TD 2 : Séries numériques

Exercice 1.

- Montrer que toute suite croissante converge si et seulement si elle est majorée.
- Montrer qu'une série $\sum_{n\geq 0} u_n$ à termes réels positifs converge si et seulement si la suite

 $(S_n)_{n\geq 0}$ des sommes partielles définie pour tout $n\geq 0$ par $S_n=\sum_{k=0}^n u_k$ est majorée.

Exercice 2.

Soient (u_n) et (v_n) deux suites de réels strictement positifs.

- 1. On suppose que pour n assez grand $u_n \leq v_n$. Montrer que si $\sum v_n$ converge, alors $\sum u_n$
- converge. Montrer que si $\sum_{n \to \infty} u_n$ diverge, alors $\sum_{n \to \infty} v_n$ diverge.

 2. On suppose que $\lim_{n \to \infty} \frac{u_n}{v_n} = 0$ (on écrit alors $u_n \prec \prec_{n \to \infty} v_n$). Montrer que si $\sum_{n \to \infty} v_n$ converge, alors $\sum u_n$ converge. Montrer que si $\sum u_n$ diverge, alors $\sum v_n$ diverge.
- 3. On suppose que $\lim_{n\to\infty}\frac{u_n}{v_n}=1$ (on écrit alors $u_n\sim_{n\to\infty}v_n$). Montrer que les séries $\sum v_n$

et $\sum u_n$ ont même nature. Montrer que si $\sum u_n$ et $\sum v_n$ convergent, alors $\sum_{i=1}^{\infty} u_n \sim \sum_{i=1}^{\infty} v_n$.

Montrer que si $\sum u_n$ et $\sum v_n$ divergent, on a $\sum_{n=1}^{\infty} u_n \sim \sum_{n=1}^{\infty} v_n$.

4. On suppose que $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=l$. Montrer que $\sum u_n$ converge si l<1 et diverge si l>1. Que peut-on dire si l=1?

Exercice 3.

$$\begin{array}{l} \text{Donner la nature des séries suivantes:} \\ \text{a)} \sum \frac{1}{n^2 + \sqrt{n}}; \text{b)} \sum \frac{(-1)^n}{n^{3/2} + 7}; \text{c)} \sum \frac{\cos(2n)}{n^3 + (-1)^n}; \text{d)} \sum \cos\left(\frac{1}{n}\right); \text{e)} \sum \tan\left(\frac{1}{n}\right); \text{f)} \sum \ln\left(1 + \frac{1}{n^2}\right); \\ \text{g)} \sum \ln\left(1 + \frac{n^2 - \sqrt{n} + 1}{n^2 + \sqrt{n} + 1}\right); \text{h)} \sum \ln\left(1 + \frac{n^2 - \sqrt{n} + 1}{n^3 + \ln n + 3}\right); \text{i)} \sum \frac{n!}{n^n}; \text{j)} \sum \frac{n^2}{2^n + n}; \text{k)} \sum \frac{1}{n^{1 + \frac{1}{n}}}. \end{array}$$

Soit (un) la suite réelle définie pour $n \ge 2$ par $u_n = \ln\left(1 - \frac{1}{n^2}\right)$.

- 1. Montrer que $\sum u_n$ converge.
- On note $(S_n)_{n\geq 2}$ la suite des sommes partielles définie pour tout $n\geq 2$ par $S_n=\sum_{i=1}^n u_i$.

Montrer que $S_n = \ln(n+1) - \ln(n) - \ln(2)$ et en déduire la valeur de $\sum u_n$.

Exercice 5.

Soit f une fonction décroissante de \mathbb{R}^+ dans \mathbb{R}^+ .

- Définissons $u_n = S_n I_n$ où $S_n = \sum_{k=0}^{n} f(k)$ et où $I_n = \int_0^n f(x) dx$. Montrer que la suite (u_n) converge et montrer que les suites (S_n) et (I_n) sont de même nature. **2.** Montrer que si f est intégrable sur \mathbb{R}^+ et si $\lim_{n\to\infty} \frac{f(n+1)}{f(n)} = 1$ alors

$$\sum_{k=n}^{\infty} f(k) \sim \int_{n}^{\infty} f(x) dx.$$

3. Montrer que si f n'est pas intégrable sur \mathbb{R}^+ et si $\lim_{n\to\infty} \frac{f(n+1)}{f(n)} = 1$ alors

$$\sum_{k=0}^{n} f(k) \sim \int_{0}^{n} f(x) dx.$$

- Montrer que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + \varepsilon_n$ où γ est une constante (appelée constante d'Euler) vérifiant $\gamma \in [0, 1]$ et où (ε_n) est une suite de réels qui tend vers 0.
- 5. Quelle est la nature de $S_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$ pour $\alpha \in \mathbb{R}$?
- Montrer que si $0 < \alpha < 1$ alors $\sum_{n=1}^{\infty} \frac{1}{k^{\alpha}} \sim_{n \to \infty} \frac{n^{1-\alpha}}{1-\alpha}$.
- Montrer que si $\alpha > 1$ alors $\sum_{n=\infty}^{\infty} \frac{1}{k^{\alpha}} \sim_{n \to \infty} \frac{1}{(\alpha 1)n^{\alpha 1}}$.

Exercice 6.

- Quelle est la nature des séries $\sum \frac{\ln(n)}{n^2}$, $\sum \frac{1}{n^{1/2}\ln(n)}$ et $\sum \frac{1}{n\ln(n)}$?
- Plus généralement, montrer que $\sum \frac{1}{n^{\alpha}(\ln(n))^{\beta}}$ converge pour tout β dans \mathbb{R} si $\alpha > 1$ et diverge pour tout β dans \mathbb{R} si $\alpha < 1$.
- Montrer que $\sum \frac{1}{n(\ln(n))^{\beta}}$ converge si et seulement si $\beta > 1$.

Exercice 7.

- Soit (u_n) une suite réelle décroissante qui tend vers 0. Montrer que $\sum (-1)^n u_n$ est une série convergente : on pourra introduire $S_n = \sum_{k=0}^{n} (-1)^k u_k$ et montrer que les suites S_{2n} et S_{2n+1} sont des suites adjacentes.
- 2. Donner la nature des séries suivantes : a) $\sum \frac{(-1)^n}{n}$; b) $\sum \frac{(-1)^n}{\sqrt{n}}$; c) $\sum (-1)^n \sin\left(\frac{(-1)^n}{n}\right)$.

Exercice 8.

Soit (v_n) une suite de réels positifs telle que $\sum v_n$ diverge. Soit (u_n) une suite de réels tendant vers une limite l. Montrer que

$$\frac{\sum_{k=0}^{n} u_k v_k}{\sum_{k=0}^{n} v_k} \stackrel{n \to \infty}{\longrightarrow} l.$$