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2 CONVERGENCES IN PROBABILITY

1. Introduction to the basic concepts of convergence in probability theory

During this class, we consider a probability space (Ω,F ,P), that is:
• Ω is a non-empty set, the set of outcomes,
• F (the event space) is a σ-algebra: ∅ ∈ F ; if A ∈ F , then Ω \ A ∈ F and F is stable

by countable unions: if An ∈ F , n ∈ N, then
⋃
n∈NAn ∈ F ,

• P is a probability measure, that is, P (∅) = 0, P (Ω) = 1 and if (An)n∈N is a sequence
of pairwise disjoint elements of F , then P

(⋃
n∈NAn

)
=
∑
n∈N P (An).

Definition 1.1. A random variable is a function X : Ω → R such that for each Borel set B
of the real line, X−1 (B) = {ω ∈ Ω, X (ω) ∈ B} belongs to F (equivalently, we require that
X−1 ((−∞, x]) ∈ F for each x ∈ R).

General goal, that will be made more precise later: given a sequence of random
variables (Xn)n∈N and functions fn : Rn → R, we would like to understand as best as possible
the asymptotic behavior of the sequence (fn (X1, . . . , Xn)). E.g., fn (X1, . . . , Xn) =

∑n
i=1 Xi.

1.1. Almost sure convergence.

Definition 1.2. We say that a sequence of random variables (Xn)n>1 converges almost surely
to a random variable X if there exists Ω′ ∈ F such that P (Ω′) = 1 and for each ω ∈ Ω′,
Xn (ω)→ X (ω) as n→∞.

Example 1.3. Let Xn be such that Xn (ω) = 1 if ω ∈ An, An ∈ F and Xn (ω) = 0 otherwise.
If P

(⋃
k>nAk

)
→ 0, then Xn → 0 almost surely.

Theorem 1.4 (Egoroff). Let (Xn)n>1 be a sequence of random variables which converges
almost surely to X. For each positive δ, there exists a set Aδ ∈ F such that and P (Ω \Aδ) 6 δ
and supω∈Aδ |Xn (ω)−X (ω)| → 0.

In other words, Ω can be splitted into two sets: on the first one, uniform convergence takes
place, while the second one can have a measure as small as we wish.

Example 1.5. Let Ω = (0, 1) endowed with Lebesgue measure and let Xn (ω) = ωn. One can
take Aδ = (0, 1− δ).

1.2. Convergence in probability.

Definition 1.6. We say that the sequence of random variables (Xn)n>1 converges in probability
to X if for each positive ε,

lim
n→∞

P (|Xn −X| > ε) = 0. (1.2.1)

Example 1.7. Let Xn be such that Xn (ω) = 1 if ω ∈ An, An ∈ F and Xn (ω) = 0 otherwise.
Xn → 0 in probability if and only if P (An)→ 0.

1.3. Link between the almost sure convergence and convergence in probability.

Theorem 1.8 (First Borel-Cantelli lemma). Let (An)n>1 be a sequence of events such that∑
n>1 P (An) <∞. Then the event lim supn→∞An =

⋂
N>1

⋃
n>N An has probability zero.
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Proof. For each N0, P
(⋂

N>1
⋃
n>N An

)
6 P

(⋃
n>N0

An

)
6
∑
n>N0

P (An). �

A natural question is whether the converse is true, that is, whether P (lim supn→∞An) = 0
implies

∑
n>1 P (An) < ∞. This is in general not the case. For example, let (Ω,F ,P) =

([0, 1],B ([0, 1]) , λ), where λ denotes the Lebesgue measure and let An = (0, 1/n). Then
lim supn→∞An = ∅ but P (An) = 1/n and

∑
n>1 P (An) =∞.

Nevertheless, a partial converse can be made under the assumption of independence.

Definition 1.9. We say that a sequence of events (An)n>1 is independent if for each finite
subset I of N, P

(⋂
i∈I Ai

)
=
∏
i∈I P (Ai).

Theorem 1.10 (Second Borel-Cantelli lemma). Let (An)n>1 be an independent sequence of
events. Suppose that

∑
n>1 P (An) =∞. Then P (lim supn→∞An) = 1.

Suppose that Xn → X in probability. We know that limn→∞ P (|Xn −X| > ε) = 0 For a
fixed k, let ε = 2−k. We can find an integer nk such that P

(
|Xnk −X| > 2−k

)
6 2−k.

It is possible to construct inductively an increasing sequence of integers (nk)k>1 such that
for each k, P

(
|Xnk −X| > 2−k

)
6 2−k.

By the first Borel-Cantelli lemma, lim supk→∞
{
|Xnk −X| > 2−k

}
has probability zero

hence there is Ω′ ∈ F having probability one such that for each ω ∈ Ω′, there exists an
integer k (ω) for which k > k (ω) implies |Xnk (ω)−X (ω)| 6 2−k.

We showed the following: if Xn → X in probability, there is a subsequence (Xnk)k>1 which
converges almost surely to X.

Moreover, we can show (we will do during the seminar) that Xn → X almost surely if and
only if supk>n |Xk −X| → 0 in probability. Hence almost sure convergence implies convergence
in probability.

The converse is not true: let Xn be an independent sequence of random variables where
Xn takes the value 1 with probability 1/n and 0 with probablity 1 − 1/n. Then Xn → 0 in
probability but not almost surely, by the second Borel-Cantelli lemma.

1.4. Convergence in Lp. A random variable S is said simple if its range is finite. Such a
random variable can be expressed as S =

∑N
i=1 ai1 (Ai) for some N > 1, ai ∈ R and Ai ∈ F

are pairwise disjoint and 1 (Ai) denotes the indicator function of the set A.
For such randon variables, E [S] is defined as

∑N
i=1 aiP (Ai).

For a non-negative random variable X, the expectation of X is defined as

E [X] = sup {E [S] , S is simple and 0 6 S 6 X} . (1.4.1)

For a not necessarily non-negative random variable, we decompose it as X = X+ − X−,
where X+ = max {X, 0} and X− = min {X, 0}.

Note that a consequence of this is that

lim
δ→0

sup
A∈F,P(A)6δ

E [|X|1 (A)] = 0. (AC)

Theorem 1.11 (Dominated convergence theorem under convergence in probability). Let
(Xn)n>1 be a sequence of random variables which converges in probability to X. Suppose
that E

[
supn>1 |Xn|

]
<∞. Then E [|Xn −X|]→ 0.
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Proof. Suppose not. Then there is a positive ε0 and an increasing sequence of integers (nk)k>1

such that E [|Xnk −X|] > ε0. We extract from (|Xnk −X|)k>1 a subsequence
(∣∣∣Xnk`

−X
∣∣∣)
`>1

which converges almost surely to 0. By Egoroff’s theorem, we can pickAδ such that supω∈Aδ
∣∣∣Xnk`

(ω)−X (ω)
∣∣∣→

0 and P (Ω \Aδ) 6 δ. Therefore,

ε0 6 E
[∣∣∣Xnk`

−X
∣∣∣] 6 sup

ω∈Aδ

∣∣∣Xnk`
(ω)−X (ω)

∣∣∣+ E
[∣∣∣Xnk`

−X
∣∣∣1 (Ω \Aδ)

]
6 sup
ω∈Aδ

∣∣∣Xnk`
(ω)−X (ω)

∣∣∣+ 2 sup
A∈F,P(A)6δ

E
[
sup
n>1
|Xn|1 (A)

]
and (AC) gives a contradiction. �

The space Lp, 1 6 p <∞, consists of the equivalence class of random variables X such that
E [|X|p] <∞.

Definition 1.12. We say that the sequence of random variables (Xn)n>1 converges in Lp to
X, 1 6 p <∞ if

lim
n→∞

E [|Xn −X|p] = 0. (1.4.2)

Example 1.13. If Xn = 1 (An), then Xn → X in Lp if and only if P (An)→ 0.

Proposition 1.14. If (Xn)n>1 converges in Lp to X and in probability to Y , then X = Y

a.s..

1.5. Comparison of convergence in Lp with almost sure convergence and conver-
gence in probability. Let us first compare convergence in probability with convergence in
Lp.

Suppose that (Xn)n>1 converges in Lp to X for some 1 6 p <∞. Integrating the pointwise
inequality

εp1 {|Xn −X| > ε} 6 |Xn −X|p ,
we derive that Xn → X in probability.

Therefore, convergence in Lp implies convergence in probability.
The converse is not true, not even if Xn, X ∈ Lp. Indeed, take Ω = (0, 1) endowed with the

Borel σ-algebra and Lebesgue measure. Let Xn = n1/p1
((

0, 1
n

))
. Then Xn → 0 in probability

but not in Lp.
Then let us compare almost sure and convergence in Lp. Since convergence in probabil-

ity does not imply convergence in Lp, it is clear that almost sure convergence cannot imply
convergence in Lp.

Moreover, convergence in Lp does not imply almost sure convergence: let Xn be an inde-
pendent sequence of random variables where Xn takes the value 1 with probability 1/n and 0
with probablity 1 − 1/n. Then Xn → 0 in probability but not almost surely, by the second
Borel-Cantelli lemma.

How to go from convergence in probability to convergence in Lp?
Suppose that (Xn)n>1 converges in probability to X. We would like to show the convergence

in Lp for some 1 6 p <∞.
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• First we have to assume that Xn, X ∈ Lp, otherwise it is hopeless.
• Note that we should in particular have supn>1 E [|Xn|p] <∞.

Recall that for a non-negative random variable Y ,

E [Y ] =
∫ ∞

0
P (Y > t) dt. (1.5.1)

Therefore,

E [|Xn −X|p] =
∫ ∞

0
P
(
|Xn −X| > t1/p

)
dt. (1.5.2)

Note that for each fixed R,
∫ R

0 P
(
|Xn −X| > t1/p

)
dt 6 ε+RP

(
|Xn −X| > ε1/p) hence

lim sup
n→∞

E [|Xn −X|p] = lim sup
n→∞

∫ ∞
R

P
(
|Xn −X| > t1/p

)
dt (1.5.3)

1.6. Uniform integrability. For a random variable X,∫ ∞
R

P (|X| > t) dt 6 RP (X > R) +
∫ ∞
R

P (|X| > t) dt 6 E [|X|1 {|X| > R}] , (1.6.1)

where 1 (A) (ω) is a random variable taking the value 1 if ω ∈ A and 0 otherwise.
Therefore, if a sequence (Xn)n>1 converges in probability to X, we need that

lim
R→∞

lim sup
n→∞

E [|Xn −X|p 1 {|Xn −X| > R}] = 0. (1.6.2)

Definition 1.15 (Uniform integrability). A sequence of random variables (Xn)n>1 is uni-
formly integrable (UI) if

lim
R→∞

sup
n>1

E [|Xn|1 {|Xn| > R}] = 0. (UI)

Let us mention the following properties of uniform integrability
(1) If Xn = X ∈ L1, then (Xn)n>1 is UI.
(2) More generally, if Xn → X in L1, then (Xn)n>1 is UI. Indeed,

E [|Xn|1 {|Xn| > R}] 6 E [|Xn −X|] + E [|X|1 {|Xn| > R}] (1.6.3)

(3) If supn>1 |Xn| is integrable, then (Xn)n>1 is UI.
(4) More generally, if there exists p > 1 such that supn>1 E [|Xn|p] <∞, then (Xn)n>1 is

UI.
Let us give an equivalent characterization of uniform integrability, which may be more

tractable in some cases.

