COUNTING PLANES IN FINITE FIELDS

FRANÇOIS GUÉRITAUD

ABSTRACT. On the field with 2^n elements, we count the number of relationships of the form a + b + c = 0, modulo the group generated by the Frobenius automorphism and multiplication by nonzero elements: there are roughly $\frac{2^n}{6n}$ relationships, meaning the group acts "mostly" freely on them. We also solve a similar counting problem on any finite field.

Keywords : finite upper half planes

CNRS - UMR 8524 Laboratoire Paul-Painlevé, université de Lille 1 59655 Villeneuve d'Ascq Cédex, France Francois.Gueritaud@math.univ-lille1.fr

1. Motivation : the addition table in \mathbb{F}_{2^n} .

Let ζ be a root of the irreducible polynomial $X^6 + X + 1$ on \mathbb{F}_2 : the field with $2^6 = 64$ elements, \mathbb{F}_{64} , coincides with $\mathbb{F}_2[\zeta]$, and one can moreover show that ζ is primitive in \mathbb{F}_{64}^{\times} , i.e.

$$\mathbb{F}_{64}^{\times} = \{\zeta^{-31}, \dots, 1, \zeta, \dots, \zeta^{31}\} \simeq (\mathbb{Z}/63\mathbb{Z}, +)$$

(just check that $\zeta^{63/3}$ and $\zeta^{63/7}$ are both different from 1).

Given $a, b \in [-31, 31]$ distinct, how do we find c such that $\zeta^a + \zeta^b = \zeta^c$? (This "discrete logarithm" problem is thought to be computationally hard.) It is enough to treat the case b = 0, up to multiplying by ζ^b . Discarding a = 0, this leaves $2^6 - 2 = 62$ relationships to determine. For example, we already know that

$$1+\zeta=\zeta^6$$
.

One easily checks the following relationships:

$$\begin{aligned} 1 + \zeta^{-11} &= \zeta^{14} \\ 1 + \zeta^9 &= \zeta^{-18} \\ 1 + \zeta^{21} &= \zeta^{-21} \end{aligned}$$

By applying the Frobenius automorphism σ (i.e. doubling all exponents), one finds more relationships. Multiplying by powers of ζ yields more still (e.g. the first one gives $1 + \zeta^{-1} = \zeta^5$). In fact, the four relationships above are enough to determine all others in just this way. Indeed, if we write, next to each Frobenius iterate of a relationship, the values of *a* for which it lets us express $1 + \zeta^a$, we find

(The last two relationships are sent to themselves by σ , up to some factor ζ^{ν} and a permutation of the terms. Every relationship is sent to itself by $\sigma^6 = \mathrm{Id}_{\mathbb{F}_{64}}$, but

sometimes also by σ^d for d some divisor of 6.) One can check that all numbers from ± 1 to ± 31 arise in the table.

If we replace $64 = 2^6$ with 2^n , how many relationships will it take to determine the full addition table of \mathbb{F}_{2^n} ? How many of them have an orbit of length n (i.e. maximal) under σ ? A triple of exponents $\{a, b, c\}$ such that $\zeta^a + \zeta^b + \zeta^c = 0$ is the same as a 2-plane (on \mathbb{F}_2) within \mathbb{F}_{2^n} : namely the plane $\{0, \zeta^a, \zeta^b, \zeta^c\}$. One is thus led to compute the number N of orbits of such 2-planes, under the action of $\mathbb{F}_{2^n}^{\times} \rtimes$ Frob, where Frob = $\{1, \sigma, \ldots, \sigma^{n-1}\}$ denotes the Galois group. One finds the following values:

Proposition 1. For all $n \ge 2$, the number N(n) of orbits of relationships in \mathbb{F}_{2^n} is

$$N(n) = \frac{1}{6n} \sum_{d|n} \phi(d) \left[2^{\frac{n}{d}} \left(1 + \frac{3}{if \ 2|d} + \frac{2}{if \ 3|d} \right) + 2(-1)^{\frac{n}{d}} \right]$$

where $\nu | d$ (resp. $\nu \nmid d$) means that ν divides (resp. does not divide) d, and $\phi(d)$ is the number of integers comprime to d in $\{1, \ldots, d\}$ (Euler's totient function). A term such as "3" is by definition 3 if 2|d and 0 otherwise.

