COUNTING PLANES IN FINITE FIELDS

FRANÇOIS GUÉRITAUD

Abstract

On the field with 2^{n} elements, we count the number of relationships of the form $a+b+c=0$, modulo the group generated by the Frobenius automorphism and multiplication by nonzero elements: there are roughly $\frac{2^{n}}{6 n}$ relationships, meaning the group acts "mostly" freely on them. We also solve a similar counting problem on any finite field.

Keywords : finite upper half planes

Cnrs - UMR 8524

Laboratoire Paul-Painlevé, université de Lille 1 59655 Villeneuve d'Ascq Cédex, France
Francois.Gueritaud@math.univ-lille1.fr

1. Motivation : the addition table in $\mathbb{F}_{2^{n}}$.

Let ζ be a root of the irreducible polynomial $X^{6}+X+1$ on \mathbb{F}_{2} : the field with $2^{6}=64$ elements, \mathbb{F}_{64}, coincides with $\mathbb{F}_{2}[\zeta]$, and one can moreover show that ζ is primitive in \mathbb{F}_{64}^{\times}, i.e.

$$
\mathbb{F}_{64}^{\times}=\left\{\zeta^{-31}, \ldots, 1, \zeta, \ldots, \zeta^{31}\right\} \simeq(\mathbb{Z} / 63 \mathbb{Z},+)
$$

(just check that $\zeta^{63 / 3}$ and $\zeta^{63 / 7}$ are both different from 1).
Given $a, b \in \llbracket-31,31 \rrbracket$ distinct, how do we find c such that $\zeta^{a}+\zeta^{b}=\zeta^{c}$? (This "discrete logarithm" problem is thought to be computationally hard.) It is enough to treat the case $b=0$, up to multiplying by ζ^{b}. Discarding $a=0$, this leaves $2^{6}-2=62$ relationships to determine. For example, we already know that

$$
1+\zeta=\zeta^{6}
$$

One easily checks the following relationships:

$$
\begin{aligned}
1+\zeta^{-11} & =\zeta^{14} \\
1+\zeta^{9} & =\zeta^{-18} \\
1+\zeta^{21} & =\zeta^{-21}
\end{aligned}
$$

By applying the Frobenius automorphism σ (i.e. doubling all exponents), one finds more relationships. Multiplying by powers of ζ yields more still (e.g. the first one gives $1+\zeta^{-1}=\zeta^{5}$). In fact, the four relationships above are enough to determine all others in just this way. Indeed, if we write, next to each Frobenius iterate of a relationship, the values of a for which it lets us express $1+\zeta^{a}$, we find

$$
\begin{array}{c|c||c|c}
1+\zeta=\zeta^{6} & \pm 1, \pm 6, \pm 5 & 1+\zeta^{-11}=\zeta^{14} & \pm 11, \pm 14, \pm 25 \\
1+\zeta^{2}=\zeta^{12} & \pm 2, \pm 12, \pm 10 & 1+\zeta^{-22}=\zeta^{28} & \pm 22, \pm 28, \pm 13 \\
1+\zeta^{4}=\zeta^{24} & \pm 4, \pm 24, \pm 20 & 1+\zeta^{19}=\zeta^{-7} & \pm 19, \pm 7, \pm 26 \\
(\sigma \downarrow) & 1+\zeta^{8}=\zeta^{-15} & \pm 8, \pm 15, \pm 23 & \\
1+\zeta^{16}=\zeta^{-30} & \pm 16, \pm 30, \pm 17 & & \\
1+\zeta^{-31}=\zeta^{3} & \pm 31, \pm 3, \pm 29 & & \\
\hline 1+\zeta^{9}=\zeta^{-18} & \pm 9, \pm 18, \pm 27 & 1+\zeta^{21}=\zeta^{-21} & \pm 21
\end{array}
$$

(The last two relationships are sent to themselves by σ, up to some factor ζ^{ν} and a permutation of the terms. Every relationship is sent to itself by $\sigma^{6}=\operatorname{Id}_{\mathbb{F}_{64}}$, but
sometimes also by σ^{d} for d some divisor of 6 .) One can check that all numbers from ± 1 to ± 31 arise in the table.

