
Geometry and combinatorics of veering triangulations
and Cannon-Thurston maps

François Guéritaud
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1. Introduction
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Definition

Ideal tetrahedron: convex hull of 4 non-coplanar points in ∂∞H3.

Useful to construct and “manipulate” hyperbolic (cusped) 3-manifolds:

S3r Fig.-8 knot ' gluing of 2 regular ideal 4hedra (Thurston);

SnapPea: powerful 3-manifold software (Weeks).

Ideal triangulations can also be studied from a strictly combinatorial
viewpoint.

H3

C Euclidean 3gle

Hyperbolic 4hedron
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Example of combinatorics: layered triangulations of a surface bundle.
Let ϕ : S → S be a mapping (class) of a punctured surface S .
Given a triangulation τ of S , we can go from τ to ϕ∗(τ) by a sequence of
diagonal exchanges.

punctures

Each such exchange can be seen as a (flattened) ideal tetrahedron.
Yields an ideal triangulation of the mapping torus

Mϕ :=
S × [0, 1]

〈(x , 1) ∼ (ϕ(x), 0)〉

(provided τ and ϕm
∗ (τ) share no arc, e.g. ϕ pseudo-Anosov).
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Depending on τ and on the path τ → · · · → ϕ∗(τ), there are many layered
triangulations of a given Mϕ.

Square move Pentagon move
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Hyperbolic geometry

Theorem (Thurston)

If ϕ : S → S is pseudo-Anosov, then Mϕ admits a hyperbolic metric g .

Question

Can we find a layered triangulations T of Mϕ that is nicer than others?
Can we relate T to the hyperbolic metric g?

For example:

Can we realize T by geodesic tetrahedra?

Is the canonical Ford-Voronoi-Delaunay triangulation layered?

Can we find T (layered) that relates to other aspects of g , such as
the Cannon-Thurston sphere-filling curve (defined later)?
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Recall:

The canonical (Delaunay) cell decomposition of a cusped finite-volume
hyperbolic 3-manifold M is given by:

lifting a small cusp neighborhood to horoballs (Hi )i∈I of H3;

finding a maximal ball in H3 r
⋃

i∈I Hi (tangent to 4 or more Hi );

taking the convex hull of the centers of these Hi ;

repeating for all maximal balls, and projecting back to M.
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Example

If the fiber S of Mϕ is a once punctured torus, a layered triangulation T
of Mϕ arises from SL2(Z) / Farey / continued-fraction combinatorics:

Fact: any A ∈ SL2(Z) with |Tr(A)| > 2 is conjugate to ±ω for ω a unique
cyclic word in R = ( 1 1

0 1 ) and L = ( 1 0
1 1 ).

R

L
0

1

2

3

−1

−3

1/2

1/3

2/33/2

−1/2

−1/3

−2/3
−2

−3/2

R

L
LL

R

Axis
(A

)

S ' (R2 r Z2)/Z2

This triangulation T = Tϕ of an S-bundle Mϕ does have all nice features:
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Theorem A (Lackenby; G.)

(Mϕ,Tϕ) is realized geodesically and coincides with the canonical
Delaunay triangulation.

... but this fails in various ways for higher-complexity fibers S (Schleimer,
Segerman, ...).

Theorem B (Cannon–Dicks; Dicks–Sakuma)

There is a dictionary between the combinatorics of Tϕ, and of the
Cannon-Thurston sphere-filling curve attached to Mϕ.

Today’s theme: Theorem B survives in higher complexity! (Of course we
need to define “Tϕ”.)
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2. The Cannon-Thurston sphere-filling curve
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Definition

A semi-translation structure on a surface S is an atlas over R2 with
charts valued in {Id,−Id}n R2, the semi-translation group, possibly with:

cone singularities of angle mπ where m ≥ 3, and

punctures surrounded by an angle mπ where m ≥ 1.

Let S be a surface and M = Mϕ a hyperbolic S-bundle over the circle, of
monodromy ϕ : S → S .

Theorem (Thurston)

There exists α > 1 and an essentially unique semi-translation structure on

S such that ϕ is given in all charts by ±
(
α 0
0 1/α

)
.

The axis directions induce two foliations λ+, λ− (stable/unstable) of S ,
preserved by ϕ.
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We can lift any injection S ↪→ M (in the correct homotopy class) to
universal covers:

H2 ' Σ
ι
↪→ M̃ ' H3

↓ ↓
S ↪→ M.

Theorem (Cannon-Thurston; Bowditch)

The injection ι extends continuously to a surjective map

ι : S1 ' ∂∞Σ −→ ∂∞H3 ' S2.

The map ι collapses the endpoints of any leaf of the stable or unstable
foliation of ϕ, and this generates all identifications occurring under ι.
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Visualizing the sphere-filling curve (ι(t))t∈∂∞H2 is a challenge.

