A deviation inequality for Banach-valued random fields and some applications

Davide Giraudo IRMA

Séminaire de calcul stochastique Strasbourg, 15 novembre 2022

Martingale difference sequences

Orthomartingale difference random fields

3 Applications

Definition of a martingale difference sequence

Definition

Let $(\Omega, \mathbb{P}, \mathcal{F})$ be a probability space. We say that the real-valued sequence $(D_i)_{i \ge 1}$ is a martingale difference sequence with respect to the filtration $(\mathcal{F}_i)_{i \ge 0}$ if

- for each $i \ge 0$, $\mathcal{F}_i \subset \mathcal{F}_{i+1}$,
- **2** for each $i \ge 1$, D_i is integrable and \mathcal{F}_i -measurable and

3 for each
$$i \ge 1$$
, $\mathbb{E}[D_i | \mathcal{F}_{i-1}] = 0$.

Examples

- If (D_i)_{i≥1} is independent and centered and F_i = σ (D_j, j ≤ i), then (D_i)_{i≥1} is a martingale difference sequence with respect to the filtration (F_i)_{i≥0}.
- If (*F_i*)_{i≥0} is a filtration and *X* an integrable random variable, then *D_i* := 𝔼 [*X* | *F_i*] − 𝔼 [*X* | *F_{i-1}*] is a martingale difference sequence.

Moment inequalities (1)

Notice that if $(D_i)_{i \ge 1}$ is a martingale difference sequence, then for each i < j,

$$\mathbb{E}\left[D_i D_j\right] = \mathbb{E}\left[\mathbb{E}\left[D_i D_j \mid \mathcal{F}_i\right]\right] = \mathbb{E}\left[D_i \mathbb{E}\left[D_j \mid \mathcal{F}_i\right]\right] = 0$$

hence denoting $S_n = \sum_{i=1}^n D_i$,

$$\mathbb{E}\left[S_n^2\right] = \sum_{i=1}^n \mathbb{E}\left[D_i^2\right].$$

Moreover, by Doob's inequality,

$$\mathbb{E}\left[\max_{1\leqslant n\leqslant N}S_n^2\right]\leqslant 4\sum_{i=1}^N\mathbb{E}\left[D_i^2\right]$$

Moment inequalities (2)

Burkholder's inequality:

• for 1 ,

$$\mathbb{E}\left[\max_{1\leqslant n\leqslant N}\left|S_{n}\right|^{p}\right]\leqslant C\left(p\right)\sum_{i=1}^{N}\mathbb{E}\left[\left|D_{i}\right|^{p}\right].$$

• For $p \ge 2$,

$$\mathbb{E}\left[\max_{1\leqslant n\leqslant N}\left|S_{n}\right|^{p}\right]\leqslant C\left(p\right)\left(\sum_{i=1}^{N}\mathbb{E}\left[\left|D_{i}\right|^{p}\right]^{2/p}\right)^{p/2}.$$

Why deviation inequalities?

Suppose that for some sequence $(a_N)_{N \ge 1}$, one can get a bound of the form

$$\mathbb{P}\left(\frac{1}{a_{N}}\max_{1\leqslant n\leqslant N}|S_{n}|>x\right)\leqslant\int_{0}^{\infty}g\left(u\right)\mathbb{P}\left(Y>ux\right)du$$
(*)

where Y is independent on N.

Then under integrability conditions on Y, we can deduce convergence of series of the form

$$\sum_{N} b_{N} \mathbb{P}\left(\frac{1}{c_{N}} \max_{1 \leq n \leq N} |S_{n}| > x\right)$$

by a direct application of (*).

In particular, no truncation is needed.

A deviation inequality with conditional moments

Theorem (Nagaev, 2003)

If $(S_n)_{n \ge 1}$ is a martingale defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $X_i := S_i - S_{i-1}$, then

$$\begin{split} \mathbb{P}\left\{|S_n| > x\right\} &\leqslant C(q) \int_0^1 \mathbb{P}\left\{\max_{1 \leqslant i \leqslant n} |X_i| > xu\right\} u^{q-1} \mathrm{d}u \\ &+ C(q) \int_0^1 \mathbb{P}\left\{\left(\sum_{i=1}^n \mathbb{E}\left[X_i^2 \mid \mathcal{F}_{i-1}\right]\right) > xu\right\} u^{q-1} \mathrm{d}u. \end{split}$$

