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Abstract. We formulate a generalization of the volume conjecture for planar graphs.
Denoting by 〈Γ, c〉U the Kauffman bracket of the graph Γ whose edges are decorated by

real “colors” c, the conjecture states that, under suitable conditions, certain evaluations of

〈Γ, bkcc〉U grow exponentially as k →∞ and the growth rate is the volume of a truncated
hyperbolic hyperideal polyhedron whose one-skeleton is Γ (up to a local modification

around all the vertices) and with dihedral angles given by c. We provide evidence for it, by

deriving a system of recursions for the Kauffman brackets of planar graphs, generalizing
the Gordon-Schulten recursion for the quantum 6j-symbols. Assuming that 〈Γ, bkcc〉U
does grow exponentially these recursions provide differential equations for the growth
rate, which are indeed satisfied by the volume (the Schläfli equation); moreover, any

small perturbation of the volume function that is still a solution to these equations,

is a perturbation by an additive constant. In the appendix we also provide a proof
outlined elsewhere of the conjecture for an infinite family of planar graphs including the

tetrahedra.
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1. Introduction and basic definitions

1.1. The Volume Conjecture. The Volume Conjecture, initially formulated by R. Kashaev
[9] and then recast in terms of evaluations of colored Jones polynomials by Murakami and
Murakami [13], states that if k ⊂ S3 is a hyperbolic knot, and if Jn(A) ∈ Z(A±1) is the nth

colored Jones polynomial of the knot, normalized so that its value on the unknot is 1, then
1
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the following holds:

lim
n→∞

2π

n

∣∣∣∣log

(
Jn

(
exp

iπ

2n

))∣∣∣∣ = Vol(S3 \ k).

Here i ∈ C is a square root of −1, chosen once and for all.
The conjecture in the above form has been formally checked for the Figure Eight knot

[13], for torus knots [10] and their Whitehead doubles [25]. It was also generalized to links
and verified for the Borromean link [14] and later for infinite families of links and knotted
graphs in [23, 24]. Moreover, there is experimental evidence of its validity for the knots
63, 89 and 820 [15]. In [4], an extension of the conjecture was proposed to include the case
of links in connected sums of S2 × S1; this extension was proved for the infinite family of
“fundamental shadow links” contained in connected sums of copies of S2 × S1. In [6], a
further extension of the conjecture was proposed for links in arbitrary manifolds. Recently
another extension was proposed in [16].

One of the main difficulties of the conjecture is that in general it is difficult to understand
in sufficient detail the rigid geometric structure of the knot complement. To avoid this
problem, the first author formulated [2] a version of the conjecture for planar trivalent graphs
and outlined a proof of the conjecture for an infinite class of cases. The intersection of the
family of planar graphs with that of knots consists of the unknot, so the new conjecture is
actually a generalization in a new direction, in which the topology of the complement of the
graphs is easy (it is always a handlebody) and the geometry is rich (polyhedra can deform)
without being inaccessible. Indeed we show that under suitable combinatorial conditions the
asymptotical behavior of the invariants we consider is related to the hyperbolic volume of
the polyhedra whose one-skeleton is described by the graphs. Since a graph has more than
one edge, colored Jones polynomials are no longer sufficient to describe the full deformation
space of these polyhedra; so our conjecture deals with the natural generalization of these
invariants to graphs, namely the Kauffman brackets (also known as quantum spin networks).

1.2. Framework, notation, and results.

1.2.1. On hyperideal hyperbolic polyhedra. Let K3 ⊂ R3 be the open ball representing the
hyperbolic 3-space via the Klein model. Let P ⊂ R3 be a finite convex Euclidean polyhedron
such that each vertex wi of P lies in R3 \ K3 and each edge of P intersects ∂K3. Let Ci
be the cone from wi tangent to ∂K3 and πi be the half-space not containing wi such that
∂πi ∩ ∂K3 = Ci ∩ ∂K3. In all the paper we will assume that the 1-skeleton of P, denoted
P(1), is a trivalent graph.

Definition (Truncated hyperbolic hyperideal polyhedra). Given P as above the associated
truncated hyperideal hyperbolic polyhedron is P trunc := P ∩

⋂
i πi (see Figure 1). We will

say that a planar graph Γ ⊂ S2 is the 1-skeleton of P (or, with an abuse of notation, of
P trunc), if there is a homeomorphism mapping (S2,Γ) into (P(2),P(1)).

(Observe that (P trunc)(1) is homeomorphic to the graph obtained by replacing each vertex
of P(1) by a triangle as follows: .)

A geometric structure on a truncated hyperideal polyhedron P trunc is uniquely identified
by the exterior dihedral angles at the edges of P hence, if Γ = (P trunc)(1), by a map
γ : E(Γ) → (0, π], where E(Γ) is the set of edges of Γ. We denote A(P) the set of all
possible such angle structures; by a theorem of Bao and Bonahon [1] (see Section 2 for more
details), A(P) is a subset of (0, π]E cut out by a finite list of linear inequalities. (We are
including the dihedral angle π which corresponds to the case when an edge of P is tangent
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Figure 1. An example of P trunc (in this case, in red, a truncated tetrahe-
dron): remark that P trunc is compact unless one of the edges of P is tangent
to ∂K3.

to ∂K3, in which case the corresponding edge in P trunc reduces to an ideal point.) To specify
a geometric structure on P trunc we will write P trunc(γ) for some γ ∈ A(P).

If each edge of P intersects ∂K3 in 2 points (equivalently if γ(e) ∈ (0, π) for all edges) it
is easy to check that P trunc(γ) is a compact hyperbolic polyhedron whose edges are of two
kinds: those contained in the truncation faces (i.e. in ∪i(∂πi) ∩ P) and the remaining ones
which are contained in the edges of P. The latter edges of P trunc(γ) have well-defined finite
lenghts `i and exterior dihedral angles given by γi. Edges that are reduced to ideal points
(with γi = π) have length `i = 0. We will denote by Vol : A(P ) → R the function that
associates to each set of dihedral exterior angles γ ∈ A(P) the hyperbolic volume of the cor-
responding P trunc. It is well known that Vol : A(P)→ R is smooth and satisfies a differential
equation called the Schläfli formula, stating that d Vol = 1

2

∑
i `idγi. In particular,

(1) `i = 2
∂Vol(γ)

∂γi
.

Here is a paraphrase of the result we prove in Section 2.1:

Theorem 1.1. Let P trunc be a truncated hyperideal polyhedron.
a. For each face of P trunc there is an SL2(R)-valued equation satisfied by Vol : A(P)→

R of the form:

(2)
∏
i

(
ai(γ) bi(γ)
ci(γ) di(γ)

)(
cosh( `i2 ) sinh( `i2 )

sinh( `i2 ) cosh( `i2 )

)
= −Id

where i runs over all the edges of P contained in the face, `i = 2∂Vol(γ)
∂γi

are the edge

lengths of the interior edges of P trunc and ai, bi, ci, di are explicit smooth functions
of the dihedral angles of P adjacent to the face.

b. Moreover, if f : U → R is a function of class C1 defined on an open connected
subset U of A(P), that is close enough to Vol in the C1 sense and satisfies all the
SL2(R)-valued equations (2) associated to the faces of P, then f −Vol is a constant.

We stress that the definition of these equations is purely geometric and does not depend
on any quantum object. The equations as in (2) can be seen via (1) as polynomial equations
relating the exponentiated dihedral angles and exponentiated edge lengths of P trunc, or
alternatively, as partial differential equations satisfied by the volume function.

1.2.2. Invariants of framed graphs, statement of the conjecture and the main result. We turn
now to the statement of the volume conjecture for polyhedra.
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Definition (KTG). A Knotted Trivalent Graph (KTG) is a finite trivalent graph Γ ⊂ S3

equipped with a “framing”, i.e. an oriented surface retracting to Γ (seen up to isotopy fixing
Γ). We denote by V the set of vertices of Γ and E the set of edges.

Definition 1.2 (Admissible coloring). A coloring of Γ is a map c : E → N
2 (whose values

are called colors); it is admissible if for all v ∈ V , if ei, ej , ek ∈ E are the edges touching v,
the following conditions are satisfied:

a. c(ei) + c(ej) ≥ c(ek), c(ej) + c(ek) ≥ c(ei), c(ek) + c(ei) ≥ c(ej)
b. c(ei) + c(ej) + c(ek) ∈ N.