If we replace $64=2^{6}$ with 2^{n}, how many relationships will it take to determine the full addition table of $\mathbb{F}_{2^{n}}$? How many of them have an orbit of length n (i.e. maximal) under σ ? A triple of exponents $\{a, b, c\}$ such that $\zeta^{a}+\zeta^{b}+\zeta^{c}=0$ is the same as a 2 -plane (on \mathbb{F}_{2}) within $\mathbb{F}_{2^{n}}$: namely the plane $\left\{0, \zeta^{a}, \zeta^{b}, \zeta^{c}\right\}$. One is thus led to compute the number N of orbits of such 2-planes, under the action of $\mathbb{F}_{2^{n}}^{\times} \rtimes$ Frob, where Frob $=\left\{1, \sigma, \ldots, \sigma^{n-1}\right\}$ denotes the Galois group. One finds the following values:

$$
\begin{array}{cccccccccccccc}
n= & 2 & 3 & 4 & 5 & \mathbf{6} & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \ldots \\
N= & 1 & 1 & 2 & 1 & 4 & 3 & 8 & 11 & 20 & 31 & 64 & 105 & \ldots
\end{array}
$$

Proposition 1. For all $n \geq 2$, the number $N(n)$ of orbits of relationships in $\mathbb{F}_{2^{n}}$ is

$$
N(n)=\frac{1}{6 n} \sum_{d \mid n} \phi(d)\left[2^{\frac{n}{d}}(1+\underset{i f}{3 \mid d} 3+\underset{i f}{3 \mid d} 2)+2(-1)^{\frac{n}{d}}\right]
$$

where $\nu \mid d$ (resp. $\nu \nmid d$) means that ν divides (resp. does not divide) d, and $\phi(d)$ is the number of integers comprime to d in $\{1, \ldots, d\}$ (Euler's totient function). A term such as " 3 if $2 \mid d$ "is by definition 3 if $2 \mid d$ and 0 otherwise.

This proposition will follow from an analogous count of orbits of planes in any finite field.

Corollary 2. For large n, one has $N \sim \frac{2^{n}}{6 n}$ and only o(N) Frobenius orbits have length $<n$.

Proof. Since $n=a b$ entails $\min \{a, b\} \leq \sqrt{n}$, every integer n has at most $2 \sqrt{n}$ divisors. Therefore, for any $\varepsilon>0$,

$$
\sum_{d \mid n} \phi(d) \cdot 2^{\frac{n}{d}} \leq 2^{\frac{n}{1}}+2 \sqrt{n} \cdot n \cdot 2^{\frac{n}{2}} \underset{n \rightarrow \infty}{=} 2^{n}+o\left(2^{n\left(\frac{1}{2}+\varepsilon\right)}\right)
$$

Thus, the term $d=1$ dominates in the formula of Proposition 1 ; in fact, the left half (roughly) of the digits of $N(n)$ coincide with those of $\frac{2^{n}}{6 n}$. The corollary follows (an orbit of length k yields up to $6 k$ relationships of the form $1+\zeta^{a}=\zeta^{c}$, by multiplication by ζ^{ν} and switching sides). In fact, for n prime ≥ 5 the formula yields $N(n)=\frac{2^{n}-2}{6 n}$ and all orbits have length exactly n.

2. The general problem

Let q be a prime power, and $n>1$ an integer. On the field \mathbb{F}_{q} we may construct a vector space $\left(\mathbb{F}_{q}\right)^{n}$ of dimension n, which contains exactly

$$
\frac{\left(q^{n}-1\right)\left(q^{n}-q\right)}{\left(q^{2}-1\right)\left(q^{2}-q\right)}
$$

2-planes, by a classical argument.
Now identify $\left(\mathbb{F}_{q}\right)^{n}$ with $\mathbb{F}_{q^{n}}$, the field with q^{n} elements. On this space (and its 2-planes), there is an action by the Frobenius automorphism (of order n) and the multiplicative group $\mathbb{F}_{q^{n}}^{\times}$(of order $q^{n}-1$). We shall count the number $N=N(q, n)$ of orbits of 2-planes under the action of the group

$$
\mathbb{F}_{q^{n}}^{\times} \rtimes \text { Frob }
$$

generated by these two transformations: if σ is the Frobenius map $X \mapsto X^{q}$, the semidirect product structure is given by $\left(u, \sigma^{k}\right)\left(v, \sigma^{l}\right)=\left(u \sigma^{k}(v), \sigma^{k+l}\right)$, and the action on $\mathbb{F}_{q^{n}}$ by $\left(u, \sigma^{k}\right) x=u \sigma^{k}(x)$.