Proposition 1.16. A sequence (Xn)n>1 is UI if and only if the following two conditions are
satisfied:

(1) supn>1 E [|Xn|] <∞ and
(2) for each positive ε, there exists δ > 0 such that if A ∈ F satisfies P (A) 6 δ, then

supn>1 E [|Xn|1 (A)] < ε.

Note that the second condition does not imply the first one (in the case where P is a Dirac
mass for example).
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Proof of Proposition 1.16. ⇒: taking R such that supn>1 E [|Xn|1 {|Xn| > R}] 6 1, we get
E [|Xn|] 6 1 +R. Moreover, for any A ∈ F ,

E [|Xn|1 (A)] = E [|Xn|1 {|Xn| > R}1 (A)] + E [|Xn|1 {|Xn| 6 R}1 (A)]
6 E [|Xn|1 {|Xn| > R}] +RP (A) .

For a fixed ε > 0, choose R such that supn>1 E [|Xn|1 {|Xn| > R}] < ε/2 and take δ = ε/ (2R).
⇐: Let ε > 0 and let δ be such that if A ∈ F satisfies P (A) 6 δ, then supn>1 E [|Xn|1 (A)] <

ε.
We first show that there exists an R such that supn>1 P (|Xn| > R) 6 δ. Indeed, by Markov’s

inequality,
sup
n>1

P (|Xn| > R) 6 1
R

sup
n>1

E [|Xn|]

and we can take R > supn>1 E [|Xn|] /δ.
We then get that for each fixed n (with A = {|Xn| > R}) that E [|Xn|1 {|Xn| > R}] 6 ε.

�

Theorem 1.17 (Dominated convergence theorem under convergence in probability and UI).
Let (Xn)n>1 be a UI sequence of random variables which converges in probability to X. Then
E [|Xn −X|]→ 0.

Proof. Suppose not. Then there is a positive ε0 and an increasing sequence of integers (nk)k>1

such that E [|Xnk −X|] > ε0. We extract from (|Xnk −X|)k>1 a subsequence
(∣∣∣Xnk`

−X
∣∣∣)
`>1

which converges almost surely to 0. By Egoroff’s theorem, we can pickAδ such that supω∈Aδ
∣∣∣Xnk`

(ω)−X (ω)
∣∣∣→

0 and P (Ω \Aδ) 6 δ. Therefore,

ε0 6 E
[∣∣∣Xnk`

−X
∣∣∣] 6 sup

ω∈Aδ

∣∣∣Xnk`
(ω)−X (ω)

∣∣∣+ E
[∣∣∣Xnk`

−X
∣∣∣1 (Ω \Aδ)

]
6 sup
ω∈Aδ

∣∣∣Xnk`
(ω)−X (ω)

∣∣∣+ 2 sup
n>1

E [|Xn|1 (Ω \Aδ)] (1.6.4)

and the previous Proposition applied with ε = ε0/2 gives a contradiction. �

1.7. A necessary and sufficient condition for uniform integrability.

Theorem 1.18 (De la Vallée-Poussin). A sequence of random variables (Xn)n>1 is uniformly
integrable if and only if there exists a convex non-decreasing function Φ: [0,∞)→ [0,∞) such
that limx→∞ Φ (x) /x =∞ and supn>1 E [Φ (|Xn|)] <∞.

Example 1.19. (1) Φ (x) = xp for p > 1.
(2) Φ (x) = x (ln (1 + x))α, α > 0.

Proof. ⇐ For each positive R and n > 1,

|Xn|1 {|Xn| > R} = |Xn|
Φ (|Xn|)

Φ (|Xn|) 1 {|Xn| > R} 6 sup
x>R

x

Φ (x)Φ (|Xn|)

⇒Define a sequence of real numbers (Rk)k>1 such that for each n, k > 1, E [|Xn|1 {|Xn| > Rk}] 6
2−k and Rk+1 > Rk + 1. This is possible by definition of uniform integrability: let R1 be such
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that E [|Xn|1 {|Xn| > R1}] 6 1/2. Suppose that R1, . . . , Rk have been constructed in such a
way that Ri+1 > Ri + 1 for each 1 6 i 6 k. Since supn>1 E [|Xn|1 {|Xn| > R}] → 0 as R
going to infinity, there exists some t0 such that supn>1 E [|Xn|1 {|Xn| > R}] 6 2−k−1 for each
R > t0. Choose Rk+1 = max {Rk + 1, t0}.

We then define
Φ (x) =

∑
k>1

max {0, x−Rk} . (1.7.1)

Note that this function is well-defined: if x > 0, then x ∈ [Rk0 , Rk0+1) for some k0 hence the
terms for k > k0 + 1 vanishes. Moreover, Φ is a series of convex functions hence convex, and
non-decreasing.

For each K,

lim inf
x→∞

Φ (x)
x
> lim inf

x→∞

K∑
k=1

max
{

0, 1− Rk
x

}
= K

hence limx→∞Φ (x) /x =∞.
Moreover,

E [max {0, |Xn| −Rk}] 6 E [|Xn|1 {|Xn| > Rk}] 6 2−k

hence E [Φ (|Xn|)] 6
∑
k>1 2−k = 1. �

1.8. Uniform integrability and convergence in general. Given a uniformly integrable
sequence (Xn)n>1, nothing can be asserted about its convergence: for example, if X2n = X

and X2n+1 = Y 6= X, with X and Y integrable, the sequence (Xn)n>1 does not converge in
any sense, but there are convergent subsequences.

If (Xn)n>1 is bounded in Lp for some p > 1, that is, supn>1 E [|Xn|p] < ∞, it is possible
to extract a subsequence which converges weakly in Lp that is, there exists an increasing
sequence of integers (nk)k>1 and a random variable X ∈ Lp such that for each Y ∈ Lq,
E [XnkY ]→ E [XY ] as k →∞, where 1/p+ 1/q = 1.

Question: what happens if we only have uniform integrability?

Theorem 1.20 (Dunford-Pettis). Let (Xn)n>1 be a sequence of random variables on a prob-
ability space (Ω,F ,P) which is bounded in L1. The following are equivalent:

(1) the sequence (Xn)n>1 is uniformly integrable;
(2) for each subsequence of (Xn)n>1 there exists a further subsequence (Xnk)k>1 and a

random variable X ∈ L1 such that for each A ∈ F , E [Xnk1 (A)] → E [X1 (A)] as
k →∞.

An illustrative example: let Xn = n1 ((0, 1/n)), where Ω = (0, 1), F is the Borel σ-algebra
and P the Lebesgue measure. The sequence (Xn)n>1 is bounded in L1 but is not uniformly
integrable. If for a subsequence (Xnk)k>1, E [Xnk1 (A)]→ E [X1 (A)] as k →∞, A ∈ F , then
X = 0 (take A = (a, b) for 0 < a < b < 1) but with A = (0, 1), E [Xnk1 (A)] = 1.

Proof of Theorem 1.20. ⇒: assume without loss of generality that Xn > 0; if not, write Xn =
X ′n −X ′′n with X ′n = max {0, Xn} , X ′′n > 0, find a weakly convergent subsequence for X ′n and
extract a further subsequence for X ′′n .



8 CONVERGENCES IN PROBABILITY

For each integer ` > 1, define the random variableXn,` := Xn1 {Xn 6 `}. Since supn>1 E
[
X2
n,1
]
<

∞, there exists an increasing sequence of integers (nk,1)k>1 and a random variable Y1 ∈ L2

such that for each A ∈ F , E
[
Xnk,1,11 (A)

]
→ E [Y11 (A)].

Since supn>1 E
[
X2
n,2
]
< ∞, there exists an increasing sequence of integers (nk,2)k>1 and

a random variable Y2 ∈ L2 such that for each A ∈ F , E
[
Xnk,2,21 (A)

]
→ E [Y21 (A)] and

{nk,2, k > 1} ⊂ {nk,1, k > 1}.
Continuing this process, we get increasing sequences of integers (nk,`)k>1 such that

I` := {nk,`, k > 1} ⊂ {nk,`−1, k > 1} , ` > 2,

and random variables Y`, ` > 1 such that for each ` and A ∈ F , E
[
Xnk,`,`1 (A)

]
→ E [Y`1 (A)].

Let n` be the `-th element of I`. Then n`+1 > n` and for each ` > 1 and A ∈ F ,

lim
k→∞

E [Xnk,`1 (A)] = E [Y`1 (A)] .

We found an increasing sequence of integers (nk)k>1 and random variables Y` such that for
each ` > 1

lim
k→∞

E [Xnk1 {Xnk 6 `}1 (A)] = E [Y`1 (A)] .

Lemma 1.21. The sequence (Y`)`>1 converges in L1 to some random variable X.

Proof. First notice that for each A ∈ F ,

E [(Y` − Y`−1) 1 (A)] = lim
k→∞

E [Xn1 {`− 1 < Xn 6 `}1 (A)] > 0

hence Y` > Y`−1 a.s. and Y` → X a.s. for some random variable X. By Fatou’s lemma,

E [X] 6 lim inf
`→∞

E [Y`] 6 sup
n>1

E [Xn] .

�

To conclude the proof of the direction ⇒, let ε > 0 be fixed and ` such that E [X − Y`] < ε

and supn>1 E [Xn1 {Xn > `}] < ε (by UI). For A ∈ F ,

|E [Xnk1 (A)]− E [X1 (A)]| 6 |E [Xnk1 (A)]− E [Xnk,`1 (A)]|
+ |E [Xnk,`1 (A)]− E [Y`1 (A)]|+ |E [Y`1 (A)]− E [X1 (A)]| . (1.8.1)

From the estimates:
• |E [Xnk1 (A)]− E [Xnk,`1 (A)]| 6 E [Xnk1 {Xnk > `}] 6 supn>1 E [Xn1 {Xn > `}];
• |E [Y`1 (A)]− E [X1 (A)]| < ε,

we derive that for each fixed `,

lim sup
k→∞

|E [Xnk1 (A)]− E [X1 (A)]| 6 sup
n>1

E [Xn1 {Xn > `}] + ε 6 2ε, (1.8.2)

hence E [Xnk1 (A)]→ E [X1 (A)] for each A ∈ F .
⇐We actually have to prove that if (Xn)n>1 is a sequence which is bounded in L1 and such

that there exists an integrable random variable X satisfying E [Xn1 (A)]→ E [X1 (A)] for each
A ∈ F , then (Xn)n>1 is uniformly integrable. We can assume without loss of generality that
X = 0.
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Define the pseudo-metric on F by ρ(A,B) = P(A∆B) = E [|1 (A)− 1 (B)|], where A∆B =
(A ∪B) \ (A ∩B).