As we shall recall in Section 3, given a KTG Γ equipped with a coloring c there is an
associated invariant of isotopy of (Γ, c), called the unitary Kauffman bracket (or quantum
spin network), denoted 〈Γ, c〉U, valued in the space Hol of functions which are holomorphic
on the interior of the unit disc D ⊂ C and whose square is the restriction of a meromorphic
function on C (see Remark 3.7).

Definition (Real coloring). Given a sequence of colorings (cn)n∈N on Γ we define the real

coloring γ as the map γ : E → R given by γ(e) = limn→∞
cn(e)
n . We will always tacitly

assume that these limits exist for all e ∈ E, for all the sequences we shall consider. We will
also let γ : E → R be defined in terms of γ as

γ(e) = 2π(1− γ(e)), ∀e ∈ E.

Remark. Clearly γ satisfies weak triangular inequalities as in Definition 1.2–a. Conversely,
given a map γ : E → R satisfying strict triangular inequalities around vertices, one can
produce a sequence (cn(γ))n∈N of admissible colorings of Γ whose limit is γ by setting e.g.
(cn(γ))(e) := bγ(e)nc. Here and below we take bxc to be the greatest integer less than or
equal to x.

Definition (Evaluation). Let f be the restriction to D of a meromorphic function on C;
we denote by evn(f) the first nonzero coefficient of a Laurent series expansion of f around
A = exp( πi2n ).

More generally if f is a holomorphic function on D such that f2 extends meromorphically
to C, then we let evn(f) := ±

√
evn(f2) (in what follows only the modulus of evn will be

relevant to our computations).

Conjecture 1.3 (Volume Conjecture for polyhedra). Let Γ = P(1) and let γ : E → (0, π]
be the exterior dihedral angles of P. Let also γ := 1− γ

2π and (cn(γ))n∈N be the sequence of
integer colorings defined by cn(γ) = bnγc. Then the following limit holds:

lim
n→∞

π

n
log
∣∣evn〈Γ, cn(γ)〉U

∣∣ = Vol(P trunc(γ)).

The factor π instead of the usual 2π in the original volume conjecture can be explained
by viewing the polyhedron als one half of the geometric decomposition of the complement
of the planar graph. In the special case γ = π the above agrees with the conjecture in [24].

The following result, announced by the first author in [2], can be deduced from the results
in [3] but we provide a proof in the Appendix for the sake of self-containedness:

Theorem 1.4. Let Γ be a planar graph obtained from a tetrahedron by applying any finite
sequence of the local moves . Then Γ is the 1-skeleton of a hyperbolic ideal polyhedron
PΓ and for each γ ∈ A(PΓ) Conjecture 1.3 holds true.
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Unfortunately there are plenty of trivalent graphs which cannot be obtained as above
from a tetrahedron: e.g. the 1-skeleton of a cube. The main result of this paper is to provide
evidence for Conjecture 1.3 in these other cases. Let Γ = P(1) and γ ∈ A(P); let also

(cn(γ))n∈N be a sequence of colorings on Γ with limn→∞
cn(γ)
n = γ = 1− γ

2π . From now on
we will make the following assumption:

Assumption 1.5. There exists a function f : A(P) → R of class C1 such that for each
map δ : E(Γ) → {− 1

2 , 0,
1
2} satisfying the second condition of Definition 1.2 the following

limits hold:

lim
n→∞

lim
A→exp( iπ

2n )

〈Γ, cn(γ) + δ〉U

〈Γ, cn(γ)〉U
= exp

 ∑
ei∈E(Γ)

2δ(ei)
∂f

∂γi

 .

The limit can be seen as a form of C1 convergence of the growth rate of the evaluations
to the function f . Indeed, if evn (〈Γ, cn(γ)〉) ∼ exp(nf(γ)) for some regular function f :
A(P) → R and if the asymptotic approximation is itself regular enough, then the above
limit holds. (So, although exponential growth does not formally imply Assumption 1.5, it
does under suitable regularity hypotheses.)

So our main result below roughly says that if the growth of evaluations of quantum spin
networks with underlying graph Γ is exponential and well-behaved (Assumption 1.5), then
the growth rate resembles the volume. More precisely we have:

Theorem 1.6. Let Γ, P, γ and cn(γ) be as above and let f be the function whose existence

is supposed in Assumption 1.5. Letting `i = 2 ∂f
∂γi

, then for each face of P equation (2) is

satisfied.

By Theorem 1.1–b, this is a strong indication towards the fact that the growth rate
function f differs from the volume by at most a constant. Of course one of the main
questions left open by this work is whether Assumption 1.5 does hold, or at least under
which geometric or topological conditions it does.

The proof of Theorem 1.6 is based on the construction of a set of explicit recursion
relations which are satisfied by the invariants 〈Γ, cn〉. The existence of these recursions can
be proved in general via the techniques used in [8], but it is typically very hard to compute
it. We show that for planar graphs there is an easy way of producing such recursions
(see Proposition 4.3); in the special case when Γ = our recursions recover the well
known Gordon-Schulten recursion for 6j-symbols of Uq(sl2). Then we prove Theorem 1.6 by
studying the asymptotical behavior of the coefficients of these equations, which, surprisingly
enough, turn out to be strictly related to those of the geometric Equations (2).

1.2.3. Plan of the paper. Section 2 collects facts about hyperbolic polyhedra, including The-
orem 1.1. Section 3 contains the definitions and main properties of the quantum invariants
〈Γ, c〉U. The recursion relations satisfied by 〈Γ, c〉U are shown in Section 4; these are used
in Section 5 to prove Theorem 1.6. Finally in Appendix A we prove Theorem 1.4.

1.2.4. Acknowledgements. F.C. and F.G. were supported by the Agence Nationale de la
Recherche through the projects QuantumG&T (ANR-08-JCJC-0114-01) and DiscGroup
(ANR-11-BS01-013), ETTT (ANR-09-BLAN-0116-01) respectively. F.G. was also supported
by the Labex CEMPI (ANR-11-LABX-0007-01). RvV thanks the Netherlands organization
for scientific research (NWO).
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2. Geometry of hyperideal hyperbolic polyhedra

Let P and P trunc be as in Subsection 1.2.1 and let P∗ be the polyhedron dual to P and
E∗ = E(P∗) be its set of edges which is naturally in correspondence with E(P); in what
follows we will implicitly use this correspondence to translate a map γ : E(P) → (0, π] to
one γ∗ : E(P∗) → (0, π]. Let Γ be a planar graph and Γ∗ be its dual. A result of Steinitz
shows that Γ can be the one-skeleton of a convex polyhedron in R3 iff Γ∗ is 3-connected i.e.
it cannot be disconnected by deleting 0, 1 or 2 vertices. So we shall suppose from now on
that Γ is 3-connected.

The following theorem, proved by X. Bao and F. Bonahon (Theorem 1 of [1], see also
[19]), allows one to identify the set A(P) of possible angle structures on P trunc:

Theorem 2.1. A map γ : E(P)→ (0, π] is the set of exterior dihedral angles on a hyperbolic
hyperideal polyhedron combinatorially equivalent to P iff each simple closed curve c in the 1-
skeleton of P∗ satisfies

∑
e∈c γ

∗(e) > 2π, and each path c′ composed of edges of P∗ such that
∂c′ is contained in the closure of a single face of P∗ but c′ is not, satisfies

∑
e∈c′ γ

∗(e) > π,
where the sums run over the edges of P∗ contained in c (resp. c′). Such a map γ identifies
P trunc uniquely up to isometry.

Example 2.2 (The hyperideal tetrahedron). If P is a tetrahedron, then so is P∗ and if the
set of exterior dihedral angles on P is (α, β, γ) (on three edges adjacent to a vertex of P) and
(α′, β′, γ′) on the respective opposite edges, then the conditions for closed curves provided in
Theorem 2.1 impose the following inequalities:

α+ β + γ > 2π, α′ + β + γ′ > 2π, α′ + β′ + γ > 2π, α+ β′ + γ′ > 2π,(3)

α′ + α+ β′ + β > 2π, α′ + α+ γ + γ′ > 2π, β′ + β + γ + γ′ > 2π.(4)

But since all the angles are in (0, π], Condition (3) entails that the angles on any two
adjacent edges sum to more than π, which implies both (4) and the condition on non-closed
paths in Theorem 2.1. One also has α + β − γ > 0 (and similarly for all triples of angles
around a vertex).