Definition of a smooth Banach space, examples

Definition

Let $(\mathbb{B}, \|\cdot\|_{\mathbb{B}})$ be a separable Banach space. We say that \mathbb{B} is *r*-smooth for $1 < r \leq 2$ if there exists an equivalent norm $\|\cdot\|'_{\mathbb{B}}$ on \mathbb{B} such that

$$\sup_{t>0} \sup_{x,y\in B, \|x\|'_{\mathbb{B}}=\|y\|'_{\mathbb{B}}=1,} \frac{\|x+ty\|'_{\mathbb{B}}+\|x-ty\|'_{\mathbb{B}}-2}{t^{r}} <\infty.$$

For example, if μ is σ -finite on the Borel σ -algebra of \mathbb{R} , then $\mathbb{L}^{p}(\mathbb{R},\mu)$ is min $\{p,2\}$ -smooth.

Moreover, a separable Hilbert space is 2-smooth.

Link between martingales and smooth Banach spaces

Proposition (Xu, Roasch, 1991)

Let $(\mathbb{B}, \|\cdot\|_{\mathbb{B}})$ be an *r*-smooth Banach space for some $r \in (1, 2]$. For each $z \in \mathbb{B}$, there exists a unique continuous linear functional $J_z : \mathbb{B} \to \mathbb{R}$ such that the following conditions hold:

1
$$||J_z||_{\mathbb{B}'} = ||z||_{\mathbb{B}}^{r-1}$$

2 $J_z(z) = ||z||_{\mathbb{R}}^r$

a for each
$$x, y \in \mathbb{R}$$

$$\|x+y\|_{\mathbb{B}}^{r} \leq \|x\|_{\mathbb{B}}^{r} + rJ_{x}(y) + C(\mathbb{B})\|y\|_{\mathbb{B}}^{r}.$$

We apply this to $x = \sum_{i=1}^{n-1} D_i$ and $y = D_n$, then integrate in order to get, by induction,

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n} D_{i}\right\|_{\mathbb{B}}^{r}\right] \leqslant C\left(\mathbb{B}\right) \sum_{i=1}^{n} \mathbb{E}\left[\left\|D_{i}\right\|_{\mathbb{B}}^{r}\right].$$

Important constants for a smooth Banach space

Noticing that an r-smooth Banach space is also p-smooth for each 1 we can define

$$C_{p,\mathbb{B}} := \sup_{n \ge 1} \sup_{(D_i)_{i=1}^n \in \Delta_n} \frac{\mathbb{E}\left[\left\| \sum_{i=1}^n D_i \right\|_{\mathbb{B}}^p \right]}{\sum_{i=1}^n \mathbb{E}\left[\left\| D_i \right\|_{\mathbb{B}}^p \right]},$$

where the Δ_n denotes the set of the martingale differences sequences $(D_i)_{i=1}^n$ such that $\sum_{i=1}^n \|D_i\|_{\mathbb{R}}^p$ is not identically 0.

Deviation inequality with conditional moments

Theorem (G., 2020)

Let $(\mathbb{B}, \|\cdot\|_{\mathbb{B}})$ be a separable r-smooth Banach space where $1 < r \leq 2$. For each 1 , <math>q > 0 and for any \mathbb{B} -valued martingale differences sequence $(D_i, \mathcal{F}_i)_{i\geq 1}$, the following inequality holds for each $n \geq 1$ and x > 0:

$$\mathbb{P}\left(\max_{1\leqslant k\leqslant n} \|S_k\|_{\mathbb{B}} > t\right) \leqslant f\left(p, q, C_{p, \mathbb{B}}\right) \int_0^1 \mathbb{P}\left(\max_{1\leqslant i\leqslant n} \|D_i\|_{\mathbb{B}} > tu\right) u^{q-1} \mathrm{d}u \\ + f\left(p, q, C_{p, \mathbb{B}}\right) \int_0^1 \mathbb{P}\left(\left(\sum_{i=1}^n \mathbb{E}\left[\|D_i\|_{\mathbb{B}}^p \mid \mathcal{F}_{i-1}\right]\right)^{1/p} > tu\right) u^{q-1} \mathrm{d}u,$$

where $S_k = \sum_{i=1}^k D_i$ and $C_{\rho,\mathbb{B}}$ is a constant satisfying

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n} D_{i}\right\|_{\mathbb{B}}^{p}\right] \leqslant C_{p,\mathbb{B}} \sum_{i=1}^{n} \mathbb{E}\left[\left\|D_{i}\right\|_{\mathbb{B}}^{p}\right]$$

for any n and any martingale differences sequence.