This proposition will follow from an analogous count of orbits of planes in any finite field.

Corollary 2. For large n, one has $N \sim \frac{2^n}{6n}$ and only o(N) Frobenius orbits have length < n.

Proof. Since n = ab entails $\min\{a, b\} \leq \sqrt{n}$, every integer n has at most $2\sqrt{n}$ divisors. Therefore, for any $\varepsilon > 0$,

$$\sum_{d|n} \phi(d) \cdot 2^{\frac{n}{d}} \le 2^{\frac{n}{1}} + 2\sqrt{n} \cdot n \cdot 2^{\frac{n}{2}} = 2^n + o\left(2^{n\left(\frac{1}{2} + \varepsilon\right)}\right) .$$

Thus, the term d = 1 dominates in the formula of Proposition 1; in fact, the left half (roughly) of the digits of N(n) coincide with those of $\frac{2^n}{6n}$. The corollary follows (an orbit of length k yields up to 6k relationships of the form $1 + \zeta^a = \zeta^c$, by multiplication by ζ^{ν} and switching sides). In fact, for n prime ≥ 5 the formula yields $N(n) = \frac{2^n - 2}{6n}$ and all orbits have length exactly n.

2. The general problem

Let q be a prime power, and n > 1 an integer. On the field \mathbb{F}_q we may construct a vector space $(\mathbb{F}_q)^n$ of dimension n, which contains exactly

$$\frac{(q^n - 1)(q^n - q)}{(q^2 - 1)(q^2 - q)}$$

2-planes, by a classical argument.

Now identify $(\mathbb{F}_q)^n$ with \mathbb{F}_{q^n} , the field with q^n elements. On this space (and its 2-planes), there is an action by the Frobenius automorphism (of order n) and the multiplicative group $\mathbb{F}_{q^n}^{\times}$ (of order $q^n - 1$). We shall count the number N = N(q, n) of orbits of 2-planes under the action of the group

$$\mathbb{F}_{a^n}^{\times} \rtimes \operatorname{Frob}$$

generated by these two transformations: if σ is the Frobenius map $X \mapsto X^q$, the semidirect product structure is given by $(u, \sigma^k)(v, \sigma^l) = (u\sigma^k(v), \sigma^{k+l})$, and the action on \mathbb{F}_{q^n} by $(u, \sigma^k)x = u\sigma^k(x)$.

Note for example that all 2-planes of the form $u\mathbb{F}_{q^2}$ (with $u \in \mathbb{F}_{q^n}^{\times}$ and n being even) belong to the same orbit, of cardinality $\frac{q^n-1}{q^2-1}$.

Theorem 3. For all $n \ge 2$ one has:

$$N(q,n) = \frac{1+(-1)^n}{4} + \frac{1}{n} \sum_{d|n} \phi(d) \left(\frac{d \wedge (q-1)}{2} \frac{q^{\frac{n}{d}} - 1}{q-1} + \frac{d \wedge (q+1)}{2} \frac{q^{\frac{n}{d}} - (-1)^{\frac{n}{d}}}{q+1} - \frac{q^{\frac{n}{d}} - 1}{if \, d \wedge q = 1} \right)$$

where $d \wedge \nu$ denotes the largest common divisor of d and ν .

