Hölderian invariance principle for stationary sequences

Davide GIRAUDO

Laboratoire de Mathématiques Raphaël Salem

November, 20th 2015

Davide GIRAUDO (LMRS)

Context

- Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and let $T: \Omega \to \Omega$ be a bijective bi-measurable *measure-preserving* function.
- The sequence $(f \circ T^j)_{j \ge 0}$ is a strictly stationary sequence, that is, the sequences $(f \circ T^j)_{j \ge 0}$ and $(f \circ T^{j+1})_{j \ge 0}$ have the same distribution. In this talk, we shall only deal with the case of *ergodic* dynamical systems, that is, if $A \in \mathcal{F}$ is such that $T^{-1}A = A$, then $\mu(A) = 0$ or 1.
- We define $S_N(f) := \sum_{j=0}^{N-1} f \circ T^j$. In probability theory, an important problem is the understanding of the asymptotic behaviour of the sequence $(S_N(f))_{N \ge 1}$.
- To this aim, we consider the *polygonal line process* $t \mapsto S_n^{pl}(f, t)$, that is, a piecewise linear function on [0, 1] whose value at k/n is $S_k(f)$, $1 \le k \le n$.
- We study the asymptotic behaviour of the normalised partial sum process in some function spaces.

Davide GIRAUDO (LMRS)

Let C[0,1] denote the space of continuous functions on the unit interval endowed with the uniform norm. The random function $t \mapsto S_n^{\text{pl}}(f,t)$ belongs to this space.

Donsker (1952) showed that if $(f \circ T^j)_{j \ge 0}$ is independent, centered and $\mathbb{E}[f^2] = \sigma^2$, then for each $F : C[0, 1] \to \mathbb{R}$ continuous and bounded,

$$\lim_{n \to +\infty} \mathbb{E}\left[F\left(n^{-1/2}S_n^{\mathrm{pl}}(f,\cdot)\right)\right] = \mathbb{E}\left[F\left(\sigma W\right)\right],$$

where W a standard Brownian motion. When this convergence holds, we say that f satisfies the invariance principle in C[0, 1].

Let C[0,1] denote the space of continuous functions on the unit interval endowed with the uniform norm. The random function $t \mapsto S_n^{\text{pl}}(f,t)$ belongs to this space.

Donsker (1952) showed that if $(f \circ T^j)_{j \ge 0}$ is independent, centered and $\mathbb{E}[f^2] = \sigma^2$, then for each $F : C[0, 1] \to \mathbb{R}$ continuous and bounded,

$$\lim_{n \to +\infty} \mathbb{E}\left[F\left(n^{-1/2}S_n^{\mathrm{pl}}(f,\cdot)\right)\right] = \mathbb{E}\left[F\left(\sigma W\right)\right],$$

where W a standard Brownian motion. When this convergence holds, we say that f satisfies the invariance principle in C[0, 1].

Let \mathcal{M} be a sub- σ -algebra of \mathcal{F} such that $T\mathcal{M} \subset \mathcal{M}$ (in this way, $(T^{-i}\mathcal{M})_{i\geq 0}$ is a filtration). We say that $(m \circ T^j)_{j\geq 0}$ is a *martingale differences sequence* if the function m is \mathcal{M} -measurable, integrable and $\mathbb{E}[m \mid T\mathcal{M}] = 0$.

If $(m \circ T^j)_{j \ge 0}$ is a martingale differences sequence such that $\mathbb{E}[m^2] = \sigma^2$, then m satisfies the invariance principle in C[0, 1] (see Billingsley (1968)).