Deviation inequality without conditional moments

Proposition (G., 2022+)

Let $1 < r \leq 2$ and let $(\mathbb{B}, \|\cdot\|_{\mathbb{B}})$ be a separable r-smooth Banach space. For each $p \in (1, r]$, and q > p, there exists a function $f_{p,q} \colon \mathbb{R}_+ \to \mathbb{R}_+$ such that if $(D_i)_{i \geq 1}$ is a \mathbb{B} -valued martingale difference sequence with respect to the filtration $(\mathcal{F}_i)_{i \in \mathbb{Z}}$ then for each 1 , <math>q > p and x > 0, the following inequality holds:

$$\mathbb{P}\left(\max_{1\leqslant n\leqslant N}\left\|\sum_{i=1}^{n}D_{i}\right\|_{\mathbb{B}}>t\right)$$

$$\leqslant f_{p,q}\left(C_{p,\mathbb{B}}\right)\int_{0}^{\infty}\min\left\{u^{q-1},u^{p-1}\right\}\mathbb{P}\left(\left(\sum_{i=1}^{N}\|D_{i}\|_{\mathbb{B}}^{p}\right)^{1/p}>tu\right)\mathrm{d}u.$$

2 Orthomartingale difference random fields

3 Applications

Commuting filtration

For
$$i, j \in \mathbb{Z}^d$$
, $i \succcurlyeq j$ means that $i_{\ell} \leqslant j_{\ell}$ for each $\ell \in \{1, \ldots, d\}$.

Definition

We say that a collection of σ -algebras $(\mathcal{F}_i)_{i\in\mathbb{Z}^d}$ is a completely commuting filtration if

- **(**) for each $i, j \in \mathbb{Z}^d$ such that $i \preccurlyeq j, \mathcal{F}_i \subset \mathcal{F}_j$ and
- **2** for each $Y \in \mathbb{L}^1$ and each $i, j \in \mathbb{Z}^d$,

$$\mathbb{E}\left[\mathbb{E}\left[Y \mid \mathcal{F}_{i}\right] \mid \mathcal{F}_{j}\right] = \mathbb{E}\left[Y \mid \mathcal{F}_{\min\{i,j\}}\right],$$

where min $\{i, j\}$ is the element of \mathbb{Z}^d defined as the coordinatewise minimum of *i* and *j*, that is, min $\{i, j\} = (\min \{i_{\ell}, j_{\ell}\})_{\ell=1}^d$.

Examples of commuting filtrations

Proposition

- If (ε_u)_{u∈Z^d} is i.i.d., then defining F_i = σ (ε_u, u ∈ Z^d, u ≼ i), the filtration (F_i)_{i∈Z^d} is completely commuting.
- Suppose that $\left(\mathcal{F}_{i^{(\ell)}}^{(\ell)}\right)_{i^{(\ell)} \in \mathbb{Z}^{d_{\ell}}}$, $1 \leq \ell \leq L$, are completely commuting filtrations on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that for each $i^{(1)} \in \mathbb{Z}^{d_1}, \ldots, i^{(L)} \in \mathbb{Z}$, the σ -algebras $\mathcal{F}_{i^{(\ell)}}^{(\ell)}$, $1 \leq \ell \leq L$, are independent. Let $d = \sum_{\ell=1}^{L} d_{\ell}$ and for $\mathbf{i} = (i^{(\ell)})_{\ell=1}^{L} \in \mathbb{Z}^{d}$, let $\mathcal{F}_{\mathbf{i}} = \bigvee_{\ell=1}^{L} \mathcal{F}_{i_{\ell}}^{(\ell)}$. Then $(\mathcal{F}_{\mathbf{i}})_{\mathbf{i} \in \mathbb{Z}^{d}}$ is completely commuting.