The rest of this note is devoted to proving this theorem (and its special case Proposition 1). For this, consider not the 2-planes, but the 2-planes endowed with a basis seen up to homothety. (A homothety is a multiplication by an element of \mathbb{F}_q^{\times} ; note that multiplication by $u \in \mathbb{F}_{q^n}^{\times}$ is generally not a homothety in this sense). The group $\mathrm{PGL}_2(\mathbb{F}_q)$ acts simply transitively on such projectivized bases and it will be enough to quotient out by this action. Thus, one has

$$N = \left| \frac{\left\{ \overline{(x,y)} \in (\mathbb{F}_{q^n}^{\times})^2 / \mathbb{F}_q^{\times} \mid \frac{x}{y} \notin \mathbb{F}_q \right\}}{(\mathbb{F}_{q^n}^{\times} / \mathbb{F}_q^{\times} \rtimes \operatorname{Frob}) \times \operatorname{PGL}_2(\mathbb{F}_q)} \right|.$$

Here the action is given by

$$\left(\mathbb{F}_{q}^{\times} u, \sigma^{k}, \begin{pmatrix} \alpha\beta\\\gamma\delta \end{pmatrix} \right) \cdot \mathbb{F}_{q}^{\times} \begin{pmatrix} x\\y \end{pmatrix} = \mathbb{F}_{q}^{\times} \begin{pmatrix} u\sigma^{k}(\alpha x + \beta y)\\u\sigma^{k}(\gamma x + \delta y) \end{pmatrix}$$

and it is a routine exercise to check that it is well-defined.

An element $g = \left(\mathbb{F}_{q}^{\times}u, \sigma^{k}, \binom{\alpha\beta}{\gamma\delta}\right)$ will sometimes be written $g = ([u], k, \varphi)$ for conciseness. There are $\frac{q^{n}-1}{q-1}n\frac{(q^{2}-1)(q^{2}-q)}{q-1} = nq(q+1)(q^{n}-1)$ possible values for g.

Fix $\overline{\binom{x}{y}} \in (\mathbb{F}_{q^n}^{\times})^2 / \mathbb{F}_q^{\times}$, and define $\xi := \frac{x}{y} \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q$. Consider the fixed-point equation in $g = ([u], k, \varphi)$:

$$\mathbb{F}_q^{\times} \left(\begin{array}{c} x\\ y \end{array}\right) = \mathbb{F}_q^{\times} \left(\begin{array}{c} u\sigma^k(\alpha x + \beta y)\\ u\sigma^k(\gamma x + \delta y) \end{array}\right)$$

For given k, φ , there exists at most one solution $u \in \mathbb{F}_{q^n}^{\times}/\mathbb{F}_q^{\times}$ (namely the value $u = \mathbb{F}_q^{\times} \frac{x}{\sigma^k(\alpha x + \beta y)}$), and it does exist if and only if

$$\frac{x}{y} = \frac{\sigma^k(\alpha x + \beta y)}{\sigma^k(\gamma x + \delta y)}$$

or equivalently

$$\xi = \sigma^k(\varphi(\xi))$$

where $\operatorname{PGL}_2(\mathbb{F}_q) \ni \varphi$ acts on $\mathbb{P}^1\mathbb{F}_{q^n}$ by Möbius transformations in the usual sense (e.g. of [finite] upper half planes) — one agrees that σ fixes infinity, and that $\mathbb{P}^1\mathbb{F}_{q^d} \subset \mathbb{P}^1\mathbb{F}_{q^n}$ when d|n. Only $\xi = \frac{x}{y}$ matters: y may be chosen at will inside $\mathbb{F}_{q^n}^{\times}$, which corresponds to "multiplication by ζ^{a} " in the Introduction.