Note for example that all 2-planes of the form $u \mathbb{F}_{q^{2}}$ (with $u \in \mathbb{F}_{q^{n}}^{\times}$and n being even) belong to the same orbit, of cardinality $\frac{q^{n}-1}{q^{2}-1}$.
Theorem 3. For all $n \geq 2$ one has:

$$
\begin{aligned}
N(q, n)=\frac{1+(-1)^{n}}{4}+\frac{1}{n} \sum_{d \mid n} \phi(d) & \left(\frac{d \wedge(q-1)}{2} \frac{q^{\frac{n}{d}}-1}{q-1}\right. \\
& \left.+\frac{d \wedge(q+1)}{2} \frac{q^{\frac{n}{d}-(-1)^{\frac{n}{d}}}}{q+1}-\underset{i f d \wedge q=1}{q^{\frac{n}{d}-1}}\right)
\end{aligned}
$$

where $d \wedge \nu$ denotes the largest common divisor of d and ν.
The rest of this note is devoted to proving this theorem (and its special case Proposition 1). For this, consider not the 2-planes, but the 2-planes endowed with a basis seen up to homothety. (A homothety is a multiplication by an element of \mathbb{F}_{q}^{\times}; note that multiplication by $u \in \mathbb{F}_{q^{n}}^{\times}$is generally not a homothety in this sense). The group $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ acts simply transitively on such projectivized bases and it will be enough to quotient out by this action. Thus, one has

$$
N=\left|\frac{\left\{\overline{(x, y)} \in\left(\mathbb{F}_{q^{n}}^{\times}\right)^{2} / \mathbb{F}_{q}^{\times} \left\lvert\, \frac{x}{y} \notin \mathbb{F}_{q}\right.\right\}}{\left(\mathbb{F}_{q^{n}}^{\times} / \mathbb{F}_{q}^{\times} \rtimes \operatorname{Frob}\right) \times \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)}\right|
$$

Here the action is given by

$$
\left(\mathbb{F}_{q}^{\times} u, \sigma^{k},\binom{\alpha \beta}{\gamma \delta}\right) \cdot \mathbb{F}_{q}^{\times}\binom{x}{y}=\mathbb{F}_{q}^{\times}\binom{u \sigma^{k}(\alpha x+\beta y)}{u \sigma^{k}(\gamma x+\delta y)}
$$

and it is a routine exercise to check that it is well-defined.
An element $g=\left(\mathbb{F}_{q}^{\times} u, \sigma^{k},\binom{\alpha \beta}{\gamma \delta}\right)$ will sometimes be written $g=([u], k, \varphi)$ for conciseness. There are $\frac{q^{n}-1}{q-1} n \frac{\left(q^{2}-1\right)\left(q^{2}-q\right)}{q-1}=n q(q+1)\left(q^{n}-1\right)$ possible values for g.

Fix $\overline{\binom{x}{y}} \in\left(\mathbb{F}_{q^{n}}^{\times}\right)^{2} / \mathbb{F}_{q}^{\times}$, and define $\xi:=\frac{x}{y} \in \mathbb{F}_{q^{n}} \backslash \mathbb{F}_{q}$. Consider the fixed-point equation in $g=([u], k, \varphi)$:

$$
\mathbb{F}_{q}^{\times}\binom{x}{y}=\mathbb{F}_{q}^{\times}\binom{u \sigma^{k}(\alpha x+\beta y)}{u \sigma^{k}(\gamma x+\delta y)} .
$$

For given k, φ, there exists at most one solution $u \in \mathbb{F}_{q^{n}}^{\times} / \mathbb{F}_{q}^{\times}$(namely the value $\left.u=\mathbb{F}_{q}^{\times} \frac{x}{\sigma^{k}(\alpha x+\beta y)}\right)$, and it does exist if and only if

$$
\frac{x}{y}=\frac{\sigma^{k}(\alpha x+\beta y)}{\sigma^{k}(\gamma x+\delta y)}
$$

or equivalently

$$
\xi=\sigma^{k}(\varphi(\xi))
$$

where $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right) \ni \varphi$ acts on $\mathbb{P}^{1} \mathbb{F}_{q^{n}}$ by Möbius transformations in the usual sense (e.g. of [finite] upper half planes) - one agrees that σ fixes infinity, and that $\mathbb{P}^{1} \mathbb{F}_{q^{d}} \subset \mathbb{P}^{1} \mathbb{F}_{q^{n}}$ when $d \mid n$. Only $\xi=\frac{x}{y}$ matters: y may be chosen at will inside $\mathbb{F}_{q^{n}}^{\times}$, which corresponds to "multiplication by ζ^{a} " in the Introduction.