It is sufficient to show that for each ε > 0, there is δ > 0 such that if P(A) < δ then
|E [Xn1 (A)]| < ε. Indeed, decomposing a set A as A+ ∪ A−, where A− := A ∩ {Xn 6 0} and
A+ := A ∩ {Xn > 0}, we can see that E [|Xn|1 (A)] < 2ε whenever P(A) < δ.

For a fixed ε > 0, we define

FN :=
⋂
n>N

{A ∈ F , |E [Xn1 (A)]| 6 ε} .

Each FN is closed (since for a fixed n, the map A 7→ |E [Xn1 (A)]| is continuous) and
⋃
N FN =

F , hence by Baire’s theorem, there isN0, r0 andA0 ∈ F such thatBρ(A0, r0) := {A ∈ F , ρ (A0, A) < r0} ⊂
FN0 . Let B such that P(B) < r0. Since P(A0∆(A0 ∪B)) < r0, P(A0∆(A0 ∩Bc)) < r0 and

E [Xn1 (B)] = E [Xn1 (A0 ∪B)]− E [Xn1 (A0 ∩Bc)] ,

we have |E [Xn1 (B)]| 6 2ε whenever n > N0 and P(B) < r0.
For 1 6 n 6 N0 − 1, there exists δn > 0 such that if P (B) < δn, then |E [Xn1 (B)]| 6 2ε

hence we can take δ = min {r0, δ1, . . . , δN0−1}. �

1.9. Convergence in distribution.

Definition 1.22. We say that the sequence of real-valued random variables (Xn)n>1 converges
in distribution to X if for each continuous and bounded function f : R → R, the convergence
limn→∞ E [f (Xn)] = E [f (X)] takes place.

Proposition 1.23. A sequence (Xn)n>1 converges in distribution to X if and only if for
each continuity point x of the cumulative distribution function of X, limn→∞ P (Xn 6 x) =
P (X 6 x).

Let us recall some properties of the convergence in distribution.

Proposition 1.24. If a sequence (Xn)n>1 converges in probability to X, then it converges in
distribution to X.

If Xn → c in distribution, where c is a constant, then Xn → c in probability.

Proposition 1.25 (Continuous mapping theorem). If (Xn)n>1 converges in distribution to X
and g : R→ R is continuous, then (g (Xn))n>1 converges in distribution to g (X).

1.10. Convergence in distribution and uniform integrability. Suppose that E [|Xn|] <
∞ for each n and Xn → X in distribution. What can be said about the convergence of
(E [Xn])n>1? Certainly we have to assume that supn>1 E [|Xn|] <∞.

Proposition 1.26. Let (Xn)n>1 be a uniformly integrable sequence which converges in distri-
bution to some random variable X. Then E [Xn]→ E [X].

Example 1.27. Let (ξi)i>1 be an i.i.d. sequence, where ξ1 is centered and has unit variance.
Define

Xn = 1√
n

n∑
i=1

ξi.

Then
(
X2
n

)
n>1 is uniformly integrable (see seminar) hence for each 1 6 p 6 2, E [|Xn|p] →

E [|N |p], where N is standard normal.
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Proof of the Proposition 1.26.

Lemma 1.28. A sequence (Xn)n>1 is uniformly integrable if and only if

lim
R→∞

sup
n>1

∫ ∞
R

P (|Xn| > t) dt = 0. (UI)

Proof. Observe that for a non-negative random variable X,

E [X1 {X > R}] =
∫ ∞

0
P ({X > t} ∩ {X > R}) dt

= RP (X > R) +
∫ ∞
R

P (X > t) dt. (1.10.1)

Suppose that (Xn)n>1 is uniformly integrable. Then

sup
n>1

E [|Xn|1 {|Xn| > R}] > sup
n>1

∫ ∞
R

P (|Xn| > t) dt

and (UI) holds. �

Suppose that (UI) holds. Then observe that supn>1 RP (|Xn| > R)→ 0, because∫ 2R

R

P (|Xn| > t) dt > RP (|Xn| > 2R) .

Now we can conclude the proof of the Proposition: first assume that Xn > 0. We have

|E [Xn]− E [X]| =
∣∣∣∣∫ ∞

0
(P (Xn > t)− P (X > t)) dt

∣∣∣∣ .
We apply the dominated convergence theorem on (0, R) endowed with the Borel σ-algebra

and Lebesgue measure and the function fn : t 7→ P (Xn > t)−P (X > t). Note that fn (t)→ 0,
except on a set which is at most countable (hence of measure 0). Therefore,

lim sup
n→∞

|E [Xn]− E [X]| 6 sup
k>1

∫ ∞
R

P (Xk > t) dt+
∫ ∞
R

P (X > t) dt

and uniform integrability allows to conclude.
We have shown that if (Xn)n>1 is a non-negative uniformly integrable sequence which

converges in distribution to X, then E [Xn]→ E [X].
IfXn is not necessary non-negative, writeXn = max {Xn, 0}−max {0,−Xn}; apply the con-

tinuous mapping theorem to see that (max {Xn, 0})n>1 converges in distribution to max {X, 0}
and (max {−Xn, 0})n>1 converges in distribution to max {−X, 0}.

Moreover, the sequence (max {Xn, 0})n>1 and (max {−Xn, 0})n>1 are uniformly integrable
hence by the result for non-negative random variables

E [Xn] = E [max {Xn, 0}]− E [max {−Xn, 0}]
→ E [max {X, 0}]− E [max {−X, 0}]
= E [X] .

�
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Alternative proof of Proposition 1.26. Consider XR
n := max {−R,min {Xn, R}} and XR :=

max {−R,min {X,R}}. By definition of the convergence in distribution, E
[
XR
n

]
→ E

[
XR
]

for each R.
Then

|E [Xn]− E [X]| 6
∣∣E [XR

n

]
− E

[
XR
]∣∣+

∣∣E [Xn −XR
n

]∣∣+
∣∣E [X]− E

[
XR
]∣∣ .

The term
∣∣E [XR

n

]
− E

[
XR
]∣∣ can be controlled by the uniform integrability assumption and∣∣E [X]− E

[
XR
]∣∣→ 0 by dominated convergence.

�

Uniform integrability seems to be convient to establish convergence of moments and is
easier to establish in general than the latter. One can wonder whether one can deal with such
a problem without uniform integrability. The next proposition breaks some hopes.

Proposition 1.29. Let (Xn)n>1 be a sequence of non-negative integrable random variables
which converges in distribution to some random variable X. Suppose that E [Xn] → E [X].
Then (Xn)n>1 is uniformly integrable.

Proof. Consider XR
n := min {Xn, R} and XR := min {X,R}. By definition of the convergence

in distribution, E
[
XR
n

]
→ E

[
XR
]
for each R.

Since ∣∣E [Xn −XR
n

]∣∣ 6 |E [Xn]− E [X]|+
∣∣E [X]− E

[
XR
]∣∣+

∣∣E [XR
n

]
− E

[
XR
]∣∣ ,

we get that
lim
R→∞

lim sup
n→∞

∣∣E [Xn −XR
n

]∣∣ = 0,

which guarantees uniform integrability. �

What can be said without uniform integrability?

Proposition 1.30. Let (Xn)n>1 be a sequence of random variables which converges in distri-
bution to X. Then

E [|X|] 6 lim inf
n→∞

E [|Xn|] . (1.10.2)

We do not assume that Xn is integrable for each n. Even if each Xn is integrable, X may
not be integrable (see seminar).

Proof. Write
E [|X|] =

∫ ∞
0

P (|X| > t) dt =
∫ ∞

0
lim inf
n→∞

P (|Xn| > t) dt, (1.10.3)

since P (|Xn| > t)→ P (|X| > t) for Leb-almost every t. Then use Fatou’s lemma. �

1.11. Tightness and convergence in distribution.

Definition 1.31. We say that the sequence of random variables (Xn)n>1 is tight if

lim
R→∞

sup
n>1

P (|Xn| > R) = 0. (1.11.1)

Proposition 1.32. Let (Xn)n>1 be a sequence of random variables. Suppose that Xn → X in
distribution. Then (Xn)n>1 is tight.
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Proof. Let ε > 0 and let R0 be such that −R0 and R0 are continuity points of the cumula-
tive distribution function of X such that P (−R0 < X 6 R0) > 1 − ε/2. Since Xn → X in
distribution, there exists n0 such that for each n > n0,

|P (−R0 < Xn 6 R0)− P (−R0 < X 6 R0)| 6 ε/2.

Therefore, supn>n0 P (|Xn| > R0) 6 ε.
For each 1 6 n 6 n0 − 1, there exists Rn such that P (|Xn| > Rn) 6 ε. Therefore, for

R > max {R0, R1, . . . , Rn0−1}, supn>1 P (|Xn| > R) 6 ε. �

1.12. Convergence of probability measures.

Definition 1.33. We say that a sequence of probability measures (µn)n>1 on the real line
converges in distribution to a probability measure µ if for each continuous and bounded function
f : R→ R, ∫

f (x) dµn (x)→
∫
f (x) dµ (x) .

Definition 1.34. We say that a sequence of probability measures (µn)n>1 is tight if

lim
R→∞

sup
n>1

µn (R \ [−R,R]) = 0.

Tightness implies convergence in distribution of a subsequence.

Theorem 1.35 (Prokhorov). Let (µn)n>1 be a tight sequence of probability measures. Then
there exists a subsequence (µnk)k>1 and a probability measure µ such that (µnk)k>1 converges
in distribution to µ.

In order words, tightness plays the same role for the convergence in distribution as bound-
edness plays for convergence of sequences of real numbers. We will see a proof in the context
of probability measures on metric spaces.

Representation of a limiting probability measure as a random variable.

Theorem 1.36. Let (Xn)n>1 be a sequence of random variables on a probability space (Ω,F ,P)
and let µn : B 7→ P (Xn ∈ B). Suppose that (µn)n>1 converges in distribution to a probability
measure µ defined on R. Then there exists a random variable X : Ω → R such that µ (B) =
P (X ∈ B) for each Borel set B.

This is a non-trivial result and beyond the scope of this course. If you are interested, here
is a link.

2. Convergence in distribution in metric spaces

2.1. Motivation. Given an independent identically distributed sequence of random variables
(Xi)i>1 and t ∈ [0, 1], we define

Wn (t) = 1√
n

[nt]∑
i=1

Xi, (2.1.1)

where for x ∈ R, [x] denotes the only integer such that [x] 6 x < [x] + 1.
If X1 is centered and E

[
X2

1
]

= 1, then for each t ∈ [0, 1], Wn (t) →
√
tN , where N has a

standard normal distribution.

https://mathoverflow.net/questions/145190/limit-of-pushforward-measures-of-random-variables-is-represented-by-a-random-v
https://mathoverflow.net/questions/145190/limit-of-pushforward-measures-of-random-variables-is-represented-by-a-random-v
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However, we would like to have information on the maximum of partial sums, that is,
N−1/2 max16n6N

∣∣∣∑N
i=1 Xi

∣∣∣ = supt∈[0,1] |WN (t)| and use ‖WN‖∞ → ‖W‖∞, where W is
some process.