Therefore, N + 1 is just the number of orbits of $\mathbb{P}^1 \mathbb{F}_{q^n}$ under the group Frob × $\mathrm{PGL}_2(\mathbb{F}_q)$, of order $n(q^3 - q)$ (the extra "+1" corresponds to the orbit $\mathbb{P}^1 \mathbb{F}_q$, which must be discarded since we request $\xi \notin \mathbb{F}_q$). Apply the class equation: the number of orbits is the average number of fixed points, i.e.

$$N+1 = \frac{1}{n(q^3-q)} \sum_{k=0}^{n-1} N_k$$

where $N_k = \# \left\{ (\varphi, \xi) \in \operatorname{PGL}_2(\mathbb{F}_q) \times \mathbb{P}^1 \mathbb{F}_{q^n} \mid \varphi(\xi) = \sigma^k(\xi) \right\}$

FRANÇOIS GUÉRITAUD

Note that $\sigma^k(\xi) = \varphi(\xi)$ implies $\sigma^{k\nu}(\xi) = \varphi^{\nu}(\xi)$ for all $\nu \in \mathbb{Z}$, by a straightforward induction (the coefficients of $\varphi \in \mathrm{PGL}_2(\mathbb{F}_q)$ are fixed under σ). Since $\sigma^l(\xi)$ depends solely on the residue class of l modulo n, one sees that $\sigma^k(\xi)$ belongs to the orbit $\mathrm{PGL}_2(\mathbb{F}_q) \cdot \xi$ if and only if $\sigma^{k \wedge n}(\xi)$ does. If $\mathbb{1}_U$ denotes the characteristic function of a set U, then by writing

$$N_{k} = \sum_{\xi \in \mathbb{P}^{1}\mathbb{F}_{q^{n}}} |\mathrm{Stab}_{\mathrm{PGL}_{2}(\mathbb{F}_{q})}(\xi)| \, \mathbb{1}_{\mathrm{PGL}_{2}(\mathbb{F}_{q}) \cdot \xi}(\sigma^{k}(\xi))$$

we see immediately that $N_k = N_{k \wedge n}$. But for every divisor d of n, the number of values of k in $\{0, 1, \ldots, n-1\}$ such that $k \wedge n = d$ is exactly $\phi(\frac{n}{d})$. Therefore,

$$N+1 = \frac{1}{n(q^3-q)} \sum_{d|n} \phi\left(\frac{n}{d}\right) \sum_{\varphi \in \mathrm{PGL}_2(\mathbb{F}_q)} \#\left\{\xi \in \times \mathbb{P}^1 \mathbb{F}_{q^n} \mid \varphi(\xi) = \sigma^d(\xi)\right\}$$

Suppose that the order of φ does not divide $\frac{n}{d}$, i.e. $\varphi^{\frac{n}{d}} \neq 1$: then the relationship $\varphi(\xi) = \sigma^d(\xi)$ implies $\varphi^{\frac{n}{d}}(\xi) = \sigma^n(\xi) = \xi$, i.e. $\xi \in \text{Fix}(\varphi^{\frac{n}{d}}) = \text{Fix}(\varphi)$. The solutions are exactly the $\xi \in \text{Fix}(\varphi) \cap \text{Fix}(\sigma^d)$ that belong to $\mathbb{P}^1\mathbb{F}_{q^n}$: there may be either 0 or 1 or 2 of them; we will discuss the various possibilities below.

Proposition 4. Suppose, on the contrary, that $\varphi^{\frac{n}{d}} = 1$. Then the equation $\varphi(\xi) = \sigma^d(\xi)$, *i.e.*

$$\xi^{q^d} = \frac{\alpha \xi + \beta}{\gamma \xi + \delta} \; ,$$

has precisely $q^d + 1$ distinct solutions ξ in $\mathbb{P}^1 \mathbb{F}_{q^n}$.

Proof. (Fix representatives $\alpha, \beta, \gamma, \delta \in \mathbb{F}_q$.) The point $\xi = \infty$ is a solution if and only if $\gamma = 0$. As to finite solutions, they are the distinct roots of the polynomial

$$P := (\gamma X + \delta) X^{q^{a}} - (\alpha X + \beta)$$

in \mathbb{F}_{q^n} . Let

$$\mathcal{A} := \mathbb{F}_q[X] \left[\frac{1}{X - \eta} \right]_{\eta \in \mathbb{F}}$$