Therefore, $N+1$ is just the number of orbits of $\mathbb{P}^{1} \mathbb{F}_{q^{n}}$ under the group Frob \times $\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right)$, of order $n\left(q^{3}-q\right)$ (the extra " +1 " corresponds to the orbit $\mathbb{P}^{1} \mathbb{F}_{q}$, which must be discarded since we request $\xi \notin \mathbb{F}_{q}$). Apply the class equation: the number of orbits is the average number of fixed points, i.e.

$$
\begin{aligned}
N+1 & =\frac{1}{n\left(q^{3}-q\right)} \sum_{k=0}^{n-1} N_{k} \\
\text { where } N_{k} & =\#\left\{(\varphi, \xi) \in \operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right) \times \mathbb{P}^{1} \mathbb{F}_{q^{n}} \mid \varphi(\xi)=\sigma^{k}(\xi)\right\} .
\end{aligned}
$$

Note that $\sigma^{k}(\xi)=\varphi(\xi)$ implies $\sigma^{k \nu}(\xi)=\varphi^{\nu}(\xi)$ for all $\nu \in \mathbb{Z}$, by a straightforward induction (the coefficients of $\varphi \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ are fixed under σ). Since $\sigma^{l}(\xi)$ depends solely on the residue class of l modulo n, one sees that $\sigma^{k}(\xi)$ belongs to the orbit $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right) \cdot \xi$ if and only if $\sigma^{k \wedge n}(\xi)$ does. If $\mathbb{1}_{U}$ denotes the characteristic function of a set U, then by writing

$$
N_{k}=\sum_{\xi \in \mathbb{P}^{1} \mathbb{F}_{q^{n}}}\left|\operatorname{Stab}_{\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)}(\xi)\right| \mathbb{1}_{\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right) \cdot \xi}\left(\sigma^{k}(\xi)\right)
$$

we see immediately that $N_{k}=N_{k \wedge n}$. But for every divisor d of n, the number of values of k in $\{0,1, \ldots, n-1\}$ such that $k \wedge n=d$ is exactly $\phi\left(\frac{n}{d}\right)$. Therefore,

$$
N+1=\frac{1}{n\left(q^{3}-q\right)} \sum_{d \mid n} \phi\left(\frac{n}{d}\right) \sum_{\varphi \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)} \#\left\{\xi \in \times \mathbb{P}^{1} \mathbb{F}_{q^{n}} \mid \varphi(\xi)=\sigma^{d}(\xi)\right\}
$$

Suppose that the order of φ does not divide $\frac{n}{d}$, i.e. $\varphi^{\frac{n}{d}} \neq 1$: then the relationship $\varphi(\xi)=\sigma^{d}(\xi)$ implies $\varphi^{\frac{n}{d}}(\xi)=\sigma^{n}(\xi)=\xi$, i.e. $\xi \in \operatorname{Fix}\left(\varphi^{\frac{n}{d}}\right)=\operatorname{Fix}(\varphi)$. The solutions are exactly the $\xi \in \operatorname{Fix}(\varphi) \cap \operatorname{Fix}\left(\sigma^{d}\right)$ that belong to $\mathbb{P}^{1} \mathbb{F}_{q^{n}}$: there may be either 0 or 1 or 2 of them; we will discuss the various possibilities below.

Proposition 4. Suppose, on the contrary, that $\varphi^{\frac{n}{d}}=1$. Then the equation $\varphi(\xi)=$ $\sigma^{d}(\xi)$, i.e.

$$
\xi^{q^{d}}=\frac{\alpha \xi+\beta}{\gamma \xi+\delta}
$$

has precisely $q^{d}+1$ distinct solutions ξ in $\mathbb{P}^{1} \mathbb{F}_{q^{n}}$.