Definition of orthomartingales

Denote
$$\boldsymbol{e}_{\boldsymbol{\ell}} = \left(\underbrace{0,\ldots,0}_{\ell-1},1,\underbrace{0\ldots,0}_{d-\ell}\right) \in \mathbb{Z}^{d}.$$

Definition

Let $(X_i)_{i \in \mathbb{Z}^d}$ be a random field taking values in a separable Banach space $(\mathbb{B}, \|\cdot\|_{\mathbb{B}})$. We say that $(X_i)_{i \in \mathbb{Z}^d}$ is an orthomartingale martingale difference random field with respect to the completely commuting filtration $(\mathcal{F}_i)_{i \in \mathbb{Z}^d}$ if for each $i \in \mathbb{Z}^d$,

- $||X_i||_{\mathbb{B}}$ is integrable,
- **2** X_i is \mathcal{F}_i -measurable and
- for each $\ell \in \{1, \ldots, d\}$, $\mathbb{E}[X_i | \mathcal{F}_{i-e_{\ell}}] = 0$.

Properties of orthomartingales

Let $(X_i)_{i \in \mathbb{Z}^d}$ be an orthomartingale difference random field with respect to $(\mathcal{F}_i)_{i \in \mathbb{Z}^d}$. Then for each fixed j, $(X_{i_1,\ldots,i_{d-1},j})_{i_1,\ldots,i_{d-1}\in\mathbb{Z}}$ is an orthomartingale difference with respect to the commuting filtration $(\mathcal{F}_{i_1,\ldots,i_{d-1},j})_{i_1,\ldots,i_{d-1}\in\mathbb{Z}}$.

This allows arguments by induction on the dimension.

For example in the real-valued case, for $p \ge 2$,

$$\mathbb{E}\left[\left|\sum_{1 \leq i \leq n} X_i\right|^p\right] \leq C(p,d) \left(\sum_{1 \leq i \leq n} \mathbb{E}\left[|X_i|^p\right]^{2/p}\right)^{p/2}$$

Main result

Theorem (G., 2022+)

Let $1 < r \leq 2$ and let $(B, \|\cdot\|_{\mathbb{B}})$ be a separable *r*-smooth Banach space. For each $p \in (1, r]$, q > p and $d \ge 1$, there exists a function $f_{p,q,d} \colon \mathbb{R}_+ \to \mathbb{R}_+$ such that if $(X_i)_{i \in \mathbb{Z}^d}$ is a an orthomartingale martingale differences random field with respect to a completely commuting filtration $(\mathcal{F}_i)_{i \in \mathbb{Z}^d}$, and taking values in a \mathbb{B} , then for each 1 , <math>q > p and x > 0, the following inequality holds:

$$\mathbb{P}\left(\max_{\mathbf{1} \leq n \leq N} \left\| \sum_{\mathbf{1} \leq i \leq n} X_{i} \right\|_{\mathbb{B}} > t \right) \leq f_{p,q,d} \left(C_{p,\mathbb{B}} \right) \mathbb{E}\left[\left(\frac{Y}{t} \right)^{q} \mathbf{1}_{Y \leq t} \right] + f_{p,q,d} \left(C_{p,\mathbb{B}} \right) \mathbb{E}\left[\left(\frac{Y}{t} \right)^{p} \left(1 + \log \left(\frac{Y}{t} \right) \right)^{d-1} \mathbf{1}_{Y > t} \right]$$

with $Y = Y_{N,p} = \left(\sum_{1 \leq i \leq N} \|X_i\|_{\mathbb{B}}^p\right)^{\frac{1}{p}}$.

Case of stochastic domination

Corollary (G., 2022+)

Let $1 < r \leq 2$ and let $(\mathbb{B}, \|\cdot\|_{\mathbb{B}})$ be a separable *r*-smooth Banach space. Let $(X_i)_{i \in \mathbb{Z}^d}$ be a \mathbb{B} -valued orthomartingale martingale differences random field with respect to a completely commuting filtration $(\mathcal{F}_i)_{i \in \mathbb{Z}^d}$, and such that there exists a real-valued random variable V such that for each convex increasing function φ ,

$$\mathbb{E}\left[\varphi\left(\sum_{1\leqslant i\leqslant N} \|X_i\|_{\mathbb{B}}^{p}\right)\right] \leqslant \mathbb{E}\left[\varphi\left(V^{p}\right)\right],$$

then for each 1 , <math>q > 0 and x > 0, the following inequality holds:

$$\mathbb{P}\left(\max_{1 \leq n \leq N} \left\| \sum_{1 \leq i \leq n} X_i \right\|_{\mathbb{B}} > t \right) \leq f_{p,q,d} \left(C_{p,\mathbb{B}} \right) \int_0^1 u^{q-1} \mathbb{P} \left(V > tu \right) \mathrm{d}u + f_{p,q,d} \left(C_{p,\mathbb{B}} \right) \int_1^\infty u^{p-1} \left(1 + \log u \right)^d \mathbb{P} \left(V > tu \right) \mathrm{d}u.$$

19 / 26

Idea of proof of the theorem

For d = 2, let $(X_{i,j})_{i,j \in \mathbb{Z}}$ the considered orthomartingale difference random field.