2.1. Theorem 1.1–a: Geometric equations associated to faces of P. Let F ⊂ H2 ⊂
H3 be a compact, convex polygon with 2p edges and whose exterior angles are all π

2 . Let
v0, v1, . . . v2p = v0 be its vertices and let `j,j+1 = length(vjvj+1); let C(−−−−→vjvj+1) := C(`j,j+1)
where:

C(`) :=

(
cosh `

2 sinh `
2

sinh `
2 cosh `

2

)
, and let M :=

1√
2

(
1 −1
1 1

)
.

Proposition 2.3. The following holds:

2p−1∏
j=0

MC(−−−−→vjvj+1) := MC(−−−−−→v2p−1v0)MC(−−−−−−−→v2p−2v2p−1) · · ·MC(−−−→v0, v1) = −Id.

Proof. In the upper-half plane model of H2, up to isometry, we may suppose that v0 = i and
that the edge v0v1 is on the geodesic L connecting −1 and 1, that its points have negative
real part and finally that all the other vertices vi of the polygon F are contained in the
unit disc. The isometry represented by C(−−→v0v1) slides the edge along L until v1 = i, then
the matrix M applies a −π2 rotation with center i. This isometry has then moved v1 in the
same position as the initial position of v0 and we can iterate the process until v0 returns to
its initial position. The identity expresses the fact that these isometries overall describe the
identity map, the minus sign is due to the fact that we are working in SL2(R) thus a full
turn lifts to −Id. �
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Let us recall the second law of cosines for hyperbolic triangles:

Proposition 2.4 (Second law of cosines). Let γi, i = 1, 2, 3 be the exterior angles of a
hyperbolic triangle and `i be the lengths of the edges opposite to γi. If {i, j, k} = {1, 2, 3},
then

cosh(`i) =
cos(γj) cos(γk)− cos(γi)

sin(γj) sin(γk)
.

Let now P be a convex trivalent polyhedron in R3 whose truncation gives a hyper-
bolic hyperideal polyhedron P trunc, and let {vs} be the vertices of P trunc. Let λtrunc =
v0, v1, · · · , v2p = v0 be the boundary of a face of P trunc. To each edge −−−−→vsvs+1 of λtrunc we
may associate the hyperbolic length `s := `(−−−−→vsvs+1) ∈ R+ of −−−−→vsvs+1 and an external dihedral
angle γs := γ(−−−−→vsvs+1) ∈ (0, π] which is defined as π

2 if −−−−→vsvs+1 is a truncation edge (i.e. if s is
odd) and else it is the external dihedral angle at the edge vsvs+1 of P trunc. Furthermore, for
each truncation edge (odd s) we may define an “opposite angle” γ′s as the external dihedral
angle opposite to vsvs+1 in the truncation triangle containing vsvs+1.

Then the following holds (finishing 1.1–a):

Theorem 2.5. For each loop λ ⊂ P (1) which is the boundary of an oriented face,

p−1∏
j=0

MC

(
arccosh

cos(γ2j+2) cos(γ2j)− cos(γ′2j+1)

sin(γ2j) sin(γ2j+2)

)
MC(`2j,2j+1) = −Id.

Proof. It is a direct consequence of Proposition 2.3, once one computes the length of
−−−−−−−→v2j+1v2j+2 via Proposition 2.4. �

2.2. Theorem 1.1–b: Rigidity of functions satisfying face equations. Let Γ be
the one-skeleton of a polyhedron P and f : U → R be a smooth function defined on a
connected open subset U of A(P). We say that f satisfies the matrix-valued face equations

if, setting `i := 2 ∂f
∂γi

, the SL2(R)-valued equations described in Theorem 2.5 are satisfied

for all simple closed curves λtrunc in the 1-skeleton of P trunc formed by the boundaries of
the non-truncation faces of P trunc. The Schläfli formula (1) implies that Vol, in particular,
satisfies the matrix-valued face equations. The goal of this subsection is to check that any
function f close to Vol in the C1 sense that also satisfies the matrix-valued face equations,
is equal to Vol up to an additive constant.

This is a simple consequence of the rigidity of hyperideal polyhedra (Theorem 2.1).
Indeed, if the partial derivatives of f were different from those of Vol at a given point
γ ∈ (0, π]E(P), then f would define a small deformation Pf of the hyperideal polyhedron P
(with the same angles γ but different edge lengths), which is impossible.

More precisely, any function f as above allows us to define an (H3, Isom(H3))-structure
on a neighborhood of the polyhedron P trunc ⊂ R3 with dihedral angles γ, as follows. First,
let U1 and U2 be tubular neighborhoods of the 1- and 2-skeleta of P trunc in R3, respectively.
Endow P trunc with formal (real) edge lengths, given by `i = 2 ∂f

∂γi
at interior edges, and

by Proposition 2.4 (independently of f) at truncation edges. Let Ũ1 denote the universal

cover of U1. The above length data is enough to define a developing map Φ̃f : Ũ1 → H3

respecting all angles, edge lengths and framings, in the sense that Φ̃f takes the lift of the
loop around a 2p-gonal face F of P trunc to a path Ff formed of 2p coplanar segments in H3,
each orthogonal to the next. We may assume that Ff lies in H2 ⊂ H3.

The identity of Proposition 2.3, associated to the loop around the p-gonal face of P
containing F , implies that Ff closes up in H2, with the given edge lengths, to form a right-
angled planar 2p-gon (still denoted Ff ). Since Ff and FVol have nearly the same edge
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lengths, it follows that Ff bounds a convex right-angled 2p-gon of H2. As for truncation

triangles, they similarly close up under Φ̃f since Φ̃f assigns them the same angles and edge

lengths as truncation triangles of P trunc. Therefore Φ̃f decends to a map Φf : U1 → H3

which can be extended to the universal cover of U2. As U2 is simply connected, we actually
have a developing map Φf : U2 → H3. Since Φf and ΦVol are very close, it follows that Φf
(like ΦVol) defines a realization of ∂P trunc as the boundary of a convex truncated hyperideal
polyhedron P trunc

f . By rigidity of convex polyhedra, P trunc
f and P trunc are actually isometric

(via Φf ) and have in particular the same edge lengths, which means that f and Vol have
the same partial derivatives at γ, for all real tuples γ. Hence f − Vol is locally constant:
Theorem 1.1–b is proved.

3. Shadow-state formulation of 〈Γ, c〉

In this section we will recall the definition of quantum spin networks through their
“shadow-state formulas” (as these formulas will be used later on). We now fix a diagram D
of Γ such that the blackboard framing coincides with that of Γ (it is easy to check that it
exists), and an admissible coloring c on Γ, and recall how the Kauffmann bracket 〈Γ, c〉 is
defined. Let A ∈ C, q = A2, {n} := A2n −A−2n,

[n] := {n}/{1} , [n]! :=

n∏
j=1

[j] , [0]! := 1 ,

[
n
k

]
:=

[n]!

[k]![n− k]!

and similarly for multinomials. In order to be able later on to coherently choose branches
of square roots, we define ∆Hol(A) to be the set of functions which are holomorphic inside
the unit disk D and whose square extends to a meromorphic function on C. We define√

[k] ∈ ∆Hol(A) as the root of [k] which at A = 1 is
√
k and then we extend this choice

on products of quantum integers so that
√

[n]! :=
∏n
j=1

√
[j] and

√
1

[n]! := 1√
[n]!

. (Remark

that these square roots exist on D because [k] = A2−2k(
∑k−1
i=0 A

4i) and both terms admit a
square root on D).

Definition (Unknot). We define the value of the colored 0-framed unknot as follows:

a
:= (−1)2a[2a+ 1].

Let also

∆(a, b, c) :=

√
[a+ b− c]![b+ c− a]![c+ a− b]!

[a+ b+ c+ 1]!
.

The (unitary normalization of the) tetrahedron or 6j-symbol is then defined as follows:

Definition 3.1 (The tetrahedron or symmetric 6j-symbol). Let us define the value of the
admissibly colored tetrahedron embedded as a planar graph in R2 as:

(
a
bc

d

fe
)U

:= i2(a+b+c+d+e+f)∆(a, b, c)∆(a, e, f)∆(d, b, f)∆(d, e, c)(5)

×
k=minQj∑
k=maxTi

(−1)k
[

k + 1
k − T1, k − T2, k − T3, k − T4, Q1 − k,Q2 − k,Q3 − k, 1

]
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where T1 = a+b+c, T2 = a+e+f, T3 = d+b+f, T4 = d+e+c, Q1 = a+b+d+e, Q2 =
a+ c+ d+ f, Q3 = b+ c+ e+ f .