Proof. (Fix representatives $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$.) The point $\xi=\infty$ is a solution if and only if $\gamma=0$. As to finite solutions, they are the distinct roots of the polynomial

$$
P:=(\gamma X+\delta) X^{q^{d}}-(\alpha X+\beta)
$$

in $\mathbb{F}_{q^{n}}$. Let

$$
\mathcal{A}:=\mathbb{F}_{q}[X]\left[\frac{1}{X-\eta}\right]_{\eta \in \mathbb{F}_{q}}
$$

be the ring of rational functions whose denominator is split over \mathbb{F}_{q}, and let \mathcal{I} be the ideal of \mathcal{A} generated by P (i.e. by $X^{q^{d}}-\frac{\alpha X+\beta}{\gamma X+\delta}$). Whenever $X^{q^{\nu d}}-\varphi^{\nu}(X) \in \mathcal{I}$ and $\varphi^{\nu}=\binom{\alpha^{\prime} \beta^{\prime}}{\gamma^{\prime} \delta^{\prime}}$, the following elements all belong to \mathcal{I} :

$$
\begin{aligned}
\left(\gamma^{\prime} X+\delta^{\prime}\right) X^{q^{\nu d}} & -\left(\alpha^{\prime} X+\beta^{\prime}\right) \\
\left(\gamma^{\prime} X^{q^{d}}+\delta^{\prime}\right) X^{q^{(\nu+1) d}} & -\left(\alpha^{\prime} X^{q^{d}}+\beta^{\prime}\right) \\
\left(\gamma^{\prime} \frac{\alpha X+\beta}{\gamma X+\delta}+\delta^{\prime}\right) X^{q^{(\nu+1) d}} & -\left(\alpha^{\prime} \frac{\alpha X+\beta}{\gamma X+\delta}+\beta^{\prime}\right) \\
\left(\gamma^{\prime}(\alpha X+\beta)+\delta^{\prime}(\gamma X+\delta)\right) X^{q^{(\nu+1) d}} & -\left(\alpha^{\prime}(\alpha X+\beta)+\beta^{\prime}(\gamma X+\delta)\right) \\
X^{q^{(\nu+1) d}} & -\frac{\alpha^{\prime}\left(\frac{\alpha X+\beta}{\gamma X+\delta}\right)+\beta^{\prime}}{\gamma^{\prime}\left(\frac{\alpha X+\beta}{\gamma X+\delta}\right)+\delta^{\prime}} \\
& \\
X^{q^{(\nu+1) d}} & -\varphi^{\nu+1}(X) .
\end{aligned}
$$

Thus, by induction, $X^{q^{n}} \equiv \varphi^{\frac{n}{d}}(X)=X$ modulo \mathcal{I}, which means that $X^{q^{d}}-\frac{\alpha X+\beta}{\gamma X+\delta}$ divides $X^{q^{n}}-X$ (which has a simple zero at every point of $\mathbb{F}_{q^{n}}$) in \mathcal{A}. In other words, P has all its roots in $\mathbb{F}_{q^{n}}$, and they are all simple except possibly the ones belonging to \mathbb{F}_{q}.

Let ξ be a multiple root of P in \mathbb{F}_{q} : then $P(\xi)=P^{\prime}(\xi)=0$ and $\xi^{q}=\xi$ together yield

$$
\begin{aligned}
(\gamma \xi+\delta) \xi-(\alpha \xi+\beta) & =0 \\
\gamma \xi-\alpha & =0
\end{aligned}
$$

hence $\delta \xi-\beta=0$ and finally

$$
\left(\begin{array}{ll}
\gamma & \alpha \\
\delta & \beta
\end{array}\right)\binom{\xi}{-1}=0
$$

which is impossible since $\varphi=\binom{\alpha \beta}{\gamma \delta}$ is invertible. Therefore, all roots of P are simple and belong to $\mathbb{F}_{q^{n}}$. There are $q^{d}+1$ of them, or exceptionally q^{d} when $\gamma=0$ (but in that case we already had the solution $\xi=0$). The Proposition is proved.

