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1. Introduction & main result
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A problem in hyperbolic surfaces

Let (S , g) be a hyperbolic surface.

Question

Can we find another hyperbolic metric g ′ for which all geodesics become
uniformly longer “(g ′ > g)”?

Not if S is compact.

If S has boundary, Thurston’s strips work:
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François Guéritaud 3D spacetimes October 2014, Nara 4 / 35



Such a strip deformation lengthens all curves that cross the arc α. We can
repeat with other arcs β, γ, . . . (disjoint) to lengthen all curves.

α β
γ

O(e−t/2)

t + O(1)

Question

Do we get all metrics longer than g?

Theorem (Danciger, G., Kassel)

Yes! and uniquely.

Also holds for infinitesimal deformations of g and infinitesimal strips.
But what does “uniquely” mean?
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Uniqueness: the arc complex

Let X be the arc complex of S :

X
(0)

:= {δα isotopy class of properly embedded arcs α}
X

(1)
:= {(δα0 , δα1) | α0, α1 distinct and isotopically disjoint}

X
(2)

:= {(δα0 , δα1 , δα2) | α0, α1, α2 distinct and isotopically disjoint}
. . .X

(N)
:= {(δα0 , . . . , δαN

) | α0, . . . , αN triangulate S}
where N + 1 = dim(Teich(S)). Examples with N = 2:
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For each arc α ∈ X
(0)

, pick

a geodesic representative

a waist pα ∈ α
a width wα > 0.

This defines a “strip map”

Φ : R≥0X → {metrics ≥ g on S},

taking a formal linear combination of arcs

tα = t0α0 + · · ·+ tkαk

to the deformation of (S , g) obtained by inserting (disjoint) strips

at the arcs αi

of width tiwαi

with waist pαi , for all 0 ≤ i ≤ k .
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Main result (made precise)

Definition

A simplex δα0,...,αk
of X

(k)
is small if α0, . . . , αk fail to cut up S into disks

(e.g. k = 0).

X := X r
⋃
{small simplices} ' BN [Penner].

Theorem (DGK)

The map Φ : R≥0X → {metrics ≥ g on S} induces a homeomorphism

Φ : R>0X → {metrics > g on S}.
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2. Sketch of proof
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Sketch of proof:

Let us focus on the infinitesimal version:

DΦ : R>0X −̃→
?
{lengthening infinitesimal deformations of g} ⊂ TgTeich(S).

Source ' RN+1 ' Range: so, show DΦ is

{
(1) proper,
(2) locally homeo.

For (1), note: tα→∞ in R>0X iff

Either the triangulation α goes to
infinity, i.e. its arcs become very
long: then they spin along a geodesic
lamination (simple closed curve or
Hausdorff limit thereof) which strips
along α cannot lengthen much.

Or α stabilizes, but too many
coordinates of t go to 0, so the
remaining arcs fail to cut up S into
disks (def. of X ): the remaining
strips fail to lengthen any curve in a
non-disk component.
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Codimension 0

For (2): the projectivized strip map

PDΦ : X → PTgTeich(S) ' PNR

is projective on each cell of the arc complex X .
Why is it locally a homeomorphism near any x ∈ X ?
• Fundamental case: x belongs to the interior of a top-dimensional cell
(α0, . . . , αN). Then we are asking:

Why are the N + 1 infinitesimal strip deformations along arcs of a
triangulation (α0, . . . , αN) linearly independent (= a basis of TgTeich)?

S
α1

α0

α3

α4α2

−→ waist

width
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Linear independence of strips from a triangulation

By contradiction, suppose
∑N

i=0 tiDΦ(αi ) = 0 ∈ TgTeich(S).

Lifting to H2 the tiles (triangles) of the triangulation α of S , this induces
an equivariant assignment of infinitesimal motions

µ :
{

Tiles of ˜(S , g ,α)
}
−→ Kill(H2) = Lie(Isom(H2)) = psl2 = R2,1

〈·|·〉

such that

vδ,δ′ := µ(δ)− µ(δ′) ∈ {〈·|·〉 > 0} ∩ Span(δ ∩ δ′) (1)

for any adjacent tiles δ, δ′ ⊂ H2.
Indeed, (1) says the relative motion
of δ w.r.t. δ′ is (±) a strip
deformation.
Note H2 = P{〈·|·〉 < 0}.

|
|• [vδ,δ′ ]

δ
δ′

H2P(R2,1)
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µ(δ)− µ(δ′) ∈ Span(δ ∩ δ′) means the infinitesimal motions

µ(δ) and µ(δ′)

have the same longitudinal component µ`(α̃) along the arc α̃ = δ ∩ δ′.
By equivariance, µ` descends to {α0, . . . , αN}, inducing

µ` : {α0, . . . , αN} −→ R≥0.