be the ring of rational functions whose denominator is split over \mathbb{F}_q , and let \mathcal{I} be the ideal of \mathcal{A} generated by P (i.e. by $X^{q^d} - \frac{\alpha X + \beta}{\gamma X + \delta}$). Whenever $X^{q^{\nu d}} - \varphi^{\nu}(X) \in \mathcal{I}$ and $\varphi^{\nu} = {\alpha' \beta' \choose \gamma' \delta'}$, the following elements all belong to \mathcal{I} :

$$\begin{aligned} (\gamma'X+\delta')X^{q^{\nu d}} &- (\alpha'X+\beta')\\ (\gamma'X^{q^d}+\delta')X^{q^{(\nu+1)d}} &- (\alpha'X^{q^d}+\beta')\\ \left(\gamma'\frac{\alpha X+\beta}{\gamma X+\delta}+\delta'\right)X^{q^{(\nu+1)d}} &- \left(\alpha'\frac{\alpha X+\beta}{\gamma X+\delta}+\beta'\right)\\ (\gamma'(\alpha X+\beta)+\delta'(\gamma X+\delta))X^{q^{(\nu+1)d}} &- (\alpha'(\alpha X+\beta)+\beta'(\gamma X+\delta))\\ X^{q^{(\nu+1)d}} &- \frac{\alpha'\left(\frac{\alpha X+\beta}{\gamma X+\delta}\right)+\beta'}{\gamma'\left(\frac{\alpha X+\beta}{\gamma X+\delta}\right)+\delta'}\\ X^{q^{(\nu+1)d}} &- \varphi^{\nu+1}(X) \,. \end{aligned}$$

Thus, by induction, $X^{q^n} \equiv \varphi^{\frac{n}{d}}(X) = X$ modulo \mathcal{I} , which means that $X^{q^d} - \frac{\alpha X + \beta}{\gamma X + \delta}$ divides $X^{q^n} - X$ (which has a simple zero at every point of \mathbb{F}_{q^n}) in \mathcal{A} . In other words, P has all its roots in \mathbb{F}_{q^n} , and they are all simple except possibly the ones belonging to \mathbb{F}_q .

Let ξ be a multiple root of P in \mathbb{F}_q : then $P(\xi) = P'(\xi) = 0$ and $\xi^q = \xi$ together yield

$$(\gamma\xi + \delta)\xi - (\alpha\xi + \beta) = 0 \gamma\xi - \alpha = 0$$

hence $\delta \xi - \beta = 0$ and finally

$$\left(\begin{array}{cc} \gamma & \alpha \\ \delta & \beta \end{array}\right) \left(\begin{array}{c} \xi \\ -1 \end{array}\right) = 0$$

which is impossible since $\varphi = \begin{pmatrix} \alpha \beta \\ \gamma \delta \end{pmatrix}$ is invertible. Therefore, all roots of P are simple and belong to \mathbb{F}_{q^n} . There are $q^d + 1$ of them, or exceptionally q^d when $\gamma = 0$ (but in that case we already had the solution $\xi = 0$). The Proposition is proved. \Box

Observation 5. The group $PGL_2(\mathbb{F}_q)$ is a union of the following subgroups, which pairwise meet only at the identity:

- (1) Groups conjugated to $\binom{1*}{01}$, of order q, numbering q+1 copies (characterized by their fixed slope), isomorphic to $(\mathbb{F}_q, +)$. Their nontrivial elements will be called trigonalizable; they fix exactly one point of $\mathbb{P}^1\mathbb{F}_q$.
- (2) Groups conjugated to $\binom{10}{0*}$, of order q-1, numbering $\frac{(q+1)q}{2}$ copies (choice of two fixed slopes), isomorphic to $\mathbb{F}_q^{\times} \simeq \mathbb{Z}/(q-1)\mathbb{Z}$. Their nontrivial elements shall be called diagonalizable; they fix exactly two points of $\mathbb{P}^1\mathbb{F}_q$.
- (3) Groups stabilizing a pair of conjugate points $\eta, \overline{\eta}$ of $\mathbb{P}^1 \mathbb{F}_{q^2} \setminus \mathbb{P}^1 \mathbb{F}_q$, numbering $\frac{q^2-q}{2}$ copies (choice of the pair $\{\eta, \overline{\eta}\}$), isomorphic to $\mathbb{Z}/(q+1)\mathbb{Z}$ (being contained in the cyclic group $\operatorname{Stab}_{\mathrm{PGL}_2(\mathbb{F}_{q^2})}(\eta, \overline{\eta}) \simeq \mathbb{F}_{q^2}^{\times}$ and acting freely transitively on $\mathbb{P}^1 \mathbb{F}_q$). Their nontrivial elements will be called eigenvector-free (in $\mathbb{P}^1 \mathbb{F}_q$, that is).