Dicks’s idea

Assuming S has punctures, select a parabolic fixed point Ω ∈ ∂∞H3 and
consider ι changes colors each time it goes through Ω.

Picture by
Warren Dicksϕ = RL2R3L4

S = punctured torus
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Here is a superposition with the canonical triangulation Tϕ, in the same
perspective from Ω =∞.

Vertex sets

coincide!

(W. Dicks,

M. Sakuma)
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3. The Agol triangulation
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In 2010, Agol (crediting some ideas to Hamenstädt) constructed a layered
ideal triangulation T A

ϕ naturally associated to a hyperbolic mapping torus
Mϕ, provided all singularities of (S , λ+, λ−) occur at punctures.

Theorem (G.)

Agol’s tetrahedra are obtained by connecting the punctures in the
boundary of every maximal puncture-free rectangles in the flat foliated

surface (Σ, λ̃+, λ̃−).

λ+

λ−

Σ
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Observation

This triangulation T A
ϕ of Mϕ has a natural layered structure.

The t-layer (t ∈ R) is the square-Delaunay triangulation of the flat

surface

(
S ,

(
et

e−t

)
g

)
.

Idea: maximal squares (for generic t) contain 3 punctures in their
boundary, spanning a triangle. These triangles do not overlap, and any
edge is shared by 2 triangles. Hence they triangulate S . For special t, a
diagonal exchange occurs.
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TA
ϕ enjoys another property: it is veering.

A layered triangulation is veering (Agol) if any given edge, over its
lifespan, sees adjacent triangles shift always towards the same direction:

clockwise or anticlockwise

• Veeringness actually makes sense for any orientable triangulation (not
necessarily layered) endowed with a {0, π}-valued angle structure.
• Here, the color is given by the sign of the slope (+/–) in the
1
2 -translation surface (S , λ+, λ−).
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Properties of veering triangulations:

Theorem (Hodgson, Rubinstein, Segerman, Tillmann)

Any veering triangulation admits a (0, π)-valued angle structure, i.e. the
tetrahedra can be endowed with dihedral angles modelled on those of ideal
tetrahedra of H3, summing to 2π around each edge.

Corollary (Lackenby): any 3-manifold admitting a veering triangulation
admits a hyperbolic metric.

Theorem (Futer, G.)

The smallest angle can be made ≥ π

12d2
where d is the largest edge

degree. The exponent 2 is optimal (already for punctured torus bundles).

This can be used to give bounds on the number of normal surfaces in
terms of their genus.
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Combinatorics of veering triangulations (1): one tetrahedron

π

π

0

0

0

0

π

0 0

base

tip

(seen from any cusp)

The tetrahedron is called

hinge if the tip and base ore opposite colors;

non-hinge if the tip and base are the same color.
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Combinatorics of veering triangulations (2): full cusp link T2 at Ω.

Vertex

Ascending
ladder

Descending
ladder

Descending
ladder

... ...

Rung
↗

L
ad

d
er

p
ol

e

Hinge

Non-hinge

Each item corresponds to some rectangle(s) in Σ touching Ω:

e.g. Triangles ↔ Maximal rectangles touching Ω;
Vertices ↔ Rectangles with 2 singular corners Ω, p.
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Agol Vertices↔ Rectangles with 2 (opposite) singular corners Ω, p.

Ω

`i

`i+1

pi
s

pi
s+1

pi
s+2

I i
s+1

I i
s

I i

Σ

These so-called ruling rectangles form several Z-families, one per
quadrant I at Ω.
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4. Connecting the combinatorics
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• (S , ϕ, λ±) pseudo-Anosov data; S punctured at the singularities.
• Let Σ be the metric completion of the universal cover of the fiber S , and
Ω a singularity of Σ.
• We can identify the domain ∂∞S̃ ' S1 of the Cannon-Thurston map ι
with the space of Σ-geodesic paths issued from Ω (possibly
terminating at a singularity):

γ′

γ

γ′
γ γ′ γ

γ′ γ

γ′

γ

(Ω)

Progressing clockwise in the space S1 of paths

γ′ departs from γ to the right (after common prefix)
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By the Cannon-Thurston-Bowditch theorem, the paths γ ∈ S1 mapped to

ι(Ω) =∞ ∈ P1C ' ∂∞H3

are exactly the leaves {`i}i∈Z of λ̃± issued from Ω.
Hence, if I(γ) denotes the quadrant at Ω that γ ∈ S1 starts off into,

Red/Blue interface in the Dicks coloring of P1C ' ∂∞H3

'

Pairs of paths γ, γ′ ∈ S1 identified under ι but satisfying I(γ) 6= I(γ′).

Here is a typical
identified pair (γ, γ′):

however I(γ) = I(γ′).