Davide GIRAUDO (LMRS)

Space	Definition	Separable
$\mathcal{H}_{lpha}[0,1]$	$\left\ x ight\ _{lpha}:= \sup_{s eq t}rac{ x(s)-x(t) }{ s-t ^{lpha}}+ x(0) <+\infty$	No

Space	Definition	Separable
$\mathcal{H}_{lpha}[0,1]$	$\left\ x ight\ _{lpha}:= \sup_{s eq t}rac{ x(s)-x(t) }{ s-t ^{lpha}}+ x(0) <+\infty$	No
$\mathcal{H}^o_{lpha}[0,1]$		

Space	Definition	Separable
$\mathcal{H}_{lpha}[0,1]$	$\left\ x ight\ _{lpha}:= \sup_{s eq t} rac{ x(s)-x(t) }{ s-t ^{lpha}}+ x(0) <+\infty$	No
$\mathcal{H}^o_{lpha}[0,1]$	$\lim_{\delta o 0} \sup \left\{ rac{ x(t)-x(s) }{ t-s ^lpha} : t-s < \delta, s, t \in [0,1] ight\} = 0$	

Space	Definition	Separable
$\mathcal{H}_{lpha}[0,1]$	$\left\ x ight\ _{lpha}:= \sup_{s eq t}rac{ x(s)-x(t) }{ s-t ^{lpha}}+ x(0) <+\infty$	No
$\mathcal{H}^o_{lpha}[0,1]$	$\lim_{\delta o 0} \sup \left\{ rac{ x(t)-x(s) }{ t-s ^lpha} : t-s < \delta, s, t \in [0,1] ight\} = 0$	Yes

Space	Definition	Separable
$\mathcal{H}_{lpha}[0,1]$	$\left\ x ight\ _{lpha}:= \sup_{s eq t}rac{ x(s)-x(t) }{ s-t ^{lpha}}+ x(0) <+\infty$	No
$\mathcal{H}^o_lpha[0,1]$	$\lim_{\delta o 0} \sup \left\{ rac{ x(t)-x(s) }{ t-s ^lpha} : t-s < \delta, s, t \in [0,1] ight\} = 0$	Yes

The convergence in distribution in $\mathcal{H}_{\alpha}[0,1]$ is implied by that on $\mathcal{H}_{\alpha}^{o}[0,1]$. We shall work on $\mathcal{H}_{\alpha}^{o}[0,1]$.

The paths of a standard Brownian motion belong to $\mathcal{H}_{\alpha}[0,1]$ for each $\alpha \in (0,1/2)$.

Since the embedding ι : $(\mathcal{H}^{o}_{\alpha}[0,1], \|\cdot\|_{\alpha}) \to (C[0,1], \|\cdot\|_{\infty})$ is continuous, any continuous functional on C[0,1] is continuous on $\mathcal{H}^{o}_{\alpha}[0,1]$. Therefore, the invariance principle on $\mathcal{H}^{o}_{\alpha}[0,1]$ for $0 < \alpha < 1/2$ is stronger than the corresponding result on C[0,1]. It has potential statistical applications like change point detection.

The first work was done by Lamperti, (1962): his goal was to prove the convergence $\mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] \to \mathbb{E}\left[F(W)\right]$ for the largest possible class of functionals F.

Davide GIRAUDO (LMRS)

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Intogrability	Doos f satisfy the HIP?
integrability	
	Integrability

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence of $(f \circ T^i)_{i>0}$	Integrability	Does f satisfy the HIP?
Independent		

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)
Independent		

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)
Independent	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow 0$	

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)
		Yes (Račkauskas, Suquet,
Independent	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow$ 0	2003)

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)
		Yes (Račkauskas, Suquet,
Independent	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow$ 0	2003)
Martingale		
differences		

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)
		Yes (Račkauskas, Suquet,
Independent	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow$ 0	2003)
Martingale		
differences	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow$ 0	

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)
		Yes (Račkauskas, Suquet,
Independent	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow$ 0	2003)
Martingale		
differences	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow$ 0	Not necessarily (G., 2015)

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)
		Yes (Račkauskas, Suquet,
Independent	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow$ 0	2003)
Martingale		
differences	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow$ 0	Not necessarily (G., 2015)
Martingale		
differences		