Applying an inequality for martingale difference sequence with $D_j = \sum_{i=1}^{n_1} X_{i,j}$ to get

$$\begin{split} & \mathbb{P}\left(\left\|\sum_{i=1}^{n_{1}}\sum_{j=1}^{n_{2}}X_{i,j}\right\|_{\mathbb{B}} > t\right) \\ &\leqslant f_{p,q}\left(C_{p,\mathbb{B}}\right)\int_{0}^{\infty}\min\left\{u^{q-1},u^{p-1}\right\}\mathbb{P}\left(\left(\sum_{j=1}^{n_{2}}\left\|\sum_{i=1}^{n_{1}}X_{i,j}\right\|_{\mathbb{B}}^{p} > tu\right)\mathrm{d}u. \end{split}$$
Then we view $\left\|\sum_{i=1}^{n_{1}}X_{i,j}\right\|_{\mathbb{B}}^{p}$ as $\left\|\sum_{i=1}^{n_{1}}d_{i}\right\|_{\mathbb{B}}^{p}$, with $\widetilde{\mathbb{B}}=\mathbb{B}^{n_{2}}$,
 $\left\|\left(x_{j}\right)_{j=1}^{n_{2}}\right\|_{\widetilde{\mathbb{B}}}^{p} = \sum_{j=1}^{n_{2}}\left\|x_{j}\right\|_{\mathbb{B}}^{p}$ and $d_{i}=(X_{i,j})_{j=1}^{n_{2}}$.
Key point: $C_{p,\mathbb{B}}=C_{p,\mathbb{B}}$.

2 Orthomartingale difference random fields

Rates in the law of large numbers for random fields

Let
$$\varphi_{p,s} \colon t \mapsto t^p \left(1 + \mathbf{1}_{t>1} \log t\right)^s$$
 and $|\boldsymbol{n}| = \prod_{\ell=1}^d n_\ell$.

A sufficient condition for the almost sure convergence of $S_n/|\mathbf{n}|^{1/p} \to 0$ as max $\mathbf{n} \to \infty$ is $\mathbb{E}\left[\varphi_{p,d-1}\left(\left\|X_1\right\|_{\mathbb{B}}\right)\right] < \infty$.

Theorem (G., 2022+)

Let \mathbb{B} be a separable *r*-smooth Banach space and s > r. For each identically distributed \mathbb{B} -valued orthomartingale difference random field $(X_i)_{i \in \mathbb{Z}^d}$, for each positive ε and each $\alpha \in (1/r, 1]$, the following inequality takes place

$$\sum_{\boldsymbol{n}\in\mathbb{N}^{d}}|\boldsymbol{n}|^{s(\alpha-1/r)-1}\mathbb{P}\left(\max_{1\leqslant i\leqslant n}\|\boldsymbol{S}_{i}\|_{\mathbb{B}}>\varepsilon|\boldsymbol{n}|^{\alpha}\right)\leqslant C(r,d,\mathbb{B})\mathbb{E}\left[\varphi_{s,d}\left(\frac{\|\boldsymbol{X}_{i}\|_{\mathbb{B}}}{\varepsilon}\right)\right].$$