Σ
γ′

γ

Ω
p

x
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I(γ) 6= I(γ′) can in fact only occur if:

γ′
γ

`i

p = Ω

t

x

γ, γ′ are (the straightenings of) the paths Γ+
i (t), Γ−i (t) obtained by

following some segment of length t ≥ 0 of λ± (the i-th leaf issued
from Ω), then shooting off along rays of λ∓.

Consequence

The Red/Blue interface in the Dicks coloring of P1C ' ∂∞H3 is a
Z-collection of curves Ji = {ι([Γ±i (t)])}t∈R+ .
Actually Jordan curves, by interrogating the Cannon-Thurston-Bowditch
criterion for identification under ι.

François Guéritaud () Veering triangulations July 2015, Orsay 27 / 41



If γ terminates at some singular p ∈ Σ, then (CTB criterion) more than 2
paths are identified under ι:

γ′
γ

γ′′

γ̈

γ̇

Ω

p

t

`i

x

ls0

ls0+1

(cf “thorns” in Dicks’s exact pictures.)
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Exceptionally, one of these extra paths belongs to a third quadrant:

γ′

γ′′

γ

Ω

p
`i

t

`i+1
t ′

ls0

ls0+1

This happens exactly for [Ω, p] a ruling segment, and corresponds to
intersections Ji ∩ Ji+1 of the Jordan-curve separators (Ji )i∈Z.
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Conclusion: the Dicks coloring of P1C ' ∂∞H3 has the following aspect.

J0 J1 J2 J3 J4 J5

δ

•

•
◦

◦

◦ ◦

ε

ε′

δ = ι([Ωpi
s ,Ωpi

s+1])

ε in-furrow edge

ε′ cross-furrow edge

• gate of δ

◦ spike of δ

The “ox” ι plows the “furrows” (solid colors) in sequence.
Vertices, as in the Agol triangulation, correspond to ruling segments.
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Working out the correpondence more carefully, we get:

Theorem (G.)

The following are in natural bijection (� denoting a rectangle):

Dicks coloring Geometry of (Σ,Ω) Agol triangulation

Furrows Quadrants Ladderpoles
Vertices � w. 2 sing. corners Ω, p Vertices

Disks � w. 3 sing., Ω in corner Ladderpole edges
Spikes � w. 3 sing., Ω not ” Rungs

In-furrow
Cross-furrow

}
edges � w. 4 sing.,

{
4 + 2 edges
3 + 3 ”

Non-hinge
Hinge

}
triangles.

Any Cannon-Thurston-Dicks edge is isotopic to an edge of the
corresponding Agol triangle. In fact:
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Theorem (G.)

(1) Given the Agol triangulation ∆, the 1-skeleton of the Dicks coloring is
obtained by drawing, for each triangle of ∆, an arc from its tip to the tip
of the next triangle across the base rung (keep any resulting double edges).
(2) Conversely, given the Dicks coloring, we can obtain the 1-skeleton of
∆ by adding edges connecting each gate of a blue (resp. red) cell to all
the vertices clockwise (resp. counterclockwise) until the other gate, and
deleting redundant edges.

(1)
(2)
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Overlay of the two tessellations:
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the Agol triangulation, via its tetrahedra not incident to Ω, also governs
further subdivisions of the image of the Cannon-Thurston map ι.
Pick a pair of consecutive ruling singularities ps , ps+1 and call green the
outer edges of tetrahedra containing [ps , ps+1].

0

3

4

2

1

6

58

9

10

11

7

9

0

1
2 3 4 5

6

7

8

1011

ι

δ

Ω

ps

ps+1

Σ

The Dicks 2-cell δ = {ι(γ)}γ∈I i
s

is subdivided according to which green

edge the path γ ∈ S1, issued from Ω ∈ Σ, crosses next after [ps , ps+1].
There could be just 3 green edges...
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... or 4...

4
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1 2
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1415

δ

Ω
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ps+1
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... or more.

5

25
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14 15
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δ

Ω
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ps+1
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Annex 1: Punctured-torus combinatorics

Picture W. Dicks

ϕ
=

R
L

L
R

R
R

L
L

L
L

letters R, L ↔ colored regions

RLm R LnR (m,n≥0) ↔ red region with m + n spikes.
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Annex 2: detailed combinatorial correspondence.

Dicks coloring Flat surface Σ Agol triangulation

Ω

Ω

Ω

Ω

Ω

Ω

2-cells Triangles,
Ω in corner

Ladderpole
edges

François Guéritaud () Veering triangulations July 2015, Orsay 38 / 41



In-furrow edges Nonhinge tetrahedra Nonhinge triangles

Cross-furrow edges Hinge tetrahedra Hinge triangles

Spikes Triangles, Ω in edge Rungs
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Future work

Study analogues where the mapping torus Mϕ is replaced with any
hyperbolic 3-manifold endowed with a pseudo-Anosov flow. (Agol)
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The End.

Bon anniversaire !
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