We view Wn as an element of a function space endowed with a norm or a metric.
Question: how to define and establish the convergence in distribution in metric spaces?

2.2. Recall of some properties of metric spaces. Recall that a metric space (S, d) consists
of non-empty set S and a map d : S × S → [0,∞) such that d (x, y) = 0 iff x = y, d (x, y) =
d (y, x) 6 d (x, a) + d (y, a) for each a, x, y ∈ S.

Definition 2.1. We say that the metric space (S, d) is separable if there exists a sequence
(xn)n>1 of elements of S which dense in S, that is, for each x ∈ S and each positive ε, there
exists n > 1 such that d (x, xn) < ε.

Example 2.2. The space C[0, 1] of the continuous functions on the unit interval endowed with
the metric d (f, g) = supt∈[0,1] |f (t)− g (t)| is separable, since the set of polynomials with
rational coefficients is dense.

Recall that a sequence (xn)n>1 is Cauchy if limmin{m,n}→∞ d (xn, xm) = 0 and that a metric
space (S, d) is complete if each Cauchy sequence (xn)n>1 is convergent.

2.3. Probability measure on metric spaces, definition. We consider a separable complete
metric space (S, d). Denote by B (S) the Borel-σ-algebra, that is, the smallest (for the inclusion)
σ-algebra containing the open sets for the topology induced by the metric d.

We will consider probability measures on S, that is, maps P : B ∈ B (S) 7→ P (B) ∈ [0, 1]
satisfying P (S) = 1 and σ-additivity.

Definition 2.3. Let (Pn)n>1 be a sequence of probability measures on a separable complete
metric space (S, d). We say that (Pn)n>1 converges weakly to the probability measure P if for
each continuous and bounded function f : S → R,

∫
S
f (x) dPn (x)→

∫
S
f (x) dP (x). We write

Pn ⇒ P.

In general, this is not easy to check directly because we do not have a "nice" characterization
of the continuous bounded functions.

2.4. Convergence of probability measures: characteristic functionals (1). Recall
that Pn ⇒ P if for each continuous and bounded function f : S → R,

∫
S
f (x) dPn (x) →∫

S
f (x) dP (x).
In general, we do not have at our disposal an equivalent of cumulative distribution functions.

One could try to use an analogue of charateristic functions.
If (X, ‖·‖) is a Banach space, we define the charateristic functional of a probability measure

P on X by

P̂ (`) :=
∫
X

exp (i` (x)) dP (x) , ` ∈ X ′, (2.4.1)

where X ′ is the set of all linear continuous maps from X to R.
Notice that if Pn ⇒ P, then for each ` ∈ X ′, P̂n (`)→ P̂ (`), because the map x 7→ exp (i` (x))

is continuous and bounded.
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However, if X = `2 (space of real-valued square summable sequences), en is the n-th vector
of the canonical basis and Pn is the Dirac mass at en, we have P̂n (`)→ 1 for each ` ∈ X ′ but
no weak convergence.

Recall that
P̂ (`) :=

∫
X

exp (i` (x)) dP (x) , ` ∈ X ′. (2.4.2)

Characteristic functional do not play the same role as in the Rd-valued case as convergence
of P̂ (`) for each ` does not guarantee weak convergence.

2.5. Portmanteau theorem.

Theorem 2.4. Let (Pn)n>1 be a sequence of probability measures on a metric space (S, d) and
let P be a probability measure on S. The following statements are equivalent:

(1) Pn ⇒ P.
(2) For each uniformly continuous and bounded function f : S → R,

∫
S
f (x) dPn (x) →∫

S
f (x) dP (x).

(3) For all closed set F ⊂ S, lim supn→∞ Pn (F ) 6 P (F ).
(4) For all open set O ⊂ S, lim infn→∞ Pn (O) > P (O).
(5) For each subset A of S such that P

(
A \ Å

)
= 0, Pn (A)→ P (A).

Note that implication 1. ⇒ 2. holds by definition; 3. ⇒ 4. follows by taking complement.

Proof that 2. ⇒ 3. in Theorem 2.4. We assume that for each uniformly continuous and bounded
function f : S → R,

∫
S
f (x) dPn (x)→

∫
S
f (x) dP (x). We have to prove that for all closed set

F ⊂ S, lim supn→∞ Pn (F ) 6 P (F ).
Let F be a closed set and consider for each integer k,

fF,k (x) = max {0, 1− kd (x, F )} , (2.5.1)

where d (x,A) = inf {d (x, a) , a ∈ A}.
Then fF,k is a uniformly continuous and bounded function. Moreover, if x ∈ F , then

d (x, F ) = 0 hence 1 (F ) 6 fF,k.
Integrating with respect to Pn gives Pn (F ) 6

∫
fF,k (x) dPn (x) and taking the lim sup gives

lim sup
n→∞

Pn (F ) 6
∫
fF,k (x) dP (x) 6 P (Gk) ,

where Gk = {x ∈ X, d (x, F ) < 1/k}. We conclude by noticing that P (Gk) → P (F ), as⋂
k>1 Gk = {x ∈ X, d (x, F ) = 0} = F . �

As mentioned before, 3. and 4. are equivalent, by taking complements.

Proof that 4. ⇒ 5. in Theorem 2.4. Observe that

lim inf
n→∞

Pn
(
Å
)
6 lim inf

n→∞
Pn (A) 6 lim sup

n→∞
Pn (A) 6 lim sup

n→∞
Pn
(
A
)
.

Therefore,
P
(
Å
)
6 lim inf

n→∞
Pn (A) 6 lim sup

n→∞
Pn (A) 6 P

(
A
)
.

Since P
(
A \ Å

)
= 0, it follows that P

(
Å
)

= P
(
A
)

= P (A) hence Pn (A)→ P (A).
�
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Proof that 5. ⇒ 1. in Theorem 2.4. Let f be a continuous and bounded function. Assume
first that for some M > 0, 0 6 f (x) 6M for each x ∈ S. Then∫

S

f (x) dPn (x) =
∫ M

0
Pn ({x | f (x) > t}) dt.

For each t, the set At := {x | f (x) > t} is open (since f is continuous) and At ⊂ {x | f (x) > t}.
Therefore, the set of the t such that P

(
At \ Åt

)
> 0 is contained in the set of the t such

that P ({x ∈ S | f (x) = t}) > 0, which is at most countable. Therefore, by the dominated
convergence theorem applied on (0,M) endowed with the Lebesgue measure,∫

S

f (x) dPn (x)→
∫
S

f (x) dP (x) .

For the general case, write f = max {f, 0} −max {−f, 0}. �

2.6. Tightness.

Definition 2.5. Let (S, d) be a metric space. The sequence of Borel probability measures (on
S) (Pn)n>1 is tight if for each positive ε > 0, there exists a compact set K = K (ε) such that
supn>1 Pn (S \K) 6 ε.

When S = R and d (x, y) = |x− y|, this is equivalent to the definition of the previous
lecture, as a compact set is contained in a bounded interval.

If Pn = P for each n, is (Pn)n>1 tight?
How is tightness related to weak convergence?

Theorem 2.6 (Tightness of a single probability measure). Let (S, d) be a separable complete
metric space and let P be a Borel probability measure on S. For each positive ε, there exists a
compact set K such that P (S \K) 6 ε.

Proof. By separability, there exists a sequence (xi)i>1 of elements of S such that for each
k > 1, S =

⋃
i>1 B (xi, 1/k), where B (x, r) = {y ∈ S | d (x, y) < r}. Let ε > 0 be fixed. For

each k > 1, there exists Nk such that P
(⋃Nk

i=1 B (xi, 1/k)
)
> 1−ε2−k, as

⋃N
i=1 B (xi, 1/k) ↑ S.

Let

K =
⋂
k>1

Nk⋃
i=1

B (xi, 1/k).

Then K is compact, as it is a relatively compact closed set in a complete metric space. More-
over,

P (S \K) = P

⋃
k>1

Nk⋂
i=1

(
S \B (xi, 1/k)

)
6
∑
k>1

P

(
Nk⋂
i=1

(
S \B (xi, 1/k)

))
6
∑
k>1

ε2−k

= ε

hence P (K) > 1− ε. �
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2.7. Prokhorov theorem.

Theorem 2.7. Let (S, d) be a metric space.
(1) Assume that (S, d) is separable and complete. If (Pn)n>1 is a sequence of probabil-

ity measures such that every subsequence has a weakly convergent subsequence, then
(Pn)n>1 is tight.

(2) If a sequence of probability measures (Pn)n>1 is tight, then it admits a weakly convergent
subsequence.

Proof of 1.

Lemma 2.8. Let (Oi)i>1 be a sequence of open sets of S such that S =
⋃
i>1 Oi. Then for

each positive ε, there exists k > 1 such that for each n > 1, Pn
(⋃k

i=1 Oi

)
> 1− ε.

Proof. Suppose not. Then there exists an ε0 such that for each k, there exists nk > 1 such that
Pnk

(⋃k
i=1 Oi

)
6 1 − ε0. Extract from (Pnk)k>1 a weakly convergent subsequence

(
Pnk`

)
`>1

to some P. Then apply item 4. of portmanteau theorem with O =
⋃K
i=1 Oi for a fixed K, we

get that

P

(
K⋃
i=1

Oi

)
6 lim inf

`→∞
Pnk`

(
K⋃
i=1

Oi

)
.

As K is fixed, K 6 k` for ` large enough hence
⋃K
i=1 Oi ⊂

⋃k`
i=1 Oi and we get that

P

(
K⋃
i=1

Oi

)
6 1− ε0.

As K is arbitrary, we would get that P (S) 6 1− ε0, a contradiction. �

Let ε > 0 be fixed. Take a dense countable set {xi, i > 1}. For each m, apply the lemma
to Oi = B (xi, 1/m) and ε′ = ε2−m. We get an integer km such that for each n > 1,
Pn
(⋃km

i=1 B (xi, 1/m)
)
> 1− ε2−m. Let

K :=
⋂
m>1

km⋃
i=1

B (xi, 1/m).

Then K is compact (as S is complete)

Pn (S \K) 6
∑
m>1

ε2−m 6 ε.

�

Proof of 2 of Theorem 2.7 . We will first give a proof in the particular case where (S, d) is
compact. Let (Pn)n>1 be a tight collection of probability measures on S.

It is known that C (S), the space of continuous functions from S to R, endowed with the
metric ρ (f, g) := supt∈[0,1] |f (t)− g (t)|, is separable.

