-On~a~évidemment~E=\mathbb{N}.$
- 2) Pour tout $k \in E$, donner, en fonction de α , λ , n et p, l'expression de $\mathbb{P}_Y(\{k\})$.

 $R\'{e}ponse - Si \ k \in \{0, \cdots, n\} \ on \ a$

$$\mathbb{P}_Y(\{k\}) = \alpha e^{-\lambda} \frac{\lambda^k}{k!} + (1 - \alpha) \binom{n}{k} p^k (1 - p)^{n-k}.$$

 $Si \ k \in \{n+1, \cdots\} \ on \ a$

$$\mathbb{P}_Y(\{k\}) = \alpha e^{-\lambda} \frac{\lambda^k}{k!}.$$

- 3) Donner les expressions de $\mathbb{P}_{Y}(]-\infty,0[)$, $\mathbb{P}_{Y}(]-\infty,0]$) et $\mathbb{P}_{Y}(]1/2,\infty[)$. $Réponse-On\ a\ \mathbb{P}_{Y}(]-\infty,0[)=0$. $De\ plus\ \mathbb{P}_{Y}(]-\infty,0])=\mathbb{P}_{Y}(\{0\})=\alpha e^{-\lambda}+(1-\alpha)(1-p)^{n}$. $Enfin,\ \mathbb{P}_{Y}(]1/2,\infty[)=1-\mathbb{P}_{Y}(]-\infty,1/2])=1-\mathbb{P}_{Y}(]-\infty,0]$.
- 4) Donner l'expression de $\mathbb{E}(Y)$. Réponse – Le plus simple est d'utiliser le fait que

$$\mathbb{E}(Y) = \int_{\Omega} Y d\mathbb{P} = \int_{E} y d\mathbb{P}_{Y}(y) = \alpha \int_{E} y d\mu_{1}(y) + (1 - \alpha) \int_{E} y d\mu_{2}(y)$$
$$= \alpha \mathbb{E}(X_{1}) + (1 - \alpha) \mathbb{E}(X_{2}).$$

Il reste à montrer que $\mathbb{E}(X_1) = \lambda$ et $\mathbb{E}(X_2) = np$.

5) Donner l'expression de Var(Y). $Réponse - Comme \ précédemment, \ on \ a \ \mathbb{E}(Y^2) = \alpha \mathbb{E}(X_1^2) + (1-\alpha)\mathbb{E}(X_2^2).$ $Or, \ \mathbb{E}(X_1^2) = \lambda(1+\lambda) \ et \ \mathbb{E}(X_2^2) = np(1+(n-1)p). \ Ainsi$ $\mathbb{E}(Y^2) = \alpha\lambda(1+\lambda) + (1-\alpha)np(1+(n-1)p).$

On en déduit que

$$Var(Y) = \mathbb{E}(Y^{2}) - [\mathbb{E}(Y)]^{2} = \alpha \lambda (1+\lambda) + (1-\alpha)np(1+(n-1)p) - [\alpha \lambda - (1-\alpha)np]^{2}.$$

6) Montrer que

$$\operatorname{Var}(Y) - [\alpha \operatorname{Var}(X_1) + (1 - \alpha) \operatorname{Var}(X_2)] = \alpha [\mathbb{E}(X_1) - \mathbb{E}(Y)]^2 + (1 - \alpha) [\mathbb{E}(X_2) - \mathbb{E}(Y)]^2.$$

Réponse – Il suffit de remarquer que

$$Var(Y) = \alpha \lambda + (1 - \alpha)np(1 - p) + \alpha \lambda^{2} + (1 - \alpha)(np)^{2} - [\alpha \lambda + (1 - \alpha)np]^{2}$$

= $\alpha Var(X_{1}) + (1 - \alpha)Var(X_{2}) + \alpha [\mathbb{E}(X_{1})]^{2} + (1 - \alpha)[\mathbb{E}(X_{2})]^{2} - [\mathbb{E}(Y)]^{2}$

Il est ensuite facile de vérifier que

$$\alpha [\mathbb{E}(X_1)]^2 + (1 - \alpha) [\mathbb{E}(X_2)]^2 - [\mathbb{E}(Y)]^2 = \alpha [\mathbb{E}(X_1) - \mathbb{E}(Y)]^2 + (1 - \alpha) [\mathbb{E}(X_2) - \mathbb{E}(Y)]^2.$$

7) En déduire que $\operatorname{Var}(Y) \geq \alpha \operatorname{Var}(X_1) + (1-\alpha) \operatorname{Var}(X_2)$. Donner l'expression de λ (en fonction de n et p) pour que l'on ait légalité pour tout $\alpha \in (0,1)$. Réponse – L'inégalité est une conséquence directe de la question précédente. Pour avoir l'égalité, il faut que $\alpha \mathbb{E}(X_1) + (1-\alpha) \mathbb{E}(X_2) = \mathbb{E}(Y)$. Ceci n'est possible que si $\mathbb{E}(X_1) = \mathbb{E}(X_2)$ c'est-à-dire $\lambda = np$.