Applications

Definition

We consider the following regression model:

$$Y_{\boldsymbol{i}} = g\left(\frac{\boldsymbol{i}}{n}\right) + X_{\boldsymbol{i}}, \quad \boldsymbol{i} \in \Lambda_n := \{1, \ldots, n\}^d,$$

where $g: [0,1]^d \to \mathbb{R}$ is an unknown smooth function and $(X_i)_{i \in \mathbb{Z}^d}$ is an orthomartingale difference random field. Let K be a probability kernel defined on \mathbb{R}^d and let $(h_n)_{n \ge 1}$ be a sequence of positive numbers which converges to zero and which satisfies

$$\lim_{n\to+\infty}nh_n=+\infty \text{ and } \lim_{n\to+\infty}nh_n^{d+1}=0.$$

We estimate the function g by the kernel estimator g_n defined by

$$g_n(\mathbf{x}) = \frac{\sum_{i \in \Lambda_n} Y_i K\left(\frac{\mathbf{x}-i/n}{h_n}\right)}{\sum_{i \in \Lambda_n} K\left(\frac{\mathbf{x}-i/n}{h_n}\right)}, \quad \mathbf{x} \in [0,1]^d,$$

where

$$\Lambda_n=\left\{1,\ldots,n\right\}^d.$$

Goal, assumptions

Goal : provide tail bounds for $\|g_n(\cdot) - \mathbb{E}[g_n(\cdot)]\|_{\mathbb{L}^p([0,1]^d)}$.

Assumptions on K:

- The probability kernel K fulfills ∫_{ℝ^d} K (**u**) d**u** = 1, is symmetric, non-negative, supported by [-1, 1]^d.
- **③** There exist positive constants *c* and *C* such that for any *x* ∈ [−1, 1]^{*d*}, *c* ≤ *K*(*x*) ≤ *C*.

Convergence in \mathbb{L}^p , 1

Theorem (G., 2022+)

Let $1 and let <math>(X_i)_{i \in \mathbb{Z}^d}$ be an identically distributed real-valued orthomartingale difference random field and let $g_n \colon [0,1]^d \to \mathbb{R}$ be given by

$$g_n(\mathbf{x}) = rac{\sum_{i \in \Lambda_n} Y_i K\left(rac{\mathbf{x}-i/n}{h_n}
ight)}{\sum_{i \in \Lambda_n} K\left(rac{\mathbf{x}-i/n}{h_n}
ight)}, \quad \mathbf{x} \in [0,1]^d.$$

For each positive t, the following inequality takes place:

$$\mathbb{P}\left(\left\|g_{n}\left(\cdot\right)-\mathbb{E}\left[g_{n}\left(\cdot\right)\right]\right\|_{\mathbb{L}^{p}\left(\left[0,1\right]^{d}\right)} > t\right) \leqslant \\ \kappa_{p,q,d} \int_{0}^{1} u^{q-1} \mathbb{P}\left(\left|X_{1}\right| > t\left(nh_{n}\right)^{d\left(1-1/p\right)} u\right) \mathrm{d}u \\ + \kappa_{p,q,d} \int_{1}^{\infty} u^{p-1} \left(1+\log u\right)^{d} \mathbb{P}\left(\left|X_{1}\right| > t\left(nh_{n}\right)^{d\left(1-1/p\right)} u\right) \mathrm{d}u.$$

Convergence in \mathbb{L}^p , p > 2

Theorem (G., 2022+)

Let p > 2 and let $(X_i)_{i \in \mathbb{Z}^d}$ be an identically distributed real-valued orthomartingale difference random field and let $g_n \colon [0,1]^d \to \mathbb{R}$ be given by

$$g_n(\mathbf{x}) = \frac{\sum_{i \in \Lambda_n} Y_i K\left(\frac{\mathbf{x}-i/n}{h_n}\right)}{\sum_{i \in \Lambda_n} K\left(\frac{\mathbf{x}-i/n}{h_n}\right)}, \quad \mathbf{x} \in [0,1]^d.$$

For each positive t, the following inequality takes place:

$$\mathbb{P}\left(\left\|g_{n}\left(\cdot\right)-\mathbb{E}\left[g_{n}\left(\cdot\right)\right]\right\|_{\mathbb{L}^{p}\left(\left[0,1\right]^{d}\right)}>t\right)$$

$$\leq \kappa_{p,q,d} \int_{0}^{1} u^{q-1} \mathbb{P}\left(\left|X_{1}\right|>t \left(nh_{n}\right)^{d\left(-p\right)/2} n^{\frac{2-p}{2p}} u\right) \mathrm{d}u$$

$$+\kappa_{p,q,d} \int_{1}^{\infty} u^{p-1} \left(1+\log u\right)^{d} \mathbb{P}\left(\left|X_{1}\right|>t \left(nh_{n}\right)^{d\left(1-p\right)/2} n^{\frac{2-p}{2p}} u\right) \mathrm{d}u.$$