Let (fj)j>1 be a dense sequence of C (S). Using a diagonal extraction process, it possible
to find a subsequence (Pnk)k>1 such that for each j > 1,

(∫
S
fj (x) dPnk (x)

)
k>1 converges. By
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density, we derive that for each f ∈ C (S),
(∫
S
f (x) dPnk (x)

)
k>1 is Cauchy hence convergent

to some ` (f).
The map ` : f ∈ C (S) 7→ ` (f) is linear, continuous and bounded. By Riesz theorem, it can

be represented as the integral with respect to a probability measure P, which is the weak limit
of (Pnk)k>1.

Proposition 2.9. Let (S, d) be a separable metric space. There exists a compact metric space
(Y, ρ) and a map T : S → Y such that T : S → T (S) is an homeomorphism.

Proof. Let Y = [0, 1]N =
{

(yi)i>1 , 0 6 yi 6 1
}
and

ρ
(

(yi)i>1 , (y
′
i)i>1

)
=
∑
i>1

2−i |yi − y′i| .

It is easy to check that ρ is well-defined and is a metric. With this metric, Y is compact as for
each k, Y can be covered by finitely many balls of radius 6 2−k (take as center points of the
form

(
i12−k, . . . , ik2−k, 0, 0, . . .

)
, 0 6 i1, . . . , ik 6 2k).

Since S is separable, there exists a sequence (ai)i>1 which is dense in S. Define for i > 1
the map fi : S → [0, 1] by

fi (x) = min {1, d (x, ai)} .

Since for each i > 1, the map x 7→ d (x, ai) is continuous, so is ai.
For x ∈ S, we define the map T : S → Y by

T (x) := (fi (x))i>1 .

The map T is continuous, since for each k,

ρ (T (x) , T (x′)) 6 2−k +
k∑
i=1

2−id (x, x′) .

We will then show that T is injective and then a homeomorphism.

Lemma 2.10. Let C ⊂ S be a closed set and x ∈ S \ C. Then there exist a positive ε0 and
i > 1 such that fi (x) 6 ε0/3 and for each y ∈ C, fi (y) > 2ε0/3.

Proof. Let ε0 := min {1, d (x,C)}, where d (x,C) = inf {d (x, y) , y ∈ C}. Since C is closed and
x /∈ C, ε0 > 0. Moreover, by definition, ε0 6 1. Let i > 1 be such that d (x, ai) 6 ε0/3. Then

fi (x) = min {1, d (x, ai)} 6 min {1, ε0/3} = ε0/3.

Let y ∈ C. First observe that by the reversed triangular inequality,

fi (y) = min {1, d (y, ai)} > min {1, d (y, x)− d (x, ai)}

Since y ∈ C, d (y, x) > d (x,C) and we derive that

fi (y) > min {1, d (x,C)− d (x, ai)} > min {1, d (x,C)− ε0/3}

Since d (x,C) > min {1, d (x,C)} = ε0, we get fi (y) > 2ε0/3. �
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The map T is injective: let x 6= y and apply the Lemma with C = {y}: we get ε0 > 0 and
i > 1 such that fi (x) 6 ε0/3 and fi (y) > 2ε0/3. Therefore, fi (x) 6= fi (y) hence T (x) 6= T (y).

As a consequence, T : S → T (S) is a bijection.
We have already seen that T is continuous. In order to see that the inverse map is continuous,

it suffices to prove that if (xn)n>1 is a sequence of elements of S such that T (xn) → T (x),
then d (xn, x)→ 0. We will prove the contrapositive: if d (xn, x) does not converge to 0, there
exists a positive δ and a subsequence (xnk)k>1 such that d (x, xnk) > δ for each k. Apply the
lemma to C = {xnk , k > 1}, we get that there exist ε0 > 0 and i such that for each k > 1,
fi (x) 6 ε0/3 and 2ε0/3 6 fi (xnk). In particular, fi (xnk) does not converge to fi (x) hence
T (xnk) does not converge to T (x).

This ends the proof of the Proposition. �

Let (Y, ρ) be the compact metric space obtained in the previous proposition and T : S → Y

be a map such that T : S → T (S) is a homeomorphism. Let (Pn)n>1 be a tight sequence of
probability measures on S. Define

µn (B) := Pn
(
T−1B

)
, B ∈ B (Y ) .

[note that T−1B is a Borel subset of S, hence this definition makes sense].
Then (µn)n>1 is a sequence of probability measures on the compact set Y . By Prokhorov

theorem (in compact case), we can extract a subsequence (µnk)k>1 which converges weakly to
some probability measure µ on Y .

Let Y0 := T (S).

Lemma 2.11. There exists a set Y1 ∈ B (Y ) such that Y1 ⊂ Y0 and µ (Y1) = 1.

Proof. Since (Pn)n>1 is tight, for each j > 1, there exists a compact set Kj ⊂ S such that
Pn (S \Kj) > 1− 1/j. Since T is continuous, T (Kj) is a compact subset of Y hence closed in
Y . By portmanteau theorem,

µ (T (Kj)) > lim sup
k→∞

µnk (T (Kj))

and by definition of µnk , µnk (T (Kj)) = Pnk (Kj) > 1 − 1/j hence µ (T (Kj)) > 1 − 1/j. Let
Y1 =

⋃
j>1 T (Kj) ⊂ Y0; then Y1 ∈ B (Y ) and µ (Y1) = 1. �

Define µ0 (A) := µ (A ∩ Y0) for A ∈ B (Y0) and P (A) = µ0 (T (A)) for A ∈ B (S). Then P
is a probability measure. Let us show that Pnk ⇒ P. To do so, let F be a closed subset of S.
Then T (F ) is closed in T (X) = Y0 which means that there exists a closed subset C of Y such
that T (F ) = C ∩ Y0. Observe that F = T−1C, as T (F ) contains no point of the complement
of Y0. Therefore,

lim sup
k→∞

Pnk (F ) = lim sup
k→∞

Pnk
(
T−1C

)
.

By definition of µnk , this becomes

lim sup
k→∞

Pnk (F ) = lim sup
k→∞

µnk (C)

and since µnk → µ weakly,
lim sup
k→∞

Pnk (F ) 6 µ (C) .
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Now, with Y1 like in the previous lemma (that is, Y1 ⊂ Y0 and µ (Y1) = 1),

µ (C) = µ (C ∩ Y1) + µ (C ∩ (Y \ Y1)) .

Since µ is concentrated on Y1, µ (C ∩ (Y \ Y1)) = 0. Moreover, µ (C ∩ Y1) = µ (C ∩ Y0) =
µ (T (F )) = P (F ).

We showed that lim supk→∞ Pnk (F ) 6 P (F ) for each closed set F hence Pnk ⇒ P. �

How to prove weak convergence in metric spaces? Let (S, d) be a separable complete metric
space. Suppose that we want to prove that a sequence of probability measure (Pn)n>1 converges
weakly.

We have seen that tightness is a necessary condition, like in the real valued case. We also
have to prove that the potential limits of subsequences are the same.

Therefore, we have to look for a sufficient condition which guarantees that two probability
measures coincide, that is, reducing the checking of P (B) = P′ (B) for each Borel set B to a
small class of sets.

Regularity of Borel measures on metric spaces

Theorem 2.12. Let P be a probability measure on the Borel subsets of a metric space (S, d).
For each Borel set A and each positive ε, there exists a closed set F and an open set O such
that F ⊂ A ⊂ O and P (O \ F ) < ε.

Proof. Let A := {A ⊂ S | ∀ε > 0,∃F closed and O open s.t.F ⊂ A ⊂ O and P (O \ F ) < ε}.
We will show that A is a σ-algebra containing the open sets.
∅ ∈ A because we can choose F = O = ∅.
Let A ∈ A. For a fixed positive ε, let F closed and O open such that P (O \ F ) < ε and

F ⊂ A ⊂ O. Let F ′ := S \ O and O′ = S \ F . Then P (O′ \ F ′) < ε and F ′ ⊂ S \ A ⊂ O′.
Therefore, S \A ∈ A.

Let Ak, k > 1 be elements of A. We first show that
⋃n
k=1 Ak ∈ A for each n. Indeed, for

each k > 1, let Fk closed and Ok open such that Fk ⊂ Ak ⊂ Ok and P (Ok \ Fk) < 2−kε.
Let F :=

⋃n
k=1 Fk and O :=

⋂n
k=1 Ok. Then F is closed, O is open and F ⊂

⋃n
k=1 Ak ⊂ O.

Moreover,

P (F \O) 6
n∑
k=1

P (Fk \O) 6
n∑
k=1

P (Fk \Ok) 6 ε
n∑
k=1

2−k < ε.

In order to show that
⋃
k>1 Ak ∈ A, we take n such that P

(⋃
k>1 Ak \ (

⋃n
k=1 Ak)

)
< ε/2. Let

F1 and F2 be closed and such that P (
⋃n
k=1 Ak \ F1) < ε/2 and P ((S \

⋃n
k=1 Ak) \ F2) < ε/2.

Take F = F1 and O = S \ F2.
This shows that A is a σ-algebra.
It remains to check that A contains the open sets, or equivalently, the closed sets.
If A is closed, we can choose F = A. Let Ok := {x ∈ S | d (x, F ) < 1/k}, where d (x, F ) =

inf {d (x, y) , y ∈ F}. Then Ok is open, Ok+1 ⊂ Ok and
⋂
k>1 Ok = {x ∈ S | d (x, F ) = 0}

which is equal to F , as F is closed.
Therefore, P (Ok \ F )→ 0. �

Why "regularity"? Because P (A) = sup {P (F ) , F closed , F ⊂ A} and P (A) = inf {P (O) , O open , A ⊂ O}.



20 CONVERGENCES IN PROBABILITY

Corollary 2.13. Let P and P′ be two probability measures on a metric space (S, d). Suppose
that for each open set O, P (O) = P′ (O). Then P (B) = P′ (B) for each Borel set B.

2.8. Case of the space C[0, 1]. In general, it is hard to check that P (O) = P′ (O) for each
open set O.

Let us see how to treat the particular case O = B (f0, r), that is, where O is an open ball.
Saying that f ∈ O is equivalent to say that there exists k0 such that for each t ∈ [0, 1] ∩ Q,
|f (t)− f0 (t)| 6 r − 1/k0.

Therefore, knowing the probability of sets of the form{
x ∈ C[0, 1] | (x (t1) , . . . , x (td)) ∈ B,B ∈ B

(
Rd
)
, d > 1, 0 6 t1, . . . , td 6 1

}
(2.8.1)

is enough to determine the probability of a ball.
Let (Xn)n>1 be a sequence of random elements of C[0, 1] on a probability space (Ω,F ,P),

that is, for each ω ∈ Ω, the map t ∈ [0, 1] 7→ Xn (ω, t) is continuous and for each B ∈ B (C[0, 1]),
{ω, t 7→ Xn (ω, t)} ∈ F .