Observation 5. The group $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ is a union of the following subgroups, which pairwise meet only at the identity:
(1) Groups conjugated to $\binom{1 *}{01}$, of order q, numbering $q+1$ copies (characterized by their fixed slope), isomorphic to $\left(\mathbb{F}_{q},+\right)$. Their nontrivial elements will be called trigonalizable; they fix exactly one point of $\mathbb{P}^{1} \mathbb{F}_{q}$.
(2) Groups conjugated to $\binom{10}{0 *}$, of order $q-1$, numbering $\frac{(q+1) q}{2}$ copies (choice of two fixed slopes), isomorphic to $\mathbb{F}_{q}^{\times} \simeq \mathbb{Z} /(q-1) \mathbb{Z}$. Their nontrivial elements shall be called diagonalizable; they fix exactly two points of $\mathbb{P}^{1} \mathbb{F}_{q}$.
(3) Groups stabilizing a pair of conjugate points $\eta, \bar{\eta}$ of $\mathbb{P}^{1} \mathbb{F}_{q^{2}} \backslash \mathbb{P}^{1} \mathbb{F}_{q}$, numbering $\frac{q^{2}-q}{2}$ copies (choice of the pair $\{\eta, \bar{\eta}\}$), isomorphic to $\mathbb{Z} /(q+1) \mathbb{Z}$ (being contained in the cyclic group $\operatorname{Stab}_{\mathrm{PGL}_{2}\left(\mathbb{F}_{q^{2}}\right)}(\eta, \bar{\eta}) \simeq \mathbb{F}_{q^{2}}^{\times}$and acting freely transitively on $\mathbb{P}^{1} \mathbb{F}_{q}$). Their nontrivial elements will be called eigenvectorfree (in $\mathbb{P}^{1} \mathbb{F}_{q}$, that is).

Indeed, each nontrivial element φ of $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ clearly belongs to a unique group from the list above, depending on where its fixed points lie in $\mathbb{P}^{1} \mathbb{F}_{q^{2}}$. Total cardinalities check out:

$$
\left|\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)\right|=q^{3}-q=\underset{\text { identity }}{1}+\underset{\text { trigonalizable }}{(q-1)(q+1)}+\underset{\text { diagonalizable }}{(q-2) \frac{(q+1) q}{2}}+q \frac{q^{2}-q}{2}
$$

(Note also the analogy with the classification of real Möbius transformations into parabolic, hyperbolic, and elliptic families according to the position of their fixed points in $\mathbb{P}^{1} \mathbb{C}$.) We may now write

$$
\begin{aligned}
& N+1=\frac{1}{n\left(q^{3}-q\right)} \times \sum_{d \mid n} \phi\left(\frac{n}{d}\right)\left(\sum_{\substack{ \\
\varphi \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right) \\
\varphi^{\frac{n}{d}}=1}}\left(q^{d}+1\right)\right. \\
&\left.+\sum_{\substack{ \\
\varphi \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right) \\
\varphi^{\frac{n}{d} \neq 1}}}\left|\operatorname{Fix}(\varphi) \cap \operatorname{Fix}\left(\sigma^{d}\right) \cap \mathbb{P}^{1} \mathbb{F}_{q^{n}}\right|\right) .
\end{aligned}
$$

Noticing that $\sum_{d \mid n} \phi\left(\frac{n}{d}\right)=n$ and $\left|\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)\right|=q^{3}-q$, and exchanging d with $\frac{n}{d}$, this amounts to

$$
\begin{aligned}
& N=\frac{1}{n\left(q^{3}-q\right)} \sum_{d \mid n} \phi(d)\left(\sum_{\substack{\varphi \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right) \\
\varphi^{d}=1}} q^{\frac{n}{d}}\right. \\
&\left.+\sum_{\substack{\varphi \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right) \\
\varphi^{d} \neq 1}}\left|\operatorname{Fix}(\varphi) \cap \operatorname{Fix}\left(\sigma^{\frac{n}{d}}\right) \cap \mathbb{P}^{1} \mathbb{F}_{q^{n}}\right|-1\right)
\end{aligned}
$$

For all $d \in \mathbb{N}$, the number of elements φ of $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ such that $\varphi^{d}=1$ is

$$
\left.\right)
$$

or, rearranging the terms,

$$
A_{d}=\frac{q(q+1)}{2}[d \wedge(q-1)]+\frac{q(q-1)}{2}[d \wedge(q+1)]-\underset{\substack{\text { if } d \wedge q=1}}{\left(q^{2}-1\right)}
$$