Indeed, each nontrivial element φ of $\mathrm{PGL}_2(\mathbb{F}_q)$ clearly belongs to a unique group from the list above, depending on where its fixed points lie in $\mathbb{P}^1\mathbb{F}_{q^2}$. Total cardinalities check out:

$$|\operatorname{PGL}_2(\mathbb{F}_q)| = q^3 - q = \underset{\text{identity}}{1} + (q-1)(q+1) + (q-2)\frac{(q+1)q}{2} + q\frac{q^2 - q}{2}$$

diagonalizable diagonalizable e.v.-free

(Note also the analogy with the classification of real Möbius transformations into parabolic, hyperbolic, and elliptic families according to the position of their fixed points in $\mathbb{P}^1\mathbb{C}$.) We may now write

$$N+1 = \frac{1}{n(q^3-q)} \times \sum_{d|n} \phi\left(\frac{n}{d}\right) \left(\sum_{\substack{\varphi \in \operatorname{PGL}_2(\mathbb{F}_q) \\ \varphi^{\frac{n}{d}} = 1}} (q^d+1) + \sum_{\substack{\varphi \in \operatorname{PGL}_2(\mathbb{F}_q) \\ \varphi^{\frac{n}{d}} \neq 1}} |\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\sigma^d) \cap \mathbb{P}^1 \mathbb{F}_{q^n}|\right)$$

Noticing that $\sum_{d|n} \phi(\frac{n}{d}) = n$ and $|\operatorname{PGL}_2(\mathbb{F}_q)| = q^3 - q$, and exchanging d with $\frac{n}{d}$, this amounts to

$$N = \frac{1}{n(q^3 - q)} \sum_{d|n} \phi(d) \left(\sum_{\substack{\varphi \in \operatorname{PGL}_2(\mathbb{F}_q) \\ \varphi^d = 1}} q^{\frac{n}{d}} + \sum_{\substack{\varphi \in \operatorname{PGL}_2(\mathbb{F}_q) \\ \varphi^d \neq 1}} |\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\sigma^{\frac{n}{d}}) \cap \mathbb{P}^1 \mathbb{F}_{q^n}| - 1 \right).$$

For all $d \in \mathbb{N}$, the number of elements φ of $\mathrm{PGL}_2(\mathbb{F}_q)$ such that $\varphi^d = 1$ is

$$\begin{array}{rcl} A_d & = & 1 & (\text{the identity}) \\ & & + \frac{q(q+1)}{2} \cdot [d \wedge (q-1) - 1] & (\text{diagonalizables}) \\ & & + \frac{q(q-1)}{2} \cdot [d \wedge (q+1) - 1] & (\text{eigenvector-free}) \\ & & + (q+1) \cdot [q-1] & (\text{trigonalizables}) \end{array}$$

or, rearranging the terms,

$$A_d = \frac{q(q+1)}{2} [d \wedge (q-1)] + \frac{q(q-1)}{2} [d \wedge (q+1)] - (q^2 - 1)_{\text{if } d \wedge q = 1}.$$