Definition 2.14 (Finite dimensional distributions). The law of Xn, denoted by Pn, is defined
as Pn (B) = P {ω | (t 7→ Xn (ω, t)) ∈ B}. We say that Xn ⇒ X weakly in C[0, 1] if Pn ⇒ P,
where P (B) = P {ω | (t 7→ X (ω, t)) ∈ B}.

The collection of the finite dimensional distributions of Xn is the collection of the distribu-
tions of the vectors (Xn (ti))di=1 where d > 1 and t1, . . . , td ∈ [0, 1].

Example 2.15. Suppose that Xn (ω, t) = xn (t), where xn : [0, 1] → R is a continuous (deter-
ministic) function.

Then the law of (Xn (ti))di=1 is the Dirac mass at the point (xn (ti))di=1 of Rd.

Theorem 2.16 (Finite dimensional distributions characterize distributions). Let X and Y

be two random elements of C[0, 1] having the same finite dimensional distributions, that is,
if d > 1 and t1, . . . , td ∈ [0, 1], then the vectors (X (ti))di=1 and (Y (ti))di=1 have the same
distribution. Then X and Y have the same distribution, that is, for each B ∈ B (C[0, 1]),
P {X ∈ B} = P {Y ∈ B}.

Proof. By the regularity of measures, it suffices to prove that P {X ∈ O} = P {Y ∈ O} for each
open set O. Since C[0, 1] is separable, each open set can be written as a countable union of
open balls. Using P (On)→ P (O) if On ↑ O, it suffices to prove P {X ∈ O} = P {Y ∈ O} when
O is a finite union of open balls.

Let O :=
⋃N
i=1 B (fi, ri), where fi ∈ C[0, 1] and ri > 0. Let (qk)k>1 be an enumeration of

the rationals of [0, 1]. Since

B (fi, ri) =
⋃
j>1

⋂
k>1

{
x ∈ C[0, 1], |fi (qk)− x (qk)| 6 ri − j−1} ,

O can be expressed as
⋂
K>1 FK , where

FK =
N⋃
i=1

⋃
j>1

K⋂
k=1

{
x ∈ C[0, 1], |fi (qk)− x (qk)| 6 ri − j−1} .
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Define the Borel subset BK of RK by

BK :=
{

(vk)Kk=1 ∈ RK ,∃1 6 i 6 N | |fi (qk)− vk| < ri

}
.

Then {X ∈ FK} =
{

(X (qk))Kk=1 ∈ BK
}
and P {X ∈ FK} = P {Y ∈ FK} follows from equality

of the finite dimensional distributions. �

We thus have the following strategy to prove the weak convergence in C[0, 1].

Theorem 2.17. Let (Xn)n>1 be a sequence of random elements of C[0, 1]. Suppose that
(Xn)n>1 is tight and that there exists a random element X of C[0, 1] such that for each d > 1
and t1, . . . , td ∈ [0, 1], the sequence of vectors

(
(Xn (ti))di=1

)
n>1

converges in distribution to

(X (ti))di=1. Then Xn ⇒ X weakly in C[0, 1].

Proof. Suppose not. Then there exists a continuous and bounded function f : C[0, 1]→ R, an
increasing sequence of integers (nk)k>1 and ε0 > 0 such that for each k,

|E [f (Xnk)]− E [f (X)]| > ε0.

By Prokhorov theorem, extract from (Xnk)k>1 a weakly convergent subsequence to some Y .
We thus get |E [f (Y )]− E [f (X)]| > ε0. But the finite dimensional distributions of (Xnk)k>1
converge to those of X, then by the previous theorem, X and Y have the same distribution
and we get a contradiction. �

How to prove tightness in C[0, 1]?
Proving weak convergence in C[0, 1] reduces to show the convergence of finite dimensional

distributions (which is easier, as we only deal with vectors) and tightness.
Recall (Arzelà-Ascoli) that a setK ⊂ C[0, 1] is compact if and only if it is closed, supx∈K |x (0)| <

∞ and
lim
δ→0

sup
x∈K

ω (x, δ) = 0,

where ω (x, δ) := sup {|x (t)− x (s)| , s, t ∈ [0, 1], |t− s| < δ}.
Question: is there a simple characterization of tightness of a sequence of random elements

of C[0, 1]?
Here we present a tightness criterion.

Theorem 2.18. A sequence of random elements of C[0, 1] is tight if and only if the following
two conditions are satisfied:

(1) the sequence (Xn (0))n>1 is tight in R and
(2) for each positive ε,

lim
δ→0

lim sup
n→∞

P {sup {|Xn (t)−Xn (s)| , s, t ∈ [0, 1], |t− s| < δ} > ε} = 0. (2.8.2)

Proof of Theorem 2.18. ⇒ We assume that (Xn)n>1 is tight in C[0, 1]. For each positive ε,
there exists a compact set K (ε) ⊂ C[0, 1] such that supn>1 P {Xn /∈ K (ε)} < ε. By Arzelà-
Ascoli theorem, supx∈K(ε) |x (0)| 6 C (ε) and for some δ (ε),

sup
x∈K

ω (x, δ (ε)) < ε, (2.8.3)
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Since P {|Xn (0)| > C (ε)} 6 P {Xn /∈ K (ε)} < ε, it follows that supn>1 P {|Xn (0)| > C (ε)} <
ε hence (Xn (0))n>1 is tight in R.

Let ε > 0 and let δ (ε) like in (2.8.3). Then

{sup {|Xn (t)−Xn (s)| , s, t ∈ [0, 1], |t− s| < δ (ε)} > ε} ⊂ {Xn /∈ K (ε)}

hence

g (ε) := lim
δ→0

lim sup
n→∞

P {sup {|Xn (t)−Xn (s)| , s, t ∈ [0, 1], |t− s| < δ} > ε} 6 ε. (2.8.4)

We got g (ε) 6 ε. If ε0 is fixed, for ε < ε0, g (ε0) 6 g (ε) 6 ε hence g (ε) = 0.
⇐ Let ε be fixed; we have to find a compact set K such that supn>1 P {Xn /∈ K} < ε. Since

(Xn (0))n>1 is tight in R, there exists C such that supn>1 P {|Xn (0)| > C} < ε/2.
The second condition applied with 1/j for each fixed j > 1 gives δj such that

lim sup
n→∞

P {sup {|Xn (t)−Xn (s)| , s, t ∈ [0, 1], |t− s| < δj} > 1/j} < ε2−j .

That is, there exists Nj such that

sup
n>Nj

P {sup {|Xn (t)−Xn (s)| , s, t ∈ [0, 1], |t− s| < δj} > 1/j} < ε2−j .

For each n 6 Nj , {Xn} is tight in C[0, 1] (since this space is separable and complete) hence
we can find δn,j such that

sup
n6Nj

P {sup {|Xn (t)−Xn (s)| , s, t ∈ [0, 1], |t− s| < δn,j} > 1/j} < ε2−j .

Therefore, taking δ′j := min
{
δj , δ1,j , . . . , δNj ,j

}
sup
n>1

P
{

sup
{
|Xn (t)−Xn (s)| , s, t ∈ [0, 1], |t− s| < δ′j

}
> 1/j

}
< ε2−j .

We got supn>1 P {|Xn (0)| > C} < ε/2 and

sup
n>1

P
{

sup
{
|Xn (t)−Xn (s)| , s, t ∈ [0, 1], |t− s| < δ′j > 1/j

}}
< ε2−j .

Let K ⊂ C[0, 1] be defined by

K := {x : |x (0)| 6 C}

∩
⋂
j>1

{
x : sup

{
|x (t)− x (s)| , s, t ∈ [0, 1], |t− s| < δ′j

}
6 1/j

}
. (2.8.5)

Then K satisfies the wanted requirements. �

3. Invariance principle

3.1. Partial sum process. We would like to study the asymptotic behavior of partial sums
of a sequence of random variables (Xi)i>1, that is, see how fn

(∑k
i=1, 1 6 k 6 n

)
, fn : Rn → R

behaves.
We would like to find a sequence of random continous functions Wn which contains all the

information of the partial sums, that is, knowning Wn (t) for each 0 6 t 6 1 allows to derive
the value of Sk for each 1 6 k 6 n.
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Figure 1. The map t 7→Wn(t)
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We can try

Wn (t) =
bntc∑
i=1

Xi, 0 6 t 6 1,

where for x ∈ R, bxc 6 x < bxc+ 1.
But this function is not continuous, as there are jumps at k/n, k ∈ {1, . . . , n}.
Instead, we define

Wn (t) := 1√
n

bntc∑
i=1

Xi + (nt− bntc)Xbntc+1

 , 0 < t 6 1,

and Wn (0) = 0. Then
• for each k ∈ {0, . . . , n− 1}, the map t 7→Wn (t) is piecewise linear on [(k − 1) /n, k/n).

Indeed, for t ∈ [(k − 1) /n, k/n), bntc = k−1 and
√
nWn (t) =

∑k−1
i=1 Xi+(nt− k −+1)Xk.

• As t→ k/n−, Wn (t)→
∑k
i=1 Xi/

√
n hence t 7→Wn (t) is continuous.

• Actually, the map t 7→Wn (t) is Hölder continous of exponent α for each 0 < α 6 1.
• For k ∈ {1, . . . , n}, Wn (k/n) =

∑k
i=1 = Sk/

√
n.

3.2. Statement. Let

Wn (t) := 1√
n

bntc∑
i=1

Xi + (nt− bntc)Xbntc+1

 , 0 < t 6 1,

We would like to study the convergence of (Wn)n>1 in the space S := C[0, 1] endowed with
the uniform metric ρ (f, g) = sup06t61 |f (t)− g (t)|. As a starting point, let us do the i.i.d.
case.

One needs to look at the convergence of finite dimensional distributions and show tightness.

Definition 3.1 (Brownian motion). We call a process (Bt)06t61 a standard Brownian motion
if it is a centered Gaussian process such that Cov (Bs, Bt) = min {s, t} and for almost every
ω, the map t 7→ Bt (ω) is continuous.
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We will see in the next theorem that such a process does exist. Actually, the map t 7→ Bt (ω)
is almost surely Hölder continuous with exponent α for each 0 < α < 1/2.

Note that Cov (Bs, Bt) = min {s, t} implies that for 0 = t0 < t1 < · · · < td 6 1, the family(
Bti −Bti−1

)d
i=1 is independent. Indeed, this family forms a Gaussian vector and one can

check that Cov
(
Bti −Bti−1 , Btj −Btj−1

)
= 0 for i 6= j.

Theorem 3.2 (Donsker, 1951). Let (Xi)i>1 be a centered i.i.d. sequence of random variables
such that E

[
X2

1
]

= 1. Let Wn be defined by

Wn (t) := 1√
n

bntc∑
i=1

Xi + (nt− bntc)Xbntc+1

 , 0 < t 6 1,

and Wn (0) = 0. Then (Wn)n>1 converges in distribution in C[0, 1] to a standard Brownian
motion.