Up to relabelling, µ`(α0) = max
{α0,...,αN}

µ`. Then, picture!...
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Q ′
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F ′

Q

(A)

(B)

(A)

(B)

Projective transformation

new affine slice
3 µ(δ), µ(δ′)

µ`(α0)≥{µ`(CD),µ`(EF )}
⇒[µ(δ)]∈Q

P(R2,1)

〈·|·〉 < 0

〈·|·〉 > 0

µ(δ)− µ(δ′) ∈ Q − Q ′ ⊂ {〈·|·〉 < 0} ⇒⇐ �
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Codimension 1

Thus, Φ is homeomorphic at top-dimensional cells of the arc complex X .
• At a codim-1 cell (diagonal exchange α↔ α′), the following choice

of µ : {Tiles} → R2,1

A + C = B + D ∈ R2,1

PR2,1

[A] [B]

[C ][D]

α α′

↑ A−B ↑

B
←−−C←−

↓ C−D ↓

−−→
D−−−→A

shows we can cancel positive strip deformations on α = AC and α′ = BD
by positive strip deformations on AB,BC ,CD,DA: i.e., φ := PDΦ does
not fold adjacent top-dimensional simplices α,α′ of X over.
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Codimension ≥ 2

• At a codim-2 cell β (pentagon move), the map φ := PDΦ cannot wrap
twice, by convexity of φ(α ∪α′): modulo Span(φ(β)),

β
α1

α2

α3

α4

α5

α1

α2

α3

α4

α5 0

φ(α1)

φ(α2)

φ(α3)

φ(α4)φ(α5)

α α′

φ(α) φ(α′)

φ

• At codimension-k cells (k ≥ 3), homeomorphicity of φ follows by
induction on the link map Sk−1 → Sk−1 because π1(Sk−1) = 1. �
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The infinitesimal version of Theorem 2 is proved: every infinitesimal
deformation of the hyperbolic metric (S , g) that lengthens all the curves
(uniformly) is given by a unique positive linear combination of strip
deformations on disjoint arcs, with the chosen waists.

The macroscopic version follows by a similar argument and a form of
integration.
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3. Applications to Lorentzian geometry: crooked planes
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History

Let Γ (discrete) act properly discontinuously on Rn by affine
transformations.

1900s, Bieberbach: Γ preserves | · |Eucl ⇒ Γ virtually Abelian.

’60s, Auslander conjecture: Γ\Rn compact ⇒ Γ virtually solvable?

’70s, Milnor’s question: can we drop cocompactness?

’80s, Margulis’s (counter)examples: No! (Γ = Fk acting on R2,1).

(Goldman, Fried: if n = 3, these are virtually the only examples.)

’90s, Drumm’s crooked planes: understand the topology of some
Margulis spacetimes via fundamental domains.

’00s, Goldman-Labourie-Margulis: characterize dynamically the
actions that yield Margulis spacetimes.

’10s, DGK: understand the topology of all Margulis spacetimes /
describe their geometry (fibrations) / parameterize their deformation
space by the arc complex X / deform them to (< 0)-curvature, . . .
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What is a crooked plane?

Here is a view of G = PSL2R and its Lie algebra g := R2,1.4 FRANÇOIS GUÉRITAUD

G

g

k

a

t

A

C

S

T K

J

J

zoom in

to Id

:= Id

∂∞G

Figure 2. Another view of G = PSL(2, R) and its tangent space
g at the identity element, marked by a dark point.

projective plane at infinity (traceless matrices), and therefore restricts to an affine
action on the complement of that projective plane. Since this action also fixes the
identity, we can view it simply as a linear action on Figures 1 and 2, preserving a
one-sheeted hyperboloid R3 ∩ ∂∞G in R3. This linear action of {1} ! G passes to
the tangent space g at the identity, under the name of adjoint action (Figure 2).