Among the $q^3 - q - A_d$ remaining elements φ , i.e. those satisfying $\varphi^d \neq 1$ (none of which is the identity!), the number $|\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\sigma^{\frac{n}{d}}) \cap \mathbb{P}^1 \mathbb{F}_{q^n}| - 1$ will be 0 if φ is trigonalizable, 1 if φ is diagonalizable, and $(-1)^{\frac{n}{d}}$ if φ is eigenvector-free. Thus, using the shorthand $d_{q\pm 1}$ for $d \wedge (q \pm 1)$, we get

$$N = \frac{1}{n(q^3 - q)} \sum_{d|n} \phi(d) \begin{pmatrix} \frac{q(q+1)}{2} \left[d_{q-1}q^{\frac{n}{d}} + (q - 1 - d_{q-1}) \right] \\ + \frac{q(q-1)}{2} \left[d_{q+1}q^{\frac{n}{d}} + (q + 1 - d_{q+1})(-1)^{\frac{n}{d}} \right] \\ - (q^2 - 1) \cdot q^{\frac{n}{d}} \\ \text{if } d \wedge q = 1 \end{pmatrix} .$$

Observe finally that $\frac{q(q+1)}{2}(q-1) + \frac{q(q-1)}{2}(q+1)(-1)^{\frac{n}{d}}$ equals $q^3 - q$ if $\frac{n}{d}$ is even (i.e. 2d|n) and 0 otherwise. The identity $\sum_{d|n} \phi(d) = n$ easily implies $\sum_{2d|n} \phi(d) = \frac{n}{2}$ if n is even and 0 otherwise, i.e. $\frac{1+(-1)^n}{4}n$ in general. It follows that

$$N = \frac{1 + (-1)^n}{4} + \frac{1}{n(q^3 - q)} \sum_{d|n} \phi(d) \begin{pmatrix} \frac{q(q+1)}{2} [d \land (q-1)](q^{\frac{n}{d}} - 1) \\ + \frac{q(q-1)}{2} [d \land (q+1)](q^{\frac{n}{d}} - (-1)^{\frac{n}{d}}) \\ -(q^2 - 1) \cdot q^{\frac{n}{d}} \\ \text{if } d \land q = 1 \end{pmatrix} .$$

For instance, when d is coprime to the numbers q - 1, q, q + 1 (i.e. to $q^3 - q$), then the term in parentheses equals $q^{\frac{n}{d}} - q$ (if $\frac{n}{d}$ is odd) or $q^{\frac{n}{d}} - q^2$ (if $\frac{n}{d}$ is even). For d arbitrary, the term in parentheses will be at least as large as these values. The case d = 1 gives the leading term (as in Corollary 2) : $N \underset{n \to \infty}{\sim} \frac{q^n}{n(q^3-q)}$, meaning that there is only a very small proportion of fixed points in the class equation.

We may simplify some fractions for concision:

$$N = \frac{1+(-1)^n}{4} + \sum_{d|n} \frac{\phi(d)}{n} \left(\frac{d \wedge (q-1)}{2} \frac{q^{\frac{n}{d}}-1}{q-1} + \frac{d \wedge (q+1)}{2} \frac{q^{\frac{n}{d}}-(-1)^{\frac{n}{d}}}{q+1} - \frac{q^{\frac{n}{d}}-1}{\text{if } d \wedge q=1} \right)$$
$$= \frac{\mathbb{1}_{2\mathbb{N}}(n)}{2} + \sum_{d|n} \frac{\phi(d)}{2\frac{n}{d}} \left(\frac{q^{\frac{n}{d}}-1}{d \vee (q-1)} - \frac{2q^{\frac{n}{d}}}{\frac{d}{d} \cdot q} + \frac{q^{\frac{n}{d}}-(-1)^{\frac{n}{d}}}{d \vee (q+1)} \right)$$

(the first expression is that of Theorem 3). One easily recovers Proposition 1 by specializing to q = 2 and using again the identity $\sum_{2d|n} \phi(d) = \frac{n}{2} \mathbb{1}_{2\mathbb{N}}(n)$ encountered

above.