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)
		Yes (Račkauskas, Suquet,
Independent	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow 0$	2003)
Martingale		
differences	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow0$	Not necessarily (G., 2015)
Martingale	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow$ and	
differences	$\mathbb{E}\left[f^2\mid \mathcal{TM} ight]\in\mathbb{L}^{p/2}$	

A (centered) function $f: \Omega \to \mathbb{R}$ satisfies the Hölderian invariance principle (HIP) in $\mathcal{H}_{\alpha}[0,1]$ if the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

Dependence		
of $(f \circ T^i)_{i \ge 0}$	Integrability	Does f satisfy the HIP?
	For each <i>t</i> ,	
Independent	$0 < c_1 \leqslant t^{ ho} \mu \left\{ f > t ight\} \leqslant c_2$	No (Lamperti, 1962)
		Yes (Račkauskas, Suquet,
Independent	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow0$	2003)
Martingale		
differences	$t^{ ho}\mu\left\{ \left f ight >t ight\} ightarrow0$	Not necessarily (G., 2015)
Martingale	$t^p \mu\left\{ f >t ight\} ightarrow 0$ and	
differences	$\mathbb{E}\left[f^2 \mid \mathcal{TM} ight] \in \mathbb{L}^{p/2}$	Yes (G., 2015)

General approach for the Hölderian invariance principle

We want to find some conditions on $f: \Omega \to \mathbb{R}$ which guarantee the convergence

$$\lim_{n\to\infty} \mathbb{E}\left[F\left(S_n^{\mathrm{pl}}(f,\cdot)/\sqrt{n}\right)\right] = \mathbb{E}\left[F(W)\right]$$

for each continuous and bounded function $F: \mathcal{H}^{\circ}_{\alpha}[0,1] \to \mathbb{R}$ where W is (a scalar multiple of) a standard Brownian motion and $\alpha \in (0, 1/2)$.

- The finite dimensional distributions characterize probability measures on $\mathcal{H}^{\circ}_{\alpha}[0,1]$.
- It thus suffices to show *tightness* of the sequence $(S_n^{pl}(f, \cdot)/\sqrt{n})_{n \ge 1}$ in $\mathcal{H}^o_{\alpha}[0, 1]$. In this context, this means that

$$\forall \varepsilon > 0, \quad \lim_{\delta \to 0} \limsup_{n \to \infty} \mu \left\{ \sup_{s,t: |t-s| < \delta} \frac{\left| S_n^{\mathrm{pl}}(f,t) - S_n^{\mathrm{pl}}(f,s) \right|}{|t-s|^{\alpha}} > \varepsilon \sqrt{n} \right\} = 0.$$

Using a dyadic splitting of the unit interval, we derive a *tightness criterion*:

$$\forall \varepsilon > 0, \quad \lim_{\delta \to 0} \limsup_{n \to \infty} n \sum_{k=1}^{\log[n\delta]} 2^{-k} \mu \left\{ \max_{1 \leq i \leq 2^k} |S_i(f)| > \varepsilon 2^{k\alpha} n^{1/2-\alpha} \right\} = 0.$$

Davide GIRAUDO (LMRS)

Hölderian invariance principle

- Give an estimate for the speed of convergence (no available results in the i.i.d. case).
- What happens for more general modulus of regularity, that is, when the role of the function $t \mapsto t^{\alpha}$ is played by $t \mapsto t^{\alpha} L(1/t)$, where L is a slowly varying function (e.g. $L(t) = \log(t)^{\beta}, \beta > 1/2$ and $0 < \alpha \leq 1/2$)?

The i.i.d. case was considered by Račkauskas, Suquet, (2004).

- Give an estimate for the speed of convergence (no available results in the i.i.d. case).
- What happens for more general modulus of regularity, that is, when the role of the function $t \mapsto t^{\alpha}$ is played by $t \mapsto t^{\alpha} L(1/t)$, where L is a slowly varying function (e.g. $L(t) = \log(t)^{\beta}, \beta > 1/2$ and $0 < \alpha \leq 1/2$)?

The i.i.d. case was considered by Račkauskas, Suquet, (2004).

Thanks for your attention!