On considère à présent la mesure ν_1 définie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ pour $\theta > 0$ par

$$\nu_1(]-\infty,t]) = \frac{1}{\theta} \left(1 - \exp(-\theta t)\right) \mathbb{I}_{]0,\infty[}(t).$$

8) Vérifier que

$$\nu_1(]-\infty,t]) = \int_{]-\infty,t]} \exp(-\theta x) \mathbb{I}_{]0,\infty[}(x) dx.$$

Réponse – C'est un simple calcul

9) Donner, en fonction de θ , l'expression de l'intégrale

$$\int_{\mathbb{R}} t d\nu_1(t).$$

Réponse – La mesure ν_1 étant une mesure de densité $\exp(-\theta x)\mathbb{I}_{]0,\infty[}(x)$ par rapport à la mesure de Lebesgue (attention ce n'est pas une densité de probabilité), on a d'après le cours

$$\int_{\mathbb{R}} t d\nu_1(t) = \int_{\mathbb{R}} t \exp(-\theta t) \mathbb{I}_{]0,\infty[}(t) dt = \frac{1}{\theta^2}.$$

- 10) Montrer que pour tout c > 0, la fonction $\nu_2 : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ donnée par $\nu_2 = \alpha^2 \mu_1 + \alpha (1 \alpha) \mu_2 + c (1 \alpha) \nu_1$ est une mesure. Réponse – Il faut vérifier que $\nu_2(\emptyset) = 0$ et que ν_2 est σ -additive.
- 11) En utilisant les résultats précédents, donner l'expression de l'intégrale

$$\int_{\mathbb{R}} t d\nu_2(t).$$

Réponse – Il faut remarquer que

$$\int_{\mathbb{R}} t d\nu_2(t) = \alpha^2 \mathbb{E}(X_1) + \alpha(1 - \alpha) \mathbb{E}(X_2) + c(1 - \alpha) \int_{\mathbb{R}} t d\nu_1(t).$$

 $On\ a\ donc$

$$\int_{\mathbb{R}} t d\nu_2(t) = \alpha^2 \lambda + \alpha (1 - \alpha) np + \frac{c(1 - \alpha)}{\theta^2}.$$

12) Quelle valeur de c>0 faut-il prendre pour que ν_2 soit une mesure de probabilité.

Réponse – Il faut choisir c > 0 pour que $\nu_2(\mathbb{R}) = 1$. Or,

$$\nu_2(\mathbb{R}) = \alpha^2 \mu_1(\mathbb{R}) + \alpha(1 - \alpha)\mu_2(\mathbb{R}) + c(1 - \alpha)\nu_1(\mathbb{R}) = \alpha + c(1 - \alpha)\nu_1(\mathbb{R}).$$

Or, $\nu_1(\mathbb{R}) = 1/\theta$. Donc en prenant $c = \theta$ on a bien $\nu_2(\mathbb{R}) = 1$.

Exercice 4 – Pour tout $n \in \mathbb{N}$, on considère la variable aléatoire $X_n : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ de loi $\mathbb{P}_{X_n} = \alpha_n \delta_1 + (1 - \alpha_n) \mu_n$ où $(\alpha_n)_{n \in \mathbb{N}} \in]0, 1[$, δ_1 est la mesure de Dirac au point 1 et μ_n est la mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ définie pour tout $A \in \mathcal{B}(\mathbb{R})$ et pour toute suite (θ_n) positive par

$$\mu_n(A) = \int_A \frac{1}{\theta_n} \exp\left(-\frac{x}{\theta_n}\right) \mathbb{I}_{]0,\infty[}(x) dx.$$

1) Donner l'expression de la fonction de répartition F_n de X_n . Réponse – Pour tout $t \in \mathbb{R}$, on a

$$F_n(t) = \mathbb{P}_{X_n}(]-\infty,t]) = \alpha_n \delta_1(]-\infty,t]) + (1-\alpha_n)\mu_n(]-\infty,t]).$$

Or,

$$\delta_1(]-\infty,t]) = \begin{cases} 0 & si \ t < 1\\ 1 & si \ t \ge 1. \end{cases}$$

et

$$\mu_n(]-\infty,t]) = \begin{cases} 0 & \text{si } t < 0\\ 1 - \exp(-t/\theta_n) & \text{si } t \ge 0. \end{cases}$$