Definition 3.2 (The crossed tetrahedron). Let us define the value of the admissibly colored
tetrahedron, embedded in R3 as in the diagram below, by:

a

b
c

d

fe := i2(e+b−a−d)A2(e2+e+b2+b−a2−a−d2−d)

(
a
bc

d

fe
)U

Remark 3.3. If in formula (5) one color, say f , is 0 then the admissibility conditions force
e = a and d = b and, using also that a+ b+ c ∈ Z we get:(

a
bc

d

fe
)U

= i2a+2b
(√

[2a+ 1][2b+ 1]
)−1

which does in fact not depend on c.

The preceding formulas can be used as “building blocks” to define invariants of colored
KTG’s up to isotopy in R3: let (Γ, c) be a colored KTG, D ⊂ R2 be a diagram chosen so
that the framing of Γ coincides with the blackboard framing; let V,E be the sets of vertices
and edges of Γ, and C,F the sets of crossings and edges of D. Since each edge of D is a
sub-arc of one of Γ it inherits a coloring from c. Let the regions r0, . . . , rm of D be the
connected components of R2 \ D with r0 the unbounded one; we will denote by R the set
of regions and we will say that a region “contains” an edge of D or a crossing if its closure
does.

Remark 3.4. Applying an isotopy to D we can force any region to become the “unbounded”
one, denoted r0 above. We will exploit this freedom in the proof of Proposition 4.3.

Definition 3.5 (Shadow-state). A shadow-state s is a map s : R → N
2 such that s(r0) = 0

and whenever two regions ri and rj contain an edge f of D then s(ri), s(rj), c(f) form an
admissible triple as in Definition 1.2.

Given a shadow-state s, we can define its weight as a product of factors indexed by the
local building blocks of D i.e. the regions of D, the vertices of Γ, and the crossings. To define
these factors explicitly, in the following we will denote by a, b, c the colors of the edges of Γ
(or of D) and by u, v, t, w the values of a shadow-state on the regions (which with an abuse
of terminology we will call the shadow-states of the regions).

(1) If r is a region whose shadow-state is u and χ(r) is its Euler characteristic,

ws(r) :=
(

u

)χ(r)

=

(
(−1)2u{2u+ 1}

{1}

)χ(r)

(2) If v is a vertex of Γ colored by a, b, c and t, u, v are the shadow-states of the regions
containing it then

ws(v) :=
a
bc

t

vu

(3) If c is a crossing between two edges of G colored by a, b and u, v, t, w are the shadow-
states of the regions surrounding c then

ws(c) :=

w

t
a

u

bv
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From now on, to avoid a cumbersome notation, given a shadow-state s we will not explicitly
write the colors of the edges of each graph providing the weight of the local building blocks
of D as they are completely specified by the states of the regions and the colors of the edges
of Γ surrounding the block. Then we may define the weight of the shadow-state s as:

(6) w(s) =
∏
r∈R

χ(r) ∏
v∈V

∏
c∈C

.

Then, since the set of shadow-states of D is easily seen to be finite, we may define the 〈Γ, c〉U
as

〈Γ, c〉U :=
∑

s∈shadow states

w(s).

The following result was first proved by Reshetikhin and Kirillov [18] (see also [5] for a
skein theoretical proof) and shows that shadow state-sums provide a different approach to
the computation of the so-called “quantum spin networks” or “Kauffman brackets” in their
unitary normalizations 〈Γ, c〉U ∈ ∆Hol(A):

Theorem 3.6 (Shadow-state formula for Kauffman brackets.). 〈Γ, c〉U is a well defined
invariant up to isotopy of Γ. In particular, if Γ has a planar diagram D with respect to
which the framing of Γ is the blackboard framing, then formula (6) reduces to:

(7) 〈Γ, c〉U =
∑

s∈shadow states

∏
r∈R

χ(r) ∏
v∈V

.

Remark 3.7. (1) The above defined invariant coincides with the so-called “unitary
quantum spin network” defined and studied via recoupling theory in [11].

(2) For each graph Γ, (〈Γ, c〉U)2 is the restriction to D of a meromorphic function on

C whose poles are in the set {0, exp( iπp
q ), p, q ∈ Z}. Indeed a close inspection to

Formula (6) or (7) shows that the only odd powers of square roots appearing in
the expression are those associated to the colors of the edges of Γ, and thus can
be factored out of the whole sum in (7). (All other square roots arising from 6j-
symbols involve one edge color and two state parameters. Each such square root
appears twice: once for each endpoint of the edge.)

As an example we state a simple corollary that we will use often below. Its proof is a
simple application of the shadow state formula but can also be found in [12].

Corollary 3.8 (Triangle formula). Suppose Γ is a KTG such that three edges bound a flat
triangular disk. Then we have (representing Γ on the left hand side):

(8)

〈
a

c b
fe

d

〉U

=

〈
a
bc

d

fe
〉U 〈

a

c b

〉U

.

4. Recursion relations associated to faces of trivalent graphs

In [8], it was proved that the sequence of quantum spin networks associated to a link
(better known as its colored Jones polynomials) is holonomic, i.e. satisfies a set of recurrence
relations. More explicitly, if k ⊂ S3 is a knot, let Jn = 〈k, n−1

2 〉 be the sequence of its colored

Jones polynomials and extend it to a map J : Z→ C[A±1] by setting J1 = 1, J0 = 0, J−n =
−Jn. Let S = {f : Z → C[A±1]} and let L,M : S → S be defined as L(f)(n) = f(n + 1)
and M(f)(n) = A2nf(n). The following was proved in [8]:
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a0

a1

b0

a2

b1

b2b3

b4

b5

a3

a5

a4

D

Figure 2. Some of the notation for Proposition 4.3.

Theorem 4.1. There exists a polynomial QA(L,M) depending on k such that

QA(L,M)(J) = 0.

(Actually the above statement is weaker than the original one: we refer to [8] for full
details).

Even if the techniques of the above theorem may be adapted to prove similar statements
for general colored KTG invariants, for example along the lines of [7], it is difficult to make
this explicit in general. In this section, we shall consider the case when Γ is the 1-skeleton
of a polyhedron P and, given the embedded cycle ∂D ⊂ Γ formed by the boundary of a
face of P , we will provide a family of instances of these recursion polynomials. (Note that,
as there are now many “colors” given by the map c : E → N

2 , we should also expect many
recursions. Our technique can be easily generalised to any knotted trivalent graph Γ and
any cycle in Γ which is the boundary of a disc embedded in S3 \ Γ, but we won’t need this
level of generality here.)

Let Γ be a KTG which is the 1-skeleton of a polyhedron P. Let c : E → N
2 be an

admissible coloring on the edges of Γ. Let D ⊂ S3 \ Γ be an oriented disc isotopic to a face
of P. Fix an orientation of D, a basepoint p0 ∈ ∂D and denote by e0, . . . ep−1, ep = e0 the
edges contained in ∂D (numbered by walking along ∂D in the clockwise direction starting
from p0). Let ai, bi, i = 0 . . . p−1 be the colors respectively of ei and of the edge of Γ sharing
a vertex with ei, ei+1(mod p) (see Figure 2).

Definition 4.2 (Admissible perturbations). An admissible perturbation of the coloring c
of Γ around D is a map δ : {e0, . . . ep−1} → {± 1

2} such that the coloring c + δ (defined to
be equal to c on the edges outside ∂D and to be ei 7→ ai + δ(ei), i = 0, . . . p − 1 on ∂D) is
admissible.

We consider the following proposition as a “quantum version” of Proposition 2.3:

Proposition 4.3 (Circle recursions). For any pair (δ(e0), δ(ep−1)) ∈ {± 1
2}

2, the following
holds:

(9)
∑
δ

k(c, δ)〈Γ, c+ δ〉U = Z(c, δ(e0), δ(ep−1))〈Γ, c〉U

where δ ranges over all admissible perturbations of c around D whose value on e0 and ep−1

are respectively δ(e0), δ(ep−1), and the functions Z(c, δ(e0), δ(ep−1)) and k(c, δ) are defined
as follows (here to keep the notation light we shall write δi for δ(ei) and a′i for ai + δi).
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Define Z(c, δ(e0), δ(ep−1)) = V(p− 1) and k(c, δ) =
∏p−2
i=0 V(i) in terms of the quotient V:

(10) V(j) :=

aj
bj aj+1
a′j+1

1
2a′j

a′j
bj a′j+1
a′j+1

0a′j
.