This theorem is usually called functional central limit theorem. We can also meet the
terminolog "invariance principle", as the limiting process does not depend on the distribution
of X1. We have a standard Brownian motion provided that X1 is centered and E

[
X2

1
]

= 1.

3.3. Convergence of the finite dimensional distributions. Let

W ′n (t) := 1√
n

bntc∑
i=1

Xi+, 0 6 t 6 1.

We have seen during the seminar that the finite dimensional distributions of (W ′n)n>1 con-
verge to those of a standard Brownian motion. Therefore, it suffices to show that for each
0 6 t 6 1,

1√
n

(nt− bntc)Xbntc+1 → 0 in probability.

Since 0 6 nt− bntc 6 1, we get

P
(

1√
n

(nt− bntc)
∣∣Xbntc+1

∣∣ > ε

)
6 P

(
1√
n

∣∣Xbntc+1
∣∣ > ε

)
.

Moreover,
∣∣Xbntc+1

∣∣ has the same distribution as |X1| hence

P
(

1√
n

(nt− bntc)
∣∣Xbntc+1

∣∣ > ε

)
6 P

(
|X1| > ε

√
n
)
→ 0.

3.4. Tightness of partial sum process, a sufficient condition. In the special case of
partial sum process defined by

Wn (t) := 1√
n

bntc∑
i=1

Xi + (nt− bntc)Xbntc+1

 , 0 < t 6 1,

Wn (0) = 0, one can give a tightness sufficient condition in terms of the partials sums Sk :=∑k
i=1 Xi.
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Proposition 3.3. Suppose that the sequence (Xi)i>1 is such that the family(
1
n

max
16k6n

(Sk+i − Si)2
)
n>1,i>0

is uniformly integrable. Then (Wn)n>1 is tight in C[0, 1].

Proof. We use the tightness criterion given at page 2 of Lecture 8. Since Wn (0) = 0, it suffices
to check that for each positive ε,

lim
δ→0

lim sup
n→∞

P {sup {|Wn (t)−Wn (s)| , s, t ∈ [0, 1], |t− s| < δ} > ε} = 0.

We first give an upper bound of sup {|Wn (t)−Wn (s)| , s, t ∈ [0, 1], |t− s| < δ} for a fixed δ

and n > 1/δ. Define the interval Ik := [kδ, (k + 1) δ) ∩ [0, 1], 0 6 k 6 b1/δc and Jk :=
[kδ, (k + 1) δ] ∩ [0, 1]. If s, t ∈ [0, 1] are such that |t− s| < δ, then s belongs to some Ik and
t ∈ Ij where |k − j| 6 1 hence

sup {|Wn (t)−Wn (s)| , s, t ∈ [0, 1], |t− s| < δ}

6 max
06k6b1/δc

max
{

sup
s,t∈Jk

|Wn (s)−Wn (t)|+ sup
s∈Jk

sup
t∈Jk+1

|Wn (s)−Wn (t)|
}
. (3.4.1)

Note that

max
06k6b1/δc

sup
s∈Jk

sup
t∈Jk+1

|Wn (s)−Wn (t)|

6 max
06k6b1/δc

sup
s∈Jk
|Wn (s)−Wn ((k + 1) δ)|

+ max
06k6b1/δc

sup
t∈Jk+1

|Wn ((k + 1) δ)−Wn (t)| (3.4.2)

and these two terms are both smaller than

max
06k6b1/δc+1

sup
s,t∈Jk

|Wn (s)−Wn (t)| .

We thus got

sup {|Wn (t)−Wn (s)| , s, t ∈ [0, 1], |t− s| < δ}

6 4 max
06k6b1/δc+1

sup
t∈Jk
|Wn (t)−Wn (kδ)| . (3.4.3)

We have to control supkδ6t6(k+1)δ |Wn (t)−Wn (kδ)| in terms of partials sums. Let t be
such that kδ 6 t 6 (k + 1) δ. Then i/n 6 t < (i+ 1) /n for some i and j/n 6 kδ < (j + 1) /n
for some j, namely, j = bnkδc. Let us first use the bound

|Wn (t)−Wn (kδ)|
6 |Wn (t)−Wn (i/n)|+ |Wn (i/n)−Wn (j/n)|+ |Wn (j/n)−Wn (kδ)|

For the term |Wn (t)−Wn (i/n)|, we use the fact that Wn is affine on [i/n, (i+ 1) /n) and
the slope is Xi+1 to get that

|Wn (t)−Wn (i/n)| 6 1√
n

max
16`6n+1

|X`| .
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By the same argument,

|Wn (j/n)−Wn (kδ)| 6 1√
n

max
16`6n+1

|X`| .

Since Wn (i/n) = Si and Wn (j/n) = Sj , we finally get that

|Wn (t)−Wn (kδ)| 6 2√
n

max
16`6n+1

|X`|+
1√
n

∣∣Si − Sbnkδc∣∣ .
Finally, i− j 6 nδ hence we got that for each n such that n > 1/δ,

sup {|Wn (t)−Wn (s)| , s, t ∈ [0, 1], |t− s| < δ}

6
8√
n

max
16`6n+1

|X`|+
4√
n

max
06k6b1/δc

max
bnkδc+16i6bnkδc+bnδc

∣∣Si − Sbnkδc∣∣ . (3.4.4)

Therefore, it suffices to show that 1√
n

max16`6n+1 |X`| → 0 in probability and for each positive
ε,

lim
δ→0

lim sup
n→∞

P
(

max
06k6b1/δc

max
bnkδc+16i6bnkδc+bnδc

∣∣Si − Sbnkδc∣∣ > ε
√
n

)
= 0.

The prove that 1√
n

max16`6n+1 |X`| → 0 in probability will be done during the seminar.
In order to prove that

lim
δ→0

lim sup
n→∞

P
(

max
06k6b1/δc

max
bnkδc+16i6bnkδc+bnδc

∣∣Si − Sbnkδc∣∣ > ε
√
n

)
= 0,

we start from the union bound

P
(

max
06k6b1/δc

max
bnkδc+16i6bnkδc+bnδc

∣∣Si − Sbnkδc∣∣ > ε
√
n

)
6

∑
06k6b1/δc

P
(

max
bnkδc+16i6bnkδc+bnδc

∣∣Si − Sbnkδc∣∣ > ε
√
n

)
. (3.4.5)

We are reduced to prove that

lim
δ→0

lim sup
n→∞

∑
06k6b1/δc

P
(

max
bnkδc+16i6bnkδc+bnδc

∣∣Si − Sbnkδc∣∣ > ε
√
n

)
= 0.

Let Mj,i denote the random variable 1
j max16k6j (Sk+i − Si)2. Recall that (Mj,i)i,j>1 is as-

sumed to be uniformly integrable. We have to prove that

lim
δ→0

lim sup
n→∞

∑
06k6b1/δc

P

Mbnδc,bnkδc >
(
ε

√
n√
bnδc

)2
 = 0.
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By Markov’s inequality,

lim
δ→0

lim sup
n→∞

∑
06k6b1/δc

P

Mbnδc,bnkδc >
(
ε

√
n√
bnδc

)2


6 lim
δ→0

lim sup
n→∞

(
ε

√
n√
bnδc

)−2

∑
06k6b1/δc

E

Mbnδc,bnkδc1
Mbnδc,bnkδc >

(
ε

√
n√
bnδc

)2

 . (3.4.6)

As a consequence,

lim
δ→0

lim sup
n→∞

∑
06k6b1/δc

P

Mbnδc,bnkδc >
(
ε

√
n√
bnδc

)2


6 lim
δ→0

lim sup
n→∞

ε−2δ (b1/δc+ 1) sup
j,i

E

Mj,i1

Mj,i >

(
ε

√
n√
bnδc

)2

 . (3.4.7)

For each fixed δ, there exists n0 such that for n > n0,
√
n√
bnδc

>
1

2
√
δ
.

Therefore,

lim sup
n→∞

sup
j,i

E

Mj,i1

Mj,i >

(
ε

√
n√
bnδc

)2


6 sup

j,i
E

[
Mj,i1

{
Mj,i >

(
ε

2
√
δ

)2
}]

(3.4.8)

and we get that

lim
δ→0

lim sup
n→∞

∑
06k6b1/δc

P

Mbnδc,bnkδc >
(
ε

√
n√
bnδc

)2


6 ε−2 lim
δ→0

sup
j,i

E

[
Mj,i1

{
Mj,i >

(
ε

2
√
δ

)2
}]

= 0. (3.4.9)

�

3.5. Uniform integrability of partial sums. It remains to check the following.

Proposition 3.4. Let (Xi)i>1 be an i.i.d. centered sequence such that E
[
X2

1
]

= 1 and Sk =∑k
i=1 Xi. Then the family {

1
n

max
16k6n

S2
k, n > 1

}
is uniformly integrable.



28 CONVERGENCES IN PROBABILITY

Note that this will give immediately uniform integrability of(
1
n

max
16k6n

(Sk+i − Si)2
)
n>1,i>0

.

Indeed, for each fixed i,

E
[

1
n

max
16k6n

(Sk+i − Si)2 1
{

1
n

max
16k6n

(Sk+i − Si)2
> R

}]
= E

[
1
n

max
16k6n

(Sk)2 1
{

1
n

max
16k6n

(Sk)2
> R

}]
. (3.5.1)

Equality

E
[

1
n

max
16k6n

(Sk+i − Si)2 1
{

1
n

max
16k6n

(Sk+i − Si)2
> R

}]
= E

[
1
n

max
16k6n

(Sk)2 1
{

1
n

max
16k6n

(Sk)2
> R

}]
. (3.5.2)

follows from the fact that for each i, the vectors (Xi+1, . . . , Xn+i) and (X1, . . . , Xn) have the
same distribution (their characteristic function is (t1, . . . , tn) 7→

∏n
j=1 E [exp (itjXj)]).

During the seminar, we have see uniform integrability of
{ 1
nS

2
n, n > 1

}
.

We would like to use a similar proof, but we have to handle maximas of partial sums.
Define for a fixed integer m the random variables

Xi,m := Xi1 {|Xi| 6 m} − E [Xi1 {|Xi| 6 m}] ,

X ′i,m := Xi1 {|Xi| > m} − E [Xi1 {|Xi| > m}] .
Note that since Xi is centered, Xi = Xi,m + X ′i,m. By exercise 15 (sheet 1) appliyed with

Y
(m)
n := 1

n max16k6n

(∑k
i=1 Xi,m

)2
, it suffices to prove that

(1) for each fixed m, the sequence
(
Y

(m)
n

)
n>1

is uniformly integrable and
(2)

lim
m→∞

sup
n>1

E

 1
n

max
16k6n

(
k∑
i=1

X ′i,m

)2 = 0. (3.5.3)

For items 1, we will control the moment of order 4. Hence in both cases, we are forced to
find good upper bounds for

E

 1
n

max
16k6n

(
k∑
i=1

Xi

)2p , p ∈ {1, 2} ,
where (Xi)i>1 is i.i.d. and centered. Note that for p = 1,

E

 1
n

(
n∑
i=1

Xi

)2
 = E

[
X2

1
]

and for p = 2,

E

( n∑
i=1

Xi

)4
 = nE

[
X4

1
]

+ 3n (n− 1)
(
E
[
X2

1
])2

.
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This follows by an expansion of (
∑n
i=1 Xi)4 =

∑n
i1,i2,i3,i4=1 Xi1Xi2Xi3Xi4 .