Among the $q^{3}-q-A_{d}$ remaining elements φ, i.e. those satisfying $\varphi^{d} \neq 1$ (none of which is the identity!), the number $\left|\operatorname{Fix}(\varphi) \cap \operatorname{Fix}\left(\sigma^{\frac{n}{d}}\right) \cap \mathbb{P}^{1} \mathbb{F}_{q^{n}}\right|-1$ will be 0 if φ is trigonalizable, 1 if φ is diagonalizable, and $(-1)^{\frac{n}{d}}$ if φ is eigenvector-free. Thus, using the shorthand $d_{q \pm 1}$ for $d \wedge(q \pm 1)$, we get

$$
N=\frac{1}{n\left(q^{3}-q\right)} \sum_{d \mid n} \phi(d)\left(\begin{array}{c}
\frac{q(q+1)}{2}\left[d_{q-1} q^{\frac{n}{d}}+\left(q-1-d_{q-1}\right)\right] \\
+\frac{q(q-1)}{2^{2}}\left[d_{q+1} q^{\frac{n}{d}}+\left(q+1-d_{q+1}\right)(-1)^{\frac{n}{d}}\right] \\
-\left(q^{2}-1\right) \cdot q^{\frac{n}{d}} \\
\text { if } d \wedge q=1
\end{array}\right)
$$

Observe finally that $\frac{q(q+1)}{2}(q-1)+\frac{q(q-1)}{2}(q+1)(-1)^{\frac{n}{d}}$ equals $q^{3}-q$ if $\frac{n}{d}$ is even (i.e. $2 d \mid n)$ and 0 otherwise. The identity $\sum_{d \mid n} \phi(d)=n$ easily implies $\sum_{2 d \mid n}^{d} \phi(d)=\frac{n}{2}$ if n is even and 0 otherwise, i.e. $\frac{1+(-1)^{n}}{4} n$ in general. It follows that

$$
N=\frac{1+(-1)^{n}}{4}+\frac{1}{n\left(q^{3}-q\right)} \sum_{d \mid n} \phi(d)\left(\begin{array}{c}
\frac{q(q+1)}{2}[d \wedge(q-1)]\left(q^{\frac{n}{d}}-1\right) \\
+\frac{q(q-1)}{2^{2}}[d \wedge(q+1)]\left(q^{\frac{n}{d}}-(-1)^{\frac{n}{d}}\right) \\
-\left(q^{2}-1\right) \cdot q^{\frac{n}{d}} \\
\text { if } d \wedge q=1
\end{array}\right)
$$

For instance, when d is coprime to the numbers $q-1, q, q+1$ (i.e. to $q^{3}-q$), then the term in parentheses equals $q^{\frac{n}{d}}-q$ (if $\frac{n}{d}$ is odd) or $q^{\frac{n}{d}}-q^{2}$ (if $\frac{n}{d}$ is even). For d arbitrary, the term in parentheses will be at least as large as these values. The case $d=1$ gives the leading term (as in Corollary 2) : $N \underset{n \rightarrow \infty}{\sim} \frac{q^{n}}{n\left(q^{3}-q\right)}$, meaning that there is only a very small proportion of fixed points in the class equation.

We may simplify some fractions for concision:

$$
\begin{aligned}
N & =\frac{1+(-1)^{n}}{4}+\sum_{d \mid n} \frac{\phi(d)}{n}\left(\frac{d \wedge(q-1)}{2} \frac{q^{\frac{n}{d}-1}}{q-1}+\frac{d \wedge(q+1)}{2} \frac{q^{\frac{n}{d}-(-1)^{\frac{n}{d}}}}{q+1}-\underset{\text { if } d \wedge q=1}{q^{\frac{n}{d}-1}}\right) \\
& =\frac{\mathbb{1}_{2 \mathbb{N}}(n)}{2}+\sum_{d \mid n} \frac{\phi(d)}{2 \frac{n}{d}}\left(\frac{q^{\frac{n}{d}}-1}{d \vee(q-1)}-\underset{\text { if } d \wedge q=1}{d \cdot q}+\frac{2 q^{\frac{n}{d}}}{d \vee(q+1)}\right)
\end{aligned}
$$

(the first expression is that of Theorem 3). One easily recovers Proposition 1 by specializing to $q=2$ and using again the identity $\sum_{2 d \mid n} \phi(d)=\frac{n}{2} \mathbb{1}_{2 \mathbb{N}}(n)$ encountered above.