Ainsi

$$F_n(t) = \begin{cases} 0 & \text{si } t < 0 \\ (1 - \alpha_n)[1 - \exp(-t/\theta_n)] & \text{si } t \in [0, 1[, \\ \alpha_n + (1 - \alpha_n)[1 - \exp(-t/\theta_n)] & \text{si } t \ge 1. \end{cases}$$

2) Trouver, de deux façons différentes, l'expression de l'espérance de X_n . Réponse – La première méthode est le calcul direct.

$$\mathbb{E}(X_n) = \int_{\Omega} X_n d\mathbb{P} = \int_{\mathbb{R}} x d\mathbb{P}_{X_n} = \alpha_n + (1 - \alpha_n) \int_0^{\infty} \frac{x}{\theta_n} \exp\left(-\frac{x}{\theta_n}\right)$$
$$= \alpha_n + (1 - \alpha_n)\theta_n.$$

La deuxième méthode consiste à intégrer la fonction de survie (possible car X_n est une variable aléatoire positive). On a

$$\mathbb{E}(X_n) = \int_0^\infty (1 - F_n(t))dt = \int_0^1 [\alpha_n + (1 - \alpha_n) \exp(-t/\theta_n)]dt$$

$$+ (1 - \alpha_n) \int_1^\infty \exp(-t/\theta_n)dt$$

$$= \alpha_n + (1 - \alpha_n) \int_0^\infty \exp(-t/\theta_n)dt = \alpha_n + (1 - \alpha_n)\theta_n.$$

3) Donner l'expression de la variance de X_n . Réponse – Il faut dans un premier temps montrer que

$$\mathbb{E}(X_n^2) = \alpha_n + 2(1 - \alpha_n)\theta_n^2.$$

Pour ce faire, vous pouvez utiliser comme précédemment la méthode directe ou bien intégrer la fonction de survie de X_n^2 qui est donnée par $1-G_n$ avec

$$G_n(t) = \mathbb{P}[X_n^2 \le t] = \mathbb{P}[X_n \le t^{1/2}] = F_n(t^{1/2}),$$

 $\operatorname{car} X_n$ est une variable aléatoire positive. On en déduit ensuite facilement que

$$\operatorname{Var}(X_n) = \alpha_n + 2(1 - \alpha_n)\theta_n^2 - [\alpha_n + (1 - \alpha_n)\theta_n]^2.$$

- 4) A l'aide des questions 2) et 3), étudier la convergence en probabilité de X_n dans les cas suivants :
 - i) $\alpha_n \to 1$ et $\theta_n \to \theta > 0$.
 - ii) $\alpha_n \to 0$ et $\theta_n \to 0$.

Réponse – Dans le cas i) on a $\mathbb{E}(X_n) \to 1$ et $\operatorname{Var}(X_n) \to 0$ donc, d'après un résultat vu en TD, X_n converge en probabilité vers 1. Dans le cas ii), $\mathbb{E}(X_n) \to 0$ et $\operatorname{Var}(X_n) \to 0$ donc X_n converge en probabilité vers 0.

5) En utilisant l'inégalité de Markov, montrer que pour tout $\varepsilon > 0$,

$$\mathbb{P}\left(|X_n - 1| \ge \varepsilon\right) \le \frac{1 - \alpha_n}{\varepsilon^2} \left[1 - 2\theta_n (1 - \theta_n)\right].$$

Réponse – L'inégalité de Markov donne

$$\mathbb{P}(|X_n - 1| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \mathbb{E}[(X_n - 1)^2].$$

Or,

$$\mathbb{E}[(X_n - 1)^2] = \mathbb{E}(X_n^2) - 2\mathbb{E}(X_n) + 1$$

$$= \alpha_n + 2(1 - \alpha_n)\theta_n^2 - 2\alpha_n - 2(1 - \alpha_n)\theta_n + 1$$

$$= (1 - \alpha_n)[1 + 2\theta_n^2 - 2\theta_n].$$

6) On suppose pour cette question que (θ_n) est la suite constante égale à 1. Proposer une suite (α_n) pour laquelle X_n converge presque-sûrement vers 1 (justifier correctement votre choix). Réponse – En prenant $\alpha_n = 1 - n^{-2}$ par exemple on a

$$\sum_{n\in\mathbb{N}} \mathbb{P}\left(|X_n - 1| \ge \varepsilon\right) \le \frac{1}{\varepsilon^2} \sum_{n\in\mathbb{N}} \frac{1}{n^2} < \infty.$$

Ainsi, d'après le corollaire du Lemme de Borel-Cantelli, on a le résultat.