Then after having taken the expectation,

E

( n∑
i=1

Xi

)4
 =

n∑
i1,i2,i3,i4=1

E [Xi1Xi2Xi3Xi4 ] .

The only cases where E [Xi1Xi2Xi3Xi4 ] is not zero is when all the indices are equal or two of
them have a value j1 and the other two a value j2 6= j1.

• In the first case, we have n possibilities (i1 = i2 = i3 = i4 = i ∈ {1, . . . , n}).
• In the second case, we have

(
n
2
)(4

2
)

= 3n (n− 1) possibilities.
We admit for the moment the Doob’s inequality:

Proposition 3.5. Let p > 1 and let (Xi)i>1 be an i.i.d. centered sequence such that E [|X1|p] <
∞. Let Sk :=

∑k
i=1 Xi. Then

E
[

max
16k6n

|Sk|p
]
6

(
p

p− 1

)p
E [|Sn|p] .

Let us see how Doob’s inequality allows to conclude. Recall that Y (m)
n := 1

n max16k6n

(∑k
i=1 Xi,m

)2

andXi,m := Xi1 {|Xi| 6 m}−E [Xi1 {|Xi| 6 m}] , .We show that for each fixedm, supn>1 E
[(
Y

(m)
n

)2
]
<

∞. Applying Doob’s inequality with p = 4 gives

E
[(
Y (m)
n

)2
]
6

(
4
3

)4
E

 1
n2

(
n∑
i=1

Xi,m

)4


6

(
4
3

)4 1
n2

((
nE [X1,m]4

)
+ 3n (n− 1)

(
E
[
X2

1,m
])2
)
6 Cm. (3.5.4)

In order to check that

lim
m→∞

sup
n>1

E

 1
n

max
16k6n

(
k∑
i=1

X ′i,m

)2 = 0. (3.5.5)

where

X ′i,m := Xi1 {|Xi| > m} − E [Xi1 {|Xi| > m}] ,

we apply Doob’s inequality with p = 2 in order to derive that

E

 1
n

max
16k6n

(
k∑
i=1

X ′i,m

)2 6 4E

 1
n

(
n∑
i=1

X ′i,m

)2


= 4E
[(
X ′1,m

)2
]

6 4E
[
X2

1 1 {|X1| > m}
]
.

The only remaining thing to prove in order to finish the proof of Donsker’s theorem is the
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Proposition 3.6 (Doob’s inequality). Let p > 1 and let (Xi)i>1 be an i.i.d. centered sequence
such that E [|X1|p] <∞. Let Sk :=

∑k
i=1 Xi. Then

E
[

max
16k6n

|Sk|p
]
6

(
p

p− 1

)p
E [|Sn|p] .

We start by the following:

Lemma 3.7. With the notations of the Proposition, for each x > 0, the inequality

xP
(

max
16k6n

|Sk| > x

)
6 E

[
|Sn|1

{
max

16k6n
|Sk| > x

}]
. (3.5.6)

Let Mj := max16k6j |Sk|. Define the events

Aj = {|Sj | > x} ∩ {Mj−1 6 x} , j > 2, A1 = {|S1| > x} .

The collection (Aj)nj=1 is pairwise disjoint and
⋃n
j=1 Aj = {max16k6n |Sk| > x}. Therefore,

xP
(

max
16k6n

|Sk| > x

)
=

n∑
j=1

xP (Aj) .

By Markov’s inequality, xP (Aj) 6 E [|Sj |1 (Aj)] hence

xP
(

max
16k6n

|Sk| > x

)
6

n∑
j=1

E [|Sj |1 (Aj)] .

Suppose that we prove that for each j,

E [|Sj |1 (Aj)] 6 E [|Sn|1 (Aj)] . (3.5.7)

Then we would get that

xP
(

max
16k6n

|Sk| > x

)
6

n∑
j=1

E [|Sn|1 (Aj)]

and using again the fact that (Aj)nj=1 is pairwise disjoint and
⋃n
j=1 Aj = {max16k6n |Sk| > x}

would give the wanted inequality.
Let us prove (3.5.7). Denote

Bj :=
{

(x1, . . . , xj) ∈ Rj ,

∣∣∣∣∣
j∑
i=1

xi

∣∣∣∣∣ > x, max
16k6j−1

∣∣∣∣∣
k∑
i=1

xi

∣∣∣∣∣ 6 x
}
.

Then, by independence and Fubini’s theorem,

E [|Sn|1 (Aj)] =
∫
Rj

∫
Rn−j

∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣1Bj (x1, . . . , xj) dPX1 (x1) . . . dPXn (xn) .

By Jensen’s inequality,∫
Rn−j

∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣1Bj (x1, . . . , xj) dPXj+1 (xj+1) . . . dPXn (xn)

>

∣∣∣∣∣
∫
Rn−j

n∑
i=1

xi1Bj (x1, . . . , xj) dPXj+1 (xj+1) . . . dPXn (xn)
∣∣∣∣∣ (3.5.8)
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For each i > j + 1,∫
Rn−j

xi1Bj (x1, . . . , xj) dPXj+1 (xj+1) . . . dPXn (xn)

= 1Bj (x1, . . . , xj)
∫
R
xidPXi (xi) = 1Bj (x1, . . . , xj)E [Xi] = 0, (3.5.9)

We thus got

E [|Sn|1 (Aj)] >
∫
Rj

∣∣∣∣∣
j∑
i=1

xi

∣∣∣∣∣1Bj (x1, . . . , xj) dPX1 (x1) . . . dPXj (xj)

= E [|Sj |1 (Aj)] . (3.5.10)

From the lemma,∫ ∞
0

pxp−1P
(

max
16k6n

|Sk| > x

)
dx 6

∫ ∞
0

pxp−2E
[
|Sn|1

{
max

16k6n
|Sk| > x

}]
dx (3.5.11)

By Fubini-Tonnelli theorem,

E
[

max
16k6n

|Sk|p
]

= pE
[
|Sn|

∫ ∞
0

xp−21
{

max
16k6n

|Sk| > x

}
dx

]
Note that

p

∫ ∞
0

xp−21
{

max
16k6n

|Sk| > x

}
dx = p

p− 1 max
16k6n

|Sk|p−1
.

Letting Mn := max16k6n |Sk| and ‖X‖q = (E [|X|q])1/q, we thus got

‖Mn‖pp 6
p

p− 1
∥∥SnMp−1

n

∥∥
1 .

By Hölder’s inequality,

‖SnMn‖1 6 ‖Sn‖p
∥∥Mp−1

n

∥∥
p/(p−1) = ‖Sn‖p ‖Mn‖p−1

p ,

hence
‖Mn‖pp 6

p

p− 1 ‖Sn‖p ‖Mn‖p−1
p ,

from which Doob’s inequality directly follows.
This ends the proof of Donsker’s theorem.

4. Martingales

4.1. Conditional expectation.

Definition 4.1. Let (Ω,F ,P) be a probability space and let G be a sub-σ-algebra of F . The
conditional expectation of an integrable random variable X, denoted by E [X | G] is the unique
(up to almost sure equality) random variable Y which is G-measurable and such that for each
G ∈ G, E [X1 (G)] = E [Y 1 (G)].

When X ∈ L2, E [X | G] is the orthogonal projection of X on the subspace L2 (G) of L2 (F).
Therefore, E [X | G] can be seen as the "closest" random variable of X with the constraint

of being G-measurable.
Let us recall some propertites of conditional expectation.



32 CONVERGENCES IN PROBABILITY

Proposition 4.2. Let X and Y be two random variables such that X, Y and XY are inte-
grable. Let G be a sub-σ-algebra of F . If X is G-measurable, then E [XY | G] = XE [Y | G].

Proposition 4.3. Let X be an integrable random variable and let G be a sub-σ-algebra of F .
Suppose that X is independent of G. Then E [X | G] = E [X].

Proposition 4.4. Let X be an integrable random variable and let G be a sub-σ-algebra of
F . Let ϕ : R → R be a convex function. Then the following inequality holds almost surely:
ϕ (E [X | G]) 6 E [ϕ (X) | G].

4.2. Definition of martingales.

Definition 4.5 (Martingales). A sequence of sub-σ-algebras (Fk)k>0 is a filtration if the in-
clusion Fk ⊂ Fk+1 holds for all k > 0.

Definition 4.6. A sequence of random variables (Sn)n>1 is a martingale with respect to the
filtration (Fk)k>0 if for each n > 1, Sn is integrable, Fn-measurable and E [Sn | Fn−1] = Sn−1.

Example 4.7. Let (Xi)i>1 be an independent sequence where E [|Xi|] < ∞, F0 = {∅,Ω} and
Fk = σ (X1, . . . , Xk). Let Sn :=

∑n
i=1 Xi. If each Xi is centered, then (Sn)n>1 is a martingale

with respect to the filtration (Fk)k>0.

Theorem 4.8 (Law of large numbers for martingales). Let (Sn)n>1 be a martingale with
respect to the filtration (Fk)k>0. Let Xn = Sn − Sn−1 for n > 2 and X1 = S1. Let 1 6 p < 2.
Suppose that for each n, Xn has the same distribution as X1 and that E [|X1|p] is finite. Then

1
n1/pSn → 0 almost surely.


	1. Introduction to the basic concepts of convergence in probability theory
	1.1. Almost sure convergence
	1.2. Convergence in probability
	1.3. Link between the almost sure convergence and convergence in probability
	1.4. Convergence in Lp
	1.5. Comparison of convergence in Lp with almost sure convergence and convergence in probability
	1.6. Uniform integrability
	1.7. A necessary and sufficient condition for uniform integrability
	1.8. Uniform integrability and convergence in general
	1.9. Convergence in distribution
	1.10. Convergence in distribution and uniform integrability
	1.11. Tightness and convergence in distribution
	1.12. Convergence of probability measures

	2. Convergence in distribution in metric spaces
	2.1. Motivation
	2.2. Recall of some properties of metric spaces
	2.3. Probability measure on metric spaces, definition
	2.4. Convergence of probability measures: characteristic functionals (1)
	2.5. Portmanteau theorem
	2.6. Tightness
	2.7. Prokhorov theorem
	2.8. Case of the space C[0,1]

	3. Invariance principle
	3.1. Partial sum process
	3.2. Statement
	3.3. Convergence of the finite dimensional distributions
	3.4. Tightness of partial sum process, a sufficient condition
	3.5. Uniform integrability of partial sums

	4. Martingales
	4.1. Conditional expectation