1.2. Remarkable subsets.
• The space ∂∞G of rank-one projective matrices is topologically a torus which
comes with two natural foliations into projective lines: one line of the first foliation
consists of all matrices with the same kernel; one line of the second foliation consists
of all matrices with the same image. Some of these lines are drawn in Figure 1.

• Symmetric matrices with positive determinant appear as the intersection S of G
with a projective plane, namely the horizontal plane through the central element
(identity matrix) in Figures 1 and 2. This intersection is projectively equivalent to a
round disk, and can be naturally identified with H2, as follows: a projective matrix
belongs to S if and only if it acts on H2 as a translation along an axis through the
basepoint (

√
−1 in the upper half plane model). For each point p ∈ H2 there is a

unique such translation taking
√

−1 to p. This provides the identification S ≃ H2.

• The group K of rotation matrices (fixing
√

−1 in H2) is the projective line of ma-
trices whose diagonal entries are equal and whose nondiagonal entries are opposite.
This line K appears vertical in Figure 2; it closes up at infinity and is disjoint from
∂∞G. The Lie algebra k of K is a line in g.

• The group A of diagonal matrices (translations along the line (0, ∞) through√
−1 in H2) is the projective open segment of matrices whose nondiagonal entries

are 0, and whose diagonal entries have the same sign. This segment A appears
in Figure 2 as a horizontal segment through the identity matrix, contained in S,
directed towards the viewer. The Lie algebra a of A is a line in g.

A: diagonal S : symmetric C : parabolic
J: traceless K : rotations T : upper-triangular
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Identify G ' Isom0(H2), and g ' Kill(H2). As a homogeneous (G × G )-
space, G is also called anti-de Sitter space (AdS): (g , g ′) · h = g ′hg−1.
Let ` be a line of H2.

Definition

(i) An AdS crooked plane of G is any (G × G )-translate of

{g ∈ G | g has a nonrepelling fixed point in `}.

(ii) A crooked plane of g is any (goAd G )-translate of

{X ∈ g | X has a nonrepelling fixed point in `}.

Note that
G oConj G −̃→ G × G

(g ′, g) 7−→ (g ′g , g)

is an isomorphism, so (ii) is an infinitesimal version of (i).
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A crooked plane of R2,1 centered at the origin is made of

a stem (red): the rotations centered on `, also equal to Span(`);

two wings (blue, green): lightlike half-planes consisting of
loxodromies of H2 whose attracting fixed point is an endpoint of `;

two lightlike lines, where the wings are attached to the stem.

Stem

WingWingg 0

`
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Similarly, an AdS crooked plane also has a stem and two lightlike wings.

Stem

Stem
G

G

But here, each wing terminates on a line of the stem, and on a line of
∂∞G : wings are thus projective bigons. In the second view, the center of
the stem has been placed at infinity in P3R ⊃ G .
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Drumm’s observation

We can pull a crooked 1
2 -space away from its complement, without overlap,

by translating into the correct quadrant of the span of the stem.

Stem

translate
←−

The stem then slides along itself.
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Observation (Danciger, G., Kassel)

The same happens with an AdS crooked plane: you can push it off itself
by multiplication (on the left) by any element in the correct quadrant of
the span of its stem.

This time, the stem moves off itself completely!
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Drumm used his observation to build fundamental domains for
properly discontinuous actions of the free group Fk on R2,1 = g
bounded by (disjoint) crooked planes.

We can similarly build fundamental domains for actions on AdS = G .

Do we get all actions?

Properly discontinuous actions are classified by the following two theorems.
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Let G = PSL2(R) and
λ : G → R≥0

be the translation length (0 for non-loxodromics), and Γ := Fk , k ≥ 2.

Theorem (G., Kassel)

Given (j , ρ) : Γ→ G × G with j Fuchsian and λ(j(γ0)) > λ(ρ(γ0)) for
some γ0, the following are equivalent:

1 The Γ-action on G given by γ · g = ρ(γ)gj(γ)−1 is prop. disc.;

2 supγ∈Γr{1}
λ(ρ(γ))
λ(j(γ)) < 1;

3 ∃ a (j , ρ)-equivariant, C -Lipschitz map f : H2 → H2 with C < 1:

d(f (p), f (q)) ≤ C d(p, q) ∀p, q ∈ H2.