Proof. Let Γ′ = Γ′(δ0, δp−1) be the colored planar graph obtained by modifying Γ around
e0 ∩ ep−1 as follows:

(11)
bp−1

a0 ap−1
D

−→
bp−1

a0 ap−1

a′p−1a′0

1/2

where in the picture both the framings of Γ and Γ′ are supposed to be the blackboard
framings. We will call r0 the region bounded by the small triangle created by the move, and
let r′0 be its complement in D.

The idea of the proof is to express 〈Γ′〉U in terms of 〈Γ, c+ δ〉U two ways. First directly
using the triangle formula (8). Second by applying the shadow state formula (7) with region
r0 having the role of the “unbounded” region and comparing it to the similar state sum for
various colorings of 〈Γ〉.

If we multiply (9) by the denominator Z ′ of Z then the right hand side becomes

a′0
a′p−1 bp−1
ap−1

a0
1
2 〈Γ, c〉U = 〈Γ′〉U,

using (8). The proof is finished once we show that the left hand side of the same equation
equals the expression of 〈Γ′〉U in terms of the shadow state formula with distinguished region
r0. In other words we compute 〈Γ′〉U by stipulating the triangular region r0 to be the one
carrying shadow state 0. Let RΓ′ be the set of all regions of Γ′. The region r′0 is a disc
and its only admissible shadow state is 1

2 . Moreover in a neighborhood of r′0 we will see one
region r∗i ∈ RΓ′ for each edge ei (∂r∗i contains ei, and r∗i ∩ r0 = ∅ unless i = p− 1 or i = 0,
in which case the intersection is one of the edges of r0, colored respectively by a′p−1 and by
a′0).

We have 〈Γ′〉U =
∑

shadow states w
′(s) where w′(s) is the weight of the shadow state

s : RΓ′ → N
2 for Γ′. Observe that the only admissible shadow-states of r∗i are a′i = ai + δi

with δ admissible (as in the statement). So we may also write:

〈Γ′〉U =
∑
δ

∑
s∈S(δ)

w′(s) =
∑
δ

w′(δ)

where for each perturbation δ we let S(δ) be the set of all the shadow-states whose values
on regions r∗i are a′i = ai + δi for all i ∈ {0, . . . p− 1} and w′(δ) :=

∑
s∈S(δ) w

′(s). We claim

that w′(δ) = 〈Γ, c+ δ〉Uk(c, δ)Z ′ for all admissible δ, which (by summing over δ) will finish
the proof, since Z ′ is independent of δ.

Indeed, fix δ. By the shadow-state formula (7) applied to Γ with the region D colored by
0, one sees that 〈Γ, c+δ〉U =

∑
s∈S(δ) w(s) is a state-sum over the same set S(δ) of colorings

(of RΓ r {D} ' RΓ′ r {r0, r
′
0}) as 〈Γ′〉U is — the colorings being extended to be 0 on D

instead of 1
2 on r′0 and 0 on r0. Thus the only difference is in the weights associated to r′0
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and to the vertices contained in ∂D. More explicitly we claim that for any s ∈ S(δ) one has
w′(s)
w(s) = k(c, δ)Z ′ (independent of s). Indeed the weights differ only by the vertices touching

D and by the presence of the weight of the region r′0 (which is −[2]):

w′(s) = −[2]
1
2

a′0 a0

a′0

1
20 1

2
a′p−1

ap−1

a′p−1

1
20 0

a′p−1
a′p−1

bp−1

a′0a′0
p−2∏
i=0

ai
bi ai+1
a′i+1

1
2a′i × [off-D terms]

w(s) =
0

a′p−1
a′p−1

bp−1

a′0a′0
p−2∏
i=0

a′i
bi a′i+1
a′i+1

0a′i × [off-D terms].

Taking the ratio (all the symbols represent nonzero functions in ∆Hol(A)) and using Remark
3.3, we get:

w′(s)

w(s)
= −[2]

1
2

a′0 a0

a′0

1
20 1

2
a′p−1

ap−1

a′p−1

1
20 0

a′p−1
a′p−1

bp−1

a′0a′0

0
a′p−1

a′p−1

bp−1

a′0a′0

p−2∏
i=0

ai
bi ai+1
a′i+1

1
2a′i

a′i
bi a′i+1
a′i+1

0a′i

= Z ′k(c, δ)

by definition of Z ′ and k(c, δ). Multiplying by w(s) and summing over s ∈ S(δ) gives the
desired identity. �

To illustrate our recursions consider the simplest case of a triangular face p = 3. We
recover the well-known three-term recursion for the 6j-symbol named after Gordon and
Schulten [20]. As the proof shows, the Gordon-Schulten recursion factorizes into two in-
stances of the circle recursion, suggesting that the circle recursion is more fundamental.

Corollary 4.4 (Gordon-Schulten recursion). Let e0, e1, e2 be a triangular face of Γ and
define the edge coloring 1i by 1i(ej) = δi,j. Also define δ± = 1

2 (10 ± 11 + 12).∑
±

k(c, δ±)k(c+ δ±,−δ∓)

Z(c+ δ±,
−1
2 ,
−1
2 )

〈Γ, c± 11〉U =

(
−Z(c,

1

2
,

1

2
) +

∑
±

k(c, δ±)k(c+ δ±,−δ±)

Z(c+ δ±,
−1
2 ,
−1
2 )

)
〈Γ, c〉U

Proof. For ε ∈ {−1, 1} the only two admissible perturbations δ with δ(e0) = δ(e2) = ε
2 are

εδ±. Hence the circle recursion reads:∑
±
k(c, εδ±)〈Γ, c+ εδ±〉U = Z(c,

ε

2
,
ε

2
)〈Γ, c〉U.

Applying the recursion for ε = −1 to both terms on the left hand side of the recursion for
ε = 1 yields the result. �

The coefficients of the recursion may be written out explicitly using the formulae in the
next section but as we make no further use of this example we have not printed them here.
See for example [21], Prop. 4.1.1.
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5. Proof of Theorem 1.6

Let us fix the notation for all this section. Let Γ be the 1-skeleton of a hyperbolic,
hyperideal polyhedron P and let γi : E(P)→ (0, π] be the exterior dihedral angles of P. Let
also λ ⊂ Γ be an embedded oriented curve forming the boundary of a face D of P and λtrunc

be the associated curve in P trunc, e0, e1, . . . ep−1 be the sequence of edges of Γ contained in λ
and v0, v1, . . . v2p−2, v2p−1 be the vertices of P trunc contained in λtrunc so that −−−−−→v2iv2i+1 ⊂ ei.

We will consider a sequence c(n) of N-valued colorings on Γ such that for each edge,

limn→∞
c(n)(ei)

n = 1 − γi
2π (and so in particular c(n)(ei) ∈ [n2 , n) definitely). Finally we will

let ai := c(n)(ei) (suppressing the n from the notation with a little abuse) and let bi be the
color of the edge of Γ sharing a vertex with ei and ei+1 with respect to the coloring c(n).
Our goal is to relate the recurrence equations provided by Proposition 4.3 to the geometric
equations associated by Proposition 2.3 to λtrunc.

5.1. Asymptotical behavior of recursion coefficients. Let us compute explicitly the
values of the coefficients k(c, δ) of Proposition 4.3. Using formula (5), we get that V(j) from
(10) is a matrix whose rows and columns are indexed respectively by δ(ej), δ(ej+1) ∈ {± 1

2},
namely:

V(j) = ifδj = 1
2 ifδj = − 1

2

ifδj+1 = 1
2 i−1

√
[1+aj+aj+1−bj ][2+aj+aj+1+bj ]

[2+2aj ][2+2aj+1] i
√

[1−aj+aj+1+bj ][−aj+1+aj+bj ]
[2aj ][2aj+1+2]

ifδj+1 = − 1
2 i

√
[1+aj−aj+1+bj ][aj+1−aj+bj ]

[2aj+2][2aj+1] i
√

[aj+aj+1−bj ][aj+aj+1+bj+1]
[2aj ][2aj+1]

where, as explained in Section 3, we chose the square roots by stipulating that for all k ∈ N,√
[k] was

√
k at A = 1, and so by holomorphicity

√
[k] is a positive real number on the arc

A = exp(iθ) for θ ∈ [0, πk ) and it is a positive real multiple of −i on θ ∈ (πk ,
2π
k ). Equivalently,

if A = exp( iπ
2n ) then

√
[k] ∈ R+ if k < n and it is a positive real multiple of −i if k ∈ (n, 2n).