Moreover, this gives all prop. disc. actions of Γ on G up to swaping j ↔ ρ.
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Theorem (Goldman, Labourie, Margulis; Danciger, G., Kassel)

Given (j , u) : Γ→ G n g (i.e. u is a j-cocycle: u(γ) = d
dt |t=0 jt(γ)j(γ)−1

for some smooth deformation (jt)t≥0 of j),
if d

dt |t=0λ(jt(γ0)) < 0 for some γ0, then the following are equivalent:

1 The Γ-action on g given by γ ·X = Ad(j(γ))(X ) + u(γ) is prop. disc.;

2 supγ∈Γr{1}
d
dt
|t=0 λ(jt(γ))

λ(j(γ)) < 0;

3 There exists a vector field Y on H2 that is (j , u)-equivariant
(Y (j(γ) · p) = j(γ)∗Y (p) + u(γ)(j(γ) · p)), and contracting: ∃c < 0,

d
[
d(expp(tY (p)), expq(tY (q)))

]
dt|t=0

≤ c d(p, q) ∀p 6= q ∈ H2.

Moreover, this gives all prop. disc. actions on g up to multiplying u by −1.
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The second condition (involving d(λ ◦ jt)/dt), together with the Strips
theorem, implies that (j , u) acts properly discontinuously on R2,1 if and
only if (−u) is an infinitesimal strip deformation of j .
In fact, it is straightforward to interpret the relative motions of tiles in a
strip deformation as vectors of R2,1 = Kill(H2) that push crooked planes
off themselves. Thus

Corollary

All Margulis spacetimes admit fundamental domains bounded by crooked
planes. In particular, all Margulis spacetimes are handlebodies
(“tameness”).
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4. A surface group acting properly discontinuously on R6
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Margulis’s examples rely on “ping-pong” (free groups).

Question

In dimension n > 3, can there be a non-virtually solvable, non-virtually free
group Γ acting faithfully, properly discontinuously on (Rn,Aff(Rn))?

We may use the third criterion: if (j , u) : Γ→ T (Isom(Hk)) admits a
contracting, equivariant vector field Y on Hk , then the projection

sok ↪→ sok,1 ' Kill(Hk) 3 X
↓ π >↓
Hk 3 Fix(Y − X )

is equivariant for the Γ-actions (j , u) and j , hence the action on the source
sok,1 is properly discontinuous because the action on the base Hk is.
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We now exhibit a Coxeter group acting on H3 that admits such a cocycle
u and contracting vector field Y . Fix N ≥ 3. Let

Γ :=
〈
(σk)k∈Z/2NZ

∣∣ σ2
k = 1 = [σk , σk+1], ∀k

〉
be the group of reflections in the edges of a convex right-angled 2N-gon
(Γ has surface subgroups of finite index, hence is not virtually free). For
small t > 0, taking σk ∈ Γ to the reflection of R3,1 in the plane

Sk(t) :=


A(t) cos kπ

N

A(t) sin kπ
N

B(t)(−1)k

1


⊥

where

{
A(t) = cosh(t)/

√
cos π

N
B(t) = sinh(t)

yields a representation jt : Γ→ Isom(H3) (indeed Sk ⊥ Sk+1) acting
properly discontinuously on H3. Here j0(Γ) preserves a copy of H2.
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The polyhedron Dt of P3R bounded by the Sk(t) satisfies for all 0 < t0 < t

Dt = Mt,t0Dt0 where Mt,t0 =


cosh t0
cosh t

cosh t0
cosh t

sinh t0
sinh t

1

 .

The projective transformation Mt,t0 takes the ellipsoid H3 ⊂ P3R to a
strictly smaller ellipsoid, hence (by definition of the Hilbert metric) is
contracting on H3. The map Mt,t0 |Dt0∩H3 can be extended

(jt0 , jt)-equivariantly to all of H3. The resulting maps Mt,t0 have a
time-derivative

Y =
dMt,t0

dt

∣∣∣∣
t=t0

which is a contracting vector field on H3, and (jt0 , u)-equivariant for
u = d

dt |t=t0 (jt jt0
−1) as desired. Hence Γ acts properly discontinuously on

so3,1 ' R3,3 via (jt0 , u).
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Question

Which other subgroups of Isom(Hn) have contracting deformations in
some Isom(Hm), m ≥ n?

This would yield interesting properly discontinuous affine actions: there are
not so many (non-free) examples when one studies Auslander’s conjecture!
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Thank you!
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