Let us now compute the asymptotical behavior of the recursion coefficients found in the
table above when we evaluate at A = exp( iπ

2n ). By hypothesis there exist angles γj , γj+1, βj ∈
[0, π) such that

lim
n→∞

2π(1− aj
n

) = γj , lim
n→∞

2π(1− aj+1

n
) = γj+1, and lim

n→∞
2π(1− bj

n
) = βj

(and so in particular aj , bj , aj+1 ∈ [n2 , n)). Remark that since these angles satisfy Bonahon
and Bao’s conditions, one has βj +γj +γj+1 > 2π, and replacing this to compute the square
roots of the evaluation of the above quantum integers we get:

evn

(√
[2aj ]

)
∼ evn

(√
[2 + 2aj ]

)
∼ −i

√
sin(γj)

sin(πn )
,

evn

(√
[2aj+1]

)
∼ evn

(√
[2 + 2aj+1]

)
∼ −i

√
sin(γj+1)

sin(πn )

evn

(√
[aj − aj+1 + bj ]

)
∼ evn

(√
[1 + aj − aj+1 + bj ]

)
∼

√
sin(

γj
2 −

γj+1

2 +
βj
2 )

sin(πn )

evn

(√
[1 + aj + aj+1 + bj ]

)
∼ evn

(√
[2 + aj + aj+1 + bj ]

)
∼ −i

√
| sin(

γj
2 +

γj+1

2 +
βj
2 )|

sin(πn )
,
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where the symbol fn ∼ gn stands for limn→∞
fn
gn

= 1. Then the matrix V(j) is asymptotically

equivalent to:√| sin γj+γj+1−βj
2 sin

γj+γj+1+βj
2 | −i

√
sin

γj−γj+1+βj
2 sin

γj+1−γj+βj
2

−i
√

sin
γj−γj+1+βj

2 sin
γj+1−γj+βj

2 −
√
| sin γj+γj+1−βj

2 sin
γj+γj+1+βj

2 |


√

sin(γj) sin(γj+1)
.

A straightforward computation shows that

(12) evn (V(j)) ∼ R S(j)√
sin(γj) sin(γj+1)

R−1U

where

S(j) =

 √
sin(

γj−γj+1+βj
2 ) sin(

γj+1−γj+βj
2 )

√
− sin (

γj+γj+1−βj
2 ) sin(

γj+γj+1+βj
2 )√

− sin (
γj+γj+1−βj

2 ) sin(
γj+γj+1+βj

2 )
√

sin(
γj−γj+1+βj

2 ) sin(
γj+1−γj+βj

2 )


and

R :=

(
exp( iπ

4 ) 0
0 exp(− iπ

4 )

)
, U :=

(
0 −i
−i 0

)
.

Lemma 5.1. The following holds:

S(j)√
sin(γj) sin(γj+1)

= C(`2j+1,2j+2) =

(
cosh(

`2j+1,2j+2

2 ) sinh(
`2j+1,2j+2

2 )

sinh(
`2j+1,2j+2

2 ) cosh(
`2j+1,2j+2

2 )

)
where `2j+1,2j+2 is the length of the edge opposite to the angle βj in a hyperbolic triangle
whose exterior dihedral angles are γj , γj+1, βj, or, equivalently, is the length of the edge
−−−−−−−→v2j+1v2j+2 in P trunc.

Proof. Remark that, by the inequalities examined in Example 2.2, all the arguments of
the square roots in the coefficients of Sj are positive. Moreover a direct computation shows

det(Sj) = sin(γj) sin(γj+1) > 0. So M :=
Sj√

sin(γj) sin(γj+1)
∈ SL2(R) is a real positive matrix

fixing ±1 ∈ ∂∞H2; hence it represents a hyperbolic translation of a certain length λ ∈ R+,
and has the form M = C(λ). Identifying diagonal terms of C(λ) yields

cosh λ
2 =

√
sin

γj−γj+1+βj
2 sin

γj+1−γj+βj
2

sin γj sin γj+1
hence coshλ =

cos γj cos γj+1 − cosβj
sin γj sin γj+1

.

This equals cosh(`2j+1,2i+2) by Proposition 2.4, so λ = `2j+1,2i+2. �

Putting Lemma 5.1 and Equation (12) together we get:

Proposition 5.2. The following limit holds:

lim
n→∞

evn(V(j)) = RC(`2j+1,2j+2)R−1U.

Hence, letting k(cn, δ) be as defined in Proposition 4.3 and denoting by Xδ,δ′ the entry at
row δ and column δ′ of any given matrix X, the following holds:

lim
n→∞

evn(k(cn, δ)) =

p−1∏
j=0

(
RC(`2j+1,2j+2)R−1U

)
δ(ej),δ(ej+1)

. �
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Similarly, evaluating the Z(cn, δ(e0), δ(ep−1)) of Proposition 4.3, we get:

Z = ifδ(e0) = 1
2 ifδ(e0) = − 1

2

ifδep−1
= 1

2 i−1
√

[1+a0+ap−1−bp−1][2+a0+ap−1+b0]
[2+2a0][2+2ap−1] i

√
[1−ap−1+a0+bp−1][−a0+ap−1+bp−1]

[2a0][2ap−1+2]

ifδep−1 = − 1
2 i

√
[1+ap−1−a0+bp−1][a0−ap−1+bj ]

[2a0+2][2ap−1] i
√

[a0+ap−1−bp−1][a0+ap−1+b0+1]
[2ap−1][2a0]

and arguing exactly as in the preceding case we get the following:

Lemma 5.3. We have the following asymptotic behavior:

lim
n→∞

evn(Z(cn, δ(e0), δ(ep−1))) = R

(
cosh(

`p−1,0

2 ) sinh(
`p−1,0

2 )

sinh(
`p−1,0

2 ) cosh(
`p−1,0

2 )

)
R−1U

where `p−1,0 is the length of the edge opposite to the angle βp−1 in the hyperbolic triangle
whose exterior dihedral angles are γ0, γp−1, βp−1.

5.2. Proof of Theorem 1.6. To each edge of λtrunc we associate its length `j,j+1 :=
`(−−−−→vjvj+1), ∀j ∈ {0, 1, . . . 2p− 1} and, as in Section 2.1, let :

C(−−−−→vjvj+1) :=

(
cosh

`j,j+1

2 sinh
`j,j+1

2

sinh
`j,j+1

2 cosh
`j,j+1

2

)
, M :=

1√
2

(
1 −1
1 1

)
.

Furthermore, suppose that Assumption 1 holds for the sequence 〈Γ, cn〉U and let f :
A(P) → C be the function of class C1 whose existence is postulated by the assumption.
Then for each j ∈ {0, . . . , p − 1} we associate to the segment −−−−−→v2jv2j+1 the “asymptotic

quantum length” 2 ∂f
∂γj

and a diagonal matrix as follows:

Q(−−−−−→v2jv2j+1) =

(
∂f
∂γj

0

0 − ∂f
∂γj

)
.

Theorem 5.4. The function f satisfies the following matrix-valued differential equation:

p−1∏
j=0

MC(−−−−−−−→v2j+1v2j+2)MQ(−−−−−→v2jv2j+1) = −Id

Moreover if V (γ) : A(P) → R is the hyperbolic volume of P trunc then V also satisfies the
above equations.

Proof. Fix values δ(e0), δ(ep−1) ∈ {± 1
2}. By Proposition 4.3 the following recursion relations

are satisfied: ∑
δ

k(cn, δ)〈Γ, cn + δ〉U = Z(cn, δ(e0), δ(ep−1))〈Γ, cn〉U

where the sum is taken over all the admissible perturbations δ of cn around the face D of P
bounded by λ and whose values on e0 and ep−1 are δ(e0), δ(ep−1) (see Definition 4.2). By
letting δ(e0) and δ(ep−1) range over {± 1

2} the above equation can be viewed as a single,

2 × 2-matrix valued equation. By Assumption 1.5, if we divide the equation by 〈Γ, cn〉U,
evaluate at A = exp( iπ

2n ) (using Lemma 5.1) and take the limit n→∞, then we get:∑
δ

lim
n→∞

evn(k(cn, δ)) exp (2δi
∂f

∂γi
) = lim

n→∞
evn(Z(cn, δ(e0), δ(ep−1)).

By Lemma 5.3, the right hand side can be recognized as RC(−−−−→vp−1v0)R−1U .
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Using Proposition 5.2 we realize that the above equality can be expressed as:

Q(−−−−−−−→v2p−2v2p−1)

p−2∏
i=0

RC(−−−−−−−→v2i+1v2i+2)R−1UQ(−−−−−→v2iv2i+1) = RC(−−−−−→v2p−1v0)R−1U.(13)

Now observe that a straightforward computation shows the following:

R−1UQ(−−−−−→v2iv2i+1)R = MC(−−−−−→v2iv2i+1)M.

Replacing this in (13) and simplifying we get

MC(−−−−−−−→v2p−2v2p−1)M

p−2∏
i=0

C(−−−−−−−→v2i+1v2i+2)MC(−−−−−→v2iv2i+1)M = R−1URC(−−−−−→v2p−1v0)R−1UR.

Finally a last computation shows that

R−1URC(−−−−−→v2p−1v0)R−1UR = − (C(−−−−−→v2p−1v0))
−1

and thus we conclude by multiplying on the right by C(−−−−−→v2p−1v0). The fact that the same
equation is satisfied by Vol(P trunc) is a consequence of the Schläfli formula and of Theorem
2.5. �

Appendix A. Proof of Theorem 1.4

A.1. Volumes of hyperideal hyperbolic tetrahedra. In [17] J. Murakami and M. Yano
found a formula for the hyperbolic volume of a hyperbolic compact tetrahedron and the
formula was later shown by A. Ushijima to hold also for truncated tetrahedra (i.e. the
compact polyhedra obtained by truncating hyperideal tetrahedra as explained in Subsection
1.2). We now recall this formula.

With the notation of Example 2.2 for the dihedral angles of a tetrahedron, let A,B,C and
A′, B′, C ′ be respectively− exp(−iα),− exp(−iβ),− exp(−iγ) and− exp(−iα′), − exp(−iβ′),

− exp(−iγ′) 1. Let Li2(z) :=
∫ z

0
log(1−t)
−t dt =

∑
n>0

zn

n2 be the dilogarithm function (well-

defined on C \ [1,∞)) and Λ(x) :=
∫ x

0
− log |2 sin t|dt. Define

U(z) :=
1

2

(
Li2(z) + Li2(zABA′B′) + Li2(zACA′C ′) + Li2(zBCB′C ′)(14)

−Li2(−zABC)− Li2(−zAB′C ′)− Li2(−zA′BC ′)− Li2(−zA′B′C)
)

∆(x, y, z) :=
−1

4

(
Li2(−xy

z
) + Li2(−yz

x
) + Li2(−zx

y
)(15)

+Li2(− 1

xyz
) + (log(x))2 + (log(y))2 + (log(z))2

)
V (z) := ∆(A,B,C) + ∆(A,B′, C ′) + ∆(A′, B,C ′) + ∆(A′, B′, C)

+
1

2
(log(A) log(A′) + log(B) log(B′) + log(C) log(C ′)) + U(z).

1In [17] internal dihedral angles are used, this accounts for the change in the definition of
A,B,C,A′, B′, C′
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For later purposes, recall also that for all θ ∈ (0, 2π) one has =(Li2(exp iθ)
2 ) = Λ( θ2 ), so

replacing the values of A,B,C,A′, B′, C ′ and setting z = exp(is) in (14) we get

=(U(exp(is))) = Λ
(s

2

)
+ Λ

(
s− (α+ α′ + β + β′)

2

)
(16)

+Λ

(
s− (α+ α′ + γ + γ′)

2

)
+ Λ

(
s− (γ + γ′ + β + β′)

2

)
− Λ

(
s− (α+ β + γ)

2

)
−Λ

(
s− (α+ β′ + γ′)

2

)
− Λ

(
s− (α′ + β + γ′)

2

)
− Λ

(
s− (α′ + β′ + γ)

2

)
.

Let now z± be the two nontrivial solutions of the equation (which reduces to a degree 2
polynomial equation):

d

dz
U(z) ∈ πi

z
Z.

As shown by Ushijima [22] these can be expressed as:

(17) z± = −2
sin(α) sin(α′)+sin(β) sin(β′)+sin(γ) sin(γ′)±

√
det(G)

AA′+BB′+CC′+ABC′+A′BC+AB′C+A′B′C′+ABCA′B′C′

where

(18) G =


1 cos(α) cos(β) cos(γ′)

cos(α) 1 cos(γ) cos(β′)
cos(β) cos(γ) 1 cos(α′)
cos(γ′) cos(β′) cos(α′) 1


Then the following was first proved by Murakami and Yano in [17] for compact hyperbolic
tetrahedra and was later shown by A. Ushijima [22] to hold for the case of a truncated
hyperideal tetrahedron:

Theorem A.1 ([17],[22]). The volume of the truncated hyperbolic tetrahedron whose exterior
dihedral angles are as in Example 2.2, is

Vol(Tet) = = (V (z−)) = −= (V (z+)) = =
(
U(z−)− U(z+)

2

)
.

A.2. Proof of Theorem 1.4. We will need the following:

Lemma A.2. Let α ∈ (0, 1) and let (an)n∈N be a sequence of integers such that limn→∞
an
n =

α. Then {an} is meromorphic, for n sufficiently large it has no pole at exp
(
iπ
2n

)
and the

following holds:

lim
n→∞

π

n
log

(
evn({an}!)

ian

)
= −Λ(πα)

where we imply that the argument of the log is real positive.
Similarly, if α ∈ (1, 2) and (an)n∈N is a sequence of half-integers such that limn→∞

an
n =

α, then {an}! has a simple zero at exp
(
iπ
2n

)
for n big enough and the following holds:

lim
n→∞

π

n
log

(
evn({an}!)

(−1)n+an2n2ian+1 exp(− iπ
2n )

)
= −Λ(πα)

where, again, we imply that the argument of the log is real positive.
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Proof. We limit ourselves to a sketch, see [3] for a detailed proof. Clearly evn(fg) =
evn(f)evn(g), and if k is not a multiple of n, evn({k}) = 2i sin(πkn ) while evn({n}) =

−2n exp(−iπ2n ) and thus if an ∈ [0, n) (which is true for the first statement),

evn({an}!) =

an∏
k=1

2i sin
πk

n
∼ ian exp

−n
(
Λ(πann )− Λ(πn )

)
π

;

while if an ∈ [n, 2n),

evn({an}!) =

(
n−1∏
k=1

2i sin
πk

n

)(
−2n exp

−iπ

2n

)( an∏
k=n+1

2i sin
πk

n

)

=

(
−2in−1n2 exp

−iπ

2n

) an∏
k=n+1

−i

∣∣∣∣2 sin
πk

n

∣∣∣∣
∼ −(−i)an+1(−1)n2n2 exp

−iπ

2n
exp
−n
(
Λ(πann )− Λ(π + π

n )
)

π
.

�

We can now prove Theorem 1.4. For the sake of self-containedness we start by sketching
the proof of the following proved in [3] for the skein normalization of the tetrahedron:

Theorem A.3. Let Γ be the 1-skeleton of a hyperideal tetrahedron Tet whose exterior
dihedral angles are as in Example 2.2 and let (cn)n∈N be a sequence of colorings on Γ such
that cn ∈ [n2 , n) and limn→∞ 2π(1− cn

n ) equals the corresponding exterior dihedral angles of
Tet. Then,

lim
n→∞

π

n
log
(
|evn〈Γ, cn〉U|

)
= Vol(Tettrunc).

and Conjecture 1.3 holds in this case.

Proof. The idea of the proof is to first identify the leading term in (5), then to recognize
it as the volume of the tetrahedron using Theorem A.1. Despite the signs present in (5),
there will be no cancellation. Let us start by computing the evaluation at A = exp( iπ

2n ) of
∆(a, b, c) (as in (5)) using Lemma A.2:

lim
n→∞

π

n
log(|evn(

√
∆(a, b, c))|) =

1

2

(
Λ(
α+ β − γ

2
)+

Λ(
α− β + γ

2
) + Λ(

−α+ β + γ

2
)− Λ(

α+ β + γ

2
)

)
and similarly for ∆(a, e, f),∆(d, b, f),∆(d, e, c). Indeed for instance we have limn→∞

an
n =

1− α
2π (and similarly for the other ratios) and so

lim
n→∞

π

n
log(evn([an + bc − cn]!)) = −Λ(π − α+ β − γ

2
) = Λ(

α+ β − γ
2

).

Observe that the above formula equals the imaginary part of Equation (15) (recall that for

all θ ∈ (0, 2π) one has =(Li2(exp iθ)
2 ) = Λ( θ2 )).

Now let us concentrate on the summation in Formula (5). Let Sk be the kth summand
and remark that k ranges in [max{Ti},min{Qj}]. We claim that Sk has a simple zero at

A = exp
(
iπ
2n

)
if k ∈ [max{Ti}, n − 2] and a zero of higher order otherwise, so only the

summands Sk with k ∈ [max{Ti}, n − 2] need be considered for the purpose of computing
evn.
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Indeed by the inequalities of Example 3.1 translated in terms of γ ∼ 2π(1 − cn
n ), for n

large enough, using the notation of Definition 3.1, one has n < max({Ti}) < 2n; moreover
by hypothesis c(ei) ∈ [n2 , n) for every ei ∈ E(Γ) so c(ei)+c(ej)−c(ek) < n for every 3-uple of
edges touching a common vertex (in whatever order). Since the summation index k ranges
from max({Ti}) to min({Qj}) the differences k−Ti and Qj−k are bounded above by a term
of the form c(ei)+c(ej)−c(ek) < n (for some triple of edges sharing a vertex) and hence the
quantum factorials in the denominator of the quantum binomials forming the summands
in Formula (5) have arguments < n and are nonzero at A = exp

(
iπ
2n

)
. By contrast, the

numerator has a simple zero exp
(
iπ
2n

)
when k ranges in [max({Ti}), n−2] and a double zero

when k ranges in [n− 1,min({Qj})]. The claim is thus proved.

Our second claim is now that for all k ∈ [max({Ti}), n − 3), the ratio evn
(Sk+1

Sk

)
is real

positive. Indeed:

Sk+1

Sk
= − {k + 1}{Q(n)

1 − k}{Q(n)
2 − k}{Q(n)

3 − k}
{k + 1− T (n)

1 }{k + 1− T (n)
2 }{k + 1− T (n)

2 }{k + 1− T (n)
4 }

where we let Q
(n)
j and T

(n)
i be the “squares and triangles” associated to the coloring cn as

in Definition 3.1. Since {k} = 2i sin(πkn ), by the same estimates as in the previous claim
the ratio is then positive real as {k + 1} is a negative multiple of 2i. So max{|Sk|} ≤
|evn

(∑
k Sk)| ≤ (n−2−max{Ti})max{|Sk|}, and we are left to find the terms Sk for which

|Sk| is maximal.
Now remark that since the arguments of the factorials in the denominators of Sk all belong

to [0, n), their evaluations (by Lemma A.2) grow respectively like ik−Ti exp(−nπΛ(π k−Tin ))

and iQj−k exp(−nπΛ(π
Qj−k
n )). By contrast the numerator grows like

ik+2(−1)k+1+n2n2 exp

(
−iπ

2n

)
exp

(
−π
n

Λ

(
π
k

n

))
,

so, taking into account the sign (−1)k in front of the multinomial, the kth-summand grows
like:

(−1)n2n2 exp
(
− iπ

2n

)
{1}

exp

n
π

−Λ

(
π
k

n

)
+
∑
i

Λ

(
π
k − Ti
n

)
+
∑
j

Λ

(
π
Qj − k
n

) .

Now let us define numbers τi, νj by

lim
n→∞

π
T

(n)
i

n
= 3π − γ(e) + γ(e′) + γ(e′′)

2
=: 3π − τi

2

lim
n→∞

π
Q

(n)
j

n
= 4π − γ(e) + γ(e′) + γ(e′′) + γ(e′′′)

2
=: 4π − νj

2

for the edges e, e′, e′′, e′′′ naturally associated to Ti or Qj . Letting π kn = 2π − s
2 and

f(s) = −Λ
(

2π − s

2

)
+
∑
i

Λ

(
−s+ τi

2
− π

)
−
∑
j

Λ

(
−2π +

νj − s
2

)
and comparing with Equation (16), we see that f(s) = = (U (exp (is))) and that the growth
rate of the logarithm of the norm of the evaluation of the sum is given by:

max
s∈[0,min({τi−2π})]

n

π
f(s).
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We thus search for the maximum of f and imposing f ′(s) = 0 we get an equation of the
form:

| sin
(
2π − s

2

)
sin
(
ν1−s

2

)
sin
(
ν2−s

2

)
sin
(
ν3−s

2

)
|

| sin
(
τ1−s−2π

2

)
sin
(
τ2−s−2π

2

)
sin
(
τ3−s−2π

2

)
sin
(
τ4−s−2π

2

)
|

= 1

Recalling that νj − τi > 0 for all i, j (see Example 3.1), the above equation is equivalent to:

sin
(
2π − s

2

)
sin
(
ν1−s

2

)
sin
(
ν2−s

2

)
sin
(
ν3−s

2

)
sin
(
τ1−s−2π

2

)
sin
(
τ2−s−2π

2

)
sin
(
τ3−s−2π

2

)
sin
(
τ4−s−2π

2

) = 1

Replacing sin(x) by eix−e−ix

2i and setting A := − exp (−iα) (and similarly for all the angles)
and z = − exp(is) one gets a polynomial equation of degree 2 in z whose solutions were
shown by Murakami and Yano to be z+, z− given in Formula (17). (Even if this is not
apparent from the formula, as soon as the Gram matrix in Equation (18) has negative
determinant, then |z−| = |z+| = 1.) In particular, in the case of a regular ideal octahedron
(i.e. a maximally truncated tetrahedron), whose exterior dihedral angles are all π, f(s) =
4Λ
(
s
2

)
+ 4Λ

(
π
2 −

s
2

)
, s ∈ [0, π], whose extremum is attained at s = π

2 and its value is

8Λ
(
π
4

)
> 0. By Theorem A.1 the corresponding point is then z− because Vol(Tet) =

= (V (z−)) = −= (V (z+)) = =
(
U(z−)−U(z+)

2

)
> 0.

One concludes the proof by putting together all the terms in the asymptotical behavior
of Formula (5) and comparing with Theorem A.1. �

We are now able to prove Theorem 1.4 in full generality. We do this by induction on the
number n of moves of the form producing Γ from a tetrahedron. If n = 0 then Γ
is the 1-skeleton of a hyperideal hyperbolic tetrahedron whose possible angles are provided
by Example 3.1. For such a graph, Theorem A.3 proves Theorem 1.4. If now Γ can be
obtained from Γ′ (for which we assume Theorem 1.4 holds) by a single move, suppose that
α, β, γ are the exterior angles on the three edges of Γ′ involved in the move. Observe that
any geometric structure of the hyperbolic polyhedron P trunc

Γ can be obtained by gluing two
polyhedra P trunc

Γ′ and Tettrunc, along the face corresponding to the triple of edges of Γ′

where the move is applied. Conversely if P trunc
Γ′ and Tettrunc are equipped with geometric

structures such that the dihedral angles along the truncation faces to be matched are the
same, then they can be glued to form a hyperideal hyperbolic structure on P trunc

Γ . Clearly
the volumes add up: Vol(P trunc

Γ ) = Vol(P trunc
Γ′ ) + Vol(Tettrunc).

On the quantum side, this follows from equation (8). For any coloring cn on Γ one has

〈Γ, cn〉U = 〈Γ′, c′n〉U〈Tet, c′′n〉U

where c′n and c′′n are the restrictions of cn to the edges of Γ′ and Tet respectively (here we
use the natural injections E(Γ′)→ E(Γ) and E(Tet)→ E(Γ) to restrict the cn). Then one
concludes by induction using Theorem A